
1

Building the Bio-CS Bridge: Expanding High

School Computer Science Curriculum Using

Agent-Based Modeling
An Interactive Qualifying Project

Submitted to the faculty of Worcester Polytechnic Institute in partial fulfillment of

the requirements for the Degree of Bachelor of Science

Project Advisor:

Dr. Elizabeth F. Ryder

Submitted by:

Ryan Rabbitt

Date submitted: day May 2023

This report represents the work of one or more WPI undergraduate students

submitted to the faculty as evidence of completion of a degree requirement. WPI

routinely publishes these reports on its website without editorial or peer review.

2

Abstract

The currently in-progress Bio-CS curriculum is designed to teach students of

varying computer science backgrounds the fundamental concepts of computer

programming using a variety of languages, including HTML, CSS, Javascript,

Netlogo and Starlogo. Using various applications of these languages, the

curriculum aims to teach the concept of computational thinking, an essential skill

in computer science. This curriculum aims to combine the topics of Biology and

Computer Science by using agent-based modeling to test hypotheses and model

environments. The curriculum is being expanded to better fit the AP Computer

Science Principles curriculum, by addressing major topics covered by the course in

new lessons and activities.

3

Table of Contents

Abstract.. 2
Table of Contents... 3
1. Introduction..4
2. Background & Research... 5

2.1 Bio-CS Bridge Project..5
2.2 High School Computer Science Teaching Standards..................................... 6
2.3 AP Computer Science Principles Standards...7
2.4 Agent-Based Modeling...7
2.5 Planning Models...9
2.6 Teaching Computer Science... 11

2.6.1 Agent-Based Modeling as a Learning Tool..12
3. Methods & Results...13

3.1 Netlogo Programming Essentials... 13
3.2 AP CS Requirements..14
3.3 Additions to Curriculum...14

3.3.1 Lists and Loops Activities..15
2.3.2 UML Diagrams Activity.. 17
2.3.3 Developing Simulations From Ideas.. 18

3.4 Additional Features.. 19
3.4.1 Netlogo Cheat Sheet...19

4. Conclusion.. 20
4.1 Future Work..20

References...22

4

1. Introduction

Agent based modeling is a useful tool in a wide variety of fields, including

but not limited to computer science. A curriculum that covers computer science

principles for students outside of the computer science field is essential as modern

society adapts to fully utilize the technology that has become more widely

accessible across a variety of job fields. The Bio-CS Bridge project aims to teach

computer science principles in parallel with biology curriculum, by teaching

various applications of biological models developed in multiple coding languages.

Unit 1 of the Bio-CS Bridge aims to guide students through creating models

in either Netlogo or Starlogo. Included in the curriculum are activities that aim to

cover the major principles of computer science, including user input, object

instances, and method declarations. Through this curriculum, students from various

levels of coding skill are guided through a beginner-friendly, accessible coding

language that has real-world biological applications, including ecosystem

simulations and population modeling. Teaching Netlogo in parallel with biology is

an efficient way to introduce students to fundamental biological and computational

concepts, as developing ecosystem models requires both an understanding of the

elements being tested, as well as the coding logic needed to model said elements’

relationships with each other.

Over the course of this project, the Bio-CS Bridge curriculum has been

expanded to better fit the requirements of AP Computer Science Principles, by

adding new activities to teach coding fundamentals required to be covered by the

AP exam. With these new activities, students may become more confident in the

development process, and become familiar with complex concepts that are

fundamental in computing.

5

2. Background & Research

2.1 Bio-CS Bridge Project

The Bio-CS Bridge Project aims to develop a curriculum that teaches

Biology and Computer Science in parallel in a high school environment. This

curriculum addresses computer science principles and applies them in coding

activities that model biology concepts. Using real-life applications to teach

computer science benefits students in many ways, keeping them engaged in the

material as well as showing the purpose in what they are learning. Students are

guided through creating their own models and simulations and collecting their own

biological data to apply to real-world problems. The main goal of the Bio-CS

Bridge curriculum is to enable students to learn both Biology and Computer

Science simultaneously, and allow students from either respective background to

understand the importance and interdependence of both subjects. The curriculum

also aims to be accessible to students from any level of Computer Science

experience, providing extensive explanations to those with no coding experience,

and extra challenges for those with an affinity for coding. The Bio-CS curriculum

is written and developed by an interdisciplinary team of students and professors,

from both computer science and biology backgrounds. (Bio-CS Bridge, n.d.).

The Beecology Project is a citizen science project aiming to collect and

visualize ecological data for native pollinator species. On the Beecology website

are a variety of visualization tools that can be used to compare different sets of data

from the extensive database of pollinator species. Also included are multiple

simulations built in Starlogo and Netlogo, which were developed by the Bio-CS

Bridge Project team, and are used extensively in the Bio-CS Bridge curriculum.

(Beecology Project, n.d.). The Netlogo/Starlogo unit of the curriculum has multiple

activities in which students develop their own version of the models, practicing

6

biology and computer science concepts as they follow the activities. Over the

course of these activities, students begin with a basic version of a Netlogo or

Starlogo model, and extend said model with new features.

2.2 High School Computer Science Teaching Standards

The Massachusetts Department of Elementary and Secondary Education

(DESE) has developed a framework for Computer Science curriculum, spanning

from grades K-12 (Massachusetts Department of Elementary and Secondary

Education, 2016). This framework covers the areas of computing and society,

digital tools and collaboration, computing systems, and computational thinking.

These main topics are covered differently for each grade level, split into four spans

of grades. These spans are grades K-2, 3-5, 6-8, and 9-12. In following the

Massachusetts DESE standards, students should gain an understanding of

computational thinking and inspiration for a technical career in the future.

Curriculum should integrate technology in a way that effectively supports problem

solving in a variety of disciplines, as well as prepares students for the technological

world of modern day society. Curriculum should also be designed to support

students at a variety of skill levels, including support for those who require

guidance through tutorials and providing higher difficulty material to engage those

with talent in digital literacy and computer science (Massachusetts Department of

Elementary and Secondary Education, 2016).

At the high school level, as well as all other grade levels, the seven main

practices established by the Massachusetts DESE (Connecting, Creating,

Abstracting, Analyzing, Communicating, Collaborating, Research) are integrated.

Students should understand the impact of technology in society, as well as how to

best apply technology to problem solving. Students should gain a strong

understanding of computational thinking, such as writing and debugging

7

algorithms, creating and modifying data structures, and creating computational

models to test a hypothesis. Students should gain the knowledge required to build

their own models from the initial planning phase to fully functioning code.

2.3 AP Computer Science Principles Standards

The AP Computer Science Principles course covers the core concepts of

Computer Science, and is designed to be accessible to students with little to no

programming experience. It is an introductory-level course that introduces students

to the basics of the computer science field. The course instructs students on how to

develop their own algorithms and programs to solve complex problems, as well as

explain the real-world applications of computing (College Board, 2020).

The AP Exam has two components: a multiple choice section of 70 questions that

evaluate students’ understanding of the core concepts of the course, and a

performance task, in which a student completes a computer program over the

course of at least 12 hours that meets the AP exam requirements. Students must

submit a video demonstrating their program, as well as a written response

providing code segments and explanations of key components in said code. The

performance task requirements are open-ended, but require certain criteria,

including input and output, list creation and manipulation, student-developed

procedures, and function calling. The code can be written in any language, as long

as said language includes all of the necessary syntax to fulfill these requirements.

2.4 Agent-Based Modeling

Agent-Based Modeling is a computer simulation technique in which

individual agents are programmed to behave and interact with other agents and the

environment. Models are built to simulate systems with individual elements that

interact in certain ways, and are intended to emulate real-world behaviors

8

(Agent-Based Modeling, 2022). Agent-based models can be designed for a wide

variety of systems, such as social networks, ecosystems, or disease spreading. The

flexibility of agent-based modeling allows it to be applied to a variety of fields,

especially those that study dynamic systems such as ecology and sociology.

Multiple pieces of software have been developed to make agent-based modeling

more accessible, such as Netlogo, Starlogo, Anylogic, and AgentScript. These

softwares include data visualization tools, such as graphs, to better display and

analyze the data collected by running a model.

Netlogo is an Agent-Based Modeling software designed to be accessible in

both research and education environments. The user interface is simple, and

extensive documentation is available from the Netlogo website. Netlogo enables

users to create models with large numbers of agents, all of which operate

concurrently (Tisue & Wilensky, 2004). These agents can be classified into

different types, called breeds by the syntax. With this distinction, Netlogo can be

used to model complex systems with different types of individual agents

interacting with each other in a variety of ways. Moving agents are defined as

“turtles” in Netlogo syntax, while the grid the turtles move on is made up of agents

called “patches”. Netlogo also provides many primitives for location, adjacent

agents, and movement, all of which can be called by agents to define their

behavior. With Netlogo’s dictionary of predefined functions and primitives, many

systems can be designed with little to no programming experience.

The Netlogo language also includes standard programing constructs,

including lists, loops, conditionals, and user-defined procedures. Agentsets, a

primary feature of Netlogo, act as a collection of agents, and behave similarly to

lists. Lists can also be defined in Netlogo, although certain functions only operate

on agentsets or lists, and the two constructs are not interchangeable. This is

9

because while lists are executed in the user-defined order, agentsets are unordered,

and thus are executed in a random order each time.

2.5 Planning Models

One essential skill often overlooked in teaching computer science is the

ability to plan a coding project. Designing a model first requires planning what to

make, an expected end result, and functions required for the expected behavior of

the model (Code Conquest, n.d.). To do this, developers often use different types of

standardized diagrams to map out their final product. Of the many types of

diagrams used in this planning stage, UML diagrams are one of the more popular

types, as they provide a standard notation for visualizing the design of a system

and its internal interactions (Booch et. al., 2005). UML diagrams can be used to

model different aspects of a system, such as its structure, components, behavior,

and interactions between different components. This allows developers to outline

potential functions to be used to model certain behaviors, which is essential in

developing an agent-based model, which relies heavily on system interactions.

An example of a class diagram in the standard UML format is shown in

Figure 1. Each class is divided into three sections: the name of the class, the

attributes and their accessibility, and the functions included in each class. The

classes are also connected via relationship arrows, with different implications

based on the arrowhead and number.

10

Figure 1. UML Class Diagram Organization Structure (UML diagram

tutorial: A complete guide to UML diagrams, 2023).

Another essential tool in planning a model is the Event Diagram (Fig. 2). An

event diagram allows developers to visually represent events caused by certain

behavior, and the behavior said events trigger in a system. There are a wide variety

of formats for event diagrams, although the UML standard contains multiple ways

to model this behavior. Sequence diagrams are used to show the order in which

functions are called, and which objects call and receive those events. Below is an

example of a sequence diagram that models the interactions that occur in an online

shopping system.

11

Figure 2. UML Sequence Diagram for an Online Shopping System

(Lucidchart, 2020).

While all coding tasks may require different formats for diagrams used in the

initial planning stage, the UML standards provide a universal format to be applied

in a variety of ways, which can be adapted as developers see fit. Teaching the UML

diagram format allows students to think about how their code should flow, and

better plan their code.

2.6 Teaching Computer Science

Finding the right methodology to properly cover the essential topics required

in a Computer Science course is a challenge that has many different approaches, all

12

with their own pros and cons. Computer science curriculum should focus on key

concepts of the field, and should cover conceptual and experimental issues

throughout the course. Two different programs are needed to run in parallel, one

for students with a general interest in computer science, and one for those with a

deeper interest and understanding of computer science. Both programs should also

have both mandatory and optional material, to fully engage students from all

backgrounds (Hazzan et. al. 2008).

Using project-based learning is essential in teaching computer science, as the

field relies heavily on the essential components of a PBL curriculum. Creative

problem solving, critical thinking, and engineering skills are practiced when

students engage in real-world problems, keeping students engaged in the material

(PBS Education, 2022).

2.6.1 Agent-Based Modeling as a Learning Tool

Using an agent-based modeling software such as Netlogo to teach computer

science principles has many benefits, as it is a beginner-friendly tool that generates

results that are easy to observe. With the visual feedback presented in Netlogo,

students can easily see the results of their code execution, and can decide whether

they have achieved the expected results through visual means. Most other types of

programming tend to introduce students to code by printing their results to a

console, which may be difficult to grasp when students have no prior coding

experience.

Agent-based modeling was developed as a tool for easy simulation of

interacting objects. In a model, individual objects, or agents, are instantiated, and

are allowed to interact. The resulting evolution of the system can be studied from

the perspective of the whole population and the individual agent’s behavior

(Rutgers University, 2003). Because of this easy-to-observe environment, agent

13

based modeling is a great tool for teaching students, and is thus used heavily in the

Bio-CS Bridge curriculum.

3. Methods & Results

3.1 Netlogo Programming Essentials

In order to fulfill the AP CS Principles curriculum

requirements, Netlogo’s syntax must be considered. As

Netlogo is an agent-based modeling language, some of

the language’s structure differs from procedural and

object oriented programming languages. Many of the

language’s primitives are designed to make certain

functionality easy to implement, such as agents and

agentsets acting as its equivalent to a class/object type in

Java or other object oriented languages. Agents in

Netlogo have built-in attributes, as well as custom

attributes which can be easily defined.

Another key feature in Netlogo is the definition of

procedures, or functions. As user-defined procedures are one of the requirements

on the AP CS Principles exam, explaining how to define and call a procedure in

Netlogo is necessary to include in the Bio-CS Bridge curriculum materials.

Included in the existing curriculum is a lesson on how to create custom procedures,

although more complex procedures are also introduced in additional lessons.

Netlogo has two different data structures for containing multiple items.

Agentsets and lists behave somewhat similarly, although with a few key

differences as discussed in section 2.4. Netlogo also contains multiple types of

14

loops. These two concepts are required to be covered in the AP CS Principles

curriculum, although were previously not included in the Bio-CS Bridge

curriculum. Included in the new lessons developed over the course of this project

are materials on lists and loops in Netlogo, which are introduced with gradually

increasing complexity. These lessons will be discussed further in the following

sections.

3.2 AP CS Requirements

The AP CS Principles curriculum requires coverage of a few key concepts in

programming. These concepts are tested on the AP exam in both a multiple-choice

section, and a student-developed computer program. This program requires

implementation of all of the key concepts, as well as a written response to show the

student’s understanding. These concepts include input/output, list initialization and

modification, custom procedures, and algorithms (College Board, 2020). The

Bio-CS Bridge curriculum aims to cover all of these topics, as well as prepare

students to plan and develop their own program.

The current public version of the Bio-CS Bridge curriculum is composed of

four computer science units, each using a different coding language. The goal of

this project was to cover all of the AP CS Principles exam requirements in Unit 1

of this curriculum, by developing additional activities in Netlogo to cover concepts

that were not yet covered. The public curriculum includes activities that cover the

basic coding principles of Netlogo, including basic syntax, adding breeds, and

basic procedures. With this curriculum, only a few concepts required in the AP CS

Principles exam are covered, failing to cover list operations and basic algorithm

concepts.

15

3.3 Additions to Curriculum

The new curriculum developed includes two lessons that cover both lists and

loops in parallel, as well as a few lessons that aim to prepare students to develop

their own simulation from scratch. These new lessons aim to fill the gaps in the

current curriculum, by covering list initialization and modification, list operations,

and loops, which are essential in algorithm development. The new lessons also

include concepts essential to the development process, which were lacking in the

current curriculum.

3.3.1 Lists and Loops Activities

Lists and loops are covered over

the course of two activities. The first is

a pre-activity that guides students

through developing a simple program

that utilizes three of the four Netlogo

loop types: while, foreach, and repeat

loops, and initializes and modifies a list

using most of the Netlogo list

primitives. The goal of this activity is to

introduce students to the concept of lists

and loops, and how the two concepts

work together. The activity provides

simple use cases for each type of loop,

as well as applications of the list primitives included in Netlogo, which allow

students to become more comfortable with working with more complex data

structures and algorithms.

16

Figure 5. Lists and loops pre-activity resulting program.

The resulting program built in this activity is a simple environment setup

that generates flowers in a random location, whose colors can then be changed

through multiple user inputs, as well as separated into rows by their color. This

functionality is achieved by combining all of the use cases presented throughout

the activity, allowing students to demonstrate their understanding of the concepts.

After this activity, students should have enough experience to work with

more complex functions using lists and loops, which are covered in the second lists

and loops activity. In this activity, students are asked to expand on an existing

simulation used in previous activities, called “simbeecology”. The activity guides

the students through writing additional functionality in two sections: a bee memory

simulation and a modified flower generation method. The first section covers a

17

more complex use case for lists, while the second section covers a new concept

related to loops. The students are given prompts to complete certain functionality,

and are asked to identify which list primitives to use, as well as how to create loop

structures. A major concept covered in this activity is nested loops, in which one

loop calls a second loop inside itself. This is used to generate a grid pattern of

flowers.

With the combination of the two list and loop activities, students are exposed

to the two coding concepts in gradually increasing complexity. The combined goal

of these two lessons is for students to be confident in using lists and loops in their

own development process, as the AP CS Principles exam expects students to use

both lists and algorithms in the coding task.

2.3.2 UML Diagrams Activity

The remaining new activities aim to prepare students for the coding task in

the AP CS Principles exam. The goal of these activities are to teach students how

to plan and implement their own ideas for a simulation. With this, students would

first learn the coding principles required, and then practice developing their own

programs. This bridges the gap from guided activities to independent development,

a gap that is a difficult jump for students without any prior coding experience.

The activity first explains the different elements of two different types of

UML diagrams, both of which are the most relevant to an agent-based modeling

development environment similar to Netlogo. The first of these two is a class

diagram, which can be easily applied to breeds in Netlogo. Breeds are essentially

user-defined object types composed of user-defined attributes, and can thus be used

in place of classes, a structure of attributes and functions used in object-oriented

programming. While functions are not breed-specific in Netlogo, they are often

intended to only be called by a certain breed. Class diagrams are presented in the

18

activity with the Netlogo language in mind, and an example is given using a

simulation presented in a different activity.

After explaining class diagrams, the activity explains sequence diagrams,

another UML diagram relevant to agent-based modeling. This diagram type

intends to help developers plan the order of events in a complex system, which

students may find difficulty with when developing their own simulations. The

same simulation is used in the example for this type of diagram.

After walking students through a simple example, they are asked to fill in

their own diagrams using a more complex example, the “simbeecology” simulation

used in previous activities. After students complete this activity, they can be asked

to go through this planning process in further exercises. Upon completion of this

activity, students will have familiarity with two different diagram types. Using a

combination of the two, both the structure of object types and the order of events

can be planned out, giving a more complete understanding of the expected end

product to be achieved in the development process.

2.3.3 Developing Simulations From Ideas

The final activity developed was adapted from an existing activity in the
current curriculum written in Starlogo, a simpler, block-based version of Netlogo.
Due to the drastically different development environments between Starlogo and
Netlogo, the activity needed to be partially rewritten to be used for a Netlogo
simulation. The reference model for teachers to use as a completed product also
had to be translated to Netlogo. A simple starter code was created for use in this
lesson, as students are starting from scratch rather than building off of an existing
simulation in this lesson. This starter code is intended to be used for any additional
lessons that require students to build a simulation on their own, such as in the lists
and loops pre-activity previously discussed.

In the activity, students are asked to brainstorm a set of rules for a simulation
of bats in a cave, in which a virus infects the population, and a vaccine is spread
simultaneously. This activity intends to introduce students to the concept of

19

independent development, starting from the set of rules brainstormed by the
students, and implementing said rules on their own in Netlogo. It first walks the
students through the setup of the simulation, then shows how to implement a basic
rule. After these instructions, students are asked to implement the remaining rules
on their own. In the curriculum, this activity is the students’ first exposure to
independent development, as they are given the unguided freedom to implement
their rules by coding them. With this activity in combination with the UML
diagram activity, students should have exposure to enough of the development
process to confidently take on the coding task presented in the AP CS Principles
exam.

3.4 Additional Features

Each of the newly developed activities include completed Netlogo
simulations to be used as teacher references for both helping students with
development issues, as well as grading the students’ work. Both the second lists
and loops activity and the bat vaccine activity include example simulations at
different levels of completion. The lists and loops activity includes the expected
simulation after part one and part two of the activity, and the bat vaccine model
activity includes the simulation after completion of the first rule, as well as an
example of other rules implemented.

The lists and loops pre-activity also includes a slideshow presenting an
introduction to the concepts of lists and loops. This slideshow covers the definition
and implementation of lists, as well as each of the major list primitives included in
Netlogo’s syntax. It also covers the structure of each of the four loop types in
Netlogo: repeat, loop, while, and foreach. This slideshow can be presented as-is, or
can be adapted to fit teachers’ own style of teaching.

3.4.1 Netlogo Cheat Sheet

In addition to the lessons developed, reference material was written to better help

students learn the Netlogo language. A cheat sheet was written that includes all of

the most commonly used functions and syntax, divided by their usage. These

sections include functions for turtles, patches, links and the observer, along with

each of the UI elements included in the Interface tab. Each element in the cheat

20

sheet includes a brief description of its functionality and an example code snippet

displaying its usage. This cheat sheet is meant to summarize the material learned

throughout the unit, to be used as both a quick reference for students and as a study

guide.

4. Conclusion

Upon completion of this IQP, the Bio-CS Bridge curriculum has been

improved to better fit the AP CS Principles requirements as set by the College

Board. These improvements include the addition of activities that cover the topics

of lists and loops, essential components of the AP CS Principles curriculum, as

well as activities that guide students through the planning and development process

of their own simulations in Netlogo. By applying real-world examples of

ecosystems and biology concepts, students gain a better understanding of the

applications of computer science. Using Netlogo as a teaching tool provides an

easy-to-understand user interface, as well as a beginner-friendly language with

many built-in primitives that can achieve complex results with little understanding

of coding. With this, students can create complex simulations with visual feedback

despite having little to no computer science background, allowing them to explore

ideas without being discouraged by a difficult-to-understand coding environment.

Overall, the new developments in the Bio-CS Bridge curriculum serves as a more

complete resource for educators seeking to integrate computer science and biology

together, and to promote interdisciplinary learning in the high school environment.

4.1 Future Work

There are several opportunities for future development of this curriculum, to
expand the covered topics to provide a more complete coverage of computer
science fundamentals. In addition to the new material developed, different versions
can be adapted for students with an advanced understanding of coding. This could

21

include extra credit work, such as additional activities with more room for student
interpretation. The curriculum could also expand to cover more advanced computer
science topics, such as debugging. This idea was considered for another Netlogo
activity, as Netlogo’s coding environment provides some of the basic necessities
for simple debugging, such as an output console and custom error throwing. Giving
students a full understanding of coding fundamentals will prepare them for a future
in the increasingly technical world.

22

References

Agent-Based Modeling. (2022). Columbia University Mailman School of Public

Health.

https://www.publichealth.columbia.edu/research/population-health-methods/

agent-based-modeling

Beecology Project. (n.d.). Beecology Project. Beecology Project.

https://beecology.wpi.edu/

Bio-CS Bridge. (n.d.). The Bio-CS Bridge. Bio-CS Bridge.

https://biocsbridge.wpi.edu/

Booch, G., Rumbaugh, J., & Jacobson, I. (2005). The Unified Modeling Language

User Guide. Addison-Wesley Professional.

Code Conquest. (n.d.). How to Plan a Coding Project.

https://www.codeconquest.com/programming-projects/how-to-plan-a-progra

mming-project/

College Board. (2020). AP Computer Science Principles Course and Exam

Description, Effective Fall 2020. AP Central.

https://apcentral.collegeboard.org/courses/ap-computer-science-principles/ex

am

General Electric Company. (2019). Event Diagram. GE Digital Solutions.

https://www.ge.com/digital/documentation/meridium/Help/V43070/IZDZkZ

mFhNjAtZjEyZS00Y2VkLTg1N2ItN2M1NzJmMjk3OTc3.html

Hazzan, O., Gal-Ezer, J., & Blum, L. (2008). A Model for High School Computer

Science Education: The Four Key Elements that Make It!.

Lucidchart. (2020). Types of UML Diagrams. Introducing Types of UML Diagrams

| Lucidchart Blog. https://www.lucidchart.com/blog/types-of-UML-diagrams

https://www.publichealth.columbia.edu/research/population-health-methods/agent-based-modeling
https://www.publichealth.columbia.edu/research/population-health-methods/agent-based-modeling
https://beecology.wpi.edu/
https://biocsbridge.wpi.edu/
https://www.codeconquest.com/programming-projects/how-to-plan-a-programming-project/
https://www.codeconquest.com/programming-projects/how-to-plan-a-programming-project/
https://apcentral.collegeboard.org/courses/ap-computer-science-principles/exam
https://apcentral.collegeboard.org/courses/ap-computer-science-principles/exam
https://www.ge.com/digital/documentation/meridium/Help/V43070/IZDZkZmFhNjAtZjEyZS00Y2VkLTg1N2ItN2M1NzJmMjk3OTc3.html
https://www.ge.com/digital/documentation/meridium/Help/V43070/IZDZkZmFhNjAtZjEyZS00Y2VkLTg1N2ItN2M1NzJmMjk3OTc3.html
https://www.lucidchart.com/blog/types-of-UML-diagrams

23

Massachusetts Department of Elementary and Secondary Education. (2016).

Digital Literacy and Computer Science Grades Kindergarten to 12. Digital

Literacy and Computer Science (DLCS) Implementation Resources -

Science, Technology/Engineering, and Mathematics (STEM).

https://www.doe.mass.edu/stem/dlcs/

PBS Education (2022). Five Steps For Integrating Computer Science in the

Classroom.

https://www.pbs.org/education/blog/five-steps-for-integrating-computer-scie

nce-in-the-classroom

Rutgers University. (2003). Agent-Based Models of Industrial Ecosystems.

https://web.archive.org/web/20110720041914/http://policy.rutgers.edu/andre

ws/projects/abm/abmarticle.htm

Tisue, S., & Wilensky, U. (2004). NetLogo: A Simple Environment for Modeling

Complexity.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a65e2af0

f4a1b03db4b05357c4cb3b8a6a4d7894

UML diagram tutorial: A complete guide to UML diagrams. Software Testing

Help. (2023). https://www.softwaretestinghelp.com/uml-diagram-tutorial/

https://www.doe.mass.edu/stem/dlcs/
https://www.pbs.org/education/blog/five-steps-for-integrating-computer-science-in-the-classroom
https://www.pbs.org/education/blog/five-steps-for-integrating-computer-science-in-the-classroom
https://web.archive.org/web/20110720041914/http://policy.rutgers.edu/andrews/projects/abm/abmarticle.htm
https://web.archive.org/web/20110720041914/http://policy.rutgers.edu/andrews/projects/abm/abmarticle.htm
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a65e2af0f4a1b03db4b05357c4cb3b8a6a4d7894
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a65e2af0f4a1b03db4b05357c4cb3b8a6a4d7894
https://www.softwaretestinghelp.com/uml-diagram-tutorial/

