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Abstract

The goal in a location system is knowledge, to within a desired accuracy, of the position

of a mobile user based on signals propagated between that user and fixed stations. For

example, in emergency response situations such information would assist search and rescue

operations and provide improved situational awareness. In general, location estimation is

possible given the signal measured at, and the position of, each receiver. In the case of a

location system where such receivers are installed on vehicles, such as for fire trucks, no

external infrastructure or prior characterization of the area of operations can be assumed

and the estimation of the (relative) positions of the receiving stations must be repeated

each time the system is deployed at a new site presulting in the geometry of the receiving

antennas being changed.

This dissertation presents work towards an accurate and automatic method for de-

termination of the geometric configuration of such receiving stations based on sampled

frequency data using both a “classical” ranging method and a novel technique based on a

singular value decomposition method for multilateralization. We compare the performance

of our approaches to the Cramer-Rao bound for antenna geometry error for distance and

frequency-data based geometry estimators, and provide experimental performance results

for these methods tested in real multipath envirionments.
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Chapter 1

Introduction

In this research, we set out to investigate signal processing methods and performance

bounds for estimating the geometry of the positioning antennas used in a precision location

system. (Here, precision refers to meter-level position accuracy.) Knowledge of the location

system’s antenna geometry, and measurements of the signals from a mobile transmitter as

received at these antennas are the the two pieces of information needed to estimate the

transmitter’s position.

While some systems exist which can locate individuals within buildings and their position

within interior rooms, many are fixed infrastructure systems which rely on incorporating

sensors into the building itself. This is clearly unsuitable for firefighters, whose itinerant

duties will not always bring them to places where such a system is installed, in working order,

and not under threat of fire. Thus a positioning system for firefighters must be portable and

deployed with minimal user effort.

The WPI Precision Personnel Location (PPL) system is one such (prototype) precision

location system. It is a software radio-based architecture for the location and tracking

of first responders in indoor environments, which is designed to require no pre-installed

infrastructure and minimal setup by users. Tracking of users requires personnel each carry a

transmitter emitting a multi-carrier wideband (MC-WB) signal which is sensed at receiving

antennas which are fixed upon emergency response vehicles. Upon arrival at an incident,

the receiving stations form an ad-hoc network and estimate their sensor (antenna) position
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geometry (the subject of this thesis), thereby establishing a local coordinate system. Given

this geometry, and measurements of transmitter signal data as captured at each receiver,

time-difference-of-arrival techniques may be employed to estimate position.

The central challenge for RF-based indoor positioning is mitigation of the effects of

building structure and contents upon location performance. Such interfering structures affect

the signal measured at each receiver by adding significant amounts of reflected (multipath)

signals and direct path signal attenuation. Multipath signals, which are not useful for

positioning, interfere with the direct path signal component that is used for positioning;

structures also cause signal attenuation which reduces signal-to-noise ratio and thus location

performance. Further, the character of these effects varies with the point of signal reception

as well as the position and orientation of a transmitter within the building.

Existing RF technologies for positioning include those based on GPS, which use signals

from orbiting satellites or ground-based pseudolites, and those which use ultrawide bandwidth

signals. Unfortunately such technologies are simply not robust in the indoor environment.

Often, GPS satellite signals are simply too weak to be received indoors; even with repeating

local pseudolites [1] which provide sufficient signal strength, multipath signals induce

unacceptable levels of error. Ultrawideband approaches, which enjoy precise timing due

to large signal bandwidths, are likely more robust in the presence of multipath, but are

handicapped to detect attenuated direct path signals due to regulatory limitations on

transmitted signal power and resulting long signal integration times.

The deficiencies of these technologies for indoor location necessitated the development,

for the PPL system, of the multi-carrier wideband (MC-WB) signal structure. By the use

of multiple discrete carriers over a large bandwidth, signal power may be concentrated in

those carriers to thwart attenuation, and multipath effects may be mitigated by frequency

diversity and real-time algorithms in software.

To date, field testing of the PPL system has relied on manual surveying to establish

the local coordinate system and measurement of the receiving antennas’ positions. This

thesis investigates automatic, non-surveyed methods to determine antenna geometry and

performance bounds for this estimation process, termed geometric auto-configuration (GAC),

which is a prerequisite to any location solution in a practical deployment situation.
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The dissertation is organized as follows. Chapter 2 presents background on the PPL

system architecture, the multipath signal model, and signal processing methods for precision

location. Chapter 3 presents the problem of Geometric Auto Configuration within the

context of the PPL system, defines necessary nomenclature, and discusses two solution

approaches.

Chapter 4 develops the Cramer-Rao bound (CRB) for GAC, which provides a lower limit

on the achievable performance of any estimator for antenna location. The CRB techniques

and theory from related literature are presented, and a significant deficiency in the method

of constraints, as a novel contribution, is identified, characterized, and repaired. This repair

is validated by a differently-constructed form of the bound which generates identical results.

Finally, in Chapter 5 the results of two methods devised for the solution of GAC are

presented. The methods are applied to experimental data collected during system field tests,

showing the accuracy of geometry estimation and the resulting transmitter location errors

when using GAC geometry solutions; the methods are also applied using simulated data,

and performance comparison with the CRB is made.

Additionally, this dissertation uses many abbreviations and notations, and defines many

of them only once. For the reader’s convenience, Tables 1.1 and 1.2 list the frequently-abused

abbreviations and notations, respectively.
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CRB Cramer-Rao bound
DFT Discrete Fourier transform
DSS Direct state-space
EVD Eigenvalue decomposition
FFT Fast Fourier transform
FIM Fisher information matrix
FPGA Field-programmable gate array
GAC Geometric auto configuration
KB Kilobyte, i.e. 210 = 1024 bytes
MB Megabyte, i.e. 220 = 10242 bytes
MDS Multidimensional scaling
MC-WB Multi-carrier wideband
PPL Precision personnel locator
RF Radio frequency
RMS Root mean square
SART Singular-value array reconciliation tomography
SNR Signal-to-noise ratio
SVD Singular value decomposition
TOA Time of arrival
TDOA Time-difference of arrival
UHF Ultra-high frequency (300–1000 MHz)
UWB Ultra-wide bandwidth
WPI Worcester Polytechnic Institute

Table 1.1: Abbreviations used in this dissertation.
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j Square root of −1, j2 = −1
a Scalar or vector quantity
â a is an estimate
ã a is a random variable
a? True value of variable a
~a,a Vector (usually a column vector)
~1,1 Column vector with all entries equal to 1
A Matrix
A ∈ Cm×n A is a complex-valued matrix with m rows and n columns
A ∈ Rm×n A is a real-valued matrix with m rows and n columns
aij A single entry of matrix A at the ith row and jth column
Re(A) Real-valued component of A, e.g., Re(a+ jb) = a
Im(A) Imaginary-valued component of A, e.g., Im(a+ jb) = b
A∗ Complex conjugate of A, (A∗ = Re(A)− jIm(A))
AT Transpose of A, (if B = AT , bij = aji)
AH Hermitian of A, (if B = AH , bij = a∗ji)

A† Moore-Penrose pseudo-inverse of A [2, p. 257]
I Identity matrix
Im Identity matrix having m rows and m columns
A ◦B Entry-wise matrix product, (A ◦B)ij = aijbij

A
svd⇒ UΣV H Singular value decomposition of A into the product UΣV H ,

UHU=I, V HV =I, Σ = diag(σi), σi ≥ 0, σi ≥ σi+1 ≥ · · · ≥ 0

A
eig⇒ V ΛV −1 Eigenvalue decomposition of A into the product V ΛV −1,

V −1V = V V −1 = I, Λ = diag(λi), λi ∈ C

expm(A) Matrix exponential of A, expm(A) = eA = V eΛV −1

exp(A) Elementwise exponential of A, exp(A) = exp(aij)
ln(a) Natural (base e) logarithm of a
diag(A) Retrieve the diagonal elements of A as a column vector
diag(a) Form a diagonal matrix from the elements of vector a
vec(A) Stack the columns of A into a single column vector

|a| Absolute value of a; |a| =
√
a · a∗

‖a‖2 Euclidean length, or 2-norm of a; ‖a‖2 =
√

aHa =
√∑

i |ai|2
‖A‖F Frobenius norm of A, ‖A‖F = ‖vec(A)‖2, for vectors: ‖a‖2 = ‖a‖F
F Fourier transform operator

Table 1.2: Mathematical notation.
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Chapter 2

Signal Processing for Precision

Location

This chapter discusses background material relevant to the understanding of the signal

processing methods applied in later chapters. In the following sections,

• the architecture of the PPL system is described to highlight the existing hardware

capabilities and field testing results,

• the Direct State Space approach to ranging is presented and difficulties in practice are

addressed together with the abandoned DSS+TDOA location method, and

• the SART algorithm is presented in the context of the precision location problem and

its invariance to certain system asynchronies which are imposed by the reality of a

realizable system is described.

2.1 PPL System Architecture

On December 4, 1999, six firefighters lost their lives in a fire at the abandoned Worcester

Cold Storage warehouse. Two firefighters who had gained roof access descended into the

interior of the building to search for occupants and became lost in the windowless structure.

As their situation deteriorated, two teams of two firefighters also became lost searching for

the first team. Despite being in radio contact, all six firefighters perished. The difficulty of
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navigating the interior of the large windowless warehouse, during accelerating fire conditions,

played a significant role in their deaths.

The U.S. Fire Administration’s report [3] on the Cold Storage fire states that “...without

good radio reports, the exact movements and locations of crews are uncertain at best.” Yet,

in the presence of functional radio communications, self-reported positions may be inaccurate

due to confusion or disorientation caused by lack of visibility, the stress of fire operations, and

irregular, “organic” building characteristics. It is clear that objective position knowledge for

firefighters could reduce the number of fatalities by accelerating search-and-rescue (including

self-rescue) operations1.

The WPI PPL system is designed with this firefighter rescue scenario in mind; the goals

are to track

• multiple responders,

• in three dimensions,

• to within one foot accuracy,

• requiring no pre-installed infrastructure,

• and minimal setup.

Figure 2.1 illustrates the target scenario. The system consists of a transmitter worn

by individuals to be tracked, and multiple receivers consisting of antennas and receiver

electronics mounted on fire trucks. Upon arrival at the scene, the receivers form an ad-hoc

network and establish their positions within a local coordinate system (which is the subject

of this dissertation). Each receiver senses the signal from each transmitter and relays those

measurements to a central location, where a joint solution for each transmitter’s position

is generated. As the firefighters move throughout the building, their accumulated position

estimates viewed on a commander’s display provide valuable information on building layout

and location history for the purposes of egress and search-and-rescue.

The transmitters worn by individuals to be tracked continuously broadcast a multi-carrier

wideband signal consisting of a span of unmodulated sub-carriers at known frequencies. In

this context, wideband refers to the total span of frequencies occupied rather than fractional

1The leading cause of on-duty firefighter death is cardiac-related distress [4]. Physiological monitoring
capabilities should also be a component of any such location technology.
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Figure 2.1: PPL concept illustration
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(a) Pristine channel response

(b) Realistic channel response

Figure 2.2: Frequency spectra of two MC-WB signals. (a) is the spectrum of a signal
propagated over a coaxial cable, (b) is the spectrum resulting from a signal propagated
between two antennas in an indoor environment. The signals were captured on January 18,
2008 at WPI.

occupancy of the band. Figure 2.2 depicts two example MC-WB signals’ spectral content as

a function of radio frequency (with a gap from 608-620 MHz; a prohibited band reserved for

emergency communications); the red circles indicate known sub-carrier locations. It can be

seen that while a signal sent over a coaxial cable has a nearly flat magnitude response over

150 MHz, a signal propagated between two antennas over an indoor channel is subject to

frequency-selective fading due to multipath and the reception of interfering signals; in this

case, two observed interferers are located at 550 MHz (an analog television signal) and 565

MHz (a digital television signal).

As the transmitter will be carried on firefighters’ persons, it is a simple beacon that

contains enough digital and RF electronics to repeatedly broadcast the waveform encoded

into its memory. Specifically, the hardware consists of a field-programmable gate array
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(FPGA) which plays out the waveform through a digital-to-analog converter driving an RF

amplification stage [5, 6] which feeds antennas integrated into the firefighter’s turnout gear.

Multiple transmitters may be supported via time- or frequency-division multiplexing. The

receiver hardware stack is the reverse of the transmitter, consisting of an antenna, single

sideband RF downmixer and filters, and an analog-to-digital converter controlled by an

FPGA. The received signal is stored in onboard memory. The design of the RF portion

of the transmitter and receiver to minimize impact on location performance is covered in

detail in [6]. The FPGAs at each end of the receive/transmit chains introduce a significant

software-radio component to the architecture of the system. At the receiver, the FPGAs

accumulate fixed-length contiguous blocks of ADC samples, or symbols into memory, which

are then relayed to a PC running Matlab, where signal processing and location estimation is

done.

2.2 Time- and Time-difference of arrival

In this section, we present the basic hardware configurations necessary for obtaining

signals which can be used for time-of-arrival and time-difference-of-arrival estimation. The

terms time of arrival, range, and delay are used interchangeably to refer to the separation

between a transmitter and receiver.

Figure 2.3 shows a hardware block diagram for simple delay estimation between a

synchronized receiver and transmitter. The transmitter, consisting of a simple digital-to-

analog and RF amplification chain, transmits x(t) which propagates d0 meters at the speed

of light c, and arrives at the receiver t0 = d0/c seconds later. Processing of the received

signal may then make an estimate of the time delay between transmission and reception of

the signal.

While the scheme in Figure 2.3 to estimate propagation delay, or for ranging, works for a

system which transmits and receives its own signal such as radar, it does not work in the

location scenario as the transmitter must be untethered, and thus cannot be synchronized to

the receiver. When the synchronies are dropped as shown in Figure 2.4, the delay estimates

proceed as before but contain an unknown time offset t̃. Ranging between an unsynchronized
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DAC

ROM

ADC

SW

Figure 2.3: Time of arrival estimation, synchronized case. The signal x(t) is generated
internally by a DAC reading new samples from a ROM at clock rate fs, and then upconverted
to carrier frequency fc and transmitted via its antenna. The signal arrives at the receiver t0
seconds later, having propagated through the channel; there it is downconverted and sampled
using an fs and fc perfectly synchronized with the transmitter. The samples processed by
software to produce delay estimate t̂0.

transmit/receive pair thus requires two problems to be solved to the accuracy desired of

the location system: estimation of the time offset t̃, and an estimate of the delay-plus-offset

t0 + t̃. Subtraction of the two results in a delay estimate:

t̂0 = (t̂0 + t̃)− ˆ̃t (2.1)

As we are interested in achieving location accuracy on the order of one to a few feet,

nanosecond-level synchronization and delay estimation accuracies are necessary. Achieving

synchronization implies that both clocks “tick” at the same rate and read the same value of

time at a particular instant. In the case of repeatedly transmitting a symbol N samples long

at fs Hertz, the requirement may be relaxed such that the value of time must be correct

modulo N · fs seconds.

To avoid the transmitter-receiver synchronization problem, another receiver is introduced



12

DAC

ROM

ADC

SW

Figure 2.4: Time of arrival estimation, unsynchronized case. Here, the scheme Fig. 2.3, has
been modified such that transmitter and receiver no longer share the same signals driving
fs and fc, and so are given different names. Because the clocks fst and fsr will now vary
independently in frequency, the resulting delay estimate at the receiver will have a random
time offset component.

DAC

ROM

TX

DE
fst

fsr

fct

DE

fcr

x(t) RX1

RX2

t̂2 + ~t

t̂1 + ~t

x(t+ t0 ¡ t1)

x(t+ t0 ¡ t2)

ADC

A  DC

Figure 2.5: Time-difference of arrival estimation with two synchronized receivers. If two
receivers share a sample clock fsr and oscillator frequency fcr, then due to the shared clock
their delay estimates will also share the same random time offset. By subtracting the two
delay estimates, we may obtain an uncorrupted estimate for time-difference of arrival.
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as in Figure 2.5 which shares a digital clock and local oscillator (LO). Sharing a clock signal

and commencing sampling at the same instant allows two delay estimates to be made; as

the estimates have identical, unknown time offsets, differencing them eliminates the shared

unknown resulting in the time-difference of arrival between the two receivers, that is

∆t12 = t1 − t2 = t1 + t̃− (t2 + t̃) (2.2)

This approach of synchronizing the receivers to eliminate the transmitter offset allows

location of the transmitter using TDOA methods.

2.3 Multipath Signal Model

This section introduces the notation used to describe our received signals and the physical

and mathematical relationships created by the multipath channel that are exploited by signal

processing presented later. Also the basics of time-of-arrival and time-difference-of-arrival

and the hardware realities such methods reflect are presented.

TX RX

t1

t2

t3

Figure 2.6: Discrete multipath signal model

Figure 2.6 shows a graphical depiction of the signal model we adopt; the space between

a transmitter and receiver in our problem is occupied by material which transmitted signals

reflect from and propagate through. For location estimation, our interest is only in the direct

path signal, which contains, in its phase, information about the distance between transmitter

and receiver. However, the effects of multipath signals cannot be ignored, and their possible

existence must be accounted for in our model so as to not adversely affect estimates of the
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direct path signal. We adopt a discrete multipath model in which the signal measured at a

receiver consists of delayed and attenuated copies of the transmitted signal.

Denote a transmitter output signal as x(t) and its Fourier transform, X(ω). The effect of

a propagation delay of t0 seconds applied to x(t) has the effect of multiplying the transmitted

spectrum by a complex exponential: (where
F⇔ indicates a Fourier transform pair)

x(t− t0)
F⇔ X(ω)e−jωt0 . (2.3)

Each signal path incorporates another copy of the original transmitted signal with an

unknown attenuation γi and propagation delay ti:

Nsig∑
i

γi x(t− ti)
F⇔ X(ω)

Nsig∑
i

γi e
−jωti = X(ω) · V (ω) (2.4)

where Nsig is the number of signals, and V (ω) represents a sum of sinusoids which are

functions of frequency. Knowledge of the transmitted signal X(ω) then permits estimation

of each {γi, ti} parameter pair from the channel response V (ω).

In practice, the channel response of Eq. 2.4 is measured at a finite set of carrier frequencies

fk through receiver hardware; thus the signals available to be processed are of the form

X(ωk) · V (ωk) ·H(ωk), (2.5)

where X(ωk) is the spectrum of the transmitted signal consisting of the subcarriers’ am-

plitudes and phases and H(ωk) is the receiver frequency response; both of these quantities

are assumed known, and thus they may be calibrated out, leaving the measured channel

response V to be processed. As the multipath parameters of the channel are described by

the sinusoids that comprise its impulse response, we wish to estimate the spectrum of V

from its samples V (ωk). The sum-of-sinusoids model is exploited by all subsequent methods

presented in this dissertation. Specifically, the separation of signal paths can be achieved by

taking advantage of the orthogonality of these sinusoids in the frequency domain.

This problem of identifying the parameters of multiple sinusoids in the presence of noise

is known as a spectral estimation problem, which appears in many forms throughout the field

of signal processing. Reference [7] presents a thorough survey on historical and contemporary

techniques for the solution of this problem, presenting state-space methods to be the most
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attractive; these methods take advantage of (assumed) orthogonality of the signal and noise

subspaces through a robust direct matrix factorization-based solution for the parameters of

interest. While some inferior methods have nearly equivalent estimator performance in some

cases, many suffer from difficulties relating to high-degree polynomial approximations and

computation time proportional to the amount of desired solution precision.

2.4 Direct State Space

Originally developed by Kung [8], direct state space (DSS) methods have been since

rediscovered under the names ESPRIT [9] and Matrix Pencil [10]; a comparison of these

methods is presented in [11] where no significant difference between the methods is observed.

DSS can achieve the Cramer-Rao bound [12] (a theoretical lower bound for estimator error)

at suitable SNRs, and thus it is efficient. We follow with a presentation of the DSS method

and conclude with a discussion of practical issues which limit the utility of DSS for precision

indoor location and motivate the development of SART.

2.4.1 Algorithm

The measured channel response V may be expressed as a matrix-vector product:

V (ω) =


γ1

...

γi


T 

e−jωt1

. . .

e−jωti




1
...

1

 = cA(ω)b (2.6)

Assuming that the subcarriers ωk are evenly spaced ∆ω apart, the kth sample of V can be

expressed in terms of powers of A

e−j(k·∆ω)t = (e−j∆ω t)k ⇒ V (k ·∆ω) = cAkb (2.7)

and V may be expressed as the output of an underlying linear time-invariant system:

~xk+1 = A~xk + buk (2.8)

yk = c~xk +duk = V (ωk) (2.9)
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Where the first equation describes how the state vector ~xk changes, as a function of state

transition matrix A and input term buk. The second equation describes how the output yk

is derived from the current state and input. As V is assumed to be an impulse response,

the input uk is an impulse (i.e., uk = 1, 0, 0, 0, . . . and b = 1) such that at the first k, ~x = 1,

giving all sinusoids an initial phase of zero.

In terms of the multicarrier signal, ~xk is the vector containing the phase of each multipath

signal component at frequency ωk. The output yk is the resulting amplitude and phase

measurement at each subcarrier, and is obtained via a sum of the complex-valued phases ~xk

weighted by the multipath signal strengths c. Thus, by indexing k = 0, 1, 2, . . . , N − 1, the

state-space formulation of the multipath signal model is completely described by

V (k∆ω) = yk = cAkb. (2.10)

The matrix A is the state transition matrix whose eigenvalues each correspond to the rate of

phase change of each multipath signal with respect to index k. In this way the problem of

estimating the multipath delays and amplitudes of a measured channel response is formulated

as a system identification problem whose goal is to identify c and A based on measurements

of V (k∆ω) = yk.

To estimate the state transition matrix A, the data are put into a Hankel matrix, which

admits to a factorization into observability and controllability matrices:

H =


cA0b cA1b · · ·

cA1b cA2b
...

. . .

 =


cA0

cA1

...



A0b

A1b
...


T

= O1C1

H+ =


cA1b cA2b · · ·

cA2b cA3b
...

. . .

 = O2A C2 (2.11)

Forming the “advanced” Hankel matrix starting with the second data sample reveals A

within the product of another pair of observability and controllability matrices, which are

close, but not identically equal to the first pair. To obtain A, H may be factored via a
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singular value decomposition [2, 13]:

H = UΣV H =
(
UΣ

1/2
)(

Σ
1/2V H

)
= O1 · C1 (2.12)

Given that H is size m× n, U and V are unitary matrices, each forming an orthonormal

basis for the columns of A and AT respectively:

UHU = Im, V HV = In, (2.13)

and Σ is a nonnegative diagonal matrix containing the singular values of H, that is:

Σ = diag(σ1, σ2, . . . , σn), σ1 ≥ σ2 ≥ · · ·σn ≥ 0, (2.14)

and thus Σ1/2 = diag
(√

σ1,
√
σ2, . . .

)
. In the noiseless case, the rank of H indicates the

number of multipath signals that are present, including the direct path. The columns of

U and V corresponding to nonzero σi span the signal subspace. In the presence of noise,

H becomes full rank, and the previously zero-valued σi terms become nonzero. Under

the assumption that our signals are stronger than the noise, the SVD of H may then be

partitioned into signal and noise subspaces,

H =
(
Us Un

)Σs

Σn

V H
s

V H
n

 (2.15)

and estimates of the factors O1 and C1 may be formed using only terms from the signal

subspace: (
UsΣ

1/2
s

)
·
(

Σ
1/2
s V H

s

)
= Ô1Ĉ1 (2.16)

Finally, to obtain an estimate of A, the pseudo inverses of the noise-discarded factors of H

are applied to H+:

Â = Ô†1H+Ĉ†1 = Ô†1O2A C2Ĉ†1 =
(

Σ
−1/2
s UHs

)
O2A C2

(
VsΣ

−1/2
s

)
(2.17)

As Ô†1 and O2 do not come from the same Hankel matrix, Â is not diagonal, but is similar

to the A we are searching for and thus has the same eigenvalues. The time delays of interest

may then be computed from these eigenvalues:

λ
(
Â
)

= {λi, i = 1, 2, . . . , Nsig}, λi = e−j∆ωti , ti = ln(λi)/(−j∆ω) (2.18)
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The signal amplitudes are best estimated using a least-squares solution of the system:(
e−jωktn

)
~c = V (ωk) (2.19)

fitting the measured data to a basis consisting of sinusoids of the frequencies just estimated.

Other implementation details relating to DSS are covered in [14], where methods for

weighting samples and optimum Hankel size2 are investigated. Reference [15] also has

a detailed treatment of DSS, discussing different approaches to the estimation of A, the

factorization of H, and estimation of higher-order derivatives of eigenvalues of A.

An extension to DSS exists [16, 17] that utilizes multiple received signals from multiple

locations, enabling estimation of the range and angle of each arriving signal. Unfortunately

such an approach adds a new challenge for each benefit it offers. Multiple-receiver processing

for angle estimation works best with narrowband signals and requires a data interpolation

step if a fixed antenna array is to be used. In addition, as range and angle parameters are

estimated separately, the task of properly pairing solution components suffers when the

signals are closely spaced in both range and angle; methods based on a simultaneous Schur

decomposition guarantee pairing but produce worse parameter estimates [18].

2.4.2 Difficulties in Practice

While DSS can achieve the Cramer-Rao bound, some steps of the algorithm are compli-

cated by the realities of the indoor radio channel and realizable hardware considerations for

single-receiver time-of-arrival or dual-receiver time-difference-of-arrival schemes.

One issue is the choice of signal rank, or model order of the Hankel matrix H. In order to

discard the noise subspace, the implementation must guess how many multipath signals are

present in the data. In less multipath-rich settings, such as anechoic chambers or outdoor

locations with clear line-of-sight between antennas, heuristics for choosing the signal rank

(the partitioning of Eq. 2.15) such as finding an amplitude “knee” in the singular value

progression or just using a fixed value for the signal rank have been shown to yield reasonable

model order estimates. However in more realistic settings, model order estimation is still

2the ratio of number of rows to number of columns, as a Hankel matrix formed from N samples must
have size (m×N −m + 1) where 1 < m < N .
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considered to be an open problem [19], especially in the case of real-time processing where

computation resources and number of available data samples are restricted. Choosing the

model order is not straightforward as the vectors in the signal basis Us merely span the signal

subspace rather than exactly, individually, representing the sinusoidal signals of interest,

preventing a simple “counting of sinusoids” from producing a model order estimate. Incorrect

choice of model order results in a signal subspace which either includes vectors from the

noise subspace or omits vectors from the signal subspace, thus adding error to estimates of

the multipath signal parameters.

Another difficulty in practice using DSS arises when choosing the direct path signal

from the set of solutions. Given a model order choice of Nsig signals, DSS returns Nsig

solution pairs {ti, γi}, one of which corresponds to the direct path signal. With perfect

synchronization derived as depicted in Figure 2.3, the direct path estimate is simply the

signal with the smallest delay. However, realistic channel and multipath assumptions and

transmitter-receiver asynchrony (Figures 2.3 and 2.4) in the indoor location problem raise

the question of how to choose the direct path signal when the parameter estimates for

a multipath channel have a random time offset and random attenuation, i.e., parameter

estimates of the form

{ti + t̃, α̃i · γi} (2.20)

which prevent reliable identification of the direct path signal by simple examination of time

delay or signal strength. In more forgiving conditions, such as with unobstructed line-of-sight,

the signal with the strongest amplitude is chosen for lack of any alternative. In addition,

the time offset t̃ is time-varying as it is a function of the difference between transmitter and

receiver sampling clocks, which drift as a function of time.

A third difficulty in practice relates to ill-behavior of DSS in certain multipath situations.

In the presence of short-delay multipath which arrives very closely spaced in time and similar

in amplitude to the direct path signal, DSS has been shown [20] to exhibit ill-behavior.

While a graceful degradation to a parameter estimate that is the mean of two nearly identical

signals’ underlying parameters may be acceptable, it cannot be guaranteed that ill-behavior

will not occur in realistic channels that feature interfering signals and non-flat frequency

responses.
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2.4.3 The DSS+TDOA approach to location

Given time-difference (TDOA) estimates from DSS and knowledge of receiver coordinates,

we may then estimate the position of the transmitter using so-called multilateration [21]

methods that pursue location solutions using TDOA data. Graphically, multilateration

involves solving for the intersection of hyperbolic curves, each satisfying the measured

TDOA between the reference antenna and another antenna. Unfortunately, the general

solution for the intersection involves a coupled set of nonlinear equations, and an exact

solution is generally intractable, especially for arbitrary numbers of receivers. Approximate

solution methods amenable to real-time implementation include spherical intersection [22, 23],

spherical interpolation [24], and linear-correction least-squares [25] approaches.

Any position estimator using TDOA estimates will suffer if, for any receivers, the DSS

process returns an erroneous time-difference value beyond that expected by statistical

estimate variation3. A realistic indoor environment could cause DSS to result in erroneous

values for a number of reasons: from using a sub-optimal model order, choosing a multipath

signal as the direct path, or due to ill-behavior in the presence of short-delay multipath. In

some cases, the direct path signal may be so highly attenuated that is undetected, in which

case a multipath signal delay will be chosen as the DSS result. The DSS+TDOA approach is

thus unsuitable for indoor location due the unreliable performance of DSS in high-multipath

environments.

Next, we present the SART algorithm and motivate its utility with presentation of

location estimation results in real multipath settings.

2.5 SART

The singular-value array reconciliation tomography (SART) method was developed in

response to the deficiencies of the DSS+TDOA approach in indoor settings, as described

in Section 2.4.2, which contains a number of intermediate estimation steps which cause

information loss and incur error in the final location solution. SART avoids such intermediate

estimation steps and processes data from all antennas simultaneously to estimate location.

3as in choosing wrong model order or wrong signals will greatly increase your error variance
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2.5.1 Algorithm

SART begins by forming a matrix M of frequency data whose columns are the measured

channel responses Vi(ωk) from each receiving antenna:

M =


V1(ω1) . . . Vn(ω1)

...
. . .

...

V1(ωk) . . . Vn(ωk)

 = vnk (2.21)

Considering only direct path signal energy from a transmitter, the data matrix is composed

of n column vectors of frequency-domain sinusoids sampled at k frequencies:

M = γne
−jωktn =


γ1e
−jω1t1 . . . γne

−jω1tn

...
. . .

...

γ1e
−jωkt1 . . . γne

−jωktn

 (2.22)

Given knowledge of the receiver positions ~pn (determined by a manual setup procedure or

by GAC) and the frequencies ωk, the received signals may be rephased for a test location ~x

by removing the proper amount of signal delay (where c is the speed of light):

M(~x) = vnk · ejωk||~pn−~x||2/c = vnk · ejωk∆t̂n , (2.23)

as illustrated in Figure 2.7. Thus a matrix of received signals with propagation delays tn

from a transmitter, rephased to ~x can be written as

M(~x) = γn e
−jωktn · ejωk∆t̂n = γn e

−jωk(tn−∆t̂n), (2.24)

which may be interpreted as adjusting the phase of the carriers such that the spectral content

of the channel response is frequency-shifted by an amount proportional to the change in

time delay ∆t̂n.

At the transmitter location ~x?, the delays removed by rephasing are the same as the

delays imparted by line-of-sight propagation, and the column vectors in M become a repeated

constant, that is, each column is proportional to (the vector of ones) 1:

M(~x?) = γne
−jθn (2.25)
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Figure 2.7: Illustration of rephasing in SART. Given receivers (in red) with known positions
~pn, n = 1 · · · 7, a metric may be computed for any hypothetical transmitter position ~x. When
the location at (0, 5) is tested, the signals captured at each receiver are rephased so as to
remove or “dial back” signal delay commensurate with length of each vector ~x− ~pn (in gray)
that points to the test location.

and thus M(~x?) has a rank of one, as the matrix columns have become linearly dependant.

When ~x 6= ~x?, the receivers’ signals will no longer contribute to a single component of rank

of M(~x), and further, multipath signals and noise will make M(~x) full rank for any such

choice of ~x. With the data matrix rephased for a test location, the numerical rank of the

matrix may be examined via the singular value decomposition:

M = UΣV H , Σ = diag(σ1, · · · σn), σn ≥ σn+1, UHU, V HV = I. (2.26)

where the singular values σi are the magnitude of the ith strongest rank-one component of

the rephased M at that point:

M(~x) =
∑
i

σiuiv
H
i (2.27)

If our direct path signals are not overwhelmed by other reflected, interfering signals, then

the first singular value of M(~x) is a measure of the strength of the linear dependence of the
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received signals’ direct-path components. If the rephased data matrix is rank one, this linear

dependence is maximized, and all signal energy is represented by the first singular value,

and is thus equal to the Frobenius norm of the matrix:

‖M(~x?)‖2 = ‖M‖F (2.28)

as the rephasing operation preserves signal energy, and thus the Frobenius norm. At other

re-phasing test locations and in the presence of multipath, the received signal energy will

be distributed among the rest of the singular values. Thus, the first singular value reaches

a maximum at the correct transmitter location where the received signals exhibit high

“agreement,” and decreases away from that location as the direct path signals components

exhibit less pronounced linear dependence.

As the SVD is a highly nonlinear operation, it is impossible to analytically estimate

what test location would maximize the first singular value. However, the ability to evaluate

the SART metric at any point in space admits to a brute-force imaging approach: by

exhaustively computing and recording the first singular value over a rectangular grid of

points, a map of first singular value amplitude as intensity may be obtained over that region.

Figure 2.8 shows the result of a 2-D SART scan using a simulated dataset in the presence

of multipath due to attenuative isotropic reflectors; the transmitter location estimate is

chosen as the scan location where the metric is maximized.

2.5.2 Hardware Realization

SART has been demonstrated in field testing using the hardware architecture of Figure 2.9,

which consists of a single transmitter with its own local oscillator and sampling clock, and

multiple receivers. Each receiver may support up to four co-located receive antennas and

consists of an RF downmixer fed by a local oscillator and other filters. The downconverted

signals are fed over coaxial cable to the base station where the signals are sampled and sent

to a PC running MATLAB.

While the presentation of the SART algorithm in the previous section presumed ideal

conditions, the realities of hardware implementation impose asynchronies to which SART

must be immune. In terms of the hardware as depicted in Figure 2.9, the measured
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Figure 2.8: Two-dimensional SART image resulting from a simulation of positioning involving
seven receiving antennas (red circles) and a single transmitter (blue ×). Metric amplitude
is indicated by the underlaid contour plot and decreases away from the transmitter as the
shading becomes darker.

channel response, including multipath, contains additional parameters to account for these

asynchronies:

Vkne =

Nsig∑
i

γi,n e
−j

([
(ωk,bb+∆ωbb)+(ωc−ωc,n)

](
ti,n+∆t̃e

)
+φk+φn

)
(2.29)

where k is the frequency sample index, n is the antenna index, and e denotes dependence on

receiver antenna port (element) number4. The terms are:

• {γi,n, ti,n}, the amplitude-delay pair of the ith signal at antenna n;

• ∆t̃e, the random time offset at eth antenna port;

• ωk,bb, the frequency of the kth carrier at baseband;

• ∆ωbb, the deviation between transmit and receive sample clocks;

• ωc, the ideal RF carrier frequency;

4The index e can be replaced with n, but is used here to distinguish between spatial effects dependent on
antenna position indexed by n, and time-varying effects due to multiplexing.
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Figure 2.9: PPL system hardware block diagram. The four RF receivers surround the
area of operations and downconvert the signals captured at the connected antennas to
baseband before relaying them to the base station, at bottom, where they are sampled and
delivered to a PC for processing. While receivers 1,3, and 4 each have four ports which are
time-multiplexed during sampling, receiver #2 utilizes a single non-multiplexed antenna and
may process the transmitter’s signal so as to keep its random time offset constant for the
duration of the signal capture. The signals are sampled using four co-located ADCs which
share the digital clock fs.
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• ωc,n, the actual RF carrier frequency at the nth antenna;

• φk, the phase of the transmitter’s kth carrier; and

• φn, the local oscillator phase at the nth receiver.

The following analysis will show how these hardware effects do not effect the SART location

solution. First, the untethered transmitter will have a random time offset relative to the

receivers; as the antenna ports are sampled at successive but different times, each signal has

a time offset corresponding to the receiver port it was connected to. By devoting a single

receiver (the second, yellow receiver in Figure 2.9) to sample during all time slots using

the same antenna, it is possible to adjust the received signals such that they share a single

unknown time offset. This “drift tracking” process [26] removes the effect of element number,

driving ∆t̃e → ∆t̃. Thus, when the signal delays are properly adjusted for the transmitter

location, their column vector content is not driven to 1 (which may be interpreted as a

sampled DC signal), but to a sampled complex sinusoid whose frequency is ∆t̃, making the

rephasing in effect a TDOA process as the signals become relatively aligned by removal of

their differences.

With the dependence on element number removed, the equivalence of the hardware-

complicated SART data formulation to the ideal case is now straightforward to show. First,

terms which do not depend on i may be factored outside the summation, where ∆ωn has

been substituted for (ωc − ωc,n) and the tilde dropped from ∆t̃:

Vkn = e−j(φk+φn)

(Nsig∑
i

γi,n e
−jωk(ti,n+∆t) · e−j∆ωn(ti,n+∆t)

)
(2.30)

Transmitted carrier phases φk and individual receivers’ local oscillator phases φn may be

expressed as (diagonal) unitary pre- and post- multipliers to the above summation (denoted

Mkn). Expressed in this way, the multipliers are absorbed into the left and right singular

vectors of the underlying signal matrix Mkn = UΣV H :

Vkn = diag(e−jφk) ·Mkn · diag(e−jφn) = Φk

(
UΣV H

)
Φn = ŨΣṼ H (2.31)

and thus do not affect the singular values of Mkn, nor the location solution. This may

also be shown to hold for local oscillator frequency offset when direct path only energy is
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Figure 2.10: Properties of each captured symbol during system multiplexing. During signal
capture, the multi-antenna receivers of Fig. 2.9 multiplex their four channels, each connected
to a different antenna. For each symbol index during which signals from a particular
multiplexer port (1–4) are captured, a signal from the reference antenna is always captured.
This allows the synchronization offsets of each receiver to be tracked for the duration of
signal capture. Here, only a short duration of the entire signal capture is illustrated, so the
synchronization offsets vary little.
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considered, allowing ∆ωn to be factored out of the signal matrix:

Vkn = Φk

(
γne
−jωk(tn+∆t)

)(
e−j∆ωn(tn+∆t)

)
Φn = Vkn = ΦkMknΩnΦn (2.32)

as the effect of the offset may be expressed as a unitary matrix multiplication which does

not affect the singular values. If multipath signals are included in the analysis, it can be seen

that LO offset simply applies a random phase to each multipath component of a column of

the signal matrix:

Vk1 = e−j(φk+φ1)

(
γ1e
−jωbbt1 · e−j∆ωt1 + γ2e

−jωbbt2 · e−j∆ωt2 + · · ·

)
(2.33)

which cannot affect any linear dependence relationships measured by the SVD.

Finally, two factors contribute to the random time offset ∆t. The first factor is lack

of knowledge of the start of signal transmission, while the second factor is a time-varying

frequency offset (drift) between the transmitter and receiver sample clocks. To show that

the clock offset results in a random time offset, the carrier frequencies ωk may be written in

terms of carrier index k = {0, 1, 2, . . .}, DFT bin spacing ∆b, starting bin index b0, sample

rate ωs = 2πfs, and the DFT block (symbol) size of N samples:

ωk = (k∆b+ b0)
ωs
N

(2.34)

A clock frequency error ∆ωs would shift the sample rate, and skew the frequencies of the

carriers being transmitted. The kth carrier may be written as a function of time t:

exp

(
−jk∆b

(
ωs + ∆ωs

N

)
t+ φk

)
(2.35)

Upon transformation to the frequency domain, the signal consists of the measured phase of

every carrier as a function of carrier index k. This may be factored into two components of

phase corresponding to the desired clock frequency and the undesired clock offset:

exp
(
−j
(
k∆b

ωs
N

+ φk

))
· exp

(
−j
(
k∆b

∆ωs
N

))
(2.36)

Rewriting ∆ωs = ωs/M , with M � 1, the additional multiplier due to the clock frequency

offset is a complex sinusoid over frequency:

exp

(
−jk∆b

ωs
N

1

M

)
= exp

(
−jωk

1

M

)
(2.37)
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When applied to a received signal which is a sum of sinusoids, this factor increases the

multipath delays experienced at all receivers by 1/M . Thus, a clock offset between receiver

and transmitter, as may be expected from any practical oscillator-based system has a benign

impact on a TDOA system by inducing a uniform time offset upon all received signals.

Frequency Domain Formulation We may also show the immunity of SART to digital

clock offset with an argument in the frequency domain. In the presence of such a frequency

offset, ωs becomes (ωs + ∆ωs), and the received signal may be written as (ignoring LO offset,

phase effects, and dropping b0):

Vkn =

Nsig∑
i

γi,n exp

(
−jk∆b

(
ωs + ∆ωs

N

)
ti,n

)
(2.38)

Rewriting ∆ωs as a fraction (M � 1) of ωs shows the frequency drift may be expressed as

an offset to the delay ti,n:

Vkn =

Nsig∑
i

γi,n exp

(
−jk∆b

ωs
N

(
1 +

1

M

)
ti,n

)
=

Nsig∑
i

γi,n exp

(
−jk∆b

ωs
N

(
ti,n +

ti,n
M

))
(2.39)

such that the underlying delays are offset proportional to the relative frequency deviation

and the underlying delay:

ti,n,offset = ti,n

(
1 +

∆ωs
ωs

)
(2.40)

A reasonable sample clock frequency offset will skew the measured delays, but by a very

small amount. Assuming a conservative estimate of clock stability of 100 parts per million,

the underlying signal delays will change only a few hundredths of a percent (±0.01%). This

delay skew effect is overwhelmed by the time offset due to the unknown start time of symbol

transmission. Thus any TDOA method such as SART is unaffected by clock offset.

2.5.3 Location Performance Results

With SART shown to be tolerant to the asynchronies present in the PPL system archi-

tecture, in this section we present location results from actual field tests of the PPL system

in realistic multipath environments. In such environments, SART has been demonstrated

to achieve sub-meter location performance in a variety of indoor multipath settings, as
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summarized in Table 2.1, and presented in further detail in [27]. All results involve location

of a transmitter inside the building by signals received at antennas placed outside of it,

except in the Atwater Kent indoor case where the receiving antennas were also placed

inside the building with internal walls separating the transmitter and receiving antennas.

The Kaven Hall test location comprises brick and steel-beam construction and houses a

geotechnical lab on the WPI campus; the Atwater Kent location is an indoor-to-indoor test

centered around an undergraduate laboratory, passing through steel-studded walls and under

metal-corrugated ceilings; and the Campus Ministry location is a typical wood-construction

three-story residential structure complete with furniture and metal appliances in the kitchen.

Table 2.1: Location Testing Mean Absolute Horizontal Error

Test Location Error Bandwidth

Kaven Hall 0.37 m 60 MHz

Atwater Kent, indoor 0.71m 60 MHz

Atwater Kent 1.08 m 60 MHz

Campus Ministry 1st fl. 0.59 m 60 MHz

Campus Ministry 2nd fl. 0.72 m 60 MHz

Campus Ministry 1st fl. 0.72 m 150 MHz

Campus Ministry 2nd fl. 0.30 m 150 MHz

Thus, in the context of this dissertation, the performance Figures of Table 2.1 set a goal

for the performance level of GAC: to not increase transmitter location error significantly

beyond the levels achieved with manually measured receiver coordinates. The receiver

positions are measured at the location of signal reception, nearest to the geometric center of

the antenna to an accuracy less than 10 cm.

2.5.4 Contrast with DSS+TDOA

Given SART’s ability to function in realistic multipath environments in which DSS+TDOA

was ill-suited, the attractive features of the SART method deserve mention.

Single algorithm SART is a single algorithm which directly estimates transmitter location,

and does not contain intermediate decision or estimation steps which cause information loss

or introduce error.
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Uses all data jointly Because SART does not make intermediate estimates, it operates

on all frequency data from all antennas jointly. This benefits the location estimate when

some receiving antennas contain no direct path signal energy, in which case they simply do

not contribute to the location solution; as the amount of direct path energy increases at

an antenna, so does its contribution to the location solution. In multi-step methods such

as DSS+TDOA, any line-of-sight TOA estimate made for a direct-path-occluded antenna

would be extremely error-prone and impact a TOA- or TDOA-based location solver greatly

as it is impossible to distinguish direct path from multipath signals using one antenna.

Arbitrary multi-carrier signals Further, while SART processing resembles the step of

DSS in which frequency data occupies matrix columns, it does not use the Hankel structure

which requires frequency samples to be evenly spaced. In SART, the frequency samples may

be arbitrarily located, limited only by spectral compliance (reception or generation of RF

interference) concerns and DFT bin locations.

Computation time The imaging approach used by SART is computationally intensive as

it must rephase the signal matrix and compute its SVD at each test location; a SART scan

on a 10×10 meter grid at 0.25m resolution requires roughly 1,700 evaluations. DSS+TDOA,

in comparison, requires only one SVD per antenna and a single SVD for the final location

estimate. SART is an algorithm which has become feasible for real-time implementation

on general-purpose microprocessors only within the past few years, and achieving location

update intervals of a few seconds is the central practical challenge.

In the next chapter, we introduce Geometric Auto Configuration (GAC), whose goal is to

automatically estimate receiver coordinates without user intervention, and discuss adaptation

of the signal processing approaches presented in the current chapter to its solution. As we

have shown SART to be immume to common hardware effects, and achieve meter-level error

in real multipath environments, our efforts will focus on adapting it in particular.
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Chapter 3

Geometric Auto Configuration

In this chapter, we introduce geometric auto configuration (GAC) as applied to the PPL

system, discussing

• the general scheme of GAC, distinguishing it from the transmitter location problem,

• a model for the signals to be processed,

• the interchangeable expression of coordinate and distance information,

• the form of error metrics and theoretical performance bounds, and

• possible solution approaches.

GAC is the process by which a location system, in an unattended fashion, automatically

determines the locations of the receiving antennas, before location estimation may proceed.

The ultimate goal of GAC is to determine receiver locations to a degree of accuracy such

that transmitter location error is not increased significantly beyond the levels achievable in

realistic multipath settings with well-known (manually surveyed) receiver coordinates.

The terms antenna, receiver, and station (and combinations thereof) are used inter-

changeably to refer to the physical location of signal reception as well as the capabilities of

the RF electronics at each antenna. Also, the terms mobile and fixed distinguish between

the transmitter worn by a user to be tracked, and the MC-WB transmit capability used at

each station to pursue a GAC solution.
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Figure 3.1: Illustration of GAC scenario. Antennas (in red) are part of arrays (in blue) with
known geometries, whose overall positions and orientations must be discovered within a
local coordinate system that may be aligned to the area of operations.

3.1 GAC Scenario

While fixed infrastructure location systems enjoy well-known, fixed, sensor locations,

the PPL system must be deployed at every scene, and thus reliable methods for GAC are

necessary. Figure 3.1 graphically illustrates the GAC process; groups of antennas which are

co-located on a vehicle or other equipment must have their positions resolved within a local

coordinate system defined on scene relative to landmarks of interest. In an ideal deployment,

the antennas are physically distributed along the perimeter of the area of operations with as

much horizontal and vertical diversity as possible.

From an end-user’s perspective, GAC may be divided into two sequential parts. The

first part is the accurate determination of the relative locations of the receiving antennas,

which is the main research challenge considered in this dissertation. The second part of GAC

concerns the mapping of the antenna configuration and transmitter positions within the

physical context of the area of operations and conforming with the common conventions of

relative and absolute position used by response personnel. For example, firefighters typically

label the four sides of the building A, B, C, and D, proceeding clockwise relative to the
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incident command post. Thus any positioning information is of diminished utility unless

aligned to a street map, floor plan, or A/B/C/D designations.

Upon arrival at the scene of operations and the deployment of antennas used for position-

ing, GAC may commence. First, the receiver hardware uses an RF signalling capability to

establish an ad-hoc network to coordinate the collection of signal data (i.e., MC-WB signal

data as illustrated in Fig. 2.2). This is sufficient for normal transmitter location, but for

GAC, the receivers themselves are also equipped with MC-WB transmit capability. One by

one, each receiver’s antenna takes part in transmitting, from its location, a MC-WB signal

which all other antennas receive and record. Given N antennas, N(N − 1)/2 unique signals

will be collected, one for each pair of antennas.

Unlike methods in the previous chapter for transmitter location which must use TDOA

methods due to an unknown clock offset between the mobile transmitter and receivers,

in GAC we may use methods which assume absolute time information since the fixed

transmitter hardware is co-located with receiver hardware. This co-location allows direct

measurement of the fixed transmitter’s clock offset at the moment of signal transmission, and

the subsequent elimination of that offset in the signals captured at the receivers. With the

offset removed, the ensemble of interantenna signals collected for GAC represent absolute

time information, and a solution for the antennas’ geometry may be pursued.

While knowledge of the subcarrier frequencies is the only other piece of information

required in order to estimate geometry, other supplemental information may be reasonably

assumed available for GAC, to both reduce the amount of work required for a solution and

improve the theoretical performance bound for error variance.

The first type of supplemental information available arises from grouping the antennas

into arrays. For the PPL system, since we assume the receivers are permanently mounted

upon emergency vehicles, we may also assume knowledge of the geometry (but not position

and orientation) of each subarray. Having knowledge of subarray geometry is beneficial in

general because closely situated antennas which are part of the same array are likely to have

edge-on look angles, and, as a result, suffer worsened antenna response effects in terms of

high phase response distortion and reduced gain.

A second type of supplemental information related to orientation can further reduce the
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complexity of finding a geometry solution, and simplify the second manual phase of GAC

in which the geometry solution must be aligned to a map. If the subarrays are equipped

with magnetometers and accelerometers, then the orientation angles of each array with

respect to gravity and magnetic north can be measured. This orientation information would

shrink the GAC solution space such that only the translational position of each array was

unknown, and allow the resulting geometry solution to be correctly oriented with respect to

the cardinal directions.

A final supplemental piece of information could be a rough position fix (possible via

GPS) which places the correctly oriented antenna geometry in the vicinity of the area of

operations, with the only action required of the user (likely an incident commander) would

be a translational alignment of the geometry to the area of operations.

3.2 Existing Literature

Recently, there has been much attention in the literature on the topic of ad-hoc sensor

network localization. Such sensor networks consist of a physically dispersed collection of

low-power embedded systems equipped with short-range radio links which are used for

communication as well as ranging; sensors are capable of range estimation to neighbors via

received signal strength or time-of-arrival.

Proposed methods for sensor network localization resemble GAC in their objective, but

are too specialized to the challenges of fault tolerance, distributed operation, or limited energy

and computation resources to be directly applicable. In addition, proposed methods often

assume a dense planar network of sensors which helps to amortize ranging and subsequent

position error, and many methods assume the existence of sensors whose position is already

known, which may not be assumed by GAC.

Further, such proposed methods and existing implementations make optimistic as-

sumptions about sensors’ ranging ability as some demonstrations in “simple” multipath

environments exhibit surprising sensitivity to environmental factors [28, 29] and models

of ranging error in simulation [30]. The need for robust range estimates despite the use

of statistical ranging error models in real multipath situations is frequently acknowledged
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[28, 31]. Despite this criticism, it would be foolish to ignore ranging altogether for a solution

to GAC, and an approach to estimate range which utilizes multidimensional scaling (reviewed

favorably in [28]) is presented in Section 3.4.

In contrast to sensor network localization, GAC is not limited to “black-box” inter-

antenna range estimates, as the signal from which such estimates are generated (sometimes

by hardware) is available for processing by software. Indeed, the MC-WB signal in use for

GAC is wideband1 and consists of multiple carriers; much more signal data is available

for processing. As the PPL system has the central goal of precision location and is not

subject to the hardware, spectral, or computational limitations of such sensor networks,

other approaches beyond processing range estimates should be pursued. Exploitation of

such an approach based on the signals and processing notions introduced by the WPI PPL

system (roughly summarized in Chapter2) will be a focus of the methods to be presented.

3.3 GAC Signal Model

For a PPL-inspired solution to GAC, we retain the sum-of-sinusoids channel response

model as presented in Section 2.3. Unlike the transmitter location problem, which has a

single-transmitter-multiple-receiver signal model, GAC treats each receiver as a transmitter,

or station, to be located and thus takes up a multiple-transmitter-multiple-receiver signal

model in which the received signal, as relayed between every pair of antennas, is recorded. To

accomplish this, each of the N antennas which normally just receive the mobile transmitter’s

signal are equipped with a MC-WB transmit capability. Upon arrival at an incident, the

stations each in turn switch to transmit mode and emit the multi-carrier signal which

is received at all other stations from their deployed locations. The receiving stations

simultaneously record the received signal associated with each transmitter, resulting in

N2−N recorded signals in total. Some of these signals may be ignored during processing as

certain pairs of antennas are members of the same fixed-configuration antenna array and

thus have known separations.

1Signals which are ultra wideband are generally defined as having a fractional bandwidth (ratio of bandwidth
to center frequency) of 20% or more. The current PPL RF signal has carriers spanning 550–700MHz and a
fractional bandwidth of 24%.
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As the multicarrier signal to be used for this implementation of GAC does not originate

from an untethered transmitter but instead is co-located with receiver hardware, clock

offset and drift effects may be completely removed from signals acquired in this fashion.

Cancellation of these drift effects discards any random time offset, resulting in signals with

absolute time information. Thus the direct-path only signal model for the inter-antenna

signals may be written as

vijk = γij exp (−jωk‖~xi − ~xj‖2/c) = γij exp (−jωkdij/c) (3.1)

where ~xi is the position vector of the ith antenna, dij is the resulting distance (in units of

meters) between the ith and jth antennas, and c is the speed of light. As Eq. 3.1 expresses

the received signals in terms of either antenna coordinates or the distances between them,

the entire antenna configuration itself can likewise be expressed in two ways: as a set of

coordinates or a set of distances.

In coordinate form, the matrix describing a particular antenna configuration may be

written as a list of column vectors (in three dimensions, for N antennas):

X =
(
~x1 ~x2 ~x3 · · · ~xN

)
=


x1 x2 x3 · · · xN

y1 y2 y3 · · · yN

z1 z2 z3 · · · zN

 ∈ R3×N (3.2)

In distance form, a configuration may be written as a distance matrix:

D =



0 d12 d13 · · · d1N

d21 0 d23 · · · d2N

d31 d32 0 · · · d3N

...
...

...
. . .

...

dN1 dN2 dN3 · · · 0


∈ RN×N (3.3)

which has the properties of being symmetric, “hollow”, and nonnegative:

dij = dji, dii = 0, dij ≥ 0. (3.4)

The entries of D are computed from appropriate columns of X,

dij = ‖xi − xj‖2 =
√

(xi − xj)T (xi − xj) (3.5)
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and are invariant to any rotation or translation of X as a whole:

dij = ‖R(xi + t)−R(xj + t)‖2 = ‖xi − xj‖2 (3.6)

where R is a 3 × 3 orthogonal rotation matrix, and t is a column vector representing

a translation. Thus in forming D, the orientation of the configuration and its absolute

position (perhaps described by its center of gravity) are lost, but the relative positions of the

antennas, henceforth known as configuration or geometry, are not. In mathematical terms,

all coordinate matrices which generate an identical distance matrix are members of the same

equivalence class. That is, if Y is a particular coordinate matrix, then its equivalence class

is defined as the set of all matrices{
X ∈ R3×N

∣∣∣ ‖xi − xj‖2 = ‖yi − yj‖2, i, j = 1, · · · , N
}
. (3.7)

The distance matrix formulation of the antenna configuration is useful for GAC, because,

via a direct “change of basis” method known as multidimensional scaling, antenna coordinates

may be directly computed from a distance matrix. Thus, as a distance matrix may be

derived from relative coordinates and vice versa, the two representations are interchangeable

and equally useful for any solution method for GAC.

3.4 Multidimensional Scaling

The technique of multidimensional scaling (MDS) is, in general, used to form low-

dimensional representations of high-dimensional data [32]. MDS is a widely employed

technique in psychology, statistics, and other fields, for the analysis of “objective” datasets

(such as economic or demographic data) as well as for softer “subjective” data generated by

surveys of human perception of similarity or ranking, in order to discover and visualize the

strongest components of data variation. MDS may be thought of as an SVD for relational

data, and its direct solution form (when working with Euclidean distances) is identical to

principal components analysis apart from a change of sign.

While MDS may be written directly in the form of a matrix decomposition [33], modern

MDS methods use iterative optimization techniques to accommodate non-linear notions



39

of distance, different measures of error, and weighted or missing data [34]. For our imple-

mentation of GAC, we are restricted to the physically intuitive, “textbook” application of

MDS in which the input data, Euclidean interantenna distances, are used to estimate a

three-dimensional antenna configuration, which best fits the original data in the least-squares

sense.

Both the direct and iterative approaches are useful for GAC; the direct method is suitable

for estimating X from an exact D matrix, while the iterative method may be preferred when

the elements of D are expected to have errors, and must be used when data are missing.

Direct MDS relates the symmetric product of the desired coordinate matrix to the matrix of

squared and “centered” distances:

XTX = −1

2
C(D ◦D)C (3.8)

where the “◦” symbol denotes the Schur (elementwise) product, and C is the centering

matrix, C = In−(1/n)11T , which upon pre- or post-multiplication, subtracts average column

or row values, respectively. The matrix of squared distances, E = D ◦D = d2
ij , is known as

a Euclidean distance matrix [35]. Using E, the equivalence of the two sides of Eq. 3.14 may

be shown. The elements of XTX are

XTX =



xT1 x1 xT1 x2 xT1 x3 · · · xT1 xN

xT2 x1 xT2 x2 xT2 x3 · · · xT2 xN

xT3 x1 xT3 x2 xT3 x3 · · · xT3 xN
...

...
...

. . .
...

xTNx1 xTNx2 xTNx3 · · · xTNxN


(3.9)

and the elements of E may be written in terms of the columns of X,

eij = (xi − xj)T (xi − xj) = xTi xi − 2xTi xj + xTj xj (3.10)

which may be expanded to full matrix form:

E = diag(XTX)1T − 2XTX + 1 diag(XTX)T . (3.11)

Substituting this expression for E into Eq. 3.14, we obtain

XTX = −1

2
C
(

diag(XTX)1T − 2XTX + 1 diag(XTX)T
)
C (3.12)
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Centering retains only the second term of E (since C1 = 0), showing the result,

XTX = C(XTX)C = (XC)T (XC) (3.13)

assuming that X is geometrically centered at the origin, that is, XC = X and X1 = 0.

Thus, from any D, we may compute a symmetric positive semidefinite matrix equal to XTX,

and subsequently estimate X via SVD:

− 1

2
C(D ◦D)C = UΣUT =

(
Σ

1/2UT
)T (

Σ
1/2UT

)
= XTX (3.14)

In the case of three-dimensional reconstruction, XTX must be rank three, and thus the

reconstruction product Σ1/2UT will use the first three singular values and corresponding

singular vectors to estimate X.

Unlike direct MDS, iterative MDS allows weighting of the entries in D, and by assigning

a low or zero weight, allows missing data. These routines search for a configuration X̂

which minimizes the least-squared error between the imperfect input data D = d̂ij , and the

distances generated from the current candidate X̂:

STRESS(X̂,D) =
∑

1<i<j<N

wij(dij(X̂)− d̂ij)2 (3.15)

where wij = W is the weighting matrix. To minimize the error, iterative MDS solvers use a

form of gradient search which has global linear convergence [32]. The significant advantage of

iterative over direct MDS is the ability to converge to a solution despite missing a number of

the entries in D. This advantage is due to overdetermination of the elements of D when there

are greater than N = 7 antennas, as the number of unique elements in D grows quadratically

as N(N − 1)/2, while the number of parameters ultimately sought for X grows linearly as

3N . Thus, for reconstruction in three dimensions, D must have at least 3N entries specified

to match the number of unknowns in X. In D, these 3N values correspond to distances

from each antenna to three others, which are the minimum number of distances necessary to

make the configuration physically rigid and thus a unique minimizer of stress. Interestingly,

as the number of antennas increases, so does the advantage of overdetermination, allowing

reconstruction of very noisy datasets [35, §5.13].
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Figure 3.2: Illustration of neighbor distance metric. Signals included at each level are in
green, signals with lower neighbor distance in gray.

3.5 Error metrics for GAC

For GAC, as antennas are to be distributed along a perimeter, this minimum threshold

on the number of distances necessary for solution convergence suggests a natural ordering of

the distance information in D by an integer-valued neighbor distance, which is illustrated in

detail in Fig. 3.2. This ordering, relative to each antenna, assigns immediate neighbors a

distance of 1, subsequent neighbors-of-neighbors a distance of 2, etc. Thus we may evaluate

the performance of iterative MDS for GAC as a function of neighbor distance, successively

including data from antenna pairs with higher neighbor distances, starting from 3, until

there are no missing entries. This notion of neighbor distance is also useful because it gives
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an ordering to the interantenna signals roughly based on signal propagation distance; by

doing this the signals which are more likely to be strongly attenuated and accompanied by

large amounts of multipath are generally the signals which have more distance to travel and

thus a higher neighbor distance. By ordering the signals in this way we may attempt to

compute geometry solutions using the “best” signals first.

Upon obtaining a relative coordinate solution X̂ for each value of neighbor distance from

a measurement matrix D̂, the RMS ranging error rerr and antenna location error xerr(X̂)

may also be computed as a function of neighbor distance:

rerr(n) =

√√√√ 1

N

∑
i−j<n

(
d̂ij − dij

)2
xerr(X̂) =

√√√√ 1

N

N∑
i=1

∥∥∥x̂i − xi

∥∥∥2

2
(3.16)

In order to compute xerr, X̂ and X? must first be aligned via an (orthogonal) Procrustes

problem solution technique, which solves for the unknown rotation matrix between two

sets of points. A general solution for the Procrustes problem is presented in [2, §12.4.1],

and a more robust solution which disallows rotations that include reflection (for which

det(R) = −1) is proposed in [36].

Considering performance by using these error metrics allows MDS to take on a diagnostic

role in system deployment by generating curves showing the tradeoff between the amount of

distance information used and antenna location error. If, for example, it were discovered

that only distance estimates or signals with a neighbor distance of 4 were necessary for

solution, then the number of signals to be captured and the size of the input data to a

solution method, would be linear with respect the number of antennas, rather than quadratic

when all measurements or signals are required.

While MDS may be used to solve for an antenna configuration given distance information,

it is also useful in enabling transformation between (relative) coordinate and distance matrix

formulations for antenna configuration, such that any GAC solution method may use either,

or both, formulations.
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3.6 Cramer-Rao bound for antenna location error

For evaluation of the performance of methods presented later in this dissertation for

GAC, two Cramer-Rao bounds are derived in Chapter 4 for antenna location error in two

dimensions.

The first CRB result bounds the performance of methods which estimate the antenna co-

ordinates contained in the parameter vector θ based on measurements z̃ij of the interantenna

distances dij corrupted by zero-mean Gaussian errors:

z̃ij = dij + ñij

z̃ij = N (dij , σ
2
ij)

dij =
√

(xi − xj)2 + (yi − yj)2

θ = (x1, x2, . . . , xN , y1, y2, . . . , yN )T (3.17)

This result will be used in evaluating the performance of methods which primarily use MDS

to determine the antenna configuration.

The second Cramer-Rao result seeks the same bound on antenna geometry estimates, but

assumes the input data are frequency-domain samples of a multipath-free channel response

yijk between antennas i and j, and at carrier index k. (Using the notation of the previous

sections, yijk = Vij(ωk) ). The measurements z̃ijk are assumed corrupted by zero-mean

complex Gaussian errors:

z̃ijk = yijk + ñijk

z̃ijk = N (yijk, σ
2
ijk)

yijk = aij exp (−j 2πfk dij/c + jφij)

{aij} = (a12, a13, . . . , a1N , a23, a24, . . . , a2N , . . . , aN−1,N )

{φij} = (φ12, φ13, . . . , φ1N , φ23, φ24, . . . , φ2N , . . . , φN−1,N )

θ =
(
{aij}, {φij}, x1 . . . xN , y1 . . . yN

)T
(3.18)

and the parameter vector θ also includes the amplitude aij and overall phase φij of each

direct path signal. This approach will be used to evaluate the performance of SART-based

techniques for GAC which process frequency-domain samples directly.
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3.7 Solution Approaches for GAC

In the transmitter location problem, we seek to identify the transmitter position based

on knowledge of the signals received at each antenna and the antenna configuration X.

Knowledge of the antenna configuration happily allows reduction in the dimensionality of a

SART scan from the space of all delays in Rn (given n received signals) to a three-dimensional

manifold (embedded in Rn) of physically meaningful delays corresponding to hypothetical

transmitter locations.

In the case of GAC, N(N − 1) inter-antenna signals are available, and the dimensionality

of the space of possible delays is N(N − 1)/2, as there are two signals for every antenna

pair2. While some of the interantenna delays, or other supplemental information regarding

the geometry (as outlined in Section 3.1) may be considered known, the space of unknown

delays remains very large. For example, given a system of 16 antennas, there are 120 possible

delays, and even when those 16 antennas are grouped into four arrays of four antennas each

of whose geometries are assumed known, the number of unknown delays remains high, at

96. Even in the most extreme case in which the orientation and geometry of each array is

assumed known, the solution space has 8 degrees of freedom in the two dimensional problem

and 12 degrees of freedom in the three dimensional problem.

In situations where much supplemental information is available, the solution space for

GAC (assuming four or more antennas, and more than one array) remains larger than for

transmitter location. While an exhaustive, brute force metric imaging scan is feasible (such

as for the SART location method) when imaging a 2-D plane or 3-D volume of space on

contemporary computer hardware a single brute force scan for GAC would be impossibly

large and simply infeasible in terms of computation time and available memory,; storage

requirements for the multidimensional imaging result would exceed the memory capacities

of contemporary computers. Thus GAC cannot be solved with exhaustive imaging as with

transmitter location, and other methods must be found.

One natural alternative to brute-force, scan-based metric imaging is iterative search.

Such a technique, might, for example, follow the gradient of the SART singular value metric

2Corresponding to when antenna A transmitted to B, and the reverse, when B transmitted to A.
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to a local maximum. This could be useful for getting near the solution, but the SART image

in the neighborhood of the solution can have many local maxima in addition to the “true”

maximum nearest to the transmitter’s location. In the presence of noise and multipath

signals, such maxima are difficult to distinguish between when choosing a position solution,

because the first singular value can no longer be expected to reach its maximum value ‖M‖F

as was the case for the noise and multipath-free example in Section 2.5.

While the first singular value σ1 = ‖M(d)‖2 of an m × n signal matrix rephased by a

vector of delays d has its value bounded above by the Frobenius norm, and below in the

extreme case in which all singular values are equal,

‖M(d)‖F
min(m,n)

≤ ‖M(d)‖2 ≤ ‖M(d)‖F (3.19)

it cannot be known what maximum value within this range the first singular value will

achieve at the transmitter location, and any blind iterative search method is likely to get

stuck on local maxima because the global maximum while bounded, is yet unknown. Thus,

due to the the intractability of brute-force global optimization, the solution to GAC must

be sought among other possibilities.

For the two methods developed for this thesis, and presented in Chapter 5, we may take

advantage of two aspects of GAC not shared with the transmitter location problem, which

provides a path to a tractable solution approach. The first aspect relates to the concept

of neighbor distance: signals which have low neighbor distance are generally assumed to

have less severe multipath conditions than those with a higher neighbor distance. Higher

neighbor distance signals are more likely to pass through buildings and other intervening

structures which induce attenuation and add undesirable multipath signals. This potential

for favorable propagation conditions between “nearby” antennas is the primary motivation

for the ordering of signal/distance information by neighbor distance.

The second aspect of GAC which may be exploited concerns knowledge of the configuration

of antenna arrays. If array geometry and orientation (relative to gravity and magnetic north)

are known, then (as previously stated) the solution space reduces significantly in size, but

may still be too large for a single metric imaging exercise.

Since absolute time information is available for signals captured during GAC we may
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pursue a solution based on traditional ranging techniques which estimate the time-delay

of each signal individually. This is the first method presented for GAC. Given estimates

for the interantenna distances, we may attempt to find a coordinate solution using both

direct MDS which utilizes all distances, and itertive MDS, which may generate a solution

with incomplete distance information. Since the concept of neighbor distance gives a rough

ordering to our distance information, we may attempt a number of iterative MDS solutions

parameterized by neighbor distance.

The second method for the solution of GAC which we will present is a SART-based

technique which consists of a series of imaging scans, utilizing a matrix extension which

favors relative as well as absolute alignment of signals delays, thus respecting absolute time

information. Since array geometries and orientations are assumed known, this method

involves a number of SART scans, locating each array one at a time relative to the others,

until all arrays’ positions have been estimated.

In this chapter, we have described the general scheme of the GAC problem and how its

signals are acquired, distinguishing it from the transmitter location problem. While the

solution space in transmitter location is 2-D or 3-D and easily imaged, the GAC solution

space is much larger, and a single exhaustive imaging optimization over it is infeasible.

We may reduce the dimension of the solution space with assumption of array rigity and

orientation information, but even with this information the space remains large and a

multi-step optimization approach must be considered.

The following chapter details the construction of the Cramer-Rao bound for antenna

location error for both distance-based and sampled frequency data-based methods, against

which the performance of these methods will be compared.
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Chapter 4

Cramer-Rao Bound for Antenna

Location

In this chapter, we describe two Cramer-Rao bound (CRB) formulations which will

be used to evaluate the performance of methods for GAC using simulated data. The first

CRB is derived for methods which process interantenna distance estimates (perhaps derived

from samples of frequency-domain data), and the second CRB is derived for methods which

estimate antenna geometry from sampled frequency-domain data directly.

4.1 General CRB theory

The CRB is used in estimation theory to derive a lower limit on the achievable variance

of an unbiased estimator. Given measurements of a signal with unknown parameter values

(such as frequency or phase) and an assumed probability density for measurement errors,

a CRB analysis gives lower bounds on the variances of unbiased estimates for any or all

parameters, but, unfortunately, does not address how to obtain such estimates. CRBs

are useful for problem analysis: not only for obtaining a numerical variance bound for

a particular problem instance, but also for symbolic purposes such as understanding the

influence of system and signal parameters on estimator variance.

Useful examples of generic Cramer-Rao analysis are presented by Van Trees for the



48

single-parameter case [12, §2.4] and in the multiple-parameter case [37, §8.3.2] assuming

Gaussian measurement errors. Section A.7 of the latter reference and Graham [38] present

useful reviews of the mechanics and notation necessary for the matrix-vector calculus in

the multi-parameter case. The remainder of this introduction outlines the general form

of a CRB, and the two sections that follow describe the two particular CRB formulations

developed for this thesis.

Mathematically, a CRB analysis proceeds from the definition of the probability density

pz(z|θ), which is a function of the (random) vector of measurements z and vector of

parameters θ. The vector θ contains all unknown parameters of the problem, even if they

are not to be estimated. From this probability density function we may form the Fisher

information matrix with respect to θ:

Fθ = Ez

[(
∇θ`z(z|θ)

)(
∇θ`z(z|θ)

)T ]
= −Ez

[
∇θ
(
∇θ`z(z|θ)

)T ]
. (4.1)

where `z(z|θ) = ln pz(z|θ), and the gradient operator ∇θ is the column vector of partial

derivatives ∇θ =
(

∂
∂θ1
· · · ∂

∂θn

)T
. Assuming unbiased estimation, the two forms in Eq. 4.1

are equivalent [12, p. 67]; the first, which expresses the Fisher matrix in terms of an outer

product of first-order derivatives (gradients), is useful in a later analysis, while the second

form, which is more straightforward to compute, expresses Fθ using the Hessian matrix

of second-order derivatives. From Fθ, the lower limit on the estimator covariance Σθ is

obtained via matrix inversion:

Σθ ≥ F−1
θ . (4.2)

In the multi-parameter case, the inequality in Eq. 4.2 is a matrix inequality [39], meaning

that
(
Σθ − F−1

θ

)
is positive semidefinite, but the scalar interpretation remains valid along

the diagonal, that is [37, p. 926],

σ2
θi
≥ (F−1

θ )ii (4.3)

for the local, perturbative, application of the bound.

A noteworthy complication to the inversion in Eq. 4.2 involves the case of a singular

information matrix. For a well-posed estimation problem,1 this indicates that some functions

of the parameters cannot be estimated from the available measurements, and the matrix

1An example of an ill-posed problem is the task of estimating the positions of the vertices of a triangle given
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inverse based bound of Eq. 4.2 must be replaced by a more general notion of the CRB

which uses the pseudoinverse. This “modified” CRB [40] is valid provided that the gradient

vectors of the functions to be estimated are not part of the nullspace of Fθ. That is, if H is

the matrix whose row vectors are the gradients of each function of the parameters to be

estimated, then the condition of Stoica [40]

H = HFθF
†
θ (4.4)

must be satisfied for the modified CRB to be valid. When this criterion is met, the

inestimable parameters are either nuisance parameters2 or are allowed (and presumably

expected) degrees of freedom among the parameters.

In the next two sections, we present the particular bound derivations for distance and

frequency data-based estimators, and develop the theory of the modified CRB and make

several new and useful observations.

4.2 Distance data CRB formulation

Based on a similar analysis presented by Patwari [31], we derive the bound on location

error given distance (inter-antenna) data, extending the derivation to allow rigid collinear

sub-arrays, for an arbitrary number of antennas, and set of available measurements.

First, define the parameter vector θ, which vectorizes the (transposed) matrix of position

vectors X (defined in Eq. 3.2), in two dimensions:

θ = vec
(
XT
)

=
(
x1 x2 . . . xN y1 y2 . . . yN

)T
∈ R2N×1. (4.5)

The measurements zij are the interantenna distances dij between the ith and the jth antennas

corrupted by independent, identically distributed, zero-mean Gaussian noise with standard

deviation σd meters,

z̃ij = dij(θ) + ñij , ñij = N (0, σ2
d), E[ññT ] = σ2

dI. (4.6)

only two vertex distance measurements: the triangle’s shape is not uniquely determined and an estimator
may choose arbitrary interior angles. In this case, the CRB is returning the variance bound for some other
estimation problem in which the estimator makes the optimal choice for interior angle, and so the original
problem is not well-posed.

2They are a nuisance in the sense that their values are unknown and thus must be modeled as free
parameters in the CRB, but neither their estimates, if available, nor estimate variances, are of interest.
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Thus we may write the probability density of z as a product of Gaussian density functions,

and account for different problem instances in which some distance measurements are

unavailable,

pz(z|θ) =

N∏
i=1

∏
j

Kij=1

1

σd
√

2π
exp

(
−(z̃ij − dij(θ))2

2σ2
d

)
, (4.7)

where K is the N×N symmetric matrix (with a zero diagonal) whose ijth entry is 1 when

dij has a measurement available, and is zero when unavailable, discarded, or whose value is

known a priori. The first product iterates over each antenna, and the second product selects

only the antennas to which antenna i makes measurements, as indicated by the entries of K.

4.2.1 Fisher matrix blocks

Taking the logarithm of Eq. 4.7 and writing dij(θ) in terms of the coordinates (the

parameters), we obtain the log-likelihood:

`z(z|θ) = − ln
(
σd
√

2π
)

+

N∑
i=1

∑
j

Kij=1

−
(
z̃ij −

√
(xi − xj)2 + (yi − yj)2

)2

2σ2
d

 . (4.8)

from which the individual elements of the Fisher matrix may be computed. First, the

Hessian is obtained

Hij =
∂2`z(z|θ)
∂θi∂θj

, (4.9)

followed by formation of the negative expectation, in which instances of the expectations of

the random variables z̃ij are substituted with their respective statistics (e.g. Ez[z̃ij ] = dij ,

Ez[z̃
2
ij ] = σ2

ij + d2
ij):

(Fθ)ij = −Ez

[
Hij

]
= −Hij

∣∣∣
z̃ij=dij

(4.10)

In Fθ, two types of entries arise: those in which the two differentiation parameters θi and

θj belong to the same antenna (e.g., x5, y5), and those belonging to different antennas

(e.g., x1, y2). In the former case, the argument to the expectation in Eq. 4.8 retains the

summation over j, while the latter case reduces to a single term involving the different-

antenna parameters. Based on the ordering of the parameters, the 2N×2N Fisher matrix
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may be partitioned as

Fθ =

Fxx Fxy

F Txy Fyy

 , (4.11)

where each N×N block contains “same-antenna summation” terms on its diagonal

(Fxy)kl =
∑
j

Kkj 6=0

(xk − xj)(yk − yj)
σ2
kj d

2
kj

, k = l (4.12)

and “singleton” terms on off-diagonal elements,

(Fxy)kl = −Kkl
(xk − xl)(yk − yl)

σ2
kl d

2
kl

, k 6= l. (4.13)

The remaining blocks are obtained by substitution of x and y by the coordinate subscripts

identifying each block:

(Fxx)kl =
∑
j

Kkj 6=0

(xk − xj)2

σ2
kj d

2
kj

, k = l, (4.14)

(Fxx)kl = −Kkl
(xk − xl)2

σ2
kl d

2
kl

, k 6= l, (4.15)

and

(Fyy)kl =
∑
j

Kkj 6=0

(yk − yj)2

σ2
kj d

2
kj

, k = l (4.16)

(Fyy)kl = −Kkl
(yk − yl)2

σ2
kl d

2
kl

, k 6= l. (4.17)

This structure may be extended to three dimensions by adding Fxz, Fyz, and Fzz blocks,

again replacing x and y in Eqs. 4.12 and 4.13 with the two subscripts identifying the desired

blocks.

4.2.2 Singularity of the Fisher matrix

While distance measurements are enough to determine the geometry of the antennas (via

some estimation procedure), they give no information on absolute position and orientation,

and thus individual parameter values are not uniquely determined. Two estimators, given

distance measurements only, may return the same geometry solution, but in different

translations and orientations. That is, in general, solutions are only unique in the sense that
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(x1,y1)
(x2,y2)

(x3,y3)

d12

d23d13

O

y

x

(x′2,y′2)

d23

d12

(x′1,y′1)

d13

(x′3,y′3)

Figure 4.1: Two identical triangles with different position and orientation

they belong to the same equivalence class of relative coordinates. A concrete example of

this is the case of a triangle in the plane, shown in two different orientations and locations

in Fig. 4.1. It is clear that a different position and rotation angle about its center point

cannot alter the distances d12, d23, and d13. In other words, knowledge of the sides’ lengths

determines its shape completely, but provides no information as to where each of the vertices

are located.

This underdeterminism of coordinate values causes the Fisher information matrix Fθ for

a many-antenna system to be singular, and the resulting nullspace corresponds in entirety to

the parameter subspace which encodes information about the position and orientation of the

otherwise completely determined antenna geometry. Such parameter nullspaces for ranging

and other types of interantenna measurement in two dimensions are characterized in Ash

[41]. For distance measurements, the dimension of the nullspace is a basic geometric fact:

in D dimensions there will be D translational degrees of freedom and
(
D
2

)
= D(D − 1)/2

rotational degrees of freedom for a rigid body.3

We may demonstrate the singularity of the Fisher matrix with the simple example of a

triangle in the plane. Given the coordinate matrix for such a (noncollinear) triangle,

X4 =

x1 x2 x3

y1 y2 y3

 =

−1 1 0

−1 0 1

 (4.18)

3For a single point there are only D − 1 rotational degrees of freedom, the extra rotations orient the body
properly.
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and assuming a measurement standard deviation of σ = 0.10, we obtain the following

information matrix with respect to the six coordinate parameters, following the construction

of Eqs. 4.12–4.17:

F4 =



100 −80 −20 80 −40 −40

−80 130 −50 −40 −10 50

−20 −50 70 −40 50 −10

80 −40 −40 100 −20 −80

−40 −10 50 −20 70 −50

−40 50 −10 −80 −50 130


(4.19)

Computing the SVD V ΣV T of this matrix, its singular values are

diag (Σ) =
(

300 180 120 0 0 0
)T

, (4.20)

and F4 is indeed singular. The three zero singular values correspond to the two translational

and one rotational degrees of freedom that are present when only distance measurements

are considered.

4.2.3 Validity of the modified CRB for a singular Fθ

While generally, a singular Fisher matrix invalidates evaluation of the CRB, as some

parameters or combinations of them are underdetermined, a valid bound may still be

obtained for the remaining estimable quantities, provided certain conditions are upheld.

Stoica [40] justifies a “modified” CRB that simply utilizes the pseudoinverse F †θ in place of the

normal matrix inverse. This new CRB is accompanied by a condition to determine whether

bound results are valid, given any particular function (or functions) of the parameters to be

estimated. (Herein the CRB is defined as F †θ , since in the full-rank case, F−1
θ = F †θ .)

To determine the validity of the bound for a set of scalar functions {fi(θ)} to be estimated,

Stoica’s condition involves the gradient of those functions and the information matrix Fθ. If
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H is the matrix whose rows are the gradient of each function,

H =



∇θf1(θ)

∇θf2(θ)

∇θf3(θ)

∇θf4(θ)
...


=



∂/∂θ1f1(θ) · · · ∂/∂θnf1(θ)

∂/∂θ1f2(θ) · · · ∂/∂θnf2(θ)

∂/∂θ1f3(θ) · · · ∂/∂θnf3(θ)

∂/∂θ1f4(θ) · · · ∂/∂θnf4(θ)
...

...
...


(4.21)

then the validity of the CRB for those functions’ estimates requires that

HFθF
†
θ = H. (4.22)

In other words, the gradient (row) vectors of the functions to be estimated must “survive the

trip” when mapped onto and back from the range of Fθ; that is, the vector space spanned

by the rows of H must be a subset of the range of Fθ.

It is possible to deconstruct Eq. 4.22 to generate a simpler, equivalent test. If we express

Fθ in terms of its symmetric SVD4 as V ΣV T , then the condition becomes

H = HFθF
†
θ = H

(
V ΣV T

) (
V Σ−1V T

)T
= H

(
V ΣV T

) (
V Σ−1V T

)
(4.23)

where V is a full-rank, square, orthogonal matrix, and the singular nature of Fθ is encoded

in the matrix of singular values Σ:

Σ = diag (σ1, σ2, · · · , σr, 0, · · · , 0) (4.24)

That is, Fθ is rank r, and Σ−1 is the diagonal matrix whose entries are the reciprocal singular

values:

Σ−1 = diag

(
1

σ1
,

1

σ2
, · · · , 1

σr
, 0, · · · , 0

)
(4.25)

Eq. 4.23 then becomes

H = H
(
V Σ0V T

)
(4.26)

since V TV = I, and the matrix Σ0 signifies normalization of the nonzero singular values:

Σ0 = ΣΣ−1 = diag (1, · · · , 1, 0, · · · , 0) (4.27)

4For a symmetric matrix (which must have real eigenvalues), the SVD can be written as UΣV T with
U = V , if Fθ is known to have no negative eigenvalues. If some eigenvalues are negative, however, U and V
are no longer equal, but differ only by sign (e.g., U = V Π, where Π = diag(±1,±1, · · · ,±1)) and the results
of this analysis are unchanged.
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Since some singular values are zero, we may partition the n columns of V between those

spanning the range of Fθ, and those spanning the nullspace5 as

V =

(
v1 v2 · · · vr

∣∣∣∣ vr+1 · · · vn

)
=

(
Vr

∣∣∣∣ Vn) (4.28)

Using this partitioning, the condition becomes

H = H
(
VrV

T
r

)
. (4.29)

The product VrV
T
r may be interpreted in two ways: first, as a projection matrix which

removes components of each row vector of H not in the range of Fθ, and second, as a

“normalized” Fisher information matrix Uθ whose nonzero singular values have been set

to one. Replacing VrV
T
r with Uθ and transposing, the condition takes on a more familiar

“Ax = b” matrix-vector product form:

UθH
T = HT (4.30)

which is the simpler statement of Eq. 4.23 that we seek. Thus, if H is unchanged upon

projection through the range of Uθ (and thus Fθ), then the CRB for the functions {fi(θ)}

whose gradients are the columns of HT , is valid.

Considering a single function f1(θ) to be estimated, we may construct a simple test to

determine the validity of its CRB. The matrix HT then becomes a single gradient vector,

and we may bound the norm6 of the product Uθ
(
∇θf1(θ)

)
using the coefficient c:∥∥∥Uθ(∇θf1(θ)

)∥∥∥
2

= c
∥∥∥∇θf1(θ)

∥∥∥
2
, 0 ≤ c ≤ 1. (4.31)

From this test, three cases may result: c = 1, c = 0, or 0 < c < 1. First, when c = 1, f1(θ)

is uniquely estimable from the available measurements and the CRB for it is valid.

Second, when c = 0, f1(θ) is completely inestimable from the available measurements,

and the CRB for its estimate, given the stated information matrix, is undefined. In a sense

(emphasized by Stoica) the CRB in this case is “infinite”; the complete lack of information lets

an estimator choose arbitrary values for f1(θ), and thus have arbitrary, “infinite” variance.

5For a general matrix, column vectors which are not in the range (column space) come from the left
nullspace; since Fθ is symmetric, the nullspace and left nullspace are equal and we use the shorter form.

6Since Uθ is square but not full rank, we must use the vector 2-norm rather than a general norm.
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In the third case, 0 < c < 1, and f1(θ) is “marginally” estimable, in the sense that f1(θ)

may be estimated from the available data, but not uniquely, as there exist some degree(s) of

freedom among the parameters it depends on. Essentially, this means that f1(θ) may be

written as the sum of two other functions, i.e., f1(θ) = f1a(θ) + f1b(θ), for which c = 1 and

c = 0, respectively. Thus the CRB gives a variance bound for f1a(θ) and is undefined for

f1b(θ).

To test CRB validity for multiple functions to be estimated, Eq. 4.31 needs only slight

modification, by replacing ∇θf1(θ) with HT , and using the Frobenius norm:∥∥UθHT
∥∥
F

= c
∥∥HT

∥∥
F
, 0 ≤ c ≤ 1. (4.32)

Thus the test measures how much of the Frobenius norm of H is preserved when it is

projected onto the range of Uθ. The value of c carries the same interpretation as in Eq. 4.31,

but applies to the set of functions as a whole.

For antenna location in GAC, the functions of the parameters (defined in Eq. 4.5) we

wish to estimate are simply the parameters themselves, the coordinates. Thus the individual

functions f1 · · · f2N for obtaining each parameter are

f1(θ) = x1, · · · fN (θ) = xN , fN+1(θ) = y1, · · · f2N (θ) = yN (4.33)

and may be written together as the vector-valued function

ft(θ) = Iθ (4.34)

where the subscript t is meant to indicate that it extracts “total” and complete information

about the parameters. Applying the CRB validity test, we see that we cannot expect unique

estimates for ft(θ): ∥∥Uθ (∇θIθ)
∥∥
F

=
∥∥UθI∥∥F = c

∥∥I∥∥
F
, 0 < c < 1. (4.35)

Since Uθ is singular, I will be diminished in Frobenius norm upon projection, and thus

c cannot be zero or one. To find the functions which are completely estimable, we may

decompose ft(θ) = Iθ using the partitioning of V in Eq. 4.28 between the range and nullspace

of Uθ:

ft(θ) = Iθ = V V T θ =
(
Vr Vn

)V T
r

V T
n

 θ =
(
VrV

T
r + VnV

T
n

)
θ (4.36)



57

From this partitioning, we can see that the identity matrix I has been decomposed into the

sum of two matrices VrV
T
r and VnV

T
n , whose basis vectors (by definition) span the spaces of

gradient vectors of estimable and non-estimable functions, respectively. Thus ft(θ) is the

sum of two functions fr and fn:

ft(θ) = fr(θ) + fn(θ) =
(
VrV

T
r

)
θ +

(
VnV

T
n

)
θ (4.37)

Given this statement and decomposition of ft(θ), we may derive a function for which c = 1,

by simply subtracting the subspace of gradients of inestimable functions VnV
T
n from I:

fr(θ) = (I − VnV T
n )θ. (4.38)

Since the basis for Vn which we may derive may be rotated in any fashion, we may write the

completely estimable function fr in terms of an equally sized matrix Q whose columns span

the same vector subspace as Vn (but is arbitrarily rotated):

fr(θ) = (I −QQT )θ. (4.39)

To find a suitable Q and verify CRB validity for fr(θ) we must find vectors which span

the nullspace Vn. Given distance measurements, the parameter nullspace corresponding to

Vn has been characterized in Ash [41]. In two dimensions, Vn will have three orthogonal

columns; the two vectors (nx̄, nȳ) which correspond to translation have fixed entries, and

the single rotational degree of freedom vector nφ has variable entries which depend on the

particular coordinates (Eq. 4.18) of the geometry being considered:

nx̄ =



1

1

1

0

0

0


, nȳ =



0

0

0

1

1

1


, nφ =



−(y1 − ȳ)

−(y2 − ȳ)

−(y3 − ȳ)

x1 − x̄

x2 − x̄

x3 − x̄


=



1

0

−1

−1

1

0


. (4.40)

These columns, once normalized, may be assembled into the three-column matrix Q

Q =

(
nx̄
‖nx̄‖22

nȳ
‖nȳ‖22

nφ
‖nφ‖22

)
. (4.41)
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which, while not equal to Vn, spans the same vector subspace, and thus must be related by

some rotation matrix R:

Q = RVn. (4.42)

To show the validity of the CRB of Eq. 4.39, we may now apply the gradient of Eq. 4.32:

Uθ
(
∇θ(I −QQT )θ

)
= Uθ(I −QQT )

= Uθ(VrV
T
r + VnV

T
n −QQT )

= Uθ(Uθ + VnV
T
n − (RQ)(RQ)T )

= Uθ(Uθ + VnV
T
n − VnV T

n )

= UθUθ (4.43)

and the so the norm-based test my be written as

‖Uθ(Uθ)‖F = c‖Uθ‖ (4.44)

and so c must be one. In forming the linear functions f(θ) = (I −QQT )θ which ignore ines-

timable translation and rotation information, we have shown that the remaining information,

corresponding to relative geometry, is uniquely estimable and has a valid CRB.

In summary, applying the modified CRB which involves taking the pseudoinverse of Fθ

to obtain a covariance matrix Σθ yields a result with a valid interpretation, but when Fθ is

singular, not every function of the parameters has a valid CRB for its estimates, and the

range and nullspace of Fθ must be scrutinized so that the functions of the parameters for

which the CRB is valid, and for which it is invalid, are understood.

4.2.4 Parameter constraints

The previous development was couched in terms that are especially well motivated by

problems which have nuisance parameters such as the overall rotation and translation of an

otherwise fixed geometry. In this section we will expand this notion to explicitly include

unknowns that affect the geometry itself which may be fixed by outside constraints rather

than by measurements.

In an alternative to the Stoica modified CRB approach, Ash [41] investigating absolute

positioning methods, demonstrates incorporation of absolute position information into



59

the bound via parameter constraints. In their approach, applying a sufficient number of

parameter constraints encoding this information enables formation of a full-rank information

matrix, and thus a valid CRB for both relative and absolute geometry information. In

characterizing the roles of absolute and relative position information in the CRB, the work

of Ash makes an important observation: that the total location error, as measured by the

trace of the covariance matrix, is separable into relative and absolute components:

tr(Σθ) = tr(Σr) + tr(Σa) (4.45)

since the parameter spaces shown to represent the two types of information are orthogonal

and together span the entire parameter space. Until the amount of absolute position

information supplied to an estimator surpasses the rank deficiency of Fθ, the two matrix

traces in Eq. 4.45 bound two independent estimation problems; tr(Σr) supplies the bound for

geometry error assuming an optimal choice of position and orientation, and tr(Σa) bounds

the minimum error based on the absolute position information chosen to be used. When

more absolute information than the minimum required for alignment is used, the subspaces

begin to overlap and tr(Σr) may decrease.

Thus there is a threshold with absolute position information that must be met before any

reduction in the relative position bound is realized. For example, in our problem’s context,

to immediately realize such gains we may apply constraints to relative position information

by assuming some interantenna distances to be known a priori.

The constrained CRB approach, originally due to Gorman and Hero [42], in general, allows

introduction of functional equality constraints between parameters of the form f(θ) = 0

given that f is a “smooth” function. As our antennas are naturally grouped together into

rigid arrays with known geometries, we may formulate a bound which incorporates such

restrictions by constraining all same-array distances to be fixed. Since we wish to constrain

the measurements themselves (and not some combination), an alternative approach to

applying such constraints would involve taking the limit of the Fisher matrix as the variance

of the distance measurements we wish to constrain approaches zero; however the constraint

projection approach to be described achieves such constraints exactly and is a direct and

more flexible approach.
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For GAC we consider two types of constraints: coordinate constraints in the case in

which we wish to fix the coordinates of an antenna, such as when some antennas’ coordinates

happen to be known, and second, distance constraints to fix the distance between antennas,

such as when a fixed array of antennas is permanently mounted upon a vehicle. To apply the

constraints, we build a gradient matrix, one row per constraint. For coordinate constraints

such as y1 = 5, the gradient has a single nonzero entry:

Gi• = ∇(y1 − 5) =
(
01×N 1 01×N−1

)
, (4.46)

and distance constraints such as

dij =
√

(xi − xj)2 + (yi − yj)2 = 3.048, (4.47)

have a gradient with four nonzero entries:

Gi• =
(

0 · · · 0
xi−xj
dij

0 · · · 0
xj−xi
dij

0 · · · 0
yi−yj
dij

0 · · · 0
yj−yi
dij

)
.

(4.48)

With the constraint gradients comprising the rows of the matrix G,

G =
∂hi
∂θj

=


∂h1
∂θ1

· · · ∂h1
∂θ2N

...
. . .

...

∂hk
∂θ1

· · · ∂hk
∂θ2N

 ∈ Rm×2N (4.49)

we may obtain the constrained bound, by projecting the unconstrained Fisher matrix onto

the nullspace of G (the subspace where constraints have no effect), take the pseudoinverse,

and then “reverse” the projection back into the original parameter space:

Ṽ
(
Ṽ TFθṼ

)†
Ṽ T ≤ Σθ,c (4.50)

where Ṽ is a matrix whose columns form an orthonormal basis for the nullspace of G [43].

The utility of this constrained CRB formulation (similarly emphasized by Gorman [42])

is that from the unconstrained Fisher matrix one may also obtain a constrained bound

with little additional effort, compared to a reparameterization of the problem such as in the

“custom CRB” of [12, p. 83] which incorporates the constraints by design.

Unfortunately, a deficiency exists in the constrained CRB for some problem instances, as

we have discovered in efforts related to this thesis; the problem arises when subarrays of

antennas are constrained to be collinear.
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d12

d23

d13

(0, 0) (x2, 0)

(x3, y3)

θ1 θ2

θ3

Figure 4.2: Triangle in two dimensions.

4.2.5 Deficiency of the constrained CRB

While it is a reasonable, practical, and common experimental convention to place arrays

of antennas in a collinear arrangement, doing so when one wishes to constrain the geometry

of those same arrays to be fixed (via the method of the previous section) causes the resulting

constrained CRB to be deficient. For fixed collinear arrays, the CRB is deficient in the sense

that it does not bound the same estimation problem as when the arrays are constrained to

be noncollinear.

To demonstrate this deficiency, consider an arrangement of three antennas located at

the vertices of a triangle, as shown in Fig. 4.2, representing an array whose geometry we

wish to fix within a larger estimation problem. To constrain the geometry we form the three

distance equations which effect the fixing of the geometry for this particular instance,

d12 = x2 d23 =
√

(x2 − x3)2 + y2
3 d13 =

√
x2

3 + y2
3, (4.51)

and the gradient Gt of this “triangle problem” with respect to the coordinate parameters

θ =
(
x1, x2, x3, y1, y2, y3

)T
, ignoring row scaling factors, is

Gt = ∇θ


d12

d23

d13

 =


−1 1 0 0 0 0

0 x2 − x3 x3 − x2 0 −y3 y3

−x3 0 x3 −y3 0 y3

 . (4.52)

The row vectors of this matrix are used to form Ṽ in Eq. 4.50, allowing the constrained

bound to be computed. Thus, the gradient Gt, a first-order quantity, is all that the CRB

construction “knows” about the constraint equations, and we must verify that Gt is a faithful



62

representation of the constraints that are intended, so as not to obtain a bound for some

other (differently-constrained) estimation problem.

To see which parameter restrictions Gt are put into effect for our three-antenna array,

we may form the total differential of the distance measurements by multiplying Gt by the

differential of our parameters dθ =
(
dx1, dx2, dx3, dy1, dy2, dy3

)T
. If the distances are to

remain constant, then each of the three rows must sum to zero:

Gt dθ =


−dx1 + dx2

(x2 − x3)dx2 + (x3 − x2)dx3 − y3dy2 + y3dy3

−x3dx1 + x3dx3 − y3dy1 + y3dx3

 =


0

0

0

 . (4.53)

In the noncollinear case (x2, x3, y3 6= 0), manipulation of these equations provides a

geometric interpretation to the allowed perturbations:

dx1 = dx2
y3

x2 − x3
=
dx2 − dx3

dy2 − dy3

y3

x3
=
dx3 − dx1

dy1 − dy3
. (4.54)

Since x2, x3, and y3 are assumed known, the only allowed perturbations are those that

do not change d12, tan θ2, or tan θ1, respectively, thus constraining the triangle to a single

geometry as intended. In the collinear case, y3 becomes zero and the three points lie on the

x axis; the total differential expression of Eq. 4.53 becomes

Gt dθ =


−dx1 + dx2

(x2 − x3)(dx2 − dx3)

x3(dx3 − dx1)

 =


0

0

0

 , (4.55)

resulting in the simpler set of perturbation equations

dx1 = dx2 dx2 = dx3 dx3 = dx1 (4.56)

which only restrict the perturbations of the x coordinates. Due to the absence of dy terms,

any perturbations in y are allowed by Eq. 4.56, including those which change the array’s

shape. This clearly violates the intent of the constraints, as only perturbations in y that

preserve the geometry should be allowed. Here, instead of fully constraining the geometry,

the distance constraints in the collinear case (as represented by their gradient) only respect

as fixed the distances between the points as projected onto the axis of collinearity.
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This deficiency is not limited to collinearity, however, as we may show by using the

above approach that when any antenna arrays have a dimension smaller than than the

ambient space in which the GAC problem is embedded, the constrained bound which was

intended to fix such “low rank” arrays so as to be rigid using the gradient of the pairwise

distance equations, is deficient and underconstrained. Thus, in two dimensions collinear

arrays may cause the deficiency, and in three dimensions, collinear and coplanar arrays cause

the deficiency, etc.

While it was convenient to enumerate the perturbation variables for the analysis of

Eqs. 4.53–4.56, a more straightforward way to characterize constraint deficiency and to count

degrees of freedom is to examine the rank of the constraint gradient Gt. Given C constraints

and N antennas in D dimensions, a gradient matrix G will have C rows and ND columns,

and thus have a maximum rank of min{C, ND}. For the relative geometry constraints that

we are interested in, among N antennas there will be C =
(
N
2

)
rows corresponding to

the pairwise distance constraints and ND columns for the coordinates. However, since the

constraints contain only relative geometry information, the maximum rank of the gradient

of such constraints becomes

min

{(
N

2

)
, ND−D−

(
D

2

)}
(4.57)

since the column rank of G must then exclude the degrees of freedom corresponding to

translation and rotation, which are part of the nullspace. Measuring a lower rank than this

generally indicates that either the constraint equations are redundant in some fashion (and

the bound is valid), or that the constraints are deficient.

When the constraints are deficient, each missing component of gradient rank (missing

vectors from the row space) accounts for a constraint that is not being applied. For the

gradient matrix of Eq. 4.52, when y3 is set to zero, Gt will be

Gt =


−1 1 0 0 0 0

0 x2 − x3 x3 − x2 0 0 0

−x3 0 x3 0 0 0

 (4.58)

which is obviously rank two, falling one short of the expected rank of three (achieved when

y3 6= 0). This missing component of rank in Gt represents the degree of freedom identified
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v

u12 u23

u13 = u12 + u23
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Figure 4.3: Vectors used to form constraints for three collinear antennas.

in Eq. 4.56, which has moved from the row space of Gt to its nullspace.

To eliminate the rank deficiency, a new constraint which preserves the array geometry in

directions off the axis of collinearity must be devised, and its gradient appended to Gt.

4.2.6 Repairing the deficiency

If the existing distance constraints are considered as constraints on the lengths of vectors

uij in the xy-plane which point between the elements of the array, e.g.,

uij =
(
xj − xi, yj − yi

)T
∈ R2, (4.59)

then Fig. 4.3 illustrates the familiar distance constraints between three collinear antennas,

along with a new vector v introduced to form the new constraint. The vector v is chosen so

as to be perpendicular to u12, and if the array is to remain collinear under perturbation,

then u13 and u23 should also be perpendicular to it as well. This requirement of shared

orthogonality with v is the constraint that we seek; while the existing distance equations

constrain the length of the u vectors,7

uT12u12 = d2
12, uT23u23 = d2

23, uT13u13 = d2
13 (4.60)

the additional “inner product” constraint, to enforce rigidity, should require v to be orthogonal

to one of either u23 or u13, since only one new constraint is needed. Choosing u23 results in

the orthogonality constraint

vTu23 = 0. (4.61)

7Taking the square root is unnecessary, as the distance-squared constraint has the same gradient, with
just a different magnitude, as the normal constraint. The gradients’ magnitudes are not important since the
constraint approach only seeks to form the orthonormal basis (Ṽ in Eq. 4.50) for the constrained subspace,
and so only the directions of vectors spanning the space matter.
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Dropping in the coordinates from Fig. 4.2, v = (y1− y2 x2 − x1)T , the new constraint has

gradient form (in which the substitution for the collinear case y3 = y2 = y1 = x1 = 0 has

been made):

∇
(
vTu23

)
=
(

0 0 0 x3 − x2 x1 − x3 x2 − x1

)
. (4.62)

Equating the total differential to zero as in Eq. 4.53 results in the perturbation restriction

dy1 − dy2

dy1 − dy3
=
x3

x2
=
d13

d12
(4.63)

which fixes the ratio x3/x2; that is, perturbations perpendicular to the axis of collinearity

in the y direction are allowed only such that the ratio of distances x3/x2 along the axis of

collinearity are kept constant. For the collinear case, this fixes the ratio d12/d23, and thus

fixes the geometry. The new constraint couples the existing constraints with the space in

which the geometry is embedded, and restores the gradient to the proper rank.

For the general case of N collinear antennas in two dimensions, a nondeficient set of

constraints need only include the N − 1 nearest-neighbor distance constraints

uTi,i+1ui,i+1 = d2
i,i+1 i = 1 . . . N (4.64)

in addition to N − 2 inner product constraints

vTui,i+1 = 0, i = 2 . . . N (4.65)

For each additional spatial dimension (beyond the plane), more inner product constraints

are required to couple the geometry to the embedding space, and we simply add another set

of inner product constraints of the form of Eq. 4.65, for each vector vi that we find which is

orthogonal to the array and the v vectors which came before it. This approach also works

for coplanar geometries (with more than three antennas) in three dimensions, in which case

one v vector (perpendicular to the plane) is required. In Section 4.2.9, we will demonstrate

that the repair prescribed here is necessary and correct when we wish to constrain antenna

arrays to be collinear.

In the next section, we show that the unconstrained Fisher matrix has the same rank

deficiency in its range as that shown for the constraint gradient in the previous section.

However, the rank deficiency for the unconstrained bound does not need repair.
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4.2.7 Deficiency of the unconstrained bound

With the deficiency in the constraints for the collinear case demonstrated, it may also be

shown that the unconstrained Fisher matrix constructed for a group of antennas (isolated

from the larger whole), before any application of constraints, must have the same rank

deficiency as the gradient matrix which encodes rigid geometry constraints for those antennas.

In contrast to the constrained bound however, the unconstrained CRB remains valid when

antennas become collinear, as the rank deficiency simply indicates that some coordinate

information has become inestimable.

Proof that the unconstrained Fisher matrix shares the same rank deficiency is not obvious,

but follows from the statement of the Fisher information matrix (in Eq. 4.1), using the outer

product form of the bound:

Fθ = Ez

[(
∇θ`z(z|θ)

)(
∇θ`z(z|θ)

)T]
= Ez

[(
∇`
)(
∇`
)T]

(4.66)

Because our measurements in this form of the bound are the interantenna distances z and we

are taking the gradient with respect to the coordinate parameters θ, the CRB construction,

in effect, is composing Fθ from the same vectors ∇` as are produced by the gradient of the

distance constraints in the constrained bound. In the following analysis, we will show that

∇` is indeed composed of these distance gradients, and that by the properties of the outer

product and expectation, Fθ can have no components of rank beyond what is provided by

those vectors. First, we express the log-likelihood function ` in terms of the measurements

z, parameters θ, and covariances σ2
ij . In the case of independent measurements, ` is simply

a summation and may be written (ignoring vanishing terms):

`(z|θ) =
∑
i,j

−(z̃ij − µij(θ))2

2σ2
ij

, where µij(θ) =
√

(xi − xj)2 + (yi − yj)2. (4.67)

Setting σ2
ij = 1 (to be restored later), and distributing the gradient inside the summation

results in

∇θ`(z|θ) =
∑
ij

z̃ij∇µij(θ)−
1

2
∇µ2

ij(θ). (4.68)

Applying the gradient to the distance (µij) and distance-square (µ2
ij) terms shows that ∇`
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is a sum of vectors:

∇` =
∑
i,j



z̃ij



...

(xi − xj)/Dij

...

(xj − xi)/Dij

...

(yj − yj)/Dij

...

(yi − yj)/Dij

...



− 1

2



...

(2xi − 2xj)
...

(2xj − 2ii)
...

(2yj − 2yj)
...

(2yi − 2yj)
...





=
∑
i,j



(
z̃ij
Dij
− 1

)



...

xi − xj
...

xj − xi
...

yj − yj
...

yi − yj
...





,

(4.69)

where the column vectors have zero entries where not specified, and Dij is the non-random

form of the distance measurement arising from the ∇µij(θ) term. These are the same vectors

that comprise the rows of the gradient matrix for distance constraints and from which we

wish to show the Fisher matrix is constructed.

To compute the outer product and expectation, consider the individual likelihood terms

of ∇` for a three antenna system, in two dimensions. There will be three unique nonzero

terms corresponding to the pairwise distances:

∇` =

(
z̃12

D12
− 1

)


x1 − x2

x2 − x1

0

y1 − y2

y2 − y1

0


+

(
z̃13

D13
− 1

)


x1 − x3

0

x3 − x1

y1 − y3

0

y3 − y1


+

(
z̃23

D23
− 1

)


0

x2 − x3

x3 − x2

0

y2 − y3

y3 − y2


(4.70)

Using an abbreviation gij for each term, ∇` may be shortened to

∇` = g12 + g13 + g23, (4.71)
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and the argument to the expectation may then be stated as

(∇`)(∇`)T = (g12 + g13 + g23)(g12 + g13 + g23)T

= (g12 + g13 + g23)(gT12 + gT13 + gT23)

= g12g
T
12 + g13g

T
13 + g23g

T
23

+ g12g
T
13 + g12g

T
23

+ g13g
T
12 + g13g

T
23

+ g23g
T
12 + g23g

T
13.

(4.72)

Each of the gijg
T
kl terms results in the product of their leading scale factors multiplied by the

outer product of the respective column vectors (subsequently abbreviated to q, and restoring

the 1/σ2
ij factor dropped in Eq. 4.68):

gijg
T
kl =

1

σ2
ij

(
z̃ij
Dij
− 1

)
1

σ2
kl

(
z̃kl
Dkl
− 1

)
qijq

T
kl

=
1

σ2
ij σ

2
kl

(
z̃ij z̃kl
DijDkl

− z̃ij
Dij
− z̃kl
Dkl

+ 1

)
qijq

T
kl

(4.73)

And the expectation of any one term is in general (recall var(z̃ij) = σ2
ij and E[z̃ij ] = Dij),

Ez
[
gijg

T
kl

]
=

1

σ2
ij σ

2
kl

(
ρij,klσijσkl + µijµkl

Dij Dkl
− µij
Dij
− µkl
Dkl

+ 1

)
qijq

T
kl

=
1

σ2
ij σ

2
kl

(
ρij,klσijσkl
Dij Dkl

)
qijq

T
kl.

(4.74)

For the entire expectation, we note that the nine terms of Eq. 4.72 fall into two groups based

on whether their ij and kl indices match, that is

Ez

[
(∇`) (∇`)T

]
= Ez

∑
ij

gijg
T
ij +

∑
ijkl

i 6=k,j 6=l

gijg
T
kl

 . (4.75)

For the matching case (three terms) the expected value is,

Ez
[
gijg

T
ij

]
=

(
1

σ2
ij D

2
ij

)
qijq

T
ij , (4.76)

and in the nonmatching case we have, in general,

Ez
[
gijg

T
kl

]
=

(
ρij,kl

σij σklDij Dkl

)
qijq

T
kl, (4.77)
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which will be zero in GAC since we have assumed uncorrelated distance measurements in

the definition of `(z|θ) in Eq. 4.67. If measurement correlation is assumed, however, the

expansion of `(z|θ) will have more terms, and the coefficients of Eqs. 4.76–4.77 will change,

but the vectors qij = ∇µij(θ) will not.

Thus, in general, the Fisher matrix is simply a sum of outer products of vectors,

Ez

[
(∇`)(∇`)T

]
= Fθ =

∑
ijkl

Cijkl qijq
T
kl (4.78)

where Cijkl is the appropriate coefficient for each term. A summation of outer products of

vectors cannot result in a matrix whose range does not contain the vectors composing those

outer products (the vectors in Eq. 4.69) [13, p. 6].

The unconstrained Fisher matrix is thus composed from the same vectors as those which

are the gradient of the distance constraints, as in Eq. 4.48, and therefore must be missing

the same vectors from its construction.

While deficiency in the constrained bound necessitated repair, for the unconstrained

bound the Fisher matrix is rank deficient for good reason and does not need repair, since the

estimation problem being modeled may simply be underdetermined by nature, for geometric

reasons, when collinearity occurs. For example, the unconstrained Fisher matrix for three

collinear antennas in the plane, arranged along the x axis, is singular because the distance

measurements simply offer no information about the antennas’ off-axis y coordinates, when

the antennas are collinear. In cases where collinear antennas are part of a larger system

whose geometry is to be estimated, the estimation problem’s deficiency depends on the set

of measurements which are available. In Section 4.2.9, the cases in which the unconstrained

bound is and is not deficient are demonstrated.

4.2.8 Reparameterization of the constrained bound

To verify that the augmented constraints for the collinear case indeed are correct,

an alternative method which computes the CRB assuming fixed collinear subarrays was

pursued, which incorporates the constraints by design via a reparameterization. This

reparameterization, from an approach in Van Trees [12, p. 83] (whose notation is used here),

uses the same distance measurement model but chooses a different set of “basic” parameters
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to model the linear arrays. The approach essentially computes the Fisher information matrix

with respect to these basic parameters, and maps the result back to the desired parameter

space, the coordinates, avoiding the collinear deficiency entirely.

The basic variable approach models a collection of antennas as set of linear arrays with

spacing of ∆ between array members, which is assumed known. Each array’s unknown

parameters are its coordinates in the plane as marked by the leading element, and the array’s

angle with respect to the positive X axis. Thus the vector of basic parameters θb is:

θb =
(
ex1 ey1 φ1 · · · exM eyM φM

)T
(4.79)

where M is the number of arrays. Next, we define g as the vector of transformation functions

to the “target” estimation parameters:

θt = g(θb) =



x1 = ex1

y1 = ey1

x2 = ex1 + ∆ sin(φ1)

y2 = ey1 + ∆ cos(φ1)

x3 = ex1 + 2∆ sin(φ1)

y3 = ey1 + 2∆ cos(φ1)

x4 = ex1 + 3∆ sin(φ1)

y4 = ey1 + 3∆ cos(φ1)
...

xN−1 = exM

yN−1 = eyM

xN = exM + ∆ sin(φM )

yN = eyM + ∆ cos(φM )



(4.80)

with M arrays and N antennas. Given this expression of the antenna coordinates in terms

of the basic variables, the log-likelihood function of the measurements may be formed and

the Fisher information matrix with respect to θb will be

Fθb =


Fex Fex,ey Fbx,φ

F Tex,ey Fey Fby,φ

F Tex,φ F Tby,φ Fφ

 (4.81)
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The coordinate-coordinate blocks are composed of terms similar to the vanilla distance data

formulation, but with a less intuitive indexing. Each of the diagonal terms has the form

(Fex,ey)kk =
∑
i∈A(k)

∑
j

Kij
(xi − xj)(yi − yj)

σ2
ij d

2
ij

(4.82)

where Kij is the correspondence matrix indicating which interantenna signals are available,

and the set A(k) contains the indices of antennas comprising array k; in short, the summation

is taken over all those signals which involve array k. For the off-diagonal coordinate-coordinate

terms the summation is negated and proceeds over a smaller set,

(Fex,ey)kl =
∑
i∈A(k)

∑
j∈A(l)

−Kij
(xi − xj)(yi − yj)

σ2
ij d

2
ij

, k 6= l (4.83)

such that only the signals between array k and array l take part. For the (ex, ex) or (ey, ey)

blocks, the numerators become (xi−xj)2 and (yi−yj)2, respectively. For the coordinate-angle

block, the diagonal terms are

(Fex,φ)kk =
∑
i∈A(k)

∑
j

Kij

(xi − xj)∆
(

(yi − yj) cos(φk)− (xi − xj) sin(φk)
)

σ2
ij d

2
ij

(4.84)

and for the off-diagonal the summation again is negated and proceeds over a smaller set,

(Fex,φ)kl =
∑
i∈A(k)

∑
j∈A(l)

−Kij

(xi − xj)∆
(

(yi − yj) cos(φl)− (xi − xj) sin(φl)
)

σ2
ij d

2
ij

. (4.85)

For the angle-angle terms, both multiplicands become (cos− sin):

(Fφ)kk =
∑
i∈A(k)

∑
j

Kij

(
∆
(

(yi − yj) cos(φk)− (xi − xj) sin(φk)
))2

σ2
ij d

2
ij

(4.86)

and for the off-diagonal the summation again is negated and proceeds over a smaller set,

(Fφ)kl =
∑
i∈A(k)

∑
j∈A(l)

−Kij

∆
(
yij cos(φk)− xij sin(φk)

)
∆
(
yij cos(φl)− xij sin(φl)

)
σ2
ij d

2
ij

(4.87)

where the shorthand terms yij = yi−yj and xij = xi−xj have been used so that the equation

fits on the page. With all the blocks of Fθb now defined, the entire Fisher information matrix

of the basic variables may be constructed. To obtain the desired covariance bound in terms
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of the target variables, we make a slight modification of [12, Eq. 286] by moving the Jacobian

of the transformation inside the pseudoinverse,

Σθt ≥
(
HFθbH

T
)†
, where H =

(
∇θb g

T(θb)
)†

(4.88)

which is necessary due to the nonlinear relationship between the angle and coordinate

parameters [44, p. 121]. This final step first maps Fθb into the target variable space to obtain

Fθt before computing the desired covariance bound with a pseudoinverse.

To ensure that the CRB in this construction is valid for relative geometry, we may again

apply the test of Stoica [40] as presented in Section 4.2.3: that the terms we wish to estimate

are part of the range of Fθb . Consider a six-antenna system comprising two three-antenna

arrays, with coordinate matrix X

X =

0 1 2 2 1 0

0 0 0 1 1 1

 (4.89)

Thus in terms of the basic variables, the parameter vector θ is

θTb =
(
ex1 ex2 ey1 ey2 φ1 φ2

)
=
(

0 2 0 1 0 −180◦
)
, (4.90)

with separation ∆ = 1. Assuming a measurement standard deviation σ = 1/10, we may

compute the Fisher matrix with respect to θb:

Fθb =



360 −360 0 0 −180 −180

−360 360 0 0 180 180

0 0 540 −540 540 540

0 0 −540 540 −540 −540

−180 180 540 −540 880 380

−180 180 540 −540 380 880


(4.91)

This matrix is rank three, and just as with the relative geometry CRB, has a nullspace

spanned by three vectors: the translation and rotation degrees of freedom which we know
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cannot be estimated using only distance measurements:

nx̄ =



1

1

0

0

0

0


, nȳ =



0

0

1

1

0

0


, nφ =



−(ey1 − ey)

−(ey2 − ey)

1

ex1 − ex

ex2 − ex

1


=



1/2

−1/2

−1

1

1

1


. (4.92)

With a set of vectors now defined which span the entire nullspace of Fθb , we have shown

that the CRB is valid for this reparameterization.

4.2.9 Verification of the repaired construction

To provide a demonstration in support of our claims and constructions made regarding

the different CRB approaches, Fig. 4.4 illustrates the relative geometry error predicted

by four different distance-data CRB methods in the case of an antenna geometry of four

4-element collinear arrays, as shown in Fig. 4.5(a). The four CRB curves are plotted as

a function of the set of distance measurements (and thus information) used to construct

the Fisher matrix in each case grows. The set of distance measurements incorporated at

each stage are parameterized by the maximum allowed neighbor distance N , such that

only those signals with a neighbor distance less than or equal to N are assumed available;

this is depicted in Figs. 4.5(b)–(i). For the unconstrained bound in which we can only

approximately constrain our arrays’ geometries, distance measurements within each array

are always assumed available and are assigned a “very low” variance, regardless of the value

of neighbor distance being tested.

The four approaches to the CRB shown in Fig. 4.4 result in two pairs of overlapping

curves. The first pair of curves, U1 and C1, represent the CRBs obtained with collinear

arrays for the unconstrained and deficient constrained bounds. Computed in exact arithmetic,

the two curves’ error bounds are quite close in value, to roughly five significant digits, as

listed in Table 4.1. For N > 2, U1 predicts the highest error of all CRBs; closest to it is C1,

which achieves a small reduction in error via application of (deficient) constraints. While C1
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Figure 4.4: Bound results for a 16-antenna system, composed of four 4-element linear arrays,
no two arrays mutually collinear. The deficient constrained bound offers negligible bound
improvement; when the constraints are repaired bound results improve, and are identical to
the results from a reparameterization of the problem. Measurement standard deviation was
σ = 1/100 (1 cm) and same-array measurements required only for U1 were σ = 1/100000.

N U1 C1 C2 C3

2 0.06356815404 0.06356814527 0.10045400870 0.10045400870

3 0.11792280840 0.11792278690 0.03973290455 0.03973290455

4 0.04021007748 0.04021006784 0.02381469115 0.02381469115

5 0.02355172697 0.02355171892 0.01595714872 0.01595714872

6 0.01812370039 0.01812369185 0.01251614847 0.01251614847

7 0.01545579064 0.01545578084 0.01082623961 0.01082623961

8 0.01453684247 0.01453683202 0.01029776704 0.01029776704

Table 4.1: Bound comparison numerical results. Each column shows the numbers used to
generate Fig. 4.4 for increasing value of neighbor distance N . The figures shown are floating-
point representations of the different CRB constructions computed in exact arithmetic.
Differences between C1 & U1 are underlined, with U1 always having lower error; in exact
arithmetic, U2 & U3 do not differ.
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(i) N ≤ 8, 96 sig.

Figure 4.5: Interantenna signal groupings sorted by neighbor distance: (a) illustrates the
16-antenna layout used for simulation of the CRB; antenna positions are indicated by red
circles, and black lines represent rigid arrays; (b)–(i) illustrate the signals available at each
stage of increasing N , with newly added signals in green (meeting N with equality) and
previously incorporated ones (less than N) in gray. Starting at N ≤ 2, a unique solution for
geometry is possible in the plane.
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is invalid due to utilization of the deficient constraints, the unconstrained bound is valid

for N ≥ 3, where the 32× 32 Fisher matrix has its proper rank of 29, accounting for one

rotation and two translation degrees of freedom in 2-D. For N = 2, the rank of the Fisher

matrix is 24, indicating the estimation problem is underdetermined beyond the expected

degrees of freedom, and the unconstrained CRB for that case is invalid.

Further, for C1, and U1 in the N = 2 case (herein “U1-2”), the U1-2 & C1 bounds should

be immediately suspect as CRBs based on their behavior at the lowest value of neighbor

distance. The increase in the bound value between N = 2 to N = 3 is impossible statistical

behavior, given the fact that the amount of information available for solution only increases

with N ; a valid CRB cannot increase as information is added.

The second pair of curves, C2 and C3, also overlap. This overlap demonstrates that the

repaired constraints yield a result identical (in exact arithmetic) to a complete reparameteri-

zation of the problem which has the collinear array geometry constraints built in. As would

be expected, as a function of neighbor distance, C2 and C3 are properly decreasing, which

is proper statistical behavior: as the set of measurements available for geometry solution

grows with N , the bound value must decrease, regardless of the quality (variance) of the

measurements incorporated at each value of neighbor distance.

When many measurements are assumed available and N increases, the gap between the

two pairs of curves shrinks, since the collinearities in the antenna arrangement of Fig. 4.5(a)

that cause the deficiency only occur between antennas whose signals have neighbor distances

of 2–4. Above N = 4, none of the measurements that are incorporated in the bound are

between antennas which are part of a larger collinear arrangement, and so the discrepancy is

less pronounced there. In this N > 4 region, we observe the difference between approximate

modeling of the constraints by U1 and exact modeling of them by curves C2 and C3.

In summary, we have now defined variations on the Cramer-Rao bound (in two dimensions)

based on distance measurements for four distinct cases:

1. The unconstrained bound. When absolute position information is not assumed, the

Fisher matrix is necessarily singular, and a valid covariance bound for relative geometry

estimates may still be obtained from the Fisher information matrix constructed via

Eqs. 4.12–4.17. When nontrivial collinearity is achieved among any set of antennas,
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the unconstrained bound is missing the same vector summands from its construction

as were identified to be missing from the gradient of the distance constraints for those

collinear antennas. However, these missing vectors do not indicate bound deficiency,

but only the potential for deficiency if a high proportion of the measurements used

for a geometry solution are between antennas which are part of the same collinear

arrangements. In the cases studied in this thesis, this occurs only at the lowest value

of neighbor distance, where the N = 2 case was shown to be deficient in this manner.

2. The deficient constrained bound. To handle the case in which our antenna arrays are

assumed to have known geometries, we may use the constrained CRB construction of

Eqs. 4.48–4.50. In this construction, the constraints are applied via the gradient of

distance equations for the antennas within each array. Unfortunately, when the arrays,

whose geometries are to be fixed, become collinear, this construction fails to apply the

constraints in full, and is deficient.

3. The repaired constrained bound. To repair the demonstrated deficieny in the con-

strained bound for collinear arrays, a new constraint, Eq. 4.61, was introduced by

this thesis. This new constraint augments the gradient matrix, and restores it to

proper (column) rank. The repair applies in general to “low rank” geometries whose

dimension is smaller than the ambient space in which they are embedded, such as

arrays constrained to be planar in three dimensions.

4. A reparameterized constrained bound. By reparameterizing the estimation problem

posed by GAC which assumes rigid arrays, we may incorporate the collinear array

constraints by design and avoid the deficiency, while also verifying that the repairs

made to the constraints in the collinear case give identical results.

These conclusions also apply to the parameter subspace corresponding to coordinate

information in the sampled frequency-domain data CRB developed in the next section.
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4.3 Sampled frequency-domain data CRB formulation

In this section, we derive the bound for antenna location using GAC assuming the

measurements are the frequency domain samples of the complex amplitudes of multicarrier

signals (defined in section 2.3) exchanged between every pair of antennas.

First, we extend the parameter vector θ to contain the real-valued amplitude and phase

of each interantenna signal, and the antenna coordinates:

θ =

(
aij φij xi yi

)
, i, j = 1 · · ·N (4.93)

for a total of 2N coordinate parameters and N(N − 1) unique signal parameters given N

antennas in two dimensions. The direct-path signal between antennas i and j is written as

yijk = aij exp (−j 2πfk dij/c− jφij) , (4.94)

where i and j index antennas and the new subscript k corresponds to frequency (carrier)

index. The complex-valued measurement is assumed corrupted by complex-valued zero-mean

white Gaussian noise with variance σ2
F :

z̃ijk = yijk(θ) + ñijk, ñ = N (0, σ2
F ), E[ññH ] = σ2

F I. (4.95)

resulting in probability density function

pz(z|θ) =
∏
i,j,k

1

πσ2
F

exp

(
−(zijk − yijk)∗(zijk − yijk)

σ2
F

)
. (4.96)

Upon substitution of yijk, elimination of terms which will vanish in the Hessian, and replacing

2πfk with ωk, the log-likelihood becomes

`z(z|θ) =
−1

σ2
F

∑
i,j,k

a2
ij−aij exp (jωkdij/c+ jφij) zijk−aij exp (−jωkdij/c− jφij) z∗ijk. (4.97)

The Fisher information matrix takes on the following (symmetric) block structure with

some of the partial derivatives having zero value by inspection:

Fθ =


Fa 0 0 0

0 Fφ Fφx Fφy

0 Fxφ Fx Fxy

0 Fyφ Fyx Fy

 =


Fa 0 0 0

0 Fφ Fφx Fφy

0 F Tφx Fx Fxy

0 F Tφy F Txy Fy

 (4.98)
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Starting with a and φ, the first two blocks along the diagonal of Fθ are themselves diagonal:

(Fa)ll = K(l)
2M

σ2
F

, (Fφ)ll = K(l)
2 a2

lM

σ2
F

, (4.99)

where K(l) is one when the lth term, as counted along the lower triangle of Kij , means the

ijth signal is used for processing, and M is the number of carriers. In other words, each

value of l indicates the only values for i and j for which the ljth term is nonzero. Here, l

and m are used to index over the N(N − 1)/2 interantenna signal parameters {a, φ}, and

index variables i and j are used for indexing the N antenna parameters {x, y, z}.

The off-diagonal blocks involving φ are expressed in general as,

(Fφx)lj = K(l)
2a2

l

σ2
F

(xi − xj)
c dij

(∑
k

ωk

)
, (4.100)

The Fφy term follows from Fφx by replacing x with y:

(Fφy)lj = K(l)
2a2

l

σ2
F

(yi − yj)
c dij

(∑
k

ωk

)
. (4.101)

Next, the Fisher blocks with respect to coordinate parameters are,

(Fxy)ij =
∑
n

Kin 6=0

(
2a2

in

σ2
F

(xi − xn)(yi − yn)

c2 d2
in

∑
k

ω2
k

)
, i = j, (4.102)

and for i 6= j,

(Fxy)ij = Kij

(
−2a2

ij

σ2
F

(xi − xj)(yi − yj)
c2 d2

ij

∑
k

ω2
k

)
, i 6= j, (4.103)

where the i = j case corresponds to “summation” likelihoods involving differentiation with

respect to parameters corresponding to the same antenna, and the i 6= j case corresponding

to “singleton” likelihoods involving parameters from different antennas. For the diagonal

blocks, we simply replace (xi− xn)(yi− yn) with (xi− xn)2 or (yi− yn)2 to obtain Fx or Fy,

respectively. For Fx we have

(Fx)ij =
∑
n

Kin 6=0

(
2a2

in

σ2
F

(xi − xn)2

c2 d2
in

∑
k

ω2
k

)
, i = j, (4.104)

and for i 6= j,

(Fx)ij = Kij

(
−2a2

ij

σ2
F

(xi − xj)2

c2 d2
ij

∑
k

ω2
k

)
, i 6= j; (4.105)
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and for Fy we have

(Fy)ij =
∑
n

Kin 6=0

(
2a2

in

σ2
F

(yi − yn)2

c2 d2
in

∑
k

ω2
k

)
, i = j, (4.106)

and for i 6= j,

(Fy)ij = Kij

(
−2a2

ij

σ2
F

(yi − yj)2

c2 d2
ij

∑
k

ω2
k

)
, i 6= j. (4.107)

With the elements of the Fisher matrix now defined, it can be seen that the form of these

elements contains the same geometry dependence terms as the distance-data analysis. Among

the two sets of amplitude and phase nuisance8 parameters, only the interantenna signal

amplitudes’ parameter values impact matrix entries, while the value of the signal phases

does not appear, since it has no relationship to the signal’s period. Not surprisingly, the

amount of Fisher information in each entry’s summands is proportional to signal amplitude-

squared, and thus signal-to-noise ratio a2
ij/σ

2
F . Second, the entries are all proportional to

the summation of subcarrier frequencies
∑

k ωk, which is a proxy for system bandwidth.

Thus, any increase in signal amplitude, bandwidth, or number of carriers, will result in lower

parameter estimate variances.

While this frequency-domain analysis involves the most natural input data (for SART)

and desired solution parameters of the GAC problem, it only addresses the simple case of

uncorrelated Gaussian errors imposed upon the samples of the channel response. This allows

a useful assessment of expected positioning error as a function of signal to noise ratio within

a particular antenna geometry, but does not address the principal source of error in the PPL

system which Gaussian errors are ill-suited to impersonate: multipath signals.

While Gaussian errors in the above analysis are modeled by a single variance parameter,

the complex character of multipath signals and rapid spatial variation make such effects

difficult to realistically model without significant augmentation of the measurement model

and parameter set in this analysis. As this thesis presents solution methods for antenna

location which make no attempt to model multipath signal characteristics nor their impact

upon position solutions, such an analysis is beyond the scope of this work.

8They are a nuisance in the sense that we must differentiate with respect to them in the CRB analysis,
but bounds on variance of their estimates are not of interest.
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Chapter 5

GAC Solution Methods

In this chapter we present results from novel methods that have been developed for the

solution of GAC in pursuit of this thesis. The first results presented focus on algorithm

performance measured in simulation, as compared to the Cramer-Rao bound developed in

Chapter 4. The simulations independently model two different sources of error: frequency-

domain sample measurement error, as a proxy for received signal-to-noise ratio, and time-

delay error, which models variation in signal delay due to antenna pattern effects.

Following the simulation results, we present experimental results for the methods in

so-called “indoor,” “outdoor,” and “building” GAC scenarios, using data collected with

the PPL system. The results give proof that such methods, although not error-free, do not

fail in the face of multipath in these realistic scenarios, and can provide accurate enough

geometry solutions so as not to add significant amounts of error to transmitter location

estimates in those same environments.

5.1 Algorithms

As described in Section 3.7, methods for the solution of GAC seek to produce an antenna

geometry estimate, derived from the available signals, that allows transmitter location to

proceed. While it is desirable for the geometry estimate to be as close as possible (in

the least-squares sense) to the true geometry, ultimately the geometry error of a GAC

solution need only be small enough so as not to add significant error to transmitter location
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estimates. The two methods developed for this thesis are analogous to the two approaches

for transmitter location developed in Chapter 2.

The first method, interantenna ranging, is similar to DSS+TDOA in that it takes a

multi-step estimation approach. It first estimates the distance between pairs of antennas,

and then passes these distance estimates to an MDS solution algorithm, which then estimates

the participating antennas’ geometry.

The second method, spatial scanning, is an extension of the SART (see Section 2.5)

method. While a brute-force scan of the entire solution space is impossibly large and

effectively impossible, we may employ an iterative gradient-descent method to find a geometry

estimate which maximizes the SART metric. This approach utilizes a modified SART matrix

which is sensitive to absolute time (distance) information.

The procedures for these two methods are described in the following two subsections.

5.1.1 Interantenna Ranging

Adopting the notation of Section 4.3, we may write the (complex-valued) measured

samples of frequency-domain data yijk as a signal matrix M whose rows correspond to

frequency-sample index k and columns correspond to signal “ij” between antennas i and j:

M =


y121 y131 . . . y1N1 y231 y241 . . . y2N1 . . . yN−1,N,1

y122 y132 . . . y1N2 y232 y242 . . . y2N2 . . . yN−1,N,2

...
...

...
...

...
...

...
...

...
...

y12k y13k . . . y1Nk y23k y24k . . . y2Nk . . . yN−1,N,k

 . (5.1)

Given K carriers and N antennas, M will have K rows and N(N − 1)/2 columns (one for

each antenna pair). Using a vector s to denote each column, M may be written as

M =
(
s12 s13 . . . s1N s23 s24 . . . s2N . . . sN−1,N

)
. (5.2)

The approach starts by conducting a series of one-dimensional SART scans to determine

the time delay of each signal sij . In this scan, the SART matrix M consists of two columns,

M =
(
sij s∗ij

)
(5.3)
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where ∗ indicates complex conjugate. Taking the conjugate has the effect of negating the

time delay information that sij represents, and so if we consider each column as a single

complex sinusoid, M would be

M =
(

exp(−jωktij − jφij) exp(+jωktij + jφij)
)
. (5.4)

that is, the delays represented by sij are positive, and the delays represented by s∗ij are the

negative of those represented by sij . We may exploit this knowledge in a one-dimensional

SART scan, which we use to determine the time delay of sij . (This analysis parallels the

SART scan described in Section 2.5.) At each rephasing to determine the metric value for a

particular hypothetical delay value t̂ij , M will become

M(t̂ij) =
(

exp(−jωk(tij − t̂ij)− jφij) exp(+jωk(tij − t̂ij) + jφij)
)
. (5.5)

As t̂ij approaches the correct delay value, the two columns’ direct path signal components

become closer, but not equal, in periodicity (frequency), and thus cannot be linearly

dependant. Linear dependence between the two columns is only achieved when t̂ij = tij

and the signals’ direct-path components’ periodicities are equal to one another, and the

periodicities are zero (they are constant-valued DC signals).

Due to the sampled nature of the signals being processed (and the finite number of

samples) the values of propagation delay that can be represented by these signals are limited

to a particular interval. Since absolute time information is available, the minimum value for

delay is zero, and the maximum value time delay that may be (unambiguously) measured

is determined in a fashion to that relating to the equivalent of the time-domain Nyquist

sampling criterion. For sampled frequency-domain data with carrier spacing ∆f Hz, the

range of admissible delays scanned by this approach are thus between 0 and 1/∆f seconds.

For the current PPL signal spanning 550–700 MHz, ∆f = 1.5 MHz, and so the ranging

“window” allows measuring signal delays between zero and 665 nanoseconds (0-200 meters).

When the time delay tij of each signal sij is estimated by individual SART scans, the

resulting delay estimates may be assembled into a distance measurement matrix D for which
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d̂ij = t̂ij · c (where c is the speed of light) :

D̂ =



0 d̂12 d̂13 · · · d̂1N

d̂12 0 d̂23 · · · d̂2N

d̂13 d̂23 0 · · · d̂4N

...
...

...
. . .

...

d̂1N d̂2N d̂3N · · · 0


(5.6)

These distance estimates may then be processed via a MDS solution methods to obtain

estimates for the antennas’ geometry. Herein, we will consider the outcomes on application

of two different MDS methods.

First, we may compute a direct MDS solution using the method summarized by Eq. 3.14.

This procedure computes a coordinate estimate X̂ derived from the (symmetric) SVD of the

squared, centered, (and scaled) distance matrix:

− 1

2
C(D̂ ◦ D̂)C

SVD⇒ UΣUT . (5.7)

Writing the singular values Σ and column vectors of U as

Σ = diag(σ1, σ2, · · · , σN ) U =

(
u1 u2 · · · uN

)
(5.8)

then the direct MDS coordinate estimate X̂ is

X̂ = diag(
√
σ1,
√
σ2)

(
u1 u2

)T
=

√σ1 u
T
1

√
σ2 u

T
2

 . (5.9)

for a two-dimensional geometry. For three dimensions, the vector
√
σ3 u

T
3 becomes the third

row of X̂.

In the case of the second coordinate estimation approach, the distance estimates of

Eq. 5.6 are passed to an iterative MDS solution method. This iterative algorithm, provided

by MATLAB’s statistics toolbox as mdscale.m, is a gradient descent solver, which allows

weighting of the entries in D̂, missing data (signified by zero weight), and an initial solution

estimate used as the starting point of iteration.

In a typical GAC problem, as we will generally have more antennas than the dimensionality

of their geometry, there is a redundancy in the information contained within a distance
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matrix. Assuming N = 16 antennas in D = 2 dimensions, we have ND = 32 total degrees

of freedom; 29 of these degrees of freedom correspond to relative geometry information and

completely determine the distance matrix, which in this case, will have
(

16
2

)
= 120 pieces of

information. Thus, when the number of antennas exceeds the dimension of their geometry,

there is redundancy in the distance information that may be taken advantage of.

Thus in using iterative MDS solution approach, we may generate multiple solution

results as a function of available distance measurements. Many permutations of available

measurements are possible; in the results presented in this thesis, we have generated one

iterative MDS solution result for every valid value of neighbor distance (illustrated in

Fig. 4.5). By doing so, we may investigate the character of coordinate error as a function of

(maximum) neighbor distance. For example, given a system of 8 total antennas, grouped into

four pairwise arrays, each entry of the distance matrix could be given a neighbor distance

value (main diagonal zero “self” distances are always ignored) in a matrix B:

B =



0 1 2 3 4 3 2 1

1 0 1 2 3 4 3 2

2 1 0 1 2 3 4 3

3 2 1 0 1 2 3 4

4 3 2 1 0 1 2 3

3 4 3 2 1 0 1 2

2 3 4 3 2 1 0 1

1 2 3 4 3 2 1 0



(5.10)

and so for a maximum neighbor distance value of two, for example, the distance measurements
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considered missing may be illustrated by omitting them from the distance matrix:

Bij ≤ 2 ⇒



· d̂12 d̂13 · · · d̂17 d̂18

d̂12 · d̂23 d̂24 · · · d̂28

d̂13 d̂23 · d̂34 d̂35 · · ·

· d̂24 d̂34 · d̂45 d̂46 · ·

· · d̂35 d̂45 · d̂56 d̂57 ·

· · · d̂46 d̂56 · d̂67 d̂68

d̂17 · · · d̂57 d̂67 · d̂78

d̂18 d̂28 · · · d̂68 d̂78 ·



. (5.11)

These missing measurements (indicated by a single dot) are given zero weight in the iterative

MDS procedure; that is, the measurements may be passed to the algorithm, but since they

have a zero weighting factor they have no impact on the outcome.

The remaining measurements passed to the routine are then either same-array ranges, or

different-array ranges. Since we assume knowledge of the arrays’ individual geometries, all

ranges between antennas within the same array are known. While the solution method being

utilized for iterative MDS does not allow such ranges to be declared fixed, they instead are

assigned a higher weighting relative to the estimated ranges.

In the weighting matrix passed to mdscale.m we may indicate which distance measure-

ments are missing with zero weight, those which are measured, having a weight of one, and

those which are assumed known, which are assigned a weight of 5. Thus for a maximum

neighbor distance of 2 in our eight-antenna example, with four two-antenna arrays (antennas
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1&2, 3&4, 5&6, 7&8), the weighting matrix W would be

Bij ≤ 2 ⇒ W =



0 5 1 0 0 0 1 1

5 0 1 1 0 0 0 1

1 1 0 5 1 0 0 0

0 1 5 0 1 1 0 0

0 0 1 1 0 5 1 0

0 0 0 1 5 0 1 1

1 0 0 0 1 1 0 5

1 1 0 0 0 1 5 0



. (5.12)

This weighting between measured and known ranges was chosen empirically.

The final input to the iterative MDS procedure after the distance measurements and

weighting matrix is the initial starting configuration for iteration. For the simulated and

experimental results presented in this chapter, the initial solution configuration is a circular

arrangement of the antennas in the plane z = 0 as seen in Fig. 5.1. In this geometry, the

antennas are also arranged along the circumference of the circle in the same order as they

were when the data was generated. In a global sense, this starting configuration is “close”

to the true solution.

When coordinate estimates X̂ become available, and if the true geometry X? is known,

then we may compute the relative geometry error between the two configurations by

geometrically centering them (i.e., X ← XC such that X~1 = 0) and finding the rotation R

that best fits X̂ to X?. To do this, we solve the Procrustes problem as described in Golub

& Van Loan [2, §12.4.1]. The first step is to compute the SVD of the product X̂XT
? :

X̂XT
?

SVD⇒ UΣV T . (5.13)

from which the optimal rotation may be derived. To produce a pure rotation which does not

include reflection, Umeyama [36] presents an important modification to the method. Instead

of the usual solution R = V UT , a diagonal matrix is introduced between V and UT :

R = V DUT , D = diag(1, · · · , 1, det(V ) det(U)) (5.14)
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Figure 5.1: Circular configuration used as the starting point for iterative MDS. Red circles
indicate antenna positions and solid lines indicate array membership.

where the sign of the last element of the main diagonal of D depends on the determinants of

U and V . With the best fit rotation now determined, the (relative) RMS antenna location

error is

erms =

√
1

N
~1
(
X?C − X̂CR

)2
~1. (5.15)

If xi are the column vectors of X?C and x̂i are the column vectors of X̂CR, then the RMS

antenna location may also be expressed as

erms =

√√√√ 1

N

N∑
i=1

(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2. (5.16)

5.1.2 Spatial Scanning

The solution space for the GAC estimation problem, in general, is impossibly large for

exhaustive metric imaging, as is done for transmitter location in the PPL system. Even if

the availability of array geometry and orientation (as described in Section 3.1) information is

assumed, the solution space is reduced in size to the point that a series of 2-D or 3-D brute

force metric imagings are possible, but since such imagings must be performed sequentially,
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such an approach is highly sensitive to the outcomes of the initial estimation steps and so is

disadvantaged.

Thus a method which uses a SART metric for GAC, and simultaneously optimizes across

all free parameters must be some other technique, such as an iterative gradient-descent

method, which is the method described in this section.

The spatial scanning procedure for GAC is an extension of the SART method which

directly estimates antenna geometry from sampled frequency-domain data, via an iterative

optimization. (The word spatial in this context is used so as to distinguish it from imaging

done with respect to time delay or other parameters.)

In the spatial scanning method, we search for an antenna geometry which maximizes

the SART metric, given the set of all interantenna sampled frequency-data signals. Since

exhaustive imaging is no longer being performed, we can no longer be sure that any local

maximum reached via iteration is the global maximum value of the SART metric in the

parameter space.

Because of such local maxima, it is desirable to make use of supplemental information

available about the true antenna geometry to reduce the error of solutions found via such

an iterative search. Utilizing information on array geometry and orientation can reduce the

size of the solution space, thus eliminating many local maxima as possible solutions. Also,

such information can be used to commence iteration at a geometry as close as possible to

the true geometry being sought such that the iterations are likely to converge to the SART

metric peak nearest to the correct solution.

In our implementation of this technique, the fmincon function from Matlab’s optimization

toolbox, which implements a constrained nonlinear minimization routine, is used to find

a geometry estimate which results in a peak in the SART metric. Because our arrays are

assumed fixed, we need only optimize across each array’s translation and rotation angle, and

so the optimization problem which fmincon solves is

max
{x1,y1,θ1,··· }

S(X{x1,y1,θ1,··· }) (5.17)

where {x1, y1, θ1, · · · } are the translation and angle of each array in the geometry, X{x1,y1,θ1,··· }

is the geometry whose arrays are translated and oriented according to {x1, y1, θ1, · · · }, and
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S(·) denotes the function which computes the SART metric on the signal data which is

rephased according to the current geometry iterate. While the normal SART metric for

transmitter (TDOA) location is the norm of the rephased data matrix S(~x) = ‖M(~x)‖, in

GAC we may take advantage of absolute time information by computing the metric from an

“extended” data matrix:

S(X̂) = ‖M(X̂) M∗(X̂)‖ (5.18)

which appends a conjugated copy of all signal columns to the original rephased data, so as

to take advantage of absolute time information. This stacking was described in the previous

section for the case of a single signal; the multi-signal case is similar, but deserves discussion.

Were the SART metric computed only using the rephased signals M(X̂), then any relative

alignment of the signals’ time delays would cause increased linear dependence within each

set of signal columns M(X̂) and M∗(X̂). Because these two blocks of signals have time delay

components which are negatives of one another (i.e., as with ejωt and e−jωt), the two blocks

will not be mutually linearly dependent and will contribute, as revealed by the SVD, to two

separate singular values.

However, when the two sets of signals become relatively and absolutely aligned (as

occurs when rephased in accordance with the correct array position), the rephased signals’

direct path time delay components will have periodicities of zero. Despite being conjugates,

the direct path signal components are now be linearly dependent, due to both sharing a

periodicity of zero (the direct path signal is constant, or DC, signal), and both signal blocks

will contribute, in the SVD, to the same singular value.

By extending the signal matrix in this way before the computation of the SART metric,

we have provided for formation of an even larger singular value as when the signals’ direct

path delays are aligned to their true, absolute value at the true array translation. When the

translation is nearly correct, the metric still responds with an increase in singular value when

the signals become relatively aligned. Advantages to exploiting absolute time information

have also been explored and demonstrated in Amendolare [45].

Thus by exploiting absolute time information, by extending the SART matrix, the

array geometry solution benefits from a metric which increases when the signal delays are

relatively aligned, and increases even further when such relative alignment becomes absolute
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at the correct position. This effect has important consequences, as it likely allows geometry

estimates to better ignore spurious linear dependencies between signal columns. But more

importantly, the effect has useful geometric consequences, as the loci of signal alignments

which cause metric peaks become circular when absolute time information is available, rather

than hyperbolic as with relative (TDOA) time information.

This matrix extension is important because the location problem posed by GAC is more

geometrically challenged (in a geometric dilution of precision sense) as compared to the

case of transmitter location. In transmitter location, the receivers very nearly surround the

transmitter providing low dilution of precision, while during GAC, the objects being located

are always on the perimeter of the geometry, and can especially benefit from the availability

of absolute time information.

5.2 Simulations

In the following two sections, we present the outcomes of simulations, which subject

the two methods presented in Section 5.1 to two types of measurement error. The first

simulation subjects the methods to Gaussian frequency-domain sample error as a proxy

for receiver signal-to-noise ratio. The second simulation subjects the interantenna signals

to random time-delay errors, which approximate, to a first order, the effects of antenna

pattern-induced signal distortion.

These types of error are well-suited to simulation in the sense that they are common

sources of system error, and they have simple models which allow them to be simulated in

a straightforward fashion. Furthermore, the results of such simulation can be interpreted

unambiguously and compared to the previously derived Cramer-Rao bounds.

5.2.1 Frequency-domain sampling error

This simulation examines GAC antenna location error as a function of frequency-domain

sample measurement error variance. The antenna geometry used is a 16-antenna system,

consisting of four arrays of four antennas each, as illustrated in Fig. 5.2.

In the simulation, synthetic data samples zijk are generated which model the direct path
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Figure 5.2: Geometry used for GAC simulations

channel frequency response corrupted by noise ñijk:

zijk =

[
1

dij
exp (−j ωk dij/c− jφij)

]
+ ñijk. (5.19)

As occurs in free-space propagation, the samples are attenuated by the inverse of the

propagation distance. The noise samples ñijk are each drawn from independent, identically

distributed, zero-mean, complex Gaussian random variables with variance σ2. Each sample

is constructed as the sum of two real random variables with variance σ2/2:

ñijk = N (0, σ2/2) + jN (0, σ2/2) (5.20)

The variance σ2 is a function of the desired signal-to-noise ratio, SNR:

SNR = 10 log10(Ps/Pn) ⇒ Pn/Ps = σ2 = 10−SNR/10 (5.21)

which is measured at a single carrier, in units of decibels (dB). In the results to follow, the

antenna location error is plotted as a function of this SNR. Due to the attenuation of 1/dij

in Eq. 5.19, the interantenna signals will have varying SNRs as measured at each receiver,
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Figure 5.3: Distribution of signal attenuations applied in simulation, in the geometry of
Fig. 5.2. Mean attenuation is -20 dB.

and the SNR values against which the following results are presented are given with respect

to a “reference” value, measured at 1 meter distance from the transmitter, that is, with no

attenuation; the SNR measured at every antenna will be less. To illustrate the distribution

of the different attenuations applied to the 120 interantenna signals, Fig. 5.3 illustrates a

histogram of their values, specific to the geometry of Fig. 5.2. Across all signals, the mean

attenuation applied is roughly -20 dB, and so the average SNR experienced between all

antennas is 20 dB lower than the 1 meter reference SNR.

The remaining parameters of the noise-free signal of Eq. 5.19 are the subcarrier frequencies

ωk and overall signal phases φij . The frequencies ωk used mimic the current PPL multicarrier

signal, using the same number of carriers, with the same spacing (roughly 100 carriers spaced

by 1.5 MHz), over the 550–700 MHz UHF band. Finally, the overall phase φij of each signal

is set to zero in simulation. While experimental data will have arbitrary overall phase, the

value of φij has no influence on the results of solution methods presented here since overall

phase cannot alter signals’ periodicities (time delay), and most importantly, the value of φij

does not appear in any of the terms of the frequency-data Cramer-Rao bound of section 4.3.
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3−nbr PCRB
4−nbr PCRB
5−nbr PCRB
6−nbr PCRB
7−nbr PCRB
8−nbr PCRB
3−nbr IMDS
4−nbr IMDS
5−nbr IMDS
6−nbr IMDS
7−nbr IMDS
8−nbr IMDS
Direct MDS

Figure 5.4: Simulation of Interantenna ranging with frequency sample error. Curves shown
are performance figures for methods that process distance estimates derived from sampled
frequency-domain data. Dashed lines indicate the respective constrained Cramer-Rao bound
(CRB) curves, and solid lines indicate iterative MDS (IMDS) result curves, one curve for
each value of maximum neighbor distance, “n-nbr”, tested. The solid green line shows the
result of direct MDS, equivalent to the 8-nbr case, which uses all available data.
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Figure 5.5: Performance in simulation of Interantenna ranging with frequency sample error
for neighbor distance values 2–4. Dotted lines indicate Cramer-Rao bound (CRB) curves,
and solid lines iterative MDS (IMDS) results, one curve per value of neighbor distance tested.
For a maximum neighbor distances of 2, the estimation problem is underdetermined.
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Simulation with frequency-sample error: Interantenna ranging Figure 5.4 shows

the root-mean-square (RMS) antenna geometry errors for our interantenna ranging method

as a function of signal-to-noise ratio. At each value of SNR, 100 Monte Carlo trials were

used to measure average performance. Because the iterative MDS (IMDS) method may

converge to a solution with missing data, multiple IMDS curves are visible for neighbor

distance (abbreviated “n-nbr”) values of interest.

In the figure, there are two curves of the same color for each value of maximum neighbor

distance: a “pseudo” Cramer-Rao bound (CRB) curve, represented as a dashed line, illus-

trating a theoretical lower bound to performance, and an iterative MDS (IMDS) result as

an unbroken line. The remaining curve (in thick green) illustrates the results of direct MDS,

and uses the same data as the 8-neighbor (no missing data) case.

The CRB curves in the figure are each labelled as a pseudo CRB (PCRB) because the

distance-data CRB construction used is not perfectly matched to the actual estimation

process under simulation. That is, the distance-data CRB in a sense only captures the

second part of the interantenna ranging method which processes distance estimates, and

has no knowledge of the prior range estimation step which processes frequency samples and

is the point where system error is actually injected. Also, while the errors injected at the

frequency sample level themselves have a Gaussian distribution, the distribution of distance

estimate error from this data is not necessarily Gaussian as the CRB assumes, since it is the

output of an intermediate estimator, and not Gaussian by design. (In a forthcoming analysis,

these curves will be compared with a more proper frequency-data CRB.) A final discrepancy

in the comparison of IMDS results to the CRB is that IMDS only approximately constrains

the arrays to be fixed; same-array distances are given higher relative weighting and their

distance measurements are input without error, while the CRB results presented assume

(perfectly) fixed arrays. Despite these deficits, the distance-data CRB, in nearly all cases,

bounds the performance of these methods from below, and predicts better performance

when higher values of neighbor distance are used. Right at 0 dB, a grouping of the bound

curves can be seen, where 3-,4-, and 5-nbr PCRBs share roughly the same value, and the

higher values of neighbor distance have a lower variance bound. This is due to our particular

choice of geometry and array grouping in Fig. 5.2, in which no measurements between arrays
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opposite one another are available for processing until a neighbor distances greater than 5 is

allowed.

The behavior of the IMDS result curves may be broken down into two regions. The

first region is at the values of SNR below 5 dB in which the RMS antenna geometry error

exceeds 1 meter; as SNR worsens below 5 dB, the distance estimates being supplied to MDS

are dominated by noise and the solutions plateau to an error commensurate with random

antenna placement. In the second region, above 5 dB SNR, antenna geometry errors rapidly

decrease to levels around 1 cm RMS error. Above 5 dB SNR, geometry errors parallel the

CRBs, with a performance gap of no greater than 10 dB from the CRB.

It can be seen that the iterative MDS approach, in nearly all cases, surpasses the

performance of direct MDS. While direct MDS is computationally simpler, iterative MDS

enjoys two advantages which contribute to its improvement. The first advantage is the added

weight given to the same array-distances in the distance matrix. While both iterative and

direct approaches receive the same distance measurements as input, with truth values used

for same-array distances, the iterative approach allows weighting of measurements, and since

we have placed a higher relative weight upon such measurements which are known a priori

to be error-free, this conveys an advantage. The second advantage of iterative MDS over

direct MDS is also a feature of an iterative process: the use of an initial starting point for

the iteration is another form of a priori information which conveys a statistical advantage.

For nbr≥ 4, it can be seen that antenna location error breaks away from the CRB curves

when the SNR drops below 15 dB. This is likely due to a breakdown in the range estimation

procedure, as many signals from which distances estimates are derived have SNRs below

0 dB and have begun to produce increasingly erroneous distance estimates, which in turn

affects the resulting geometry estimates. Above 15 dB SNR, the IMDS and direct MDS

curves parallel the CRBs.

The performance of the 3-nbr curve plateaus out beginning at 10 dB, at 2 cm error due

to the behavior of the iterative MDS method. Because of the relatively small number of

measurements being used for solution, the optimizer makes slow progress with each step,

and terminates due to reaching the maximum number of iterations. Were IMDS executed in

a 3-nbr situation with a higher limit on allowable number of iterations, the RMS antenna
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location error at which performance no longer increases with SNR may be lowered. It can

be seen that between 0 dB and 10 dB SNR, performance levels go below 1 m in the 3-nbr

case before any other method. This behavior is not predicted by the CRB, and is due to the

usage of an initialization point close to the desired optimum for the iterative method, from

which the performance of the 3-nbr method benefits heavily upon.

In these curves we have omitted results from the 2-nbr case; the results for neighbor

values of 2–4 compared to their respective CRBs are shown in Fig. 5.5. While the 2-nbr case

is not an undesirable situation in which to solve GAC, since the signals used in solution will

likely have the highest SNR and most favorable propagation conditions as compared to other

signals, it is omitted from Fig. 5.4 because the unconstrained estimation problem which

IMDS must solve in the 2-nbr case is underdetermined (solely due to array collinearity), and

thus comparison to the CRB (for the 2-nbr case only) is invalid.

Simulation with frequency-sample error: Spatial scanning Figure 5.6 shows the

results (on a logarithmic scale) of the frequency-sample error simulation using the spatial

scanning method. As in the previous figure the curves are paired by color: the CRB for a

particular neighbor distance is a dashed line, and the spatial scanning RMS antenna location

error is a solid line. As with the previous method tested, spatial scanning was run several

times, one for each value of neighbor distance.

Here, it can be seen that the CRB curves are consistent: their error variance bound

decreases with increasing SNR, and also decreases with increasing neighbor distance (when

more signals are used). In comparison to their CRB, the spatial scan result curves have a

number of noteworthy features. First, while the curves generally have the same slope as

the CRBs above 20 dB SNR, there is an obvious offset between the bound and the method

results. One possible explanation for the offset is simply that the spatial scanning procedure

is not taking advantage of all the information contained within the signals themselves. That

is, a superior method that effectively uses all information may be identified with further

investigation.

A second noteworthy feature is the range of signal-to-noise ratio over which the spatial

scanning method exhibits sub-meter error, in comparison to the results from interantenna
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Figure 5.6: Simulation of Spatial scanning with frequency sample error. Curves shown are
performance figures for methods that process sampled frequency-domain data. Dotted lines
indicate the respective constrained Cramer-Rao bound (CRB) curves, and solid lines indicate
Spatial scanning result curves, one curve for each value of maximum neighbor distance
tested.
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ranging, whose results are overlaid in Fig. 5.7. The points at which both methods generally

achieve sub-meter error are separated by 30 dB. Further, spatial scanning achieves sub-meter

error starting at -20 dB SNR; since the average SNR at each receiver is 20 dB lower than the

1 m equivalent SNR, the method enjoys a significant amount of processing gain.

Below -20 dB SNR, method performance exceeds 1 m geometry error, and the method

begins to break down; at -30 dB the results are essentially noise, and errors are commensurate

with a random geometry solution.

Regarding the gap between spatial scan performance and its respective CRB, such gaps,

between Cramer-Rao bounds and the performance of particular estimators, for otherwise

well formed estimators (that is, estimators that properly yield the minimum of a distance

metric between the space of observables and the manifold of the observable space formed by

error free observations over the range of all model parameter values, the solution manifold)

can be explained as follows. If the dimensionality of the observation space is reduced by some

mapping of observed data into a lower dimensional representation then locally this mapping

is effectively a projection. And the minimizing parametric solution can be greatly affected

by the projection away of some component of the distance from the point in observation

space to the solution manifold. That is, if a point x∗ on the solution manifold minimizes

d∗ = min
x

∑N
n=1mn(z) given measurements z, and x∗∗ minimizes d∗∗ = min

x

∑M
n=1mn(z),

where M < N , then in general x∗ 6= x∗∗ and d∗ ≤ d∗∗. The mapping that gives rise to

this decrease in performance is induced by any data reduction that reduces the effective

dimensionality of the observation space.

Yet, despite this draconian departure from full optimization complexity, for SNRs below

10 dB, it can be seen in Fig. 5.7 that this handicap is less detrimental to performance than

using the iterative MDS approach, where the parameter space is not reduced, and the 270

dimensional measurement space is replaced by a 120 (maximum) dimensional distance data

set. A comparison of the results of interantenna ranging versus spatial scanning seen in

Fig. 5.7 shows that the spatial scanning approach yields significantly improved results over

interantenna ranging in this region below 10 dB SNR.

Finally, Fig. 5.7 shows both methods’ results, compared to the frequency-data CRB. While

the distance-data CRB was valid to compare against the interantenna ranging method, that
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CRB is concerned with distance measurements and is ignorant of the underlying frequency

data from which the distance estimates are made. The distance-data CRB effectively only

measures the performance of iterative MDS, as parameterized by the frequency-sample

signal-to-noise ratio. Because the interantenna ranging methods’ results are ultimately

derived from these frequency samples, it is also valid, and ultimately more correct, to

compare it against the frequency-data CRB.

As was evident in the earlier graphs and discussions, both interantenna ranging and spatial

scanning perform significantly more poorly than allowed by the CRB, for all test SNRs, in the

sense that no method achieves the CRB. This indicates that significantly better performance,

on the order of an improvement equivalent to a 30-40 dB SNR improvement is possible in

theory via some technique that fully exploited the information in the frequency-sample data.

Furthermore, the spatial-scanning technique, because of the parameter space reduced nature

of its sequential scanning, enjoys lower RMS error than interantenna ranging at SNRs greater

than 10 dB. However, interantenna ranging suffers an early break from asymptotic behavior

below 10 dB and is significantly bested by spatial scanning. Spatial scanning performance

suffers a similar break from its asymptotic behavior, but at progressively higher SNRs as

the number of neighbors is increased; the break from the asymptotically linear (on a log-log

scale) performance curve occurring at -20 dB for 3-nbr and at still lower SNRs for larger

numbers of neighbors.

Note that the break from asymptotic behavior for interantenna ranging occurs at the

1 cm level of positioning accuracy and degrades to 1 m levels of error at an SNR of 3 dB for

the smaller 4-nbr case, while the spatial scanning adherence to asymptotic behavior extends

to the 1 m level for 3-nbr or larger, at SNRs of -15 dB or larger. Thus, we can say that in

the important context of maintaining a sub-meter error, that the spatial scanning technique

contributes performance that is equivalent to an improvement of 18 dB in input SNR when

compared to classic interantenna ranging approaches.

5.2.2 Simulation of time-delay error

In this section, we present the results of our methods in the presence of simulated

time-delay error.
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While the PPL system admits many hardware effects that introduce error to the received

signals, many of these effects may be calibrated away so as to not impact the location

solution. However, antennas used for signal reception can induce signal distortion that is

more difficult to completely eliminate, as their frequency response varies as a function of

the angle of signal reception. To a first order, this signal distortion may be modeled as a

superfluous signal delay which varies with angle of signal arrival.

The model for the synthetic signals to be generated in this simulation applies only a

random additive delay to the true propagation delay:

zijk =
1

dij
exp

(
−j ωk (dij + d̃ij)/c− jφij

)
. (5.22)

The random time delays are applied to each interantenna signal and are independent,

identically distributed Gaussian random variables:

d̃ij = N (0, σ2
d) (5.23)

with a mean of zero and variance σ2
d. In the simulation, we tested time delay errors of up to

1 meter standard deviation, performing 100 Monte Carlo tests at each value.

Timing error simulation results Figure 5.8 shows the simulation results for the inter-

antenna ranging and spatial scanning methods, plotted in linear units; spatial scanning

results use square symbol markers, and the dotted line indicates the error variance predicted

by the constrained distance-data CRB. Unlike the previous section, the distance-data CRB

is a more proper comparison to the interantenna ranging method, since the distance (timing)

errors being injected are indeed Gaussian. Since frequency-sample errors were not part of

this simulation, no comparison to the associated sampled frequency-data result can be made.

(No CRB was derived for frequency data solely for timing errors.)

In these results we can see that not only do the distance-data result curves closely match

their respective CRBs, but that their performance in this simulation clearly and significantly

surpasses the performance of the spatial scanning method. One factor in the error in the

spatial scanning can be attributed to the reduced solution space which benefited it in the

previous simulation. In the case of the current simulation which induces timing (or distance)
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errors, application of these errors to the input data is very likely to have the effect of moving

the position of the solution point which spatial scanning is searching for, via a SART metric,

outside of the solution space.

For these two sets of curves, we may infer an approximate linear model for antenna

geometry error as a function of RMS timing error for both methods. For neighbor distances

of 4 and above, interantenna ranging incurs, on average, 0.50 m per meter of RMS timing

error, while spatial scanning incurs 2.50 m of error for each meter of RMS timing error.

Clearly, if the major source of error in practical applications is angle-dependent phase

response of antennas or other antenna-specific delay mechanisms, then spatial scanning is by

far the less desirable choice for GAC implementation. In the following section, we look to

experimental data in the indoor location context to determine which is the dominant factor

to be considered, independent frequency-data noise or time delay error.

While we have simulated levels of RMS antenna timing error out to 1 meter in value,

revealing two roughly linear regions, with different rates of response to increasing levels of

timing error, in the current PPL system it is reasonable to assume that our RMS timing

error due to antenna effects is at or below 0.3 m. We may assume this limit to RMS timing

errors simply because all antennas in use have either low signal distortion as a function

of angle, or have been explicitly designed with this maximum timing error of 1 foot as an

antenna design constraint.

We may conclude from this result that spatial scanning for GAC is highly sensitive to

timing errors, more so than interantenna ranging. It is possible that the intermediate steps

in the interantenna ranging method help it mitigate timing error and produce a solution

with less error.
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Table 5.1: GAC Experimental Data Sets

Test Location Setting # Date RX Antenna Qty., Type

Kaven Lawn Outdoor O1 6/21/2007 16 Bowtie with ground plane

Practice Field
Outdoor O2 11/28/2007 16 Bowtie with ground plane
Outdoor O3 11/28/2007 16 Bowtie

Odeum

Indoor I1 12/18/2007 16 Patch
Indoor I2 12/18/2007 16 Patch, alt. cabling
Indoor I3 12/18/2007 16 Bowtie
Indoor I4 12/18/2007 16 Bowtie with ground plane
Indoor I5 1/17/2008 16 Patch
Indoor I6 1/17/2008 16 Patch, intervening wall

Kaven Hall Building B1 6/22/2007 13 Bowtie with ground plane

Campus Ministry Building B2 7/12/2007 16 Bowtie with ground plane
Campus Ministry Building B3 3/13/2008 16 Patch
Campus Ministry Building B4 3/28/2008 16 Bowtie

5.3 Experimental results

In this section we present the results of testing our methods using experimental data.

Using the PPL system, we have been able to capture data during location testing experiments

performed at multiple locations over the course of nine months between 2007 and 2008.

Table 5.1 lists the experimental data sets available to us for testing our methods for GAC.

In all of the tests, transmitter location data was collected, so we may see the accuracy of

transmitter location estimates when driven by the GAC geometry solution as compared to

the (very-low error, < 5cm RMS) manually measured antenna geometry.

The Outdoor and Football field test locations were both outdoor tests on level ground with

unobstructed line-of-sight between antennas; Kaven Hall is a brick, concrete, and steel-beam

building; the Campus Ministry is a typical three-level wooden-frame residential structure

including metal appliances in the kitchen; finally, the Odeum was an indoor-to-indoor test

conducted in an empty function hall.

Figures 5.9 and 5.10 show performance figures for GAC and GAC-driven transmitter

location, respectively, using spatial scanning. It can be seen that GAC and transmitter

location errors are the lowest in the outdoor scenario, due to the lack of significant multipath

signal components and low direct path signal attenuation. GAC errors in this case are
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always below 0.80 m; when using signals with a neighbor distance of three or higher, the O1

test achieves 0.30 m of error.

GAC errors for the indoor scenario become slightly worse. While, as in the outdoor tests,

antennas in the indoor scenario have clear line-of-sight to one another (except for test I5),

there are more multipath signals to deal with in this case due to the surrounding building

structures, and so GAC is more challenged in this environment. This is likely the reason

that more of the curves in this scenario exhibit higher error at a neighbor distance of 2.

At higher values of neighbor distance however, their errors flatten out, except for curve I5,

in which an antenna array was behind an intervening wall. Due to this intervening wall,

and the more challenging propagation conditions for the signals that pass through it, more

signals are required to achieve the same error levels as the other cases, and 0.80 m error is

reached by N = 5.

In the third scenario, where our antenna arrays are placed around a building structure,

and only have clear line-of-sight to some of their neighbors, GAC errors are higher than the

two previous scenarios. This is likely due to less favorable propagation conditions between

all pairs of antennas, in which more multipath signals are present, and attenuation of the

direct path is guaranteed. Due to these worsened conditions, GAC errors are higher, and

more signals are required to achieve the lowest errors of roughly between 1.00 m and 0.80 m.

Generally, when comparing the GAC and transmitter location errors of Figs. 5.9 and

5.10, lower GAC errors result in lower transmitter location errors, as can be seen in the

similar shape shared between the GAC and transmitter location curves from the same test.

However, due to the nonlinear nature of (TDOA) multilateration in general, this is not

always guaranteed, as can be seen beween the two curves in Figs. 5.9(c) and 5.10(c) for

tests B4 and B4-2, in which the N = 2 case achieves the highest GAC error but the lowest

transmitter location error.

Figures 5.11 and 5.12 show GAC and transmitter location errors using the interantenna

ranging method. In the outdoor scenario, GAC and transmitter location errors meet or

exceed those resulting from spatial scanning. In the indoor scenario, GAC errors are nearly

as good as for spatial scanning, again reaching 0.60 m of error, but requiring N > 3, rather

than N > 2 as with spatial scanning. While GAC error for test I5 exceeds that of spatial
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scanning at low values of neighbor distance, error instead worsens slightly at higher values of

neighbor distance in which more through-wall distance estimates are input to MDS; spatial

scanning, in contrast, achieves monotone improvement in GAC error as neighbor distance

increases. However, the more unruly behavior of interantenna ranging GAC error curve

I5 results in high transmitter location error at N = 4, but performance is equal to that of

spatial scanning for N ≥ 6.

While in outdoor and indoor scenarios, interantenna ranging is competitive with spatial

scanning in terms of GAC and transmitter location error, interantenna ranging suffers

generally worse GAC performance in the building scenario, which is most relevant scenario

to the PPL problem. However, despite these higher GAC errors, transmitter location

performance, such as in the B3 test, is nearly comparable to GAC.

We may better understand some aspects of the performance of these two methods by

examining the character of the GAC and the transmitter location errors in three tests, one

from each scenario, in which acceptable performance is achieved. Figures 5.13–5.15 show the

results of tests O1, I6, & B3, respectively when using spatial scanning, and Figs. 5.16–5.18

show results for the same tests using interantenna ranging. (Throughout, circular symbols

indicate GAC results; triangles indicate transmitter location.)

Figures 5.13 & 5.16 depict both methods’ performance for the O1 test. Spatial scanning

achieves a transmitter location error of 0.70 m; without GAC the RMS transmitter location

error is 0.41 m. This superfluous error is due to the slight translational and angle error in

the geometry solution produced by spatial scanning consistently for N ≥ 3. Interantenna

ranging does not suffer from this error, and for N ≥ 5 has an RMS transmitter location

error only a few centimeters worse than when using the hand-measured antenna geometry.

Figures 5.14 & 5.17 show both methods’ performance in the I6 indoor test, where one

array was behind an intervening wall. While the performance of spatial scanning increases

with increasing neighbor distance, interantenna ranging does well at N = 2, but does not

return to the same 0.50 m level of transmitter location performance until neighbor distances

of 6 or higher are used. The character of the geometry solutions produced by interantenna

ranging in this scenario are examples of how certain types of geometry errors incur less

transmitter location error than others. Here, for example, in the interantenna ranging case
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in Fig. 5.17 many antennas’ errors are translations directed outward from the center of the

geometry; this is an error which has less impact upon the resulting SART (TDOA) location

solution than other types of geometry errors. Were a positioning method employed which

used absolute time information in addition to TDOA information, the positioning errors in

this case would be higher when using this particular geometry solution.

This type of geometry error which is more forgiving to transmitter location performance

is also seen in the interantenna ranging results in Fig. 5.18, in which the positioning errors

are quite comparable to those without GAC. (the RMS error does not reach 0.50 m due to

the singular large error pointing to the upper left.) For spatial scanning results as shown in

Fig. 5.15, geometry error is mainly composed of angle errors on the top, left, and right sides,

which seem to be responsible for the majority of positioning errors for transmitter locations

along the x = 2 line.
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Figure 5.9: Experimental GAC error, spatial scanning method. Curves show RMS antenna
geometry error as a function of neighbor distance for (a) outdoor, (b) indoor-to-indoor, and
(c) around-building testing.
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Figure 5.10: Transmitter location error using spatial scanning geometry solutions on ex-
perimental data. For (a) outdoor, (b) indoor, and (c) around-building testing, curves
illustrate the RMS transmitter location error as a function of neighbor distance when SART
multilateration is driven by GAC; dotted lines indicate error levels achieved when the true
geometry is used.
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Figure 5.11: Experimental GAC error, interantenna ranging method. Curves show RMS
antenna geometry error as a function of neighbor distance for (a) outdoor, (b) indoor-to-
indoor, and (c) around-building testing.
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Figure 5.12: Transmitter location error using interantenna ranging-based geometry solutions
on experimental data. For (a) outdoor, (b) indoor, and (c) around-building testing, curves
illustrate the RMS transmitter location error, as a function of neighbor distance when SART
multilateration is driven by GAC; dotted lines indicate error levels when the true geometry
is used.
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Figure 5.13: Detailed spatial scanning results for 2007/06/21 “O1” test. (a) shows the true
geometry and transmitter location error vectors. (b)–(h) show the geometry solutions for
each value of neighbor distance. In this case, little marginal improvement in GAC and
transmitter location error is observed for N > 3. (i) plots the errors numerically for each
value of N ; the left y-axis indicates GAC error levels (curve with circular symbols), and the
right-side y-axis indicates TX location error for the curve using triangle markers.
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Figure 5.14: Detailed spatial scanning results for 2008/01/17 “O1” test. (a) shows the true
geometry and transmitter location error vectors. (b)–(h) show the geometry solutions for
each value of neighbor distance. In this case, little marginal improvement in GAC and
transmitter location error is observed for N > 3. (i) plots the errors numerically for each
value of N ; the left y-axis indicates GAC error levels (curve with circular symbols), and the
right-side y-axis indicates TX location error for the curve using triangle markers.
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Figure 5.15: Detailed spatial scanning results for 2008/03/13 “B3” test. (a) shows the true
geometry and transmitter location error vectors. (b)–(h) show the geometry solutions for
each value of neighbor distance. Here it can be seen that GAC and transmitter location
error experience improvement until N = 7; the left y-axis indicates GAC error levels (curve
with circular symbols), and the right-side y-axis indicates TX location error for the curve
using triangle markers.
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Figure 5.16: Detailed interantenna ranging results for 2007/06/21 “O1” test. (a) shows the
true geometry and transmitter location error vectors. (b)–(h) show the geometry solutions
for each value of neighbor distance. In this case, little marginal improvement in GAC and
transmitter location error is observed for N > 3. (i) plots the errors numerically for each
value of N ; the left y-axis indicates GAC error levels (curve with circular symbols), and the
right-side y-axis indicates TX location error for the curve using triangle markers.
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Figure 5.17: Detailed interantenna ranging results for 2008/01/17 “O1” test. (a) shows the
true geometry and transmitter location error vectors. (b)–(h) show the geometry solutions
for each value of neighbor distance. In this case, little marginal improvement in GAC and
transmitter location error is observed for N > 3. (i) plots the errors numerically for each
value of N ; the left y-axis indicates GAC error levels (curve with circular symbols), and the
right-side y-axis indicates TX location error for the curve using triangle markers.
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Figure 5.18: Detailed interantenna ranging results for 2008/03/13 “B3” test. (a) shows the
true geometry and transmitter location error vectors. (b)–(h) show the geometry solutions
for each value of neighbor distance. Here it can be seen that GAC and transmitter location
error experience improvement until N = 7; the left y-axis indicates GAC error levels (curve
with circular symbols), and the right-side y-axis indicates TX location error for the curve
using triangle markers.



120

Chapter 6

Conclusions

In this thesis, we have described Geometric Autoconfiguration (GAC), a process by

which we may discover the geometry of the receiving antennas used in a positioning system.

This is a vital function of any “portable” location system which may be deployed to provide

positioning services at a moment’s notice for first responders, especially firefighters.

Our approach to GAC is tied to the hardware architecture and multicarrier signal

structure of the PPL system. Since the challenge of RF-based indoor location sufficiently

accurate to locate an individual, in the face of severe multipath and signal attenuation is still

considered an open problem by many, our methods for GAC are extensions of techniques

previously considered or currently employed in the PPL system (e.g., SART), as they have

been shown robust in the face multipath signal interference.

However, while our techniques for GAC have been drawn from those used for transmitter

location, there are also aspects of the GAC problem that set it apart from transmitter

location which may be exploited to reduce solution error. One aspect that may be exploited

is the availability of supplemental information, which may be used to reduce the size of

the solution space and thus the number of suboptimal solution points to which iterative

methods may converge. Such supplemental information includes array geometry constraints

as demonstrated in this thesis, used to reduce the dimension of the GAC solution space.

Such an improvement is predicted by the CRB, as shown in Fig. 4.4 in which the reduction in

predicted error variance is observed between the unconstrained (U1) and properly constrained
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(C2,C3) CRB curves. Measuring other pieces of supplemental information about the antenna

geometry such as array orientation (azimuth and elevation angle) could also benefit solution

error when used to reduce the GAC solution space.

A second aspect of GAC which we have explored in this thesis, which is not as pronounced

in the transmitter location problem is the variation in channel propagation conditions between

nearby (low neighbor distance) and far-away (high neighbor distance) antennas. In the

GAC scenario, the antennas surround a building, with nearby antennas likely having clear

line-of-sight and little multipath, while far-away antennas’ signals must pass through at

least two sets of walls when entering and exiting the building, experiencing propagation

conditions similar to, or possibly worse than transmitter location. Since a geometry solution

is possible using a sparse set of signals, we have investigated the effects upon GAC error of

using a progressively larger number of signals, parameterized by neighbor distance, a rough

metric of assumed signal favorability. While it was seen that higher neighbor distances

always improved GAC error in theory and simulation, many of our experimental results, for

the SART-based spatial scanning, showed no improvement beyond a neighbor distance of 5.

In the least, it is clear (when there are many antennas) that not all interantenna signals are

required for geometry to be estimated, and signals which may be detrimental to solution

error may simply be omitted. We believe the failure to see improvement

We have outlined in detail the construction of two Cramer-Rao bounds against which the

optimality of our methods may be gauged in two different simulation scenarios which model

two common types of system error. In another novel development, we have demonstrated,

repaired, and verified the repair of a significant deficiency in the Gorman constrained CRB

[42] when using distance constraints to fix the geometry of a collinear antenna array, which

has not yet been reported previously in the literature. We have also shown that the same

vector components of Fisher information which the deficient constraints fail to observe are

also missing from the unconstrained Fisher matrix, and this causes the unconstrained CRB

to be properly underdetermined in cases when few measurements are assumed available and

antennas are collinear.

We then conducted simulations of two methods, spatial scanning and interantenna

ranging, with respect to two well-understood and common sources of error and compared the
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outcomes to the Cramer-Rao bound. A significant conclusion with the first simulation with

AWGN frequency-sample error is that the performance of neither of the proposed methods

approaches the CRB at any point, and instead both exhibit a constant offset (on a log-log

scale) in performance from the CRB. This indicates that there is much potential room for

improvement in spatial scan-like methods which process frequency samples directly, at least

with respect to signal-to-noise ratio. In the second simulation, which models time delay

error as might be introduced by antenna pattern based signal distortion, it was observed

that while interantenna ranging techniques accumulated roughly 0.50 m of RMS position

error for every meter of RMS timing error, the spatial scanning method had approximately

four times worse sensitivity to these timing errors, incurring roughly 2.0 m of position error

per meter of RMS timing error. As one significant source of timing error is the angular

dependence of antenna phase centers, clearly, antenna pattern design plays an important role

in location system error, especially in GAC, in which case the nearby signals which are most

likely to have favorable propagation conditions and play a majority role in a sparse solution

using low neighbor distance (2,3,4) signals will all have most extreme antenna arrival and

departure angles and thus suffer the highest antenna pattern distortion.

We have also presented the results from experimental tests to gauge the performance of

GAC in real environments, and demonstrated that in the cases presented, transmitter location

when using a GAC-driven geometry solution can result in a sub-meter RMS positioning

error. GAC was shown to work in an indoor environment in which as many as half the

signals processed passed through an intervening wall, as well as in a scenario in which the

antennas surrounded a wood-frame building. Beyond each signal’s value of neighbor distance,

no other parameter was used when deciding what signals to include in processing. While

generally, the level of GAC error and transmitter location error follow one another, there

is clearly a nonlinear relationship between the two which is likely exacerbated by the use

of TDOA processing for location estimation for the available data sets. Because of this

nonlinear relation between geometry and transmitter location error, certain GAC errors

whose character resembles a scaling of the entire geometry via an outward translation of

all arrays can have less impact upon positioning error than array angle errors for a given

overall RMS error.
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While historically, antennas for the PPL system have been designed with only transmitter

location in mind, it is clear that future designs must be conceived to minimize those antenna

effects which also disadvantage a GAC geometry solution. Signals utilized for GAC processing

must not suffer from significant additive time delay error nor superfluous attenuation due to

such extreme angles. Future system versions must be designed with GAC in mind.

Future work which pursues methods for GAC could improve performance of the methods

presented in this thesis by exploiting as much supplemental information regarding antenna

geometry as possible. Such additional solution space reductions could be investigated in

context of the constrained CRB, as well as pursued via addition of an orientation sensing

capability to receiver hardware using devices such as inclinometers, accelerometers, and

magnetometers. As in this work, the goal would be to also evaulate the efficacy of such

information in improving performance of the entire system in real multipath conditions.

A third direction for future work would be investigation of the impact of antenna pattern

effects on GAC performance and ultimately the mitigation of these effects for a given

antenna by signal processing. While we have partly done so in this thesis by introducing an

analysis of the impact of pure timing errors; it is unclear from experimental results which

of multipath signals or antenna pattern effects are the dominant source of geometry error,

however, given the high arrival and departure angles, and thus likely high distortion, of

the GAC exchanged signals we believe this problem was responsible for the departure of

our experimental outcomes from the expectations set by simulation. Were a detailed model

of antenna pattern distortion as a function of angle and frequency available, such a model

could be integrated into iterative methods to attempt to cancel antenna pattern effects at

each step of iteration and possibly eliminate it as a source of error.

Finally, the gap between theoretical and specific GAC algorithm performance indicates

that more complex signalling and processing may exist that could further improve geometry

estimation. One could liken this to the performance gap between the CRB for data

communications over a channel with a given bandwidth and signal-to-noise ratio versus the

lesser performance of a particular scheme such as QPSK. The theoretical work in this thesis,

we believe, lays the foundation for a methodical decomposition of error contributions and

signal representation as needed to begin such an effort.
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