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ABSTRACT 
 
Today, an estimated 38,000 new HIV infections still occur in the United States (CDC, 2020). During the early                  
signs of immune recognition by T cells, virus-derived peptides are presented by MHC molecules on the                
cellular surface. In HIV infection, immune responses and immune protection are not very well defined. In this                 
project, we analyze HIV-specific patterns during antigen processing and presentation and develop            
computational tools to aid in the process of the analyses. From this area of study, further advancement in                  
protein degradation analyses and in immunopeptidome definition may help in identifying targets for efficient              
immune clearance and a future vaccine design.  
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I. INTRODUCTION 
It is widely believed that the human       

immunodeficiency virus (HIV) originated in the      
Democratic Republic of Congo around 1920 when       
the virus was transmitted from chimpanzees to       
humans. Although the first sporadic cases of       
acquired immune deficiency syndrome (AIDs) was      
documented prior to 1970, the widespread epidemic       
had not begun until the mid-to late 1970s. By this          
point, the virus had been predicted to have already         
spread to five continents, infecting somewhere      
between 100,000 and 300,000 people already.The      
large-scale infection and mortality rates of HIV have        
decreased through the use of drug therapies and        
widespread educational campaigns. Meanwhile, steps     
towards developing a vaccine to terminate the spread        
of HIV is still an ongoing struggle (The science of          
HIV and AIDS - overview, 2019). Despite vast        
advances in antiretroviral therapy, The high diversity       
and rapid evolution of HIV sequences within a        
person and across a large population is a major         
struggle for the design of a universal HIV vaccine         
(Santoro, 2013).  

Many studies have shown to predict the       
results of vaccinations in a much more in depth look          
based on types and breadth of immune responses and         
of its protectiveness after infection. New correlates of        
immune protection and monitoring parameters during      
vaccine strategies have been researched as well. One        
such area of study that would be very interesting to          
look into would be the recognition of peptides        
naturally processed and presented by HIV-infected      
cells. A better understanding of antigen degradation       
and the development of computational tools that       
incorporate both the diversity of the degradation       
machinery and sequence diversity of HIV will allow        
for researchers to be able to identify areas of immune          
escape at the population level. With this, motif        
identification associated with efficient peptide     
presentation would also be an expansion of our        
immune knowledge. The expansion of understanding      
the mechanisms behind HIV antigen processing and       
the HIV immunopeptidome through the development      
of more advanced computational tools would be       
extremely useful. They could be used to predict        

antigen processing and presentation in the context of        
antigen variability to help identify more conserved       
targets for immune recognition and help improve       
vaccine design.  (Le Gall, 2019). 

Therefore, this project sought to understand      
the mechanism of specific protein degradation to       
broaden our knowledge of . Through the process of         
analyzing these patterns, supplemental bioinformatics     
methods were utilized in order to perform analyses        
on a much more extensive scale. 

 
 

 
II. BACKGROUND 

 
A. The Human Immunodeficiency Virus 

(HIV)  
In the 1980s, the world experienced a massive        

outbreak of the human immunodeficiency virus      
(HIV) and acquired immune deficiency syndrome      
(AIDS) although the disease had originated decades       
earlier (History of AIDS, 2017). According to the        
World Health Organization, 75 million people have       
been infected with HIV and 32 million people have         
died from the disease since the beginning of the         
epidemic. By the end of 2018, 37.9 million people         
were living with HIV/AIDS worldwide (HIV/AIDS,).  

HIV is a retrovirus that stores its genetic        
information using RNA and is made up of nine genes          
that contain instructions to make new viruses. Figure        
1 depicts the process of cellular infection, integration        
of genetic information, and production of new viral        
proteins. HIV begins to infect immune system cells        
by attaching to immune cells that have CD4 receptors         
on the surface such as T cells, monocytes,        
macrophages, and dendritic cells. The CD4 receptor       
signals to the immune system about the presence of         
antigens. After attachment and fusion, HIV uses       
reverse transcriptase enzyme to convert RNA into       
proviral DNA inside of the host cell. This proviral         
DNA becomes attached to HIV’s integrase enzyme       
and enters the cell nucleus. Once it binds to the host           
DNA, the HIV DNA strand integrates into the DNA         
of the host cell. When the cell receives a signal to           
become active, HIV uses the host enzyme RNA        
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polymerase to make mRNA to make new viral        
protein chains. Once these chains finish assembling       
into new viruses at the cell wall, they leave the cell           
and become infectious (The science of HIV and        
AIDS - overview, 2019).  

 

 
Figure 1: This illustrates the HIV replication cycle,        
which begins with the (1) binding of the virus to the           
CD4 receptor on the host cell surface. (2) A capsid          
carrying the virus’s genome and proteins enters the        
cell, and (3) an HIV protein, reverse transcriptase,        
transcribes the viral RNA into DNA. (4) This new         
viral DNA is transported across the nucleus and        
integrates into the host cell’s DNA. (5) Viral RNA is          
now used to create viral proteins that (6) move to the           
cell surface where a new, immature HIV forms. (7)         
The virus is released from the cell and matures into          
an infectious virus (Betts, 2019). 
 

B. HIV Infection and the Body’s 
Responses  

Once the body is infected with HIV, there are three          
stages at which different symptoms occur: primary or        
acute HIV infection, chronic or clinical latency       
infection, and eventually AIDs (The science of HIV        
and AIDS - overview, 2019). During acute HIV        
infection, the earliest stage of HIV infection, the viral         

load generally increases and the number of CD4 T         
cells decreases. During the second stage of HIV,        
chronic or clinical latency infection, patients      
normally receive antiretroviral treatment, resulting in      
rapid HIV control and partial restoration of immune        
functions (Deeks, 2007). However, untreated patients      
can develop extreme HIV symptoms, which can       
potentially lead to the most severe form of HIV         
infection in less than one year, AIDS. At this stage, a           
person is more vulnerable to cancer and other        
life-threatening infections (History of AIDS, 2017). 
 

C. The Immune System 
The immune system is a highly complex and        

powerful interconnecting network made up of tissues,       
cells, and proteins whose primary function is to        
defend the body from non-self pathogens. This       
defense mechanism enables the body to prevent       
potential infection and illness from disease-causing      
organisms, such as bacteria and viruses. Two       
subgroups of the immune system are the innate and         
adaptive, both of which are critical in responses to         
foreign particles (Thompson, 2015). The innate      
immune system is the more rapid of the two         
responses, acting as the initial line of defense to         
prevent the spread of pathogens throughout the body.        
Innate immune cells recognize specific patterns      
found on microbial surface components of pathogens,       
which leads to induction of pro-inflammatory      
cytokines in infected cells and activation of adaptive        
immune cells (Levy, 2001). The adaptive immune       
system is a slower but more targeted approach when         
responding to pathogens by distinguishing between      
self and non-self molecules in order to destroy the         
latter. Both B and T lymphocytes are white blood         
cells which are responsible for humoral and       
cell-mediated immunity, respectively (Alberts, 2002).     
Research continues to be conducted on all forms of         
the immune system to find treatments and protection        
against infectious diseases, such as vaccines.      
Vaccines trials are continuously being conducted to       
seek for preventative measures against diseases and       
illnesses, such as the human immunodeficiency virus       
(HIV) (Understanding HIV/AIDs, 2019).  
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D. Antigen Processing and Presentation in 
Subcompartments 
During initial exposure to an antigen, the       

body’s adaptive immune system works to recognize       
and destroy the invading virus. In cell-mediated       
immune responses, activated T cells interact directly       
with a foreign antigen that is presented to them on the           
surface of a host cell (Alberts, 2002). In HIV         
infection, immune responses are not able to clear        
infection and the mechanisms behind this are not well         
defined. T cell recognition of antigen-presenting cells       
highly depends on the expression of peptides bound        
to major histocompatibility complex class I (MHC-I)       
and class II (MHC-II) molecules. The antigen       
processing machinery plays an important role in the        
conversion of antigens into MHC-I- and MHC-II-       
bound peptides for protective T cell responses (Blum,        
2013).  

 

 
Figure 2. A) Classical antigen presentation pathways.       
MHC class I molecules come together in the ER with          
chaperone proteins until peptide binding.     
Ubiquitinated antigens are degraded by the      
proteasome, and the cut remaining peptides are       
transported into the ER lumen by transporters       
associated with antigen presentation (TAPs). The      
peptides are loaded onto MHC class I, tapasin is         
released and the peptide-MHC class I complex is        
transported through the Golgi to the cell surface        
where they are recognized by CD8+ T cells. MHC         
class II molecules assemble in the ER with chaperone         

invariant chain II, which mediates travel of MHC        
class II from the ER through the Golgi to the          
endosomal pathway. Peptide-loaded MHC class II      
molecules are released from the endosomal      
compartment to the cell surface where they are        
recognized by CD4+ T cells (​Malmstrøm​, 2013).  
 

 
Figure 3. B) Alternative (cross-presentation)     
pathway. MHC class I molecules carrying signal       
motifs in the cytoplasmic tail are transported to the         
endosomal pathway where endocytosed antigens are      
degraded. Peptides are loaded directly in endosomes       
in a TAP-independent manner, or the antigens can        
translocate to the cytosol for proteasomal      
degradation. The antigens are either loaded onto       
MHC class I in the ER or transported back by TAP           
transporters. Peptide-loaded MHC class I molecules      
are then released to the cell surface for antigen         
presentation to CD8+  cells (​Malmstrøm​, 2013).  
 

HIV infects cell subsets expressing CD4 and       
productive infection requires that HIV successfully      
fuses at the plasma membrane that delivers the virus         
into the cytosol, which continues to uncoat and go         
through reverse transcription during its transport to       
the nucleus to become transcribed and translated       
(Churchill, 2016). Productive infection is not as       
common since there are a multitude of factors related         
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to host restriction and degradation machinery      
(Chauveau, 2017).  

Within the cell, there are various      
compartments in which proteases and peptidases      
degrade antigens during antigen processing; different      
degradation patterns from this contribute to defining       
the amount of peptides able to load onto MHC         
molecules.  

Cytosolic proteasomes unfold and degrade     
into fragments that are further processed into       
peptides by cytosolic peptidases. Some of these       
peptides are transferred to the endoplasmic reticulum       
(ER) to be degraded by other aminopeptidases before        
being loaded onto MHC-I (​Lázaro​, 2015). Exogenous       
antigens can be processed by cathepsins in       
endosomes and lysosomes. Degraded peptides from      
the cytosol and ER are then cross-presented in the         
MHC-I or transported into the late endosomal       
MHC-II compartment for MHC-II loading and      
presentation (Blu, 2013). Other proteasomes,     
peptidases, and cathepsins are involved with      
processing HIV epitopes but not much is known        
about specific epitopes required for antigen      
processing and presentation (Le Gall, 2007).  

Due to the difference in degradation patterns,       
studies have shown that some epitopes are produced        
in all compartments while others are produced in        
more specific compartments. Within the variable      
timing and nature of peptide degradation, peptidase       
activity seems to change throughout cellular subsets       
targeted by the virus (21, 22). Macrophages express        
the highest levels of hydrolytic activities due to their         
phagocytic functions while dendritic cells express      
high lysosomal activities but low cytosolic peptidase       
activities (11, 23). Because of these differences in        
peptidase activity, this changed degradation patterns      
of HIV antigens which in turn affected the kinetics         
and amount of epitopes produced. Epitope production       
may have implications to the MHC-peptidome      
environment and possibly efficiency of immune      
recognition by epitope-specific CD8 T cells.      
Peptidase hydrolytic activity across cellular     
compartments are distinct, therefore making their      
mechanistic impact on antigen processing unclear      
(Dinter, 2015). External factors such as interferon       

gamma has been shown to increase expression of        
peptidases such as ERAP1 or LAP, the expression of         
immunoproteasome catalytic subunits, TAP or     
MHC-I, which in turn increased antigen processing       
and presentation of MHC-peptides (Serwold, 2002).  

In terms of immunogenicity, HIV Gag p24,       
Env, Nef have been found to be the most         
immunogenic while Tat and Vpu are the least        
immunogenic. The conservation of the MHC-I      
peptides across variants or strains vary and are hard         
to pinpoint patterns in (Le Gall, 2007). There have         
been many studies dedicated to identifying      
degradation patterns of HIV antigens by different       
compartments such as proteasomes, cytosol, or      
endolysosomes (12, 21, 22). These studies have       
identified various areas of faster peptide degradation       
resulting in fragments that are too short to load onto          
MHC-I or areas of slower peptide degradation       
resulting in nested peptide fragments that are       
potentially loaded onto MHC-I (Le Gall, 2007).       
Another factor that may contribute to CD8 immune        
responses within an HIV protein focuses on the        
kinetics of epitope production. Flanking epitope      
motifs are important in potentially predicting      
production of peptide fragments and thus peptide       
presentation by MHC-I or MHC-II.  

Despite the critical role that the MHC       
peptidome plays in immune recognition, the kinetics       
behind the processing and presentation of peptides to        
immune cells is not fully understood. Thus far, it has          
been mainly inferred based on T cell responses in         
HIV-infected persons (Le Gall, 2007). Some      
algorithms like NetChOP, which predicts     
proteasomal cleavage sites and others that analyze       
TAP or MHC binding help shed light upon        
degradation features, but do not account for       
peptidases involved in protein degradation, specific      
degradation machinery in different cellular     
compartments, and viral diversity (​Lázaro​, 2015).      
HIV proteins are already highly variable within an        
individual, making it even more so at a population         
level (Llano, 2013). Further research is needed to        
identify kinetics of peptide degradation in each cell        
subset to assess whether the different compartments       
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result in more optimal targets for immune recognition        
in infected cells.  
 

E. HIV Adaptation to Antigen Processing 
Machinery 
Antigen processing is a complex multistep      

process that involves intracellular degradation of self-       
and pathogen-derived proteins. Once they are      
degraded, they become peptides that are loaded onto        
major histocompatibility complex (MHC) molecules     
and displayed at the cell surface. Immune T cells         
detect and clear infected cells that are presented as         
peptides derived from intracellular degradation of the       
pathogen. MHC-I complexes display 8-11aa of      
optimal size long peptides to CD8 T cells while         
MHC-II complexes display peptides of non-canonical      
sizes of up to 16aa to CD4 T cells (Kourjian, 2014).  

Degradation patterns of HIV-derived proteins     
into epitopes displayed by MHC-I or MHC-II have        
an effect on HIV-specific immune responses and the        
recognition of infected cells (Kourjian, 2014). In one        
experiment, a cell line expressing soluble MHC,       
primary CD4 T cells infected with relicative HIV, B         
cells infected with non-replicative HIV, 293 T cells        
transfected with HIV, and cells infected with an        
MVA vector expression HIV antigen fragment were       
all found to show that HIV-derived come mostly        
from Gag proteins aside from other less abundant        
proteins. It was also suggested that certain areas of         
the Gag proteins were more efficiently presented       
across different cell types, HIV expression systems,       
or HLA types (Yaciuk, 2014).  

Longer peptides with extensions on the N- or        
C-terminal ends were found to not be easily        
predictable by MHC-I binding anchors. Therefore,      
the specifics of location and loading of peptides onto         
MHC are unknown along with the structure of the         
MHC-peptide complexes and stability of the      
MHC-peptide at the cell surface (The science of HIV         
and AIDS - overview, 2019). Potential identified       
MHC-bound peptide biases during CD8 recognition      
can help define targets for immune recognition of        
infected cells displayed by dendritic cells after       
vaccination (Churchill, 2016). Another aspect to      
consider in the variability of HIV peptide       

presentation are defective ribosomal products     
(DRiPs) which may play a part in early peptide         
presentation. Alternate reading frame translation     
products have been found in HIV-infected cells;       
however, their role and translational byproducts in       
HIV replication is unknown (Goldwich, 2008). The       
underlying mechanisms in the presentation of HIV       
peptides across different HIV proteins are still not        
understood due to the lack of datasets that exist on          
the HIV-derived immunopeptidome (Berger, 2015).     
This knowledge is another critical aspect in helping        
to identify targets for immune recognition and       
immunogen design (Yaciuk, 2014).  
 

F. MHC Immunopeptidomics  
HIV-specific CD8 and CD4 immune     

responses have been identified in HIV-related cases,       
with peptide specificity, HLA restriction, immune      
response frequency, cytokine production, but the      
relationships between these factors are still not well        
defined (Porichis and Kaufmann, 2011).     
HIV-specific T cells play an extremely important role        
in controlling viral load in both HIV-positive patients        
and HIV controllers (Betts, 2006). Studies have tried        
to show correlations between viral load patterns in        
acute infection with T cell responses and       
HLA-restrictions, but have shown that T cell count        
alone does not clear infection. Non-protective      
immunodominant responses, immune pressure by T      
cell responses driving mutations in the virus and        
immune escape, antigen stimulation, and viral      
reservoirs establishment have all shown to contribute       
to some extent towards lack of T cell response         
efficacy (Kourjian, 2016).  

Specific HLA and CD8 or CD4 T cell        
responses against Gag polyproteins are seen to be        
associated with lower viral load and spontaneous       
control, but the underlying mechanisms are not fully        
understood (Hancock et al., 2015). The research in        
detecting patterns within immune protection has      
focused on CD4, CD8 T or NK cell responses during          
infection, but less research has been done in the area          
of antigen processing and presentation to the antiviral        
capacity or immune responses (Dinter, 2015). As T        
cell responses are activated through MHC-peptide      
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recognition, there are various questions related to the        
nature and amount of HIV peptides displayed by        
HIV-infected cells across HLAs. It is also important        
to factor in the question of how efficient        
HIV-specific T cells are primed during infection to        
detect how HIV peptides are processed and presented        
by infected cellular subsets. Currently, there are no        
comparative datasets that exist for the      
MHC-peptidome displayed by CD4 T cells,      
macrophages, and dendritic cells of the same donor        
after HIV infection. With the variability in antigen        
processing activity and degradation patterns of HIV       
proteins between CD4 cells and other cellular       
subsets, this suggests the differences in peptide       
presentation as well. If this prediction were to be true          
to some degree, the assumption would be that the         
most efficient immune responses would be defined as        
those targeting commonly presented peptides within      
HIV-specific immune cells (Kourjian, 2016).  

It will be important to study factors relating to         
HIV immunodominance during infection, which may      
be attributed to differences in antigen processing.       
Therefore, it will be useful to analyze HIV T cell          
patterns that occur during the degradation process of        
antigens, kinetics of epitope production in cell       
extracts or in dendritic cell endolysosomes, as well as         
MHC binding affinity (Le Gall, 2007). However,       
another aspect to consider would be mutations that        
occur that prevent proper peptide recognition by T        
cells, causing some immunodominant early responses      
effortless and broadening of immune responses      
during the chronic infection phase (Karlsson, 2007).       
With HIV being highly variable, it has developed        
many mechanisms to avoid or limit its presentation to         
immune cells, including the down-modulation of      
MHC-I and an adaption to the antigen processing        
machinery (Schwartz, 1996). With this, recent studies       
have been designed to analyze patterns defining       
antigen processing mutations during viral evolution.      
A study showing cleavable or non-cleavable residues       
by aminopeptidases showed that mutations towards      
poorly cleavable residues reduces epitopte     
production. Residues flanking HIV epitopes usually      
mutate due to HLA restriction around poorly       
cleavable residues (Zhang, 2012). HLA-restricted     

mutations within epitopes where people share one       
HLA usually have a reduction in intracellular peptide        
stability, amount of peptides available for CTL       
recognition, and immune escape. With the level of        
intracellular peptide stability is determined by      
specific motifs, immune escape patterns could be       
predicted in a population (​Lázaro​, 2011). Therefore,       
having a better understanding of antigen degradation       
and the development of computational tools that       
combine the diversity of the degradation machinery       
and sequence variability of HIV will be extremely        
important steps to identify immune escape patterns       
and to define motifs associated with efficient peptide        
presentation. 

 
 

 
III. METHODOLOGY 

 
A. Performing Peptide Degradation (Wet 

Lab) Experiments  
To analyze peptide degradation patterns, wet lab       
experiments were performed and analyzed in the       
following manner under the next three sections. 
 

1. HIV Peptide Degradation 
Purified epitope-containing HIV peptides    

(1.5nmol) from Massachusetts General Hospital     
donors were digested with 15​μ​g CD4+ T cell extracts         
at 37​°C in ​degradation buffer (50 mM Tris-HCl, 137         
mM potassium acetate, 1 mM MgCl2, and 1 mM         
ATP) at pH 4 and 7)). Aliquots were taken at a time            
point of 1 hour, and the reaction was stopped with          
2​μ​L 100% formic acid. Peptide fragments in the mix         
were purified by 10% TCA precipitation followed by        
centrifugation at 14,000 rpm at 4​°C for 30 min to          
isolate the digestion products in the supernatant       
(Almazan, 2016) 

 
2. Mass Spectrometry Analysis 

The identity of the peptides in the digestion        
mix was determined by in-house mass spectrometry       
analyses. Equal amounts of peptide degradation      
samples at different time points were injected into a         
Nano-HPLC (Eksigent) in line with an Orbitrap mass        

9 of 34 



 

spectrometer (LTQ Orbitrap Discovery; Thermo)     
with a flow rate of 400 nL/min. A Nano cHiPLC trap           
column (200 ​μ​m × 0.5 mm ChromXP c18-CL 5 μm          
120Å; Eksigent) was used to remove salts from        
samples, and peptides were separated on a Nano        
cHiPLC column (75 ​μ​m × 15 cm ChromXP c18-CL 5          
μm 300Å; Eksigent) over a gradient of 2–40% buffer         
B (buffer A, 0.1% formic acid in water; buffer B,          
0.1% formic acid in acetonitrile) and electrosprayed       
in the mass spectrometer. Mass spectra were recorded        
in the range of 370–2000 Da. In tandem mass         
spectrometry mode, the eight most intense peaks       
were selected with a window of 1 Da and         
fragmented. The collision gas was helium, and the        
collision voltage was 35 V. Tandem mass       
spectrometry spectra were searched against     
custom-made source peptide databases with Sequest      
and Proteome Discoverer (version 1.3; Thermo      
Scientific). The integrated area under a peak       
generated by a given peptide is proportional to the         
abundance of that peptide. Each degradation time       
point was run on the mass spectrometer at least twice          
(Almazan, 2016). 

 
3. Statistical Analysis 

Using our mass spectrometry data, we      
analyzed protein degradation through size, size      
intensity, size % intensity, N- and C-terminal peptide        
cuts, and coverage. We also quantified intracellular       
peptide presentation and surface peptide presentation      
(Almazan, 2016). 

 
 

B. Organizing Peptide Degradation (Wet 
Lab) Experimental Data 
To analyze peptide degradation patterns, wet 

lab experiments were performed and analyzed in the 
following manner under the next three sections. 

 
1. MySQL Database: Peptide Degradation  

Databases are a useful way to store large and         
structured amounts of information in a computer,       
especially one that is accessible in various ways.        
Most databases contain multiple tables, which may       
each include several different fields. Therefore,      

creating a database for experimental databases would       
be useful in organizing results and finding patterns        
amongst big data. MySQL is an open-source       
relational database management system. Its name is a        
combination of “My”, the name of one of the         
co-founder’s daughters, and “SQL”, which stands for       
Structured Query Language. Using the MySQL      
Workbench,  

With the peptide degradation experiments,     
peptides are degraded in various pHs to mimic the         
various subcellular compartments during antigen     
processing. For the first database, tables were created        
to organize results obtained from peptide degradation       
experiments. Figure 4 depicts the entity relationship       
diagram for the tables and fields that this database         
stores. The ‘people’ table stores the information for        
experimenters’ names. The ‘projects’ table stores the       
information for the name of the project, the species of          
the project subject (species), and any additional       
information (notes). The ‘experiments’ table stores      
the information for the person that performed the        
type of project it is associated with (proj_id),        
experiment (people_id), the date of the experiment       
(date), the donor identity (donor), the type of        
experiment (Treatment), and the cell type (cell_type).       
The ‘original_peptides’ table stores the information      
for a reference to the peptide (ref), the peptide name          
(oripep_id), the type of protein (protein), the       
pathogenic disease the peptide is linked to       
(pathogen_disease), and any additional information     
(notes). The ‘experiment_data’ table stores the      
information for the type of project from the        
projects.csv file (proj_id), a person that performed       
the experiment, the experiment identification from      
the experiments.csv file (exp_id), the pH (pH), time        
point (time), peptide sequence (seq), the reference       
peptide information (ref), the intensity (intensity),      
and the total intensity of the peptides       
(total_intensity). The ‘input’ table inside the MySQL       
Workbench stores the information from the local       
input.csv file that is uploaded with the peptide        
degradation information, which provides information     
for the ‘experiments’, ‘experiment_data’ and     
‘original_peptides’ tables. 
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Figure 4. Entity relationship diagram for peptide       
degradation database.  
 
The following figures are the .csv file templates with         
examples of what to put in each field in order for           
each corresponding table to have data. These .csv        
files are then imported to the MySQL Workbench. 

 
Figure 5. Template for what to put in        
input_example.csv file. 

 
Figure 6. Template for what to put in the people.csv          
file. 
 

 
Figure 7. Template for what to put in the projects.csv          
file. 
 

2. MySQL Database: Epitopes 
With the epitope database, the     

‘surfacepep_papers’ table stores the information from      
the local surfacepep_input.csv file. This table stores       
the information for the identification number of the        
paper (ref), the author of the reference (first_author),        
the journal of the paper (journal), the year of the          
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paper (year), the cells used in the experiment (cells),         
the assay (assay), the sequencing method      
(sequencing), the number of peptides (num_peps),      
the data (data), the HLAs identified in the paper         
(HLAs), the HLA assignment (HLA_assignment),     
and any additional comments (comments), the data       
origin (data_origin), the search engine     
(search_engine), the search parameters such as      
precursors or fragments masses (search_param), the      
false discovery rate (false_dscvr_rate), and any      
post-translational modifications (posttrans_mod). The    
‘paper_library’ stores the information from the local       
surfacepep_input.csv file. This table stores the      
information for the reference of the paper (ref), the         
first author of the paper (author), the amount of         
peptides mentioned in the paper (num_pep), and the        
number of unique peptides in that paper       
(num_uniquepep). The ‘peptide_library’ table stores     
the information from the local peptidelib_input.csv      
file. This table stores the information for the        
identification number of the paper (id), the peptide        
sequence (seq), the length of the peptide (length), the         
accession number of the peptide (access_num), the       
protein name of the peptide (prot_name), the gene        
name of the peptide (gene_name), the HLA identity        
(HLA_identity), the HLA class (HLA_class), the      
post-translational modifications of the peptide     
(posttrans_mod), any extra information for that      
peptide (comments), and the sample that the peptide        
came from (sample). The user will have to input         
information into the following .csv files to upload the         
data onto the MySQL Workbench.  
 

 

Figure 8. Entity relationship diagram for epitope       
database.  
 

 
Figure 9. Template for what to put in the         
peptidelib_input.csv file. 
 

 
Figure 10. Template for what to put in the         
surfacepep_input.csv file. 
 

C. Web Scraping and Analyzing 
Secondary Structure Information of 
Degraded Intracellular Peptides 
Web scraping from UniProt and fuzzy      

matching were utilized to analyze secondary structure       
of peptide degradation experiments. To begin, a text        
file of peptide sequences with their corresponding       
protein accession numbers is needed. However, in the        
case that the accession numbers were unknown for        
the peptide sequences, Basic Local Alignment Search       
Tool (BLAST) protein-protein (BLASTp) in batches      
was utilized to retrieve that information. BLASTp is        
an alignment tool that finds regions of similarity        
between biological sequences, in this case protein       
sequences, and compares them to sequences      
databases to calculate statistical significance     
(Altschul, 1990). With this, the Figure 25 in the         
appendix shows the protocol for how to utilize        
BLASTp to retrieve the original protein accession       
number with an input of a FASTA sequence of         
peptide sequences. However, in the case that the file         
was not in FASTA format, Figure 26 in the appendix          
shows the protocol for how to make an appropriate         
FASTA file through Excel. A FASTA file is a         
text-written file that begins with a single-line       
description with a greater-than (“>”) symbol at the        
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beginning, followed by lines of sequence data       
(Altschul, 1990). 

Once the protein accession numbers were      
identified, UniProt was used as an online database to         
scrape secondary structure information using these      
accession numbers. UniProt is an open source       
database of protein sequence and functional      
information (The UniProt Consortium UniProt,     
2019). Figure 27 in the appendix shows the protocol         
of how to webscrape secondary structure information       
from UniProt with the corresponding protein      
accession numbers. In said protocol from previously       
mentioned Figure 27, a Python script named       
“accession_numbers_into_uniprot_url.py” was used   
to output a .txt file of UniProt URLs from an input of            
protein accession numbers (shown in Figure 28 in the         
appendix). After the UniProt URLs are created into        
another text file, a Python script named       
“secondary_structure_through_multiple_uniprot_urls
.py” was created to scrape the information from all of          
the URLs and put that information into a new .csv          
file.  

For each peptide derived from specific      
proteins, secondary structure information (alpha     
helices, beta strands, turns) was parsed by a Python         
script using the BeautifulSoup library. The      
BeautifulSoup library is a Python library for scraping        
data from HTML files (Richardson, 2020). Figure 29        
in the appendix shows the Python code that was used          
to parse secondary structure information from      
UniProt with an input of a .txt file full of UniProt           
website URLs. This gives an output of secondary        
structure information on the specific website URLs       
for each protein accession number. 

On the secondary structure information was      
all inside a .csv file, the frequency was analyzed by          
matching the peptide ranges with the corresponding       
secondary structure and totalling the count of alpha        
helices, beta strands, and turns. With this,  
 

D. Analyzing Amino Acid Motifs 
To study amino acid motifs from where       

peptides were being degraded, Figure 30 shows a        
Python script created to scrape further protein       
information from a list of UniProt URLs, which was         

also utilized in the previous section of parsing        
secondary structure information. With this, each      
degraded peptide sequence was matched in rows with        
their length, corresponding protein accession number,      
and the full length origin source protein sequence.        
From there, Excel formulas were created to locate        
their position within the source protein to analyze six         
and amino acids before and after the N-terminal and         
C-terminal of the degraded peptide region. From       
there, each single amino acid was put into its own          
separate single Excel cell, similar to what is shown in          
Figure 11. 

 

 
Figure 11. Example of amino acids flanking motifs        
six amino acids before the N-terminal split into each         
separate cell on Excel. 

 
For each amino acid position before and after the N-          
and C-termini, a count was taken for each amino acid          
in that specific position. Therefore, a color-coded       
heat map was created to show the frequency by count          
and intensity by color of each amino acid at each          
position. On a color scale, the closer to red it was, the            
higher the frequency and the closer to green it was,          
the lower the frequency.  

From these frequencies, a naive approach was       
first taken to identify the top five flanking amino acid          
motif sequences before and after the N- and C-         
termini. However, a motif sequence identifier for       
short sequences called MEME suite was later utilized        
to try and identify amino acid motif sequences before         
and after the N- and C- termini respectively.  
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IV. RESULTS 

 
A. Antigen Degradation Patterns 

From a subset of 7107 non-duplicate      
intracellular peptides that derived from 1568      
proteins, peptide size was first analyzed as a pattern         
within the peptide degradation wet lab experiments.       
For each degraded peptide, the length was analyzed        
in terms of amino acids, as shown in Figures 12 and           
13.  

 

 
Figure 12. Percentage of peptide sizes in amino acids.  
 
From Figure 12, the size of degraded peptides is         
right-adjusted on the graph, with a high percentage        
around the 6 to 9 amino acids in length.  
 

 
Figure 13. Percentage of peptide size ranges in amino         
acids.  
 

To group the peptide sizes as ranges, almost half of          
the peptides were either 8-12 amino acids or 13-18         
amino acids in length. This “preference” in peptide        
sizes when being degraded in the wet lab experiments         
are a confirmation that the experiments are designed        
in a way that mimics the antigen processing        
environment such as endosomes or lysosomes.  

Another pattern analyzed from peptide 
degradation was the amount of peptides that came 
from each protein.  

 

 
Figure 14. Amount of peptides per protein.  
 

From a dataset full of 1538 proteins, Figure 
14 shows a right-adjusted graph, with 887 peptide 
sequences corresponding to one protein. Then, there 
is a sharp decline to 222 proteins that had 2 peptide 
sequences corresponding to it. It then falls quickly 
down to 98 proteins having 3 peptides each. Overall, 
most proteins had 1 corresponding peptide sequence 
Therefore, this can suggest that there will be high 
variability in patterns seen across the peptides that 
derive from the large number of different proteins.  

Another pattern that was analyzed was the 
molecular weight (Mw) and theoretical pI (isoelectric 
point) of the source proteins in which the peptides are 
derived from. This data was taken from an Expasy 
tool to compute pI/Mw (Bjellqvist, 1994). There 
were four categories that the peptides were put in: 
small acidic, small basic, large acidic, and large 
basic. To be considered small, the peptide was less 
than 500,000 g/mol  in molecular weight and big is 
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greater than 500,000 g/mol in molecular weight. An 
acidic peptide would have pI less than 7 in pH and 
basic if pI was greater than 7 in pH.  

 
Figure 15. Molecular weight and isoelectric point 
distribution of degraded peptides from source 
protein. 
 
From the peptides in our dataset, most peptides came         
from small acidic source proteins at 31%, with it         
coming at a close probability of 29% in large acidic          
proteins. Small basic source proteins (26%) made up        
a good majority of the proteins, with the large basic          
proteins being least likely (14%), as depicted in        
Figure 15.  

The chemical properties of the N-terminal and       
C-terminal of each degraded peptide was also       
analyzed. The amino acid frequency at the N- and C-          
termini calculated from the total (not adjusted       
calculations) within the dataset and from Lenntech       
(Dyer, 1971) (adjusted calculations) was analyzed.  

 
Figure 16. Amino acid frequency for the N- and         
C-termini (not adjusted).  
 
Figure 16 shows that the N-terminal has the highest         
frequencies at around 11% for amino acids A and S          
and the lowest frequencies at around 1% for amino         
acids C and W. At the C-terminal, amino acids L          
(18%) and K (10%) had the highest frequencies and         
amino acids C, H, P, and W all had the lowest           
frequency at around 1%. 
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Figure 17. Amino acid frequency for the N- and 
C-termini (adjusted).  
 
After looking for the frequencies of certain amino        
acids, Figure 17 shows that the N-terminal has the         
highest frequencies around amino acids A and S still         
(8%) and the lowest frequencies around amino acids        
W, X, Y, and Q (3%). For the C-terminal, the lowest           
frequencies are around amino acids P and G at         
around 1%.  

From the different frequencies of certain      
amino acids, the reasoning behind these degradation       
preferences are still unknown. Therefore, a more       
extensive look into these patterns are analyzed       
through amino acid motifs in part C of the results          
section in this paper.  

  
  

B. Antigen Degradation Preferences 
around Specific Secondary Structures 
After running the Python scripts and Excel       

macros to gather information from UniProt from a        
dataset of 7107 intracellular peptides from 1568       
proteins, it was found that of the 1568 proteins, 868          
(55.36%) proteins had no defined structure in the        
UniProt database, 3770 peptides were unassigned      
(53%), and 3337 peptides (47%) had some form of         
assigned secondary structure. Of the 3337 peptides       
that had an assigned secondary structure, 1940       
(58.13%) peptides had 1 secondary structure motif,       
1216 (36.43%) peptides had 2 secondary structure       
motifs, and 180 (5.4%) peptides had 3 secondary        
structure motifs. Of the same 3337 peptides that had         
an assigned secondary structure, 2421 (72.55%)      
peptides had an alpha helix, 1876 (56.22%) peptides        
had beta strands, and 615 (18.42%) peptides had        
turns.  

It is interesting to see the highest preference        
in alpha helices being the secondary structure where        
degradation occurs. However, it can be seen that        
there are multiple areas within a peptide sequence        
where there are more than one secondary structure,        
causing a duplicated count to occur in the        
calculations. Therefore, a future consideration to look       
into would be a way for the Excel macros to not           
double-count any secondary-structure that is seen on       
a similar section of the same peptide sequence. That         
way, the assigned secondary structure would      
determine the actual percentage out of the total        
unrepeated secondary sequence motif total. 
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C. Amino Acid Motif Identification  
From the information that was further scraped from        
UniProt using the Python scripts, the frequencies of        
certain amino acids at the end and beginning of the          
N- and C-termini were calculated and visually       
represented by heat maps.  
 

 

 
Figure 18. Colored heat maps with a corresponding        
color scale above that shows frequency of specific        
amino acids from 6aa before and after the N- and          
C-termini.  
 
The heat maps show the amino acids on the left-side          
column labels with the position labels. The first 2         
sections shows before (i.e. N-6, N-5) and after (i.e.         
N1, N2) the N-terminal and the last 2 sections shows          
before (i.e. N-6, N-5) and after (i.e. N1, N2) the          
C-terminal. In each box, there is a count of how          
many peptides have that specific amino acid in the         
corresponding position at both sides of the terminal.        
With the counts, a heat map with a colored scale          
from green, indicating lowest frequency, to red,       
indicating highest frequency, was created.  
 

 
Figure 19. Top 5 amino acid motifs for the N- and C-            
termini.  
 
From the color coded frequency that was displayed, a         
naive approach was taken to determine the top five         
amino acid motifs for each terminal side. From        
Figure 19, the top highest frequencies displayed by        

the number, which was also more easily viewed by         
the color, was taken for each position before and after          
the N- and C- termini. However, a bioinformatics        
tool called Multiple Em for Motif Elicitation       
(MEME) was used to more accurately identify       
novel-ungapped motifs within the peptide sequences      
(Timothy, 1994). Instead of 6 amino acids before and         
after the N- and C-termini, two sequences of what         
occurred at the first 12 amino acids and the last 12           
amino acids at the N- and C- termini were analyzed          
for motifs.  

 
Figure 20. Top motif identified by MEME for the         
first 12 amino acids at the N-terminal. 
 
Compared to Figure 19 that shows the top motifs         
identified by using a manual method, MEME shows        
very small similarities. From the MEME output, the        
top motif for the first 12 amino acids at the          
N-terminal, depicted by Figure 20, had an e-value of         
3.9e-070 with 33 sites from the input of 4466 peptide          
sequences that had a length of at least 12 amino          
acids. There are some overlapping E’s in both the         
naive identification version in Figure 19 and the        
MEME output in Figure 20.  
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Figure 21. Top motif identified by MEME for the last          
12 amino acids at the C-terminal. 
 
From the MEME output, the top motif for the last 12           
amino acids at the C-terminal, depicted by Figure 21,         
had an e-value of 7.7e-024 and 6 sites from the input           
of 4466 peptide sequences that had a length of at          
least 12 amino acids. There are some overlapping L’s         
in both the naive identification version in Figure 19         
and the MEME output in Figure 21.  

The complexity of HLA class prediction is       
linked to the antigen processing pathway across the        
cytosol and endoplasmic reticulum, and thus these       
motifs shed light upon what occurs within the        
source-protein sequences flanking the ligands. One      
such study performed a comprehensive analysis on       
flanking motifs and discovered a decreased frequency       
of proline at amino acid positions 1-3 upstream of the          
ligands, which was the strongest among all the        
upstream and downstream profiles. This result from       
their study highlighted an important role and position        
of proline for inhibiting downstream epitope      
presentation (Hongo, 2019). With both methods of       
trying to identify amino acid motifs around the N-         
and C- termini, this knowledge is key in        
understanding the biology behind how T-cells      
recognize peptides displayed by HLA class      
molecules on cell surfaces. Therefore, the specific       
positions at which certain flanking amino acids are        
enriched or depleted suggests a potential bias during        
degradation. For the results from the naive approach        
in Figure 19 compared to the results from MEME in          
Figures 20 and 21, there does not seem to be an           
obvious duplicated pattern. This may be due to the         

fact that the first method observed 6 amino acids         
compared to the 12 amino acids the second time.         
Although there are some similar specific amino acids,        
there is not one exact overlap pattern-wise.       
Therefore, a future step could be to use a larger          
dataset using the same source protein, which may        
result in more similarities in the flanking amino acid         
motifs to analyze the enrichment or depletion of        
specific amino acids in certain positions.  

 

 
Figure 22. Kinetic property grouping of amino acids 
based on Sigma Aldrich (Millapore Sigma, n.d.). 
 
After identifying the amino acid motifs, the 
understanding of certain amino acid motifs, the 
kinetic properties were analyzed throughout the 
N-terminal and C-terminal. 
 

 
Figure 23. Composition of amino acid frequency 
based on kinetic properties for the N-terminal. 
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Figure 24. Composition of amino acid frequency 
based on kinetic properties for the C-terminal. 
 
The two pie graphs above show the kinetic property 
frequency of each amino acid grouping. For the 
N-terminal, the composition shown in Figure 23 
mainly consists of non-polar, aliphatic amino acids 
(L, G, A, V, M, I) with a frequency of 36% and the 
next highest frequency with polar, uncharged amino 
acids (S, T, C, P, Q, N) at 27%. For the C-terminal, 
the composition shown in Figure 24 mainly consists 
of non-polar, aliphatic amino acids (L, G, A, V, M, I) 
as well with a frequency of 42% and the next highest 
frequency with non-polar, aromatic amino acids (F, 
Y, W) at 24%. Further studies into the frequency of 
preference in amino acids’ kinetic properties would 
be useful in identifying further degradation patterns. 
 

 
V. CONCLUSION 

 
HIV research is still being continued today       

due to the fact that it is still affecting people globally           
(Bhatti, Usman, & Kandi, 2016). Due to the        
importance of a better understanding of the adaptive        
immune system and how the body responds to viral         
diseases, this analysis focused on HIV-specific      
antigen processing and presentation machinery.     
Previous studies on this specific topic have suggested        
some type of patterns in how the antigen processing         
and presentation machinery works before, during,      
and after viral infection. However, due to the        
variability of HIV and its effects on the immune         

system, much is still not fully understood (Le Gall,         
2019). Therefore, this project expanded upon the       
identification of patterns found in wet-lab peptide       
degradation experiments and developing    
supplementary bioinformatics tools to further study      
these patterns. 

To understand the antigen processing      
machinery, wet lab experimental data was given in        
the form of Excel sheets. This raw data was         
processed and organized into databases using the       
MySQL Workbench platform. With this, the database       
was used to not only organize all of the data, but it            
was also used to query information, such as peptide         
sequences with specific parameters. From a dataset of        
7107 peptide sequences derived from 1568 source       
proteins, Python scripts and Excel macros were       
utilized to identify antigen degradation patterns.  

One of the first antigen degradation patterns       
found was the percentage of peptide sizes in amino         
acids, mainly ranging from 8-12 amino acids in        
length. This was also a confirmation of the peptide         
degradation lab experiments mimicking certain     
cellular sub-compartmental environments such as     
endosomes or lysosomes. Another pattern analyzed      
was the amount of peptides that came from each         
protein. Overall, most proteins had 1 corresponding       
peptide sequence. This suggests that there will be        
high variability in patterns seen across the peptides        
that derive from the large number of different        
proteins. Another pattern analyzed was the molecular       
weight (Mw) and theoretical pI (isoelectric point) of        
the source protein in which the peptides are derived         
from. From the peptides in the dataset, most peptides         
came from small acidic source proteins at 31% with a          
close 29% from large acidic proteins. The chemical        
properties of the N-terminal and C-terminal of each        
degraded peptide was also analyzed. From the       
peptide dataset, the N-terminal had the highest       
frequencies at around 11% for amino acids A and S          
and lowest frequencies at around 1% for amino acids         
C and W. At the C-terminal, amino acids L (18%)          
and K (10%) had the highest frequencies and amino         
acids C, H, P, and W had the lowest frequency at           
around 1%. After adjusting the frequencies based on        
the Lenntech (Dyer, 1971) amino acid frequency, it        
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was found that the N-terminal had the highest        
frequencies with amino acids A and S at around 8%          
and the lowest frequencies around amino acids W, X,         
Y, and Q (3%). For the C-terminal, the lowest         
frequencies were around amino acids P and G at         
around 1%.  

The next antigen degradation pattern that was       
analyzed was the preference of secondary structures:       
alpha helices, beta strands, and turns. Overall, the        
peptides were mainly being degraded around alpha       
helices with a frequency of 72.55%. However, this        
percentage was not counting non-duplicated areas of       
a similar peptide. Therefore, a future step would be to          
improve the Python scripts and Excel macros so that         
it would take into account areas of duplicated peptide         
sequences where the secondary structure was already       
counted.  

Flanking amino acid motifs were also      
analyzed through the creation of colored heat maps.        
From these heat maps, a naive approach was initially         
taken to identify the top 5 amino acid motifs for the           
N- and C- termini. However, MEME was used to         
more accurately identify novel-ungapped motifs     
within the peptide sequences. From there, motif logos        
were created for the first 12 amino acids at the N-           
and C-termini, which showed some similarity to the        
naive approach. With these similarities, a closer look        
at the kinetic properties of specific amino acids was         
important in trying to explain the identified amino        
acid patterns. Overall, the N-terminal had the highest        
frequency of non-polar, aliphatic amino acids at 36%.        
For the C-terminal, the highest frequency was from        
non-polar, aliphatic amino acids at 42%. This       
suggests that there may be certain kinetic properties        
that the antigen machinery prefers to degrade the        
peptides at. These results may expand knowledge for        
how to define peptide-HLA formation and T-cell       
responses. 

In order to best understand the antigen       
processing and presentation machinery and how it       
works together with immune cells to contribute to        
disease recognition, other approaches may want to be        
considered. In the future, more advanced      
computational approaches and the development of      
further tools will be incredibly useful to more        

accurately detect patterns within the protein      
degradation experimental data. Adding more depth to       
the understanding of the immunopeptidome may help       
in generating more insightful and conclusive results       
regarding HIV disease targets for efficient immune       
clearance and further vaccine immunogen design. 
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VII. APPENDICES 

 
Handling FASTA File 
Convert the Word Excel file of your local sequences that you wish to study with identifiers into a FASTA file. Create a new folder 
in USER/blastdb and name it sequences. Save the FASTA file into this folder. 
  
Building a BLAST database with local sequences 
https://www.ncbi.nlm.nih.gov/books/NBK279688/ 
The makeblastdb application produces BLAST databases from FASTA files The FASTA definition lines are not parsed by 
makeblastdb and may be completely unstructured. The text in the definition line will be stored in the BLAST database and 
displayed in the BLAST report, but it will not be possible to fetch individual sequences using blastdbcmd or to limit the search 
with the –seqidlist option. Use the –parse_seqids flag when invoking makeblastdb to enable retrieval of sequences based upon 
sequence identifiers. Each sequence must have a unique identifier, and that identifier must have a specific format. It should begin 
right after the “>” sign on the definition line and contain no spaces. 
  
$ ​cat sequences/sequence2.fasta 
>1 
AIDWLTG 
>2 
AQTYSPS 
>3 
AFRKFLPL 
  
Makeblastdb can be invoked for this file as below. 
  
$ ​makeblastdb -in sequences/sequence2.fasta -parse_seqids -dbtype prot 
Building a new DB, current time: 05/12/2017 14:08:59 
New DB name:   /Users/legalllab/blastdb/sequence2.fasta 
New DB title:  sequence2.fasta 
Sequence type: Protein 
Deleted existing Protein BLAST database named /Users/legalllab/blastdb/sequence2.fasta 
Keep MBits: T 
Maximum file size: 1000000000B 
Adding sequences from FASTA; added 19 sequences in 0.00102186 seconds. 
dhcp-172-21-66-152:blastdb legalllab$ cat sequence2.fasta 
$ 
 
Execution 
To execute the protein-protein comparison, invoke the following command into the terminal app. 
  
$ ​blastp -task blastp-short -db NCBI/swissprot -query sequences/sequence2.fasta -out results/sequence2results.xls -outfmt “7 
qseqid qseq qlen sseqid sacc slen score ppos” 
  
$ ​blastp -task blastp-short -db swissprot –remote –entrez_query “Homo sapiens [Organism]” -query sequences/sequence2.fasta 
-out results/sequence2results.xls -outfmt “7 qseqid qseq qlen sseqid sacc slen score ppos” 
  
*Sometimes, it is suggested to type this out instead of copying and pasting because the Terminal might reformat the next line and 
it might read it incorrectly. This is if you get an error saying “Too many positional arguments (1)” after copying and pasting. This 
is just a side note. 
  
Explanation of command line 
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-task An option with blastp-short optimized for query sequences shorter than 30 residues 
-db Refers to the NCBI database, swissprot in this experiment 
-query Refers to the subject that will be compared to NCBI database = FASTA file with local sequences 
-out Refers to the output and in this case, it will output as an Excel file that will show up in the blastdb folder 
-outfmt Refers to customized format of output; 7 is output as tabular with comment line, qseqid is query sequence id, qseq is query 
sequence, qlen is query length, sacc is subject accession, score is raw score, ppos is percentage of positive-scoring matches” 
  
 ​Results 
Insert a column between columns B and C. Type in the formula “=len(cell)” and for cell, replace that with the referenced cell with 
the query sequence. 
This will allow you to see whether the query sequence is the same length as column D, that outputs query length. 
It is also useful to look at sequences that output 100% for positive-scoring matches. 
These are some of the ways that you can analyze the data you are given in order to calculate for accuracy in accession numbers. 

Figure 25. Protocol on how to use BLASTp in batches for local sequences.  
 

1. Format the Excel File in the A and B columns (unique identifier and query sequence) as follows: 

 
  

2. In column C, use the concatenate command as follows, making sure the highlighted boxes are corresponding to the 
correct cell. 
=CONCATENATE(“>”,A2, “ ”, CHAR(13),B2) 
***Use CHAR(10) for Windows and CHAR(13) for Mac devices. 
After entering and producing a value, hover over bottom right corner of cell and drag down to apply the formula to all 
sequences.  

 
 

  
3. Highlight all of column C and under the Home tab, click on “Wrap Text” which should make the output go from a 
single line of text to what is formatted as follows: 
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4. Highlight all of column C and copy and paste it into a Word document. Save this file with an appropriate name and 
save it as Plain text (.txt). 
  
If you wish to use these sequences on the BLAST+ app to BLAST all sequences in a batch, save it into a created folder 
called sequences on the blastdb folder in your home directory (USER/blastdb/sequences). 
  
This step of copying and pasting into a Word document is necessary because if the column is copy and pasted straight 
into a text file, there are unnecessary quotes that show up in the format. This step eliminates the quotes. This is an 
example of what the Word document should look like.  

 
 
5. Locate it on the computer and replace .txt with .fasta. Save changes. Open the file if you wish to check for correct 
formatting. It should look like the following, which is correct FASTA formatting. 

 
 
6. You are ready to use the BLAST+ app with your FASTA file now! 

Figure 26. Protocol for creating FASTA file out of peptide sequences in Excel. 
 

Creating Text File of UniProt URLs 
1. From the Excel file with the list of accession numbers, highlight the column (“cmd-shift-downarrow”) of                
non-duplicated accession numbers grouped by decreasing number of peptides per protein. Copy and paste that into a                 
Word document. 
2. Delete column title “Accession number.” 
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3. Scroll all the way down to the last accession number. Notice that there may be many empty rows after that. If there are,                        
add a page break after the very last accession by going to Layout → Break → Page. The rest of the column will show up                         
on the following page. Go to that page, click on the 4-way arrow drag icon and delete it. 
4. Save document as accessions.txt (change file name according to what you want) and check “Insert line breaks”, “End                   
lines with ‘CR/LF’”, and “Allow character substitution”. Go to text file and delete any empty space in the beginning of                    
the file and any extra UniProt URLs without accession numbers. 

 
  

5. Go on Python script ​accession_numbers_into_uniprot_url.py​. 
6. On line 5, change name and path of file ‘accessions.txt’ with the name of the text file with the accession numbers you                       
just created in the previous steps. 

 
7. On line 13, change ‘urls.txt’ to a name that you want the new text file of UniProt URLs to be. You can save it in a                           
specific place on your device is you specify the path. 

 
8. Run script with F5 or click Run → Run Module on the taskbar.  
9. A file with the name you just replaced ‘urls.txt’ with will be created in the Documents folder. You can save it in a                        
specific place on your device is you specify the path. 
  

Your text file should look like the following: 

 
 
Querying UniProt URLs for Secondary Structure Information 

1. Go on Python script ​secondary_structure_through_multiple_uniprot_urls.py​. 
2. On line 5, change name of file ‘accessions.txt’ with the name of the text file with the accession numbers you just                      
created in the previous steps.  

 
3. (OPTIONAL STEP) If you want to check and see that the script is reading the correct file of URLs, you can run with                        
F5 or Run →  Run Module on the taskbar. After the first couple of proteins run successfully, you can kill the program. 
  

Transferring Python Script Information Onto Excel File 
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1. On Terminal, change path to the location of ​secondary_structure_through_multiple_uniprot_urls.py like the            
following: 

$ ​cd $HOME/PycharmProjects 
2. Type into the command line the following where you can change the name of your Excel file to a name you think is                        
appropriate to easily identify later in your files. 

$ ​python PDB/secondary_structure_through_multiple_uniprot_urls.py > PDBResults/secstruc_name_date.xls 
3. You may need to wait a while (and by while I mean like about 35 minutes for 1500 peptides so the more peptides, the                          

longer amount of time unfortunately) for this to run (until Terminal requests for another command denoted by $) before                   
opening the Excel file with all the secondary structure information. 
4. On the Excel file, separate the information into separate columns by selecting the column and going to Data → Text to                      
Columns → check Delimited → check Space and Treat consecutive delimiters as one → Next → Finish. 

 
5. To reformat the columns, delete one empty row from rows B through D in order to shift the cells up. 
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6. Highlight all of Column C, D, and E, right-click the mouse and select “Format Cells…” Under “Number”, choose 
“Custom” and type in “mm-dd”. The Excel sheet should look something like the following right now. 

 
7. Highlight columns A through D, click the “Filter” button under the Data section, and filter by checking “Select All”                    
first, then scrolling to the bottom of this list and unchecking “Blanks” and “Successful!” 
8. Open a new sheet and copy and paste columns A-D. Highlight columns A through D, click the “Filter” button under                     
the Data section, and filter with “Does Not Contain: Available” and “Does not contain: Not_available” like the following. 

 
Using “Matching Secondary Structure.xlsm” 

1. Open the Excel sheet named “Matching Secondary Structure” and copy and paste columns A-D into the sheet named                    
“edit_output”. 
2. In the following cells, these formulas are already entered in so just highlight across B2-K2 and double-click on the                    
right-bottom corner of the cell to copy the formula down the column. 

E2​: =TEXT(​B2​,"mm-dd"), ​F2​: =TEXT(​C2​,"mm-dd"), ​G2​: =TEXT(​D2​,"mm-dd"), ​H2​: =IF(​A2​=​A1​,​H1​&", "&​E2​, ​E2​) 
I2: ​=IF(​A2​=​A1​,​I1​&", "&​F2​, ​F2​), ​J2​: =IF(​A2​=​A1​,​J1​&", "&​G2​, ​G2​), ​K2​: =IF(​A2​<>​A3​, "Last", "") 

3. Highlight all columns. Under the “Data” tab, select “Filter”. Under the “CHECK” or K column, uncheck “Blanks” in                    
the drop down menu.  

 
 
4. Highlight columns H through K, press “command-F” and replace all “None” with blanks. Copy columns                
A(Accession_Number_Secondary_Structure_Availability), H(HELIX RANGE), I(STRAND RANGE), and J(TURN       
RANGE) into columns A-D in the “ref” sheet. Select entire columns B through D. 
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Useful trick: Whenever you want to select information down a column until the very last cell with information inside, click on                     
the column title or drag across the column titles you want to copy and then press “Command-shift-down arrow”. 

5. From the Excel sheet with all the given data, copy the “Peptide sequences” and “Accession number” information into                   
the columns E and F. In that same Excel sheet, make a column named “End position” and type in a formula that adds                       
numbers in the columns “Position within source prot” and “Peptide length” such as the following.  

 
6. Make another column named “Range” and type in a formula that concatenates the numbers in the columns “Position                   
within source prot” and “End position” such as the following. Copy and paste special as “Values only” the range into                    
columns G and H of the “ref” sheet in the “Matching Secondary Structure” Excel sheet. 

 
7. ​(This step is already completed for the user but this is to explain where the formula comes from) 
On the sheet, “ref”, click the button labeled “Find H,S,T”. This is what happens: 
Under the Developer tab, open Editor. Right click “Sheet 6(ref)” → Insert Module. Copy and paste the following VBA                   
code. 

Function NumRange(v) 
Dim arrC, arr, x As Long, rv As String, sep As String, e 

  
arrC = Split(v, ",") 
rv = "" 

  
For Each e In arrC 

 If InStr(e, "-") Then 
 arr = Split(e, "-") 
 arr(0) = Trim(arr(0)) 
 arr(1) = Trim(arr(1)) 
 If IsNumeric(arr(0)) And IsNumeric(arr(1)) Then 
 For x = CLng(arr(0)) To CLng(arr(1)) 
 rv = rv & sep & x 
 sep = "," 
 Next x 
 End If 
 ElseIf IsNumeric(e) Then 
 rv = rv & sep & CLng(e) 
 sep = "," 
 End If 

Next e 
NumRange = rv 

End Function 
 

​8. In the “RANGE EXPAND” column, type in “NumRange(cell)”. For cell inside the formula, select the adjacent cell                   
under the “Range” column. The formula will already be entered in H2, so just double-click the bottom-right corner of the                    
cell. The result will turn out to look like the following: 
In the following cells, these formulas are already entered in so just highlight I2-N2 and double-click on the right-bottom                   
corner of the last cell to copy the formula down the columns. 

29 of 34 



 

I2 (Find Helix)​: =IFERROR(VLOOKUP​(​F2​,​$A:$D​,2,FALSE​)​,""), ​J2 (HELIX EXPAND)​: =NumRange(​I2​) 
K2​ ​(Find Strand​): =IFERROR(VLOOKUP​(​F2​,​$A:$D​,3,FALSE​)​,""), ​L2 (STRAND EXPAND)​: =NumRange(​K2​) 
M2 (Find Turn)​: =IFERROR(VLOOKUP​(​F2​,​$A:$D​,4,FALSE​)​,""), ​N2 (TURN EXPAND)​: =NumRange(​M2​) 

9. On the sheet, “range”, click on “Copy Peptides and Expand” which copies the peptide sequences accession numbers,                  
and column “RANGE EXPAND” from the “ref” sheet. 
10. On the sheet, “ss”, click on “Copy Columns A and B” which copies the peptide sequences accession numbers into                    
the “ss”, “match” and “results” sheet. 
11. On the sheet, “ss”, click on “Copy H” which copies the column “HELIX EXPAND” from the “ref” sheet. It will                     
expand the helix ranges so that each number is in a separate cell across rows. When you come back to this step for strands                        
and turns, click on “Clear H,S,T” to delete the secondary information and replace by clicking on “Copy S” or “Copy T”,                     
depending on which structure you are concentrating on. 
​12. On the sheet, “results”, the following formula is in C7 (H, S or T). Double-click the bottom-right corner of the cell                       

to apply the formula down the column. Copy and paste the “H,S,or T” column into the corresponding structure column. 
=match!C7&IF(match!D7<>"",","&match!D7,"")&IF(match!E7<>"",","&match!E7,"")&IF(match!F7<>"",","&match!F7,"")&IF(match!G7<>""
,","&match!G7,"")&IF(match!H7<>"",","&match!H7,"")&IF(match!I7<>"",","&match!I7,"")&IF(match!J7<>"",","&match!J7,"")&IF(match!K
7<>"",","&match!K7,"")&IF(match!L7<>"",","&match!L7,"")&IF(match!M7<>"",","&match!M7,"")&IF(match!N7<>"",","&match!N7,"")&IF
(match!O7<>"",","&match!O7,"")&IF(match!P7<>"",","&match!P7,"")&IF(match!Q7<>"",","&match!Q7,"")&IF(match!R7<>"",","&match!R7
,"")&IF(match!S7<>"",","&match!S7,"")&IF(match!T7<>"",","&match!T7,"")&IF(match!U7<>"",","&match!U7,"")&IF(match!V7<>"",","&m
atch!V7,"")&IF(match!W7<>"",","&match!W7,"")&IF(match!X7<>"",","&match!X7,"")&IF(match!Y7<>"",","&match!Y7,"")&IF(match!Z7<
>"",","&match!Z7,"")&IF(match!AA7<>"",","&match!AA7,"")&IF(match!AB7<>"",","&match!AB7,"")&IF(match!AC7<>"",","&match!AC7,
"")&IF(match!AD7<>"",","&match!AD7,"")&IF(match!AE7<>"",","&match!AE7,"")&IF(match!AF7<>"",","&match!AF7,"")&IF(match!AG7
<>"",","&match!AG7,"")&IF(match!AH7<>"",","&match!AH7,"")&IF(match!AI7<>"",","&match!AI7,"")&IF(match!AJ7<>"",","&match!AJ7,
"")&IF(match!AK7<>"",","&match!AK7,"")&IF(match!AL7<>"",","&match!AL7,"")&IF(match!AM7<>"",","&match!AM7,"")&IF(match!AN
7<>"",","&match!AN7,"")&IF(match!AO7<>"",","&match!AO7,"")&IF(match!AP7<>"",","&match!AP7,"")&IF(match!AQ7<>"",","&match!
AQ7,"")&IF(match!AR7<>"",","&match!AR7,"")&IF(match!AS7<>"",","&match!AS7,"")&IF(match!AT7<>"",","&match!AT7,"")&IF(match!
AU7<>"",","&match!AU7,"")&IF(match!AV7<>"",","&match!AV7,"")&IF(match!AW7<>"",","&match!AW7,"")&IF(match!AX7<>"",","&m
atch!AX7,"")&IF(match!AY7<>"",","&match!AY7,"")&IF(match!AZ7<>"",","&match!AZ7,"")&IF(match!BA7<>"",","&match!BA7,"")&IF(
match!BB7<>"",","&match!BB7,"")&IF(match!BC7<>"",","&match!BC7,"")&IF(match!BD7<>"",","&match!BD7,"")&IF(match!BE7<>"",","
&match!BE7,"")&IF(match!BF7<>"",","&match!BF7,"")&IF(match!BG7<>"",","&match!BG7,"")&IF(match!BH7<>"",","&match!BH7,"")&I
F(match!BI7<>"",","&match!BI7,"")&IF(match!BJ7<>"",","&match!BJ7,"")&IF(match!BK7<>"",","&match!BK7,"")&IF(match!BL7<>"",","
&match!BL7,"")&IF(match!BM7<>"",","&match!BM7,"")&IF(match!BN7<>"",","&match!BN7,"")&IF(match!BO7<>"",","&match!BO7,"")&
IF(match!BP7<>"",","&match!BP7,"")&IF(match!BQ7<>"",","&match!BQ7,"")&IF(match!BR7<>"",","&match!BR7,"")&IF(match!BS7<>"","
,"&match!BS7,"")&IF(match!BT7<>"",","&match!BT7,"")&IF(match!BU7<>"",","&match!BU7,"")&IF(match!BV7<>"",","&match!BV7,"")&
IF(match!BW7<>"",","&match!BW7,"")&IF(match!BX7<>"",","&match!BX7,"")&IF(match!BY7<>"",","&match!BY7,"")&IF(match!BZ7<>"
",","&match!BZ7,"") 
  
 ​Note: DO NOT DELETE OR ALTER ANY CELL FORMULAS FROM THE “MATCH” OR “RESULTS” SHEET. 
These are the formulas in the “match” sheet for reference and future applications. 
 

​13. Follow steps 10-12 for “Strands” and “Turns”. For a repeat for strands and turns, you do not need to change any                       
formulas for step 12. All you need to do it copy and paste the column into the corresponding “Strands” or “Turns”                     
column in the “results” sheet. 

Figure 27. Protocol for analyzing secondary structure using .txt file of Uniprot URLs. 
 

#### 
# Le Gall Lab at Ragon Institute of MIT, Harvard, and MGH 
# Ann Le 
# June 2017 
# Last Updated: June 2017 
# Protocol Name: Protein Information Through Multiple UniProt URLs 
# This code opens the text file with the PDB accession numbers and then creates 
# another text file with uniprot urls for all of the accession numbers 
#### 
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# open text file with all the accession numbers 
# change 'accessions' to name and path of created file with accession numbers 
with open('/Users/legalllab/Documents/PDB/Example Files/quentin.txt', 'r') as f: 
   accession = f.readlines()  # read lines of accession file 
 
# add the accession number to the end of the url 
   website = ['http://www.uniprot.org/uniprot/' + line for line in accession] 
   print(website) 
 
# open text file called urls 
# change name and path of 'urls' to whatever you want to name your file with the uniprot urls 
with open('/Users/Desktop/HLAA.txt', 'w') as p: 
   p.writelines(website) # write websites into the new file 
 
f.close() # close accessions.txt 
p.close() # close urls.txt 

Figure 28. Python code for how to open a text file of PDB accession numbers and creates another file of                    
UniProt URLs for each accession number. 
 

#### 
# Le Gall Lab at Ragon Institute of MIT, Harvard, and MGH 
# Ann Le 
# June 2017 
# Last Updated: June 2017 
# Protocol Name: Protein Information Through Multiple UniProt URLs 
#### 
 
from bs4 import BeautifulSoup 
import urllib2 
import re 
import csv 
 
####open text file of all urls for uniprot 
# change 'urls' to the name of your created file of all UniProt URLs 
quote_page = open('/Users/Ann Le/Documents/R_at_Ragon/urls.txt') 
 
####print column titles 
print ('Accession_Number_Secondary_Structure_Availability ' + \ 
      'HELIX ' + 'HSEQ ' + 'STRAND ' + 'TURN') 
 
####for loop to put all information into dictionary 
for pg in quote_page: 
    print() # have a break between each protein 
    ####query website and return the html to the  variable 'site' 
    page = urllib2.urlopen(pg).read() 
    ####parse html using beautiful soup and store in variable 'soup' 
    soup = BeautifulSoup(page, 'html.parser') 
 
    ####get the peptide information 
 ​   span_id = soup.findAll('span', {'id': 'entrySequence'}) 
    ####get the secondary structure 
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    second_structure = soup.find('div', {'id': 'secondarystructure'}) 
    if second_structure:  # when you find secondarystrucutre 
        for accessions in span_id: 
            print ('Available:' + accessions.getText()[4:10])  # print message 
    else:  # if you can't find secondarystructure 
        for accessions in span_id: 
            print ('Not_available:' + accessions.getText()[4:10])  # print message 
 
    ​####print secondary structure information in 6 separate columns 
    list1 = [] 
    list2 = [] 
    list3 = [] 
    list4 = [] 
 
    for helix in soup.findAll('rect', attrs={'class': 'HELIX'}): 
        helices = helix['title'] 
        list1.append(helices[6:])  # add helices info into list1 
 
    for strand in soup.findAll('rect', attrs={'class': 'STRAND'}): 
        beta_sheets = strand['title'] 
        list3.append(beta_sheets[7:])  # add betasheet/strand info into list2 
 
    for turn in soup.findAll('rect', attrs={'class': 'TURN'}): 
        turns = turn['title'] 
        list4.append(turns[5:])  # add turns info into list3 
 
    for a, b, c, d in map(None, list1, list2, list3, list4): 
        for accessions in span_id: 
            print (accessions.getText()[4:10]) 
            print (' ', a, b, c, d) 
 
print ("Successful!")  # will print at the bottom if everything is printed out 

Figure 29. Python code for how to scrape secondary structure information into a .csv file from a text file of                    
UniProt URLs  
 

#### 
# Le Gall Lab at Ragon Institute of MIT, Harvard, and MGH 
# Ann Le 
# June 2017 
# Last Updated: July 2018 
# Protocol Name: Protein Information Through Multiple UniProt URLs 
# This code opens the text file with the Uniprot URLs and then creates 
# another text file with information about the peptide. 
#### 
 
from bs4 import BeautifulSoup 
import urllib 
import urllib2 
import re 
import csv 
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def get_protein_information (uniprot_urls_txt): 
 
    # open text file of all urls for unipro 
    quote_page = open('/Users/legalllab/Documents/PDB/PeptideIDresults.txt') 
 
    # print column titles 
    print 'Accession_number ' + 'Protein_ID ' + 'Sequence ' + 'Length ' + 'Mass(Daltons)' 
 
    # for loop to put all information into dictionary 
    for pg in quote_page: 
        print  # have a break between each protein 
    # query website and return the html to the  variable 'site' 
        page = urllib2.urlopen(pg).read() 
    # parse html using beautiful soup and store in variable 'soup' 
        soup = BeautifulSoup(page, 'html.parser') 
 
        list1 = [] 
        list2 = [] 
        list3 = [] 
        list4 = [] 
        list5 = [] 
 
    # get the peptide information 
        span_id = soup.find('span', {'id': 'entrySequence'}).getText() 
        accessions = span_id[4:10] 
        # print 
        #  accessions 
        list1.append(accessions) 
 
    # get the protein information 
        id_name = soup.find('title').getText() 
        protein = id_name[:id_name.find('-')] 
        # print protein 
        list2.append(protein) 
 
    # get the sequence information 
        seq = soup.find('span', {'id': 'entrySequence'}).getText() 
        seqs = seq.split('\n') 
        seqss = seqs[1:] 
        seqsss = ''.join(seqss) 
        # print seqsss 
        list3.append(seqsss) 
 
    # get length and mass information 
        len_and_mass = soup.find('div', attrs={'class': 'sequence-isoform-rightcol'}) 
        spans = len_and_mass.findAll('span') 
        for length in spans[1]: 
            # print length 
            list4.append(length) 
        for mass in spans[3]: 
            # print mass 
            list5.append(mass) 
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        for a, b, c, d, e in zip(list1, list2, list3, list4, list5): 
            print a, b, c, d, e 
 
    print 
    print "Successful!"  # will print if everything is successful 
 
 
# change 'uniprot_urls_txt' to the name of your created file of all UniProt URLs 
get_protein_information ('/Users/legalllab/Documents/PDB/UniprotURLS/.txt') 

Figure 30. Python code for how to open a text file with UniProt URLs and creates another text file with                    
information about the peptide.  
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