
1 
 

 

 

 

 

 

Department of Biomedical Engineering 

 

Cell printing: A novel method to seed cells onto biological scaffolds 

A Thesis  

Submitted to the faculty of 

 

WORCESTER POLYTECHNIC INSTITUTE 

In partial fulfillment of the requirements for the  

Degree of Master of Science 

 

Submitted by:  ____________________________________ 

Chirantan Kanani 

Approved by: 

 

____________________________   ____________________________ 

Glenn Gaudette, PhD     Raymond Page, PhD 

 

____________________________ 

Qi Wen, PhD 



2 
 

Acknowledgements 
 

I express my sincere gratitude to my advisor, Dr. Glenn R. Gaudette, for his guidance throughout 

the duration of this work and support that made this work possible. 

I thank Dr. Qi Wen, for his thoughtful suggestions at crucial phases of this work and for making 

his lab space and equipment generously available to me to house the cell printer. 

I thank Dr. Raymond Page for agreeing to be a part of my thesis committee at short notice, and 

for his valuable comments and suggestions towards bettering this work. 

I thank the management of Digilab, Inc., (Holliston, MA) for providing the cell printer for this 

work, and for showing confidence in my abilities. I would like to specially thank the following 

individuals from Digilab for their abundant support: 

Rich Parker   Sid Braginsky   Joe Griffin 

Kris Dougert   Brian Syverud   Steve Smith 

Fred Mezynski 

I thank my colleagues at the Gaudette lab for offering help, technical inputs and useful advice 

when needed and for being the best lab mates ever: 

 John Favreau   Evans John Burford  Mark Kowaleski 

 Dr. Jacques Guyette 

I would also like to thank the following individuals for their contributions towards this project: 

Dave Easson, Sc.D.  Victoria Huntress  Justin Stedman 

John Fitzgibbon  John Fitzpatrick  Andrea Rivas  

Kaitlyn Marengo  Melinda Lei   Jim Monaco 

  

Lastly, and most importantly, I thank my family for their unconditional love and support always:  

My father - Dr. Jaydev Kanani   My sister – Anuja Kanani 

My mother - Dr. Shubhada Kanani  

  



3 
 

Abstract 
Bioprinting, defined as depositing cells, extracellular matrices and other biologically relevant 

materials in user-defined patterns to build tissue constructs de novo or to build upon pre-

fabricated scaffolds, is among one of the most promising techniques in tissue engineering. 

Among the various technologies used for Bioprinting, pressure driven systems are most 

conducive to preserving cell viability. Herein, we explore the abilities of a novel bioprinter - 

Digilab, Inc.’s prototype cell printer. The prototype cell printer (Digilab Inc., Holliston, MA) is 

an automated liquid handling device capable of delivering cell suspension in user-defined 

patterns onto standard cell culture substrates or custom-designed scaffolds. In this work, the 

feasibility of using the cell printer to deliver cell suspensions to biological sutures was explored. 

Cell therapy using stem cells of various types shows promise to aid healing and regeneration in 

various ailments, including heart failure. Recent evidence suggests that delivering bone-marrow 

derived mesenchymal stem cells to the infarcted heart reduces infarct size and improves 

ventricular performance. Current cell delivery systems, however, have critical limitations such as 

inefficient cell retention, poor survival, and lack of targeted localization. Our laboratories have 

developed a method to produce discrete fibrin microthreads that can be bundled to form a suture 

and attached to a needle. These sutures can then be seeded with bone-marrow derived 

mesenchymal stem cells to deliver these cells to a precise location within the heart wall, both in 

terms of depth and surface localization. The efficiency of the process of seeding cells onto fibrin 

thread bundles (sutures) has previously been shown to be 11.8 ± 3.9 %, suggesting that 88% of 

the cells in suspension are not used. Considering that the proposed cell-therapy model for 

treatment of myocardial infarction contemplates use of autologous bone-marrow derived stem 

cells, an improvement in the efficiency of seeding cells onto the fibrin sutures is highly desirable. 

The feasibility of using Digilab’s prototype cell printer to deliver concentrated cell suspension 

containing human mesenchymal stem cells (hMSCs) directly onto a fibrin thread bundle was 

explored in this work, in order to determine if this technology could be adapted to seed cells onto 

such biological sutures. First the effect of the printing process on the viability of hMSCs was 

assessed by comparing to cells dispensed manually using a hand-held pipette. The viability of 

hMSCs 24 hours post-dispensing using the cell printer was found to be 90.9 ± 4.0 % and by 

manual pipetting was 90.6 ± 8.2 % (p = ns). Thereafter a special bioreactor assembly composed 

of sterilizable Delrin plastic and stainless steel pins was designed to mount fibrin thread bundles 

onto the deck of the cell printer, to deliver a suspension containing hMSCs on the bundles. 

Highly targeted delivery of cell suspension directly onto fibrin thread bundles (average diameter 

310 µm) was achieved with the bundle suspended in mid-air horizontally parallel to the printer’s 

deck mounted on the bioreactor assembly. To compare seeding efficiency, fibrin thread bundles 

were simultaneously seeded with hMSCs using either the cell printer or the current method 

(tube-rotator method) and incubated for 24 hours. Seeded thread bundles were visualized using 

confocal microscopy and the number of cells per unit length of the bundle was determined for 
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each group. The average seeding efficiency with the tube rotator method was 7.0 ± 0.03 % while 

the cell printer was 3.46 ± 2.24% (p = ns). 

In conclusion, the cell printer was found to handle cells as gently as manual pipetting, preserve 

their viability, with the added abilities to dispense cells in user-defined patterns in an automated 

manner. With further development, such as localized temperature, gas and humidity control on 

the cell printer’s deck to aid cell survival, the seeding efficiency is likely to improve. The 

feasibility of using this automated liquid handling technology to deliver cells to biological 

scaffolds in specified patterns to develop vehicles for cell therapy was shown in this study. 

Seeding other cell types on other scaffolds along with selectively loading them with growth 

factors or multiple cell types can also be considered. In sum, the cell printer shows considerable 

potential to develop novel vehicles for cell therapy. It empowers researchers with a supervision-

free, gentle, patterned cell dispensing technique while preserving cell viability and a sterile 

environment. Looking forward, de novo biofabrication of tissue replicates on a small scale using 

the cell printer to dispense cells, extracellular matrices, and growth factors in different 

combinations is a very realistic possibility.  
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Chapter 1: Introduction 
 

Bioprinting can be defined broadly as depositing or dispensing live cells and biologically 

relevant substances in user-defined patterns in two or three dimensions (1). Several technologies 

have been adapted for bioprinting: ink-jet printing (or drop-on-demand printing) (2) (3) (4), 

laser-induced forward transfer (LIFT) (5) or its modifications such as BioLP (6), and syringe-

based gel deposition (7), (8), (9). However, success of these techniques in terms of tissue 

engineering applications of these technologies remains limited and largely confined to individual 

laboratories or groups which have developed these technologies.  

One of the most crucial factors for wider acceptance of such bioprinting technologies in tissue 

engineering applications is the commercial availability of the device with standardized 

configuration at reasonable cost, which has been tested successfully for particular applications. 

Even when such a device is standardized, available for purchase and use, reproducibility of 

success in the hands of different users can be reasonably assured only when parameters for its 

successful use for a particular application (protocol) are clearly defined by rigorous testing. 

Digilab, Inc.’s bioprinter – the Cell Jet, is relatively inexpensive motorized-syringe pump based 

bioprinter, with a time-tested automated liquid handling technology at its core. A prototype 

version of the cell printer, which was used in this project for the purpose of more flexibility of 

operation and easy hardware changes, is precursor for its commercial product. It has the same 

technology of cell dispensing as the commercial version.  

Working towards a larger goal of exploring the use of a bioprinting technology towards a 

specific tissue engineering application, Digilab, Inc.’s prototype cell printer was evaluated as a 

tool for seeding cells onto biological sutures as vehicles for cell therapy for cardiac dysfunction. 

Cardiac failure is a major health burden in the United States and worldwide (10). The main 

reason for disease being a major health cost is that the heart lacks the ability to regenerate 

clinically (11). Cell therapy shows promise to regenerate the heart. Among other cell types, 

human mesenchymal stem cells (hMSCs) have been observed to contribute to cardiac function 

by increasing vascularity as well as limiting scarring in the infarction zone (12), (13). However, 

current methods of cell delivery are inefficient with cell engraftment rates ranging from 1 – 25% 

depending upon the method (14), (15). Fibrin microthread bundles, developed by Cornwell et al., 

have shown to be more effective vehicles to deliver human mesenchymal stem cells to the rat 

heart myocardium compared to direct myocardial injection (16), (17), (18). The process of 

seeding hMSCs onto fibrin microthread bundles currently has an efficiency of about 12%, with 

the remaining 88% of the cells remaining un-utilized (18). If an autologous source of cells is to 

be contemplated for cell therapy using this mode of delivery, an improvement in seeding 

efficiency, to deliver a much higher proportion of therapeutically relevant cells to the target 

tissue, is highly desirable.  
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The current method uses a slowly rotating assembly consisting principally of a sterile silastic 

tubing of 1.98 mm inner diameter filled with cell suspension into which the fibrin thread bundle 

is placed in an incubator for 24 hours. Among the various possible reasons for low cell seeding 

efficiency, a major contributing factor is likely to be the dead space around the fibrin thread 

bundle inside the silastic tubing, in which the cells keep floating in suspension while the 

assembly rotates, without getting an opportunity to settle and attach onto the bundle. If the dead 

space around the bundle is eliminated, with the cell suspension remaining in contact with the 

fibrin thread bundle throughout the duration of the incubation period, an increase in seeding 

efficiency is likely.  

Digilab’s prototype cell printer is an automated liquid handling device modified to handle live 

cells, capable of delivering cell suspensions to substrates in user-defined patterns, including a 

linear pattern onto a target such as a fibrin thread bundle. If cell suspension could be delivered to 

the fibrin thread bundles directly, and conditions favorable to cell seeding be maintained on the 

bundle for a period long enough to allow cell attachment, the dead space in the current assembly 

could be done away with. 

With this rationale in mind, the cell printer was first evaluated for the effects of cell dispensing 

process on the viability of hMSCs. It was hypothesized that the viability of the hMSCs would be 

unaffected by the printing process. A big advantage of this motorized-syringe pump based cell 

printer is that the physical forces acting upon the cell suspension when it is aspirated and 

dispensed by the cell printer are very similar to those encountered while aspirating and 

dispensing using a hand-held pipette. This is unlike other methods of cell printing such as 

thermal inkjet or laser assisted bioprinting, wherein the cell suspension is momentarily exposed 

to temperatures up to 600
o 

C (2), or is subjected to high acceleration and deceleration during 

dispensing process (5), respectively. To test the hypothesis, viability of hMSCs dispensed using 

the cell printer was compared to the viability of cells dispensed manually using a handheld 

pipette.  

Second, a bioreactor assembly was developed to mount the fibrin thread bundle onto the cell 

printer’s deck. The printer was programmed to aspirate a concentrated volume of cell suspension 

and dispense it directly onto the thread bundle, distributing it uniformly through the length of 

bundle. It was hypothesized that the cell printer would be able to deliver cell suspension to the 

thread bundle so as to result in attachment of the cells on the bundle. Additionally, factors critical 

to better seeding of cells onto fibrin thread bundles, and scaffold in general, using this novel 

method were identified in this study. 
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Chapter 2: Background 
 

The broad aim of this project was to explore the capabilities of Digilab’s prototype cell printer to 

dispense and deliver delicate cells (such as human mesenchymal stem cells) in minute volumes 

in user-defined patterns at targeted locations, in order to develop useful applications in tissue 

engineering. This lab being a cardiac tissue engineering lab, tissue engineering approaches to 

quantify and improve cardiac pump function in cardiac disease are studied here. One of the main 

focuses of the lab is development of scaffold based delivery of various types of stem cells for in 

vivo cardiac tissue regeneration. Previous work done in the lab illustrated that biological threads 

made of fibrin and/or collagen, are capable of serving as a scaffold for human mesenchymal stem 

cells (hMSCs) (17). It has also been shown that sutures made of such biological threads show a 

higher rate of in vivo hMSC-engraftment as compared to direct myocardial injection in a rat heart 

model (18). However, the rate of seeding of hMSCs onto fibrin thread bundles (seeding 

efficiency) using the current seeding method which uses a slowly rotating bioreactor made of 

silastic tubing is only about 12%, with abundant scope for improvement. 

With this serving as motivation, this work was aimed at exploring the feasibility use of this cell 

printing technology to seed cells onto relatively thin linear print targets such as a biological 

thread bundle, and identify factors necessary to adapt this novel tool to efficiently seed cells onto 

such scaffolds.  

An overview of Cell Printing and various technologies used for the same is presented in this 

chapter. Thereafter, a brief background of role of fibrin microthread bundles as scaffolds for cell 

therapy in cardiac disease is presented.  

 

2.1: Cell printing: an overview 

2.1.1: Definition 

Cell printing can be defined as automated deposition or dispensing of live cells in user-defined 

patterns in 2 or 3 dimensions on cell culture substrates or pre-formed scaffolds using various 

liquid handling/deposition technologies. Although a categorical definition of the term was not 

found after an exhaustive literature survey, it has been used in the said sense in scientific works 

by several independent groups – Vladimir Mironov et al. (19), Thomas Boland et al. (2), 

Anthony Atala et al. (3), Wei Sun et al. (20), and Makoto Nakamura et al. (4) among others. A 

more technical term is used by certain authors to describe the same process - ‘Direct Cell 

Writing’ (20), (21). 

The term ‘cell printing’ must be distinguished from a similar-sounding term ‘Cell Transfer 

Printing’, also known as ‘Cell Stamping’ (22), which refers to transferring cells attached to a 

source surface of user-defined geometry or pattern (called the ‘stamp’), to a target or destination 
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surface by bringing the two surfaces in contact with each other (‘stamping’ the cell stamp on the 

destination surface), so as to deposit cells on the destination surface in the pattern of the ‘stamp’. 

This is an entirely different concept that relies on the interactions between cells and the surface 

properties of source and destination materials in order to dislodge cells from the former and 

make them adhere to the latter. 

Cell printing can be considered a subset of Bioprinting, a more generic term that includes 

deposition or dispensing of any biologically relevant substance, not just live cells, in an 

automated manner in user-defined patterns in two or three dimensions (19). In addition to live 

cells, biologically relevant substances may include scaffold materials as Collagen, Fibrin, 

Gelatin, Alginate, Agarose and others usually in a hydrogel form, growth factors, nutrient media 

or other substances as may be relevant. 

A closely related term, Biofabrication, has been broadly defined as “the production of complex 

living and non-living biological products from raw materials such as living cells, molecules, 

extracellular matrices, and biomaterials” (1). Biofabrication usually requires assembling, 

arranging or ‘putting together’ of the biologically relevant entities at certain stage(s) in the 

process, which forms the bulk of the process, and finally results into the ‘product’.  

Conceptually speaking, Biofabrication is an approach for tissue engineering, while Bioprinting 

may be regarded as a method. 

2.1.2: Technologies employed for cell printing 

All technologies employed to dispense cells in patterns are modification of pre-existing printing 

or automated liquid dispensing technologies. Being a relatively young concept, born a little over 

a decade ago, technologies and devices used for cell printing are in their nascent stage and are 

constantly evolving with time. Development of cell printing technologies is ongoing and will 

continue as new applications emerge. At the core, all technologies are being modified so as to 

handle live cells gently, causing minimal unwanted perturbation to them.  

A current literature survey revealed the following basic technologies employed for cell printing: 

A. Ink-jet bioprinters (2), (3), (4) utilize either a heating element (thermal inkjet) or a piezo-

electric element (piezo-electric inkjet) to dispense small droplets of cell suspension or 

other biologically relevant liquid load in a cartridge. The paper loading tray of the printer 

is replaced with a Z-stage containing a cell culture dish or other substrate. 

 

B. Laser Induced Forward Transfer and related laser-based bioprinters (5), (6), (23) utilize a 

highly targeted pulse of laser to impart energy to a film of cells in suspension placed on a 

dispense ‘cartridge’, which causes cells in that part of the cartridge to detach and transfer 

to a print substrate placed opposite the cartridge. Patterns are formed on the basis of parts 

of the cartridge that are pulsed by the laser, as defined by the user. 

 



14 
 

C. Syringe-based bioprinters (7), (9) utilize a syringe pump to aspirate and dispense cell 

suspensions through a small diameter nozzle (similar to a hypodermic needle) mounted 

on a ‘print-head’. Pressure is generated inside the syringe (to either aspirate (negative 

pressure) or dispense (positive pressure)) using either compressed air (Pneumatic 

pressure-driven syringe-based bioprinters) or a motorized-piston or plunger 

(displacement-driven syringe-based bioprinters). In either case, when negative pressure is 

applied by the syringe onto the nozzle on the-print head, cell suspension is drawn up 

through the nozzle into the syringe (or a system of tubing connecting the syringe to the 

nozzle). The print-head is moved with respect to the print deck in X, Y and Z directions 

of space using motion control robots. This determines the position, movement velocity 

and acceleration of the print head and of the nozzle. When positive pressure is applied by 

the syringe onto the nozzle, the cell suspension is dispensed onto the print substrate 

positioned on the printer’s deck (or stage). The syringe usually works in tandem with a 

valve positioned in between the syringe and the nozzle, the firing of which at different 

rates allows different volumes of the cell suspension to be dispensed. The combination of 

X, Y, Z position and movement pattern of the print-head as controlled by the motion 

control robot and the pressure applied by the syringe on the cell suspension determines 

the pattern in which cell suspension is dispensed onto the print substrate. 

 

Digilab’s Bioprinter belongs to the third category – syringe-based bioprinters, specifically 

plunger-displacement based bioprinters, versus pneumatic (compressed air) bioprinters.  

Detailed discussion of mechanisms of printing of various bioprinters is beyond the scope of this 

work. However, representative images of the principle types of bioprinters are given below. 

A sample inkjet bioprinter developed by modifying a standard HP Deskjet 550 by Boland et al 

(2) (Clemson University, Clemson, SC) is shown in Figure 1.  

A pneumatic pressure based bioprinter built from scratch by Lee et al. (Brigham and Women’s 

Hospital, Boston, MA) is shown in Figure 2. 

The mechanism of droplet formation for a modified version of laser induced forward transfer, 

known as Absorbing-Film Assisted LIFT (AFA-LIFT) is shown in Figure 46, in the Discussion 

chapter. The mechanics of printing of LIFT based bioprinters are similar to the one described.   
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Figure 1: Example of Ink-jet Bioprinter. Hewlett-Packard DeskJet 550 printers were modified 

to adapt them to print cells by Boland et al. (figure adapted from their journal publication titled 

“Drop-on-demand printing of cells and materials for designer tissue constructs” - (2)). A 

schematic view of the Z-stage mechanism is shown in the schematic on the left (A), and the 

actual printer with the cover taken off, and Z-stage chamber placed in place of the paper-feed 

system is shown in the image on the right (B). Z-stage mechanism (A): After each printed layer, 

the elevator rod is lowered. Since the total volume inside the chamber was constant during the 

lowering of the stage, uncrosslinked hydrogel would flood onto the printed areas. After the rod 

reached the bottom of the chamber, a printed hydrogel structure was formed on the stage.  
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Figure 2: Syringe-based bioprinter: Pneumatic pressure-driver. Lee et al. (24). Side view of 

a pneumatic pressure driven 3D bioprinter platform shown with: 1. a four-channel syringe array 

as cartridges for cells and hydrogel precursors; 2. a four-channel dispenser array; 3. X-Y axes 

control; 4. Z-axis control; 5. the vertical stage; 6. the target substrate; 7. a video camera for the 

monitoring of 3D printing process; 8. a vertical stage heater/cooler; and 9. independent 

heating/cooling unit for a dispenser. Inset: a close-up view of the four-channel dispenser array. 
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Several bioprinters are now manufactured commercially by companies worldwide. The 

prominent ones among them that surfaced during literature review are listed below: 

- Envision TEC, Gladbeck, Germany - 3D Bioplotter 

- Sciperio / nScript, Orlando, FL – ‘BioAssembly Tool’ 

- Neatco, Toronto, Canada - Laboratory Bioprinter  ‘LBP’, in collaboration with MUSC 

Bioprinting Research Center, Charleston, SC 

- Digilab, Inc., Holliston, MA - Cell Jet cell printer 

- Organovo, San Diego, CA – Novogen MMX bioprinter 

 

2.1.3: Top-down versus Bottom-up approach: 

Two approaches towards forming tissue constructs are described in the literature (25):  

A. A “top-down” approach, wherein cells are seeded on pre-fabricated biodegradable 

scaffolds made of materials such as poly (glycolic acid) (PGA) or others. (26) (27) (28) 

(29). In this approach, which is a more conventional approach, cells are expected to 

populate a scaffold and create appropriate extra-cellular matrix, often with the aid of 

perfusion, growth factors, and/or physical stimuli such as mechanical or electrical 

conditioning. Despite advances in core engineering competencies, top-down approaches 

have limitations of not being able to create the intricate micro-architecture of tissues, 

such as small vasculature. 

B. A “bottom-up” approach, also known as “modular tissue engineering”, aims at creating 

smaller building blocks or “modules” made of cells and/or scaffolding material having 

the microarchitecture of native tissue, which can then be assembled to create larger 

functional tissues. Individual modules can be created and/or arranged using various 

techniques such as self-assembled aggregation (30), micro-fabrication of cell-laden 

hydrogels (31), creation of cell sheets (32), or direct printing of tissues (19). 

Bioprinting and Biofabrication are bottom-up approaches in principle. However, the current 

project involves use of a cell printing technology to deliver cells to a pre-formed scaffold 

(biological suture made of fibrin microthreads). The technique thus represents a fusion of the two 

approaches for tissue engineering: a technology used traditionally for bottom-up construction of 

tissues has been employed to deliver cells to a pre-fabricated scaffold with the intent of 

populating the scaffold efficiently.  

Novel solutions to difficult tissue engineering problems may emerge by applying such a 

combined approach, keeping in mind native development of tissues. 
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2.2: Human mesenchymal stem cells and fibrin microthread sutures for 

cardiac regeneration 
 

2.2.1: Cardiovascular disease 

Cardiovascular disease is currently the leading cause of death in the United States (33). Nine 

hundred twenty thousand people in the United States annually suffer from myocardial infarction. 

After a myocardial infarction occurs, 22% of men and 46% of women are diagnosed with heart 

failure within six years. At this point, the heart is unable to pump a sufficient amount of blood to 

the body’s organs, significantly altering a patient’s ability to perform even basic physical tasks. 

Myocardial infarction and coronary heart disease cost patients in the United States over $156 

billion a year (34). The importance of dealing with this disease burden cannot be understated.  

After a myocardial infarction, the heart cannot clinically repair itself. Post-infarction scar tissue 

forms over the dead tissue where the cardiac myocytes perished. If the infarction is not treated, 

the scar tissue will begin to thin and the dimensions of the left ventricle start to change (35). 

Myocardial infarction also has profound effects on the general function of the heart. Ejection 

fraction, the amount of blood in the ventricle that is ejected with each stroke of the heart, 

decreases depending on the size of the infarction. Compensatory responses to restore the ejection 

fraction increase the stress in the ventricular wall because of the extra pressure and volume 

applied. The increase in stress on the non-contractile, thinned-out infarcted scar tissue that 

replaced infarcted myocardium can cause complications including aneurysms and rupture (35).  

2.2.2: Current treatment for myocardial infarction 

The current treatments for myocardial infarction aim at restoring blood flow to infarcted region 

or restoring the normal shape of the heart from a spherical shape to the natural, more efficient 

elliptical shape.  

Procedures to restore blood flow to the ischemic myocardium 

Procedures commonly performed that restore blood flow to the ischemic region of the heart 

include coronary artery bypass grafting (CABG) and percutaneous coronary interventions (PCI).  

Coronary Artery Bypass Grafting (CABG) involves harvesting a segment of a blood vessel 

having a diameter comparable to the coronary artery such as the internal mammary artery (36) or 

saphenous vein (autograft), and anastomosing the harvested blood vessel to the coronary artery 

proximal and distal to the blocked segment of the artery so as to bypass the blockage and thus 

restore the blood flow to the damaged myocardium.  

Percutaneous Coronary Interventions (PCI) refers to a group of interventions wherein a 

flexible catheter is introduced into one of the major peripheral arteries, most commonly the 

femoral artery, and guided inside the lumen of the vessel using a variety of live imaging 

techniques to reach the root of the aorta where the coronary arteries originate. The tip of the 

catheter is then guided into the blocked coronary vessel to reach the blocked segment. A variety 
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of interventions may then be performed to relieve the block (such as blowing up a cylindrical 

balloon to dislodge the thrombus and widen the narrowed segment), with or without additional 

interventions to maintain patency of the vessel (such as plain or drug-eluting stent placement).  

Even though these procedures may serve to restore blood flow to damaged myocardium, they do 

not regenerate the myocardium if it is infarcted (37). Cardiac pump failure that results from the 

infarction is not treated by these methods. 

Procedures to restore shape of the heart 

A myocardial infarction that is replaced by non-contractile scar tissue undergoes remodeling 

over time, where the shape of the ventricle and the heart overall becomes more spherical than the 

normal elliptical one. The abnormal shape contributes significantly to the lowered pump function 

of the heart.  Thus, surgical procedures to restore to the natural, more efficient elliptical shape of 

the heart have been developed. Most common procedures include direct linear closure and 

endocardial patch plasty (Dor procedure) (38). Both these procedures serve to restore 

ventricular dimensions. However they do not address the problem of pump failure actively. The 

overall function of the heart remains compromised because the infarcted tissue does not 

contribute to the pump function.  

Thus, none of the treatment options currently available for myocardial infarction are aimed at 

regenerating contractile myocardial tissue to restore the pump function of the ventricle. 

 

2.2.3: Cell therapy and biomaterials for myocardial regeneration: 

Cellular therapy aims to restore damaged or non-functional tissue back to its functional state by 

implanting specific types of cells in the tissue that can provide necessary cues for regeneration 

and healing. In case of heart failure, instead of excising the infarcted or scarred tissue, it aims to 

regenerate healthy contractile myocardial tissue at the site of the scar tissue.  

A variety of cell types have been used for myocardial cellular therapy: bone marrow stem cells, 

skeletal myoblasts, embryonic stem cells, and cardiac stem cells (39) (40) (41) (42). Ethical 

issues are involved in the use of embryonic stem cells, along with the increased risk of tumor 

formation. Skeletal myoblasts are unable to electrically integrate with cardiac myocytes. There is 

lack of consensus about the existence of cardiac stem cells (43), (44), (45). Considering these 

factors, human mesenchymal stem cells derived from the bone marrow are being explored for 

cell therapy for myocardial regeneration in our laboratory and were used in this project. 

Human mesenchymal stem cells (hMSCs) represent 0.001% to 0.01% of the total nucleated cells 

in the bone marrow, from where they are acquired (43). They are multipotent adult stem cells, 

and have been shown to induce angiogenesis, differentiate into cardiac myocyte-like phenotype 

after being delivered to the heart, and are capable of being utilized without causing an immune 
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response (43) (44) (45). In terms of tissue regeneration, these cells are ideal due to their 

relatively high proliferation rate, genetic stability, and ease of isolation (6) (43) (46). 

hMSCs have been shown to improve metrics of cardiac function post-delivery including increase 

in ventricular performance and reduction in infarct size in many studies (39), (46), (47), (48), 

(49), (50). The exact mechanisms that are responsible for these improvements are not completely 

understood. The theories regarding possible mechanisms include: differentiation of delivered 

hMSCs, cell fusion, a presence of passive cells in the myocardial wall, and paracrine signaling 

(51). Even though controversy surrounds the mechanisms by which hMSCs bring about 

improvement in cardiac function, researchers agree hMSCs help restore a portion of cardiac 

function. For all of the above reasons, hMSCs are used in our laboratory to study cardiac 

regeneration in a rat heart model.  

Despite the great potential shown by hMSCs for cardiac regeneration, their therapeutic effect is 

limited due to lack of an efficient delivery method. Direct intramyocardial injection involves the 

injection of a certain volume of cell suspension directly into a myocardial infarction in a beating 

heart. The main limitation of this method is that once the injection needle is removed, the cells 

are pushed out due to the contraction of the heart muscle (11). Systemic delivery of therapeutic 

cells lacks localization. When cells are delivered systemically, a majority of the cells engraft in 

other organs including lungs, liver, and spleen (49), (52). Due to lack of localization, low cell 

attachment and high rate of cell death, myocardial engraftment rate ranges from 1 to 10% with 

various routes of injection (11), (53).  

The limitations of myocardial cellular therapy due to inefficient delivery methods can be 

overcome by attaching therapeutically relevant cells to suitable biomaterials that can be 

implanted specifically to the site of delivery. Numerous scaffolds have been created for use in 

cardiac applications using gelatin, fibrin, collagen, and alginates in the form of gels or 3D 

scaffolds (14), (15), (54), (55), (56), (57), (58), (59), (60). Despite improved cell survival, 

injectable gel mediated cell delivery has problems of cell and gel retention (41), (54), (59). 3D 

scaffolds used for myocardial regeneration have shortcomings of having insufficient nutrient 

diffusion and vascularization (46), (54). There is a need to develop a scaffold that would improve 

cell viability and aid targeted cell delivery in therapeutically significant numbers to the 

myocardium.  

Discrete fibrin microthreads, developed by Cornwell et al. (61), can be bundled to form thread 

bundles that have higher tensile strengths than fibrin gels and sufficient mechanical properties to 

be pulled through the myocardium using a surgical suture needle. Proulx et al. showed that fibrin 

thread bundles support viability and proliferation of hMSCs without affecting their multipotency 

(62). They were also able to seed thread bundles with physiologically relevant number of hMSCs 

for cardiac regeneration. Additionally, fibrin microthread bundles can be coated with growth 

factors or other biologically relevant molecules to aid cellular attachment and function towards 
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cardiac regeneration. Due to these reasons, fibrin microthreads have been used as vehicles to 

deliver hMSCs to the rat heart in our lab to study myocardial regeneration.  

Fakharzadeh et al. showed that delivering hMSCs seeded on biological microthreads is a more 

efficient method of delivering the cells to a beating rat heart as compared to a direct myocardial 

injection (18). Higher localization of delivery of hMSCs was also achieved (more hMSCs could 

be delivered to the sub-endocardial portion of the myocardium) as compared to myocardial 

injection of the same number of cells, effectively targeting therapeutically relevant portions of 

the myocardium.  

With better efficiency of seeding hMSCs onto biological sutures made of fibrin thread bundles, 

this method has a potential to be developed into an improved treatment modality for heart failure 

resulting from myocardial infarction for millions of patients worldwide.   
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Chapter 3: Hypothesis and Specific Aims 
 

It was hypothesized that the Digilab’s prototype cell printer can dispense human mesenchymal 

stem cells (hMSCs) that have viability comparable to manual pipetting and further that it can 

dispense cells suspension containing hMSCs onto fibrin microthread bundles in a manner that 

delivers the entire cell suspension onto the thread bundle to allow attachment of the cells 

(seeding) onto the thread bundles.  

The hMSCs were dispensed using the cell printer or manually into wells of 96-well plates and 

incubated for 24 hours, stained for viability and examined microscopically. Viability in both 

groups was compared. The cell printer was used to deliver a small volume of concentrated cell 

suspension containing hMSCs onto fibrin microthread bundles. Cells were seeded onto fibrin 

thread bundles using the current method (tube rotator method) in parallel for comparison. The 

seeded bundles were incubated for 24 hours, stained with fluorescent dyes and examined 

microscopically. The number of cells seeded per unit length of thread bundle in both groups was 

determined and efficiency of cell seeding compared.  

Specific Aim 1: Determine the viability of human Mesenchymal Stem Cells (hMSCs) after 

dispense (“post-printing”) using the cell printer 

For this specific aim, we hypothesized that the viability of hMSCs dispensed (or “printed”) using 

the cell printer will be comparable to those dispensed manually using a pipette. In order to test 

this specific aim, we dispensed equal volume of hMSC suspension having a known cell 

concentration into wells of 96-well plates pre-filled with warmed cell culture medium, using 

either the prototype cell printer or a micropipette. Cells were incubated for 24 hours at 37
o
C, 

under atmospheric oxygen, 5% carbon dioxide and 85% relative humidity. Cell culture media 

was removed and cells were then stained with Live-Dead Viability/Cytotoxicity kit for 

mammalian cells (Invitrogen) and Hoechst 33342 dye (Invitrogen). The Hoechst dye stained 

nuclei of all cells, and was used to identify cells during image analysis using software 

(CellProfiler). The Live-Dead dyes stained the cytoplasm of viable cells and nuclei of 

damaged/dead cells. Every well of the 96-well plate into which hMSCs were dispensed and 

stained with the above dyes was visualized using an inverted fluorescent microscope with 3 

filters: one for Hoechst dye (for nuclei of all cells), another for Calcein (stain for the cytoplasm 

of viable cells) and a third one for Ethidium Homodimer-1 (stain for the nuclei of dead or 

damaged cells). Images from the three filters for each region in the well were merged using 

Adobe Photoshop to generate a single image showing both live and dead cells. Multiple such 

images representing different regions of a well were stitched using Adobe Photoshop to generate 

a single image of the entire well showing all cells in that particular well. Images for all wells 

were obtained and processed similarly, and analyzed using software – CellProfiler, open source 

software from Broad Institute, Cambridge, MA, to obtain percentage of viable cells in each well. 

Mean viability of cells in all wells belonging to either group was used for comparison. 
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Specific Aim 2: Determine the ability of the cell printer to deliver cell suspension 

containing hMSCs onto linear scaffolds such as fibrin microthread bundles to seed the 

scaffold with the delivered cells 

For this specific aim, we hypothesized that the cell printer will be able to dispense cell 

suspension containing a known concentration of hMSCs onto fibrin microthread bundles (one 

bundle at a time) in a manner that allows attachment of the cells to the bundle. The efficiency of 

cell seeding (the number of cells that attach onto the bundle divided by the total number of cells 

used for seeding that bundle) was compared to the efficiency of seeding obtained on a bundle 

seeded in parallel using the current method of seeding (tube rotator method) to gauge the 

preliminary effectiveness of the method. To test this, a bioreactor assembly was designed to 

anchor fibrin thread bundles into position inside a sterile 6-well plate (one thread bundle per 

assembly per well), which was then mounted onto the cell printer. A print program was written 

on the software controlling the cell printer, to dispense (“print”) cell suspension onto a pre-wet 

thread bundle held in place in the 6-well plate so as to distribute the suspension evenly on the 

bundle. The thread bundle on the assembly was incubated for 20 minutes (without adding culture 

media) at 37
o
C under atmospheric oxygen, 5% carbon dioxide and 85% relative humidity, to 

allow initial cellular attachment while minimizing cell dehydration due to drying. The bundle 

was then transferred into a pre-sterilized polyethylene tubing bioreactor assembly (similar to the 

one used in the tube rotator method), and 100 µL of culture medium was added. The bioreactor 

polyethylene tubing bioreactor assembly was then mounted onto the tube rotator and incubated 

for 24 hours under atmospheric oxygen, 5% carbon dioxide and 85% relative humidity.  

For comparison, fibrin thread bundles of the same length and diameter were seeded in parallel 

using the current tube-rotator method (using cell suspension obtained from the same cell culture 

flask as for the cell printer group) and incubated for 24 hours under the same conditions. To 

quantify cell seeding, seeded thread bundles from both groups were fixed and stained with 

Phalloidin (dye for Actin cytoskeletal fibers present in the cytoplasm) and Ethidium Homodimer-

1 (dye for nucleic acids which is taken up strongly by nuclei of cells) after 24 hours. Each thread 

bundle was examined using confocal microscopy to visualize cells seeded on one side (half of 

the circumference) of the bundle from end to end. For this, the seeded bundles were visualized 

on the confocal microscope in partly overlapping segments from one end of each bundle to the 

other and a maximum projection of each segment was generated. Maximum projections for all 

segments were then stitched together using Adobe Photoshop to generate the image of one side 

(half the circumference) of the entire length of that thread bundle. Number of cells visible on one 

half of each thread bundle were counted manually and normalized to the length of that bundle. 

To calculate the total number of cells seeded, the number of cells counted on one side of the 

thread was multiplied by two, under the assumption that cells seed evenly on all sides of the 

circumference. Seeding efficiency for each thread bundle was calculated by dividing the total 

number of cells attached to the bundle by the total number of cells used to seed the bundle, 

normalized to the length of the bundle. Mean seeding efficiency in both groups was compared. 
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Chapter 4: Materials and Methods 
In this chapter, materials used and protocols followed to accomplish the specific aims are 

presented. Components and functioning of Digilab’s prototype cell printer are described along 

with its basic functioning. Evaluation of effect of dispensing (‘printing’) process on the viability 

of cells is also described. Fibrin microthread production and bundling is detailed along with the 

current method used to seed the thread bundles with hMSCs (tube-rotator method).Next, the 

bioreactor assembly developed for this project in order to position the fibrin thread bundles onto 

the cell printer to allow the printer to dispense cell suspension onto the bundles, and the protocol 

followed during the cell seeding process, is explained. Thereafter, the cell counting method, 

calculations of seeding efficiency and comparison made are presented. 

4.1: Digilab’s Prototype Cell Printer 
 The prototype cell printer (Digilab, Inc., Holliston, MA) (Figure 3) (referred to as ‘cell 

printer’ hereinafter) is an automated liquid handling device. It has two main functional 

components: Digilab’s proprietary automated liquid handling technology - synQUAD, and a 

high-precision motion control robot. The synQUAD technology allows the user to control the 

volume of liquid aspirated or dispensed, while the motion control robot (X, Y, Z stage) allows 

the user to specify patterns in 3D in which the liquid is to be dispensed. Different combination of 

parameters such as dispense speed, inter-droplet pitch, droplet volume, XYZ stage speed, etc. 

yield different patterns. The cell printer can print on any substrate that can be accommodated on 

the printer’s deck. To use the printer to dispense cells, a sterile environment is essential. For this 

reason, the cell printer is housed inside a biosafety cabinet.  

 

 

 

 

 

 

 

 

 

  

Figure 3: Digilab's prototype cell printer housed inside a biosafety cabinet 
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Figure 5: Schematic describing basics of synQUAD dispensing (courtesy Digilab, Inc.) 

Figure 4: SynQUAD pump (courtesy Digilab, Inc.) 



26 
 

4.1.1: SynQUAD Technology: 

SynQUAD technology was developed to dispense droplets of minute volumes ranging from a 

few nanoliters to a few microliters per droplet (typically 50 nL to 4 µL). The technology is a 

combination of a stepper-motor powered motorized syringe pump and a high-frequency 

microsolenoid valve that are controlled synchronously by a computer.  

When the cell printer is first installed, each synQUAD pump on the printer is connected to a 

reservoir of buffer liquid such as sterile phosphate-buffered saline (PBS) at one end and the 

solenoid valve (and liquid path distal therefrom) mounted on the dispense head at the other end, 

via a system of sterile transparent plastic tubing which is filled with the buffer solution. This 

forms an air-tight column of the buffer solution in the tubing with the motorized syringe pump of 

the synQUAD situated in the path of the liquid column. (Figure 5, Figure 4). When the stepper 

motor on the pump moves the plunger of the glass syringe, it creates a pressure inside this closed 

system of tubing which drives the liquid inside this system of tubing. The direction in which the 

column of liquid moves is determined by a 3-way valve situated in between the feed line, the 

dispense line and the syringe (Figure 5).  

A high-frequency microsolenoid valve is placed in the path of the liquid at the dispensing end of 

the system of tubing on the dispense head. The valve is closed by default. When the syringe 

pump drives the liquid towards the dispense head, the liquid encounters the closed microsolenoid 

valve. The liquid is ejected from the dispense head only if the valve opens. The frequency of 

opening and total open time of this valve determines how much volume of liquid gets dispensed. 

A dispensing tip made of ceramic is fitted distal to the microsolenoid valve on the dispense head 

and forms the very end of the path of the column of liquid, before it is ejected. This tip has a 

narrow orifice which helps dispense liquid with high positional precision on to the printer’s deck. 

The position at which the liquid is dispensed is determined by X, Y, and Z co-ordinates specified 

by the user (Figure 5). 

The syringe pump pushes the plunger into the syringe displacing the column of liquid inside the 

system of tubing. However, because the microsolenoid valve is closed by default and opens only 

when voltage is applied to it, the pressure builds up in this column of liquid inside the closed 

system of tubing. At this point, the microsolenoid valve opens momentarily for a very short 

duration typically lasting a few hundred microseconds, which allows a very small volume of this 

pressurized liquid to escape at high velocity through the dispense tip in the form of a droplet. The 

volume of the droplet depends on the displacement of the plunger affected by the motorized 

syringe pump and the duration of opening of the microsolenoid valve, both of which are 

controlled by a Windows PC-based proprietary software – AxSys. The X, Y and Z position of 

the dispense head relative to the printer’s deck and the speed and acceleration of movement of 

the dispense head are also controlled by AxSys software.  
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4.1.2: AxSys Software and Programming the Cell Printer 

Digilab’s cell printer is controlled by a Windows XP PC based software named AxSys. The 

computer connects to the cell printer via serial two serial cables that relay commands to the 

synQUAD pumps and the X, Y, Z motion-controlling motors on the printer. It is the only means 

through which the cell printer can be accessed and used; there are no on-board motion controls or 

dispense/aspirate buttons on the cell printer itself. 

The AxSys software is structured like a high-level computer programming language. It consists 

of a set of basic commands that the cell printer can execute. Each command is depicted 

graphically and has parameters that the users need to specify. A ‘print-program’ consists of a 

group of such commands specified by the user in sequential logical order as per the function the 

user wants the cell printer to carry out. When this print program is executed or ‘Run’, the AxSys 

relays each of these commands to the cell printer in sequential order, starting from the first one 

(at the top of the list)going through subsequent commands until it reaches the end of the 

commands (at the bottom of the list) or encounters an error. Constructing a print program on 

AxSys, or ‘Programming’, involves adjusting the parameters within individual commands within 

a pre-specified allowable range, with the parameter adjusted and the range differing from 

command to command. Due to the inherent complexity with the number of possible 

combinations, a considerably steep learning curve is associated with the AxSys software. Once 

mastered, however, it allows for tremendous flexibility in the patterns that can be printed using 

cell suspension in media or hydrogel, or only hydrogel, on a flat surface as well as in 3D. (Figure 

6) 

 

  

Figure 6: Programmed 

patterns printed by the 

cell printer inside wells of 

a 6-well plate using 1% 

Sodium Alginate. Top 

row: left to right: 2 wells 

with vertical parallel lines, 

3
rd

 well with horizontal 

parallel lines. Bottom row: 

left to right: square with 

diagonals, the letters WPI, 

3 concentric circles. 
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4.1.2.1: Detailed description of the AxSys software 

The Graphic User Interface (GUI) of the AxSys software upon launch is shown below. (Figure 7) 

 

A brief descriptions of most commonly used commands follow in Figure 8, Figure 9, Figure 10, 

Figure 11, Figure 12, Figure 13, Figure 14, and Figure 15. 

Figure 7: The AxSys Graphic User Interface (GUI) when the program is launched. The 

AxSys GUI consists of some features that are typical to most windows interfaces – menus such as 

‘File, Edit, View, Help’ while the rest are specific – ‘Insert, Run, Tools’. The toolbar across the 

top contains the commands that the user can give to the cell printer in the form of a ‘print 

program’. A typical print program consists of a sequence of basic commands (boxed in red) that 

are executed from the top to the bottom when the program is run. The commands comprising the 

current program are listed in the ‘program window’ (boxed in olive green) which is empty in this 

image.  

Program structure window 

 

Program run 

commands 

 
Basic Programming 

commands 
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Figure 8: The ‘Move’ Command in AxSys. The move command repositions the dispense head 

of the cell printer to any position on the deck of the printer. Changing the X position (either by 

numerical entry or by pressing either left or right arrows) causes the dispense head to move left to 

right (or right to left) with respect to the deck. Similarly, changing the Y position causes the head 

to move forward or backwards with respect to the deck, and changing the Z position causes the 

head to move up or down (away-from or closer-to respectively, to the deck).  

The default position when the printer is initialized is the called ‘Home’ which is assigned the co-

ordinates 0, 0, and 0 in the X, Y and Z axes, and which corresponds to the dispense head being 

stationed at the left-lower corner of the deck in the X, Y axes and all the way to the top (furthest 

away from the deck) in the Z axis. Any movement of the dispense head is with respect to this 

home position. Movements occur in increments of 1 µm (0.001 mm) in all three axes. 

Plate-holders and a wash-waste-vacuum station are positioned at definite sites on the printer’s 

deck. In order to move the dispense head between these stations, nearly all print programs require 

the  use of the ‘Move’ command multiple times in a program. 
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Speed and 
acceleration 
input interface 
for the motion-
control stepper 
motor for the Z 
axis 

Figure 9: The 'Axes Speeds' command in AxSys. The speed and acceleration with 

which the head gets repositioned with the ‘Move’ command each time can be changed by 

using the  ‘Axes Speeds’ command.  

High-resolution stepper-motors control the motion of the dispense head with respect to the 

deck in all three axes; each axis has a dedicated stepper-motor. When the cell printer is 

initialized, these stepper-motors are engaged and hold the dispense head in position 

actively.  

The default maximum speed and acceleration of the motors controlling all three axes is set 

to 80 mm/sec and 1000 mm/sec
2 

respectively. It has been observed empirically that these 

settings work well for moving the dispense head from station to station. However, for 

dispensing cell suspension or other liquids in certain fine patterns, a lower speed and 

acceleration of movement of the dispense head is often required. This can be done by 

inserting the ‘Axes speeds’ command in the program window prior to a ‘Move’ command 

in which the delicate motion is required, and adjusting the speed and acceleration of all 

three axes as need be. When such fine motion is no longer required, another ‘Axes speeds’ 

command may be inserted at that stage in the program, to set the speed and acceleration to 

a higher number to suit head mobility in between stations or whatever else is required.  

For example, the XY axes speed setting used for the ‘Line dispense’ command to gently 

dispense cell suspension containing hMSCs onto fibrin thread bundles was a maximum 

speed of 5 mm/sec and an acceleration of 10 mm/sec
2
.  
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Current dispenser 
status and Dispenser 
selection (in case of a 
printer with multiple 
synQUAD pumps and 
thus multiple 
dispensers 

Aspirate/Dispense 
selection and Volume 
specification  

Manual plunger 
handling interface 
(left) and current 
syringe status (right) 

Figure 10: The 'Dispenser' command in AxSys. This command is used for instructing the 

synQUAD pump(s) on the cell printer to aspirate or dispense liquid (cell suspension or 

media) via the dispensing tip (shown in Figure 5andFigure 4).  

The cell printer may have anywhere from 1 up to 8 synQUAD pumps mounted on a single 

unit, and thus 1 to 8 distinct aspirating and dispensing channels. All channels have one 

solenoid valves and one dispensing ceramic tip per channel, in addition to one synQUAD 

pump per channel. All the channels are mounted on to the head one which they separated 

by a distance of 9 mm. Because the tips are mounted along the X-direction on the head, the 

X co-ordinate that would position the dispensing tip at the target location would differ for 

each channel. Because of this, planning ahead which channel is to be used to aspirate or 

dispense would be vital to in programming the ‘Move’ commands. This is done through the 

‘Dispenser’ command. The prototype used in this project has 4 channels; only 1 of them 

was used for most experiments.  

Additionally, using this command, the user can specify whether to aspirate or dispense and 

how much volume to aspirate or dispense (within the allowable range – zero to 250 µL) 

using a particular channel. The manner in which the volume is to be aspirated or dispensed 

(in terms of number of droplets and volume of each droplet) also can be specified. E.g. if 

100 µL of volume of a liquid needs to be dispensed, it can be done in 100 droplets of 1 µL 

or 1000 droplets of 0.1 µL (or 100 nL) or similar such combinations. Depending upon the 

task at hand, the right combination of channel number, aspirate/dispense and droplet size is 

selected. For mechanism of dispensing, see Figure 5, and Figure 4. 
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dispensed by the 
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use 

  

Figure 11: The 'Syringe Speed' command in AxSys. This command is used to adjust the 

velocity of flow of liquid dispensed or aspirated through a channel. It is necessary to alter 

the flow velocity according to the type of liquid being dispensed and the type of 

aspirate/dispense function being performed.  

For gentle handling of cells in suspension, dispensing or aspirating flow velocities must be 

kept relatively low. This is to prevent damage to the cells that would occur due to shear 

stresses caused at high flow velocities through the narrow orifice of the dispensing tip. 

(Dispensing tip diameters can be 100, 150, 250, 350, or 500 µm. The diameter of the tip is 

selected based on the application for which use of the cell printer is contemplated). For 

aspirating and dispensing cell suspensions, a top speed in the range of 5 to 20 µL/sec is 

recommended (Product manual – Digilab, Inc.).  

At the other end of the spectrum, high flow velocities are required when the channels are 

being cleaned such as during synQUAD pump priming steps (see Figure 12). To eject any 

debris that may be lingering in the channel-in-use from previous programs or current use, 

the flow velocity is set to a high speed (between 60 to 100 µL/sec) and the ‘Prime’ 

command is called which flushes the channel at the set high velocity. High flow velocities 

are also used for bulk dispensing of liquids not containing cells such as reagents or cell 

culture media.  

Whenever a change in the flow velocity is required in a particular channel, this command is 

inserted in the print program just prior to the ‘Dispenser’ command (dispense/aspirate step) 

or ‘Prime’ command for which that flow velocity is needed.  
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SynQUAD pump 
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Figure 12: The 'Prime' command in AxSys. This command is used to ‘prime’ a 

synQUAD pump selected using the ‘Dispenser’ command. The process of priming a 

synQUAD pump begins with ‘initializing’ the pump (unless otherwise specified by the 

user) which realigns and engages the stepper-motor driving the plunger. The motor then 

repositions the plunger to its default position, pushing it all the way into the glass syringe 

emptying out any sterile buffer solution contained in the syringe back into the reservoir. 

This is followed by rapid drawing (aspirating) of 250 µL of buffer solution from the 

reservoir, filling up the glass syringe to capacity, followed by rapid emptying of the same 

volume through the dispense tip. This process is generally done at a high flow velocity. As 

a result, the entire channel gets flushed removing any debris or air bubbles within it. 

A priming step is usually done at the beginning and end of each program, repeated twice or 

more at each instance generally. All synQUAD pumps used in a particular program are 

primed. The priming step at the start is essential to initialize the synQUAD pumps before 

they can be used for aspirate or dispense functions. It also gets rid of any waste within the 

channels that may be left over from previous use. A priming step at the end cleans the 

channels of any waste or residual liquid not dispensed during the program run.  

During the dispensing phase of a prime cycle wherein liquid is ejected out through the 

dispense tip, because of the high flow velocity of the liquid dispensed and the narrow tip 

orifice, the liquid jets out in a straight stream pointing vertically downwards. This 

‘straightness’ of this stream is a useful gauge of how clean the dispense tip is. If there is 

dust or other type of blockage inside tip, the liquid jets out at an angle, or sprays out in 

multiple streams, or doesn’t come out at all, depending upon the degree and type of 

blockage. The tip is cleaned or replaced in such a situation.  
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Figure 13: The 'Line' command in AxSys. The ‘Line’ command, also known as the ‘Line 

Dispense’ command, is used for dispensing a series of droplets of equal volume, equally 

spaced, along a straight line. This is a separate command, distinct from the ‘Dispense’ 

command, in that the dispensing action and the movement of the dispense head with respect 

to the deck occur simultaneously when this command is executed by the cell printer. In the 

‘Dispense’ command, only dispensing (or aspirating) function is performed; the dispense 

head cannot be moved simultaneously.  

The ‘Line’ command takes inputs of the volume is to be dispensed per unit length (per 

centimeter), the inter-droplet pitch (the distance between two consecutive droplets), the 

volume of each droplet, and the X, Y co-ordinates of the start and end point of the line-

segment. These parameters are set according to the pattern desired. For example, for a 

straight continuous line, the inter-droplet is kept less than the expected drop diameter on the 

print surface so that adjacent droplets fuse to form a single line. For an array of droplets 

equally spaced, inter-droplet distance is kept much larger than the drop diameter so that 

individual droplets remain comfortably spaced and do not  touch each other.  

This command is very useful for rapidly dispensing small volumes at regularly spaced 

intervals such as into wells of microtitre plate – a 96, 384 or 1536-well plate or other 

similar targets. This command was used in this project for dispensing hMSC suspension 

onto fibrin microthread bundles, along the length of each bundle evenly distributing the 

suspension for uniform cell seeding. 
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Figure 14: The concept of a ‘Function’ and the ‘Function list editor’ in the AxSys. The image 

above shows a sample program written in the AxSys. The icon towards the top boxed in red 

represents the ‘Function list editor’. AxSys allows the user to store a set of commands 

representing an action that is used repeatedly or has special importance in the print program, to be 

stored as a sub-program called a ‘Function’. Each function must be assigned a unique name by the 

user. All such ‘functions’ created by the user are listed in the ‘Function list editor’ and may be 

‘called’ at any point in the print program using the ‘Call’ command (icon with ( ) boxed in red on 

the top-right). Using the ‘Function list editor’, new functions can be created, and exiting ones 

modified or deleted.  

All functions created by the user are stored in a library assigned to that particular print program. 

Each time the program is loaded from computer memory, the library of functions associated with 

it is loaded automatically. This list is accessed using the ‘Function list editor’. Each print program 

has a unique function library.  

In the print program depicted in the image above, the functions called using the ‘Call’ command 

include ‘start up’, ‘Aspirate from front holder plate A1’, ‘Move to waste’, ‘Dry tips’, and ‘Z-safe’. 

Functions are usually named meaningfully, with the name specifying what action it represents and 

distinguishing it from other similar actions. One or more functions can be called within a 

function, which in turn can call several functions within them. Such nesting of functions allows 

the user to create complex print programs in an organized manner and navigate through them with 

ease. 

 

Function list 
editor. Contains a 
list of ‘functions’ 
that can be 
called. Each 
function is a user-
defined subset of 
basic commands 
of the AxSys 
instructing the 
cell printer to 
perform a process 
or action that is 
required 
frequently by the 
user in that 
particular print 
program.  

‘Call’ command 
allows user to call 
a function 
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Figure 15: The 'Loop' command in AxSys. The icon boxed in red with a circular arrow 

pointing at its own tail represents the ‘Loop’ command. When a function needs to be called 

repeatedly at one stage in the print program, the ‘Loop’ command allows the user to loop a 

function over and over again up to a user-specified number of times, instead of having to use 

the ‘Call’ command repeatedly. Along with the nesting feature available in the ‘Call’ command 

and the concept of a ‘Function’ in AxSys, the ‘Loop’ command is a very powerful feature in the 

software that allows the user the flexibility to construct fairly complex print programs. 
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‘Wash-pump’ and ‘Vacuum-pump’ commands in AxSys: In addition to the commands 

described in the figures above, these two commands are also used frequently, but are relatively 

simple and do not merit detailed description. The ‘Wash-pump’ command is used to switch on or 

off a peristaltic pump that circulates a washing or cleansing liquid through wash and waste 

stations on the printer’s deck. At the end of a print program, the dispense tips are wiggled in 

running flow of a cleansing liquid circulated through the wash station by switching on the wash 

pump. This cleanses them of any residual active reagents that may be clinging onto them. 

The ‘Vacuum-pump’ command is used to switch on or off the suction pump that connects to the 

vacuum station on the printer deck. The vacuum station is a hollow closed cuboidal box 

connected to the suction pump, with holes on its top surface that are just large enough to 

accommodate the dispense tips. To dry dispense tips from the outside, the dispense head is 

moved over to the vacuum station and the dispense tips lowered into the station through these 

holes. The suction pump is switched on momentarily to introduce a negative air pressure around 

the tips. Any liquid clinging onto the outside of the tips gets sucked into the vacuum station 

leaving the tips clean.  

Residual droplet(s) from wash step or a previous aspirate-dispense action may remain clinging 

on the outside of a dispense tip near its orifice. In this case, when droplets of minute volume are 

dispense through that tip, they may not eject cleanly off the tip due to surface tension and charge 

interactions between the dispensed droplets and the clinging residual droplet(s). The angle at 

which the droplets leave the tip may also change as a result of these interactions causing 

inaccurate deposition of droplets. To prevent this, cleaning the dispense tips from outside at the 

vacuum station is essential before actual dispense steps.  

 

4.1.2.2:General Logical Sequence of a Print Program on the Cell Printer 

At the beginning of every program, there are a few steps that need to be implemented for the cell 

printer to perform optimally: 

 The motion control robots that move the head with respect to the printer’s deck in all 

three axes need to be ‘homed’ i.e. moved to home position. This is because all 

movements of the printer’s head are relative to this home position. Hence, it is vital for 

the printer’s motion control system to identify the home position and remember it before 

each run. 

 The synQUAD pumps that are going to be used in the particular program must be primed 

after the homing. Priming the pumps ‘initializes’ them, which is essential before any 

aspirate or dispense commands can be executed by the pumps, in addition to flushing the 

channels and the tips of any residual liquids / debris from previous program runs. 

 The ceramic tips need to be vacuum dried after the pumps are primed in order to remove 

any buffer solution that is clinging to the outside of the tip. 
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After the initial steps, there is generally an aspirate step, wherein the head is moved to a source 

of the liquid that needs to be dispensed, which in this project for the most part was either cell 

suspension or cell culture media. The source can be either a handheld source, such as an 

Eppendorf tube containing cell suspension, or a mounted source, such as a 96-well plate mounted 

on the deck of the cell printer, with one of the wells filled with the cell suspension. In either case, 

the head is moved to the source, the tip(s) lowered into the source, followed by multiple aspirate-

dispense loops that perform a triturating action re-suspending any cells that may have settled 

inside the source vial/tube/well. After mixing the cell suspension to uniformly re-suspend the 

cells, the cell suspension (or media) is aspirated into the coil of tubing above the ceramic tip. 

(Aspiration reservoir in Figure 5). The tip(s) is/are then raised to a safe height such that they 

would clear all structures mounted on the printer’s deck when the head is moved around.  

The aspirated cell suspension (or media) is then deposited onto a target that varies considerably 

from program to program.  

For the cell viability studies performed in this project (described next), human mesenchymal 

stem cell suspension was aspirated from a well of 96-well plate mounted on the deck and was 

dispensed into wells of another 96-well plate mounted on the deck.  

For seeding fibrin thread bundles with human mesenchymal stem cells, cell suspension was 

aspirated from a hand-held source (an Eppendorf tube containing cell suspension), and dispensed 

over the fibrin thread bundles so as to evenly distribute the suspension along the available length 

of seeding of the bundle. 

Similarly, cells are deposited onto various targets depending upon the application for which the 

cell printer is being used. 

 

4.1.2.3: Steps of Programming the Cell Printer on the AxSys 

The concept of programming on AxSys is similar to that in a higher level computer 

programming language, except that instead of typing logical commands, the commands in AxSys 

are graphical with both quantitative and qualitative inputs to adjust parameters in each command. 

A print program consists of a series of commands written by the user in logical sequence. When 

executed the program is interpreted and run line by line by the AxSys software which constantly 

relays these commands to the cell printer, until it reaches the last line in the program or 

encounters an error.  

In order to program successfully on the AxSys (write a program that makes the cell printer do 

exactly what the user has in mind), the user must first be familiar with each command in 

appropriate detail so as to know exactly what action that particular command will translate into 

on the cell printer.  
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Secondly, the larger picture of a particular program must be clear in the user’s mind before s/he 

begins writing the program. This is because at every line in the program, each command is 

interpreted and executed by the cell printer in the context of the commands that have been 

already executed thus far into the program. Only when the user has a clear picture of the program 

in its entirety can s/he write the correct commands at every step in the program. 

A sample program written in the AxSys is depicted in Figure 16. A description of the actions 

each line of the program would translate into, on the cell printer is given in the caption of the 

figure. 
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Figure 16: Sample program written on AxSys. This figure depicts the skeleton of a typical 

program written on the AxSys involving aspirating cells from one source and dispensing them 

to a destination. 

 The first command is a ‘Call’ command, calling the function named ‘start up’, which 

has stored inside it a set of routine actions performed by the cell printer at the start of 

most programs run by this user (typically – homing the motion control robot in X, Y and 

Z axes, priming the synQUAD pumps and drying the ceramic tips after priming at the 

vacuum station).  

 Next is a ‘Pause’ command that would prompt the operator (or user) to perform a check 

or take an action before proceeding.  

 In the third line, ‘Aspirate from Front holder A1’ function is called, which has stored 

inside it a set of commands to move to address A1 in 96-well plate mounted in the front 

holder of the printer’s deck and aspirate a required volume of liquid such as cell 

suspension from the well.  

 The fourth line calls a function to move the dispense head to the waste station in order 

to prepare for the next step, wherein 100 nanoliter droplets of the aspirated liquid are 

dispensed 5 times (call function looped 5 times), in to the waste station.  

 The sixth line calls a function that would move the tips to the vacuum station, lower 

them into the station, switch on the vacuum pump to dry the tips on the outside, and 

then raise the tips to a safe height. The steps that follow call functions to clean the tips at 

the end of the program and reposition the motion control robot to home in all three axes. 
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4.2: Post-printing Viability of Human Mesenchymal Stem Cells 
Before using the cell printer to dispense hMSCs for any purpose, it was necessary to determine 

whether the printing process would affect the viability of the cells. Because the contemplated use 

of the cell printer was to dispense hMSCs onto fibrin thread bundles, the time point at which 

post-printing cell viability was determined was selected as 24 hours - the time period that the 

current cell seeding method takes to seed hMSCs onto fibrin thread bundles. In order to compare 

cell seeding efficiency of two methods at 24 hours, it was required to determine first whether the 

printing process affected cell viability as observed 24 hours post-printing.  

For this, hMSCs were dispensed into wells of 96-well plates using either the cell printer or a 

hand-held micropipette (the current gold standard). After 24 hours of incubation at 37
o
C, under 

atmospheric oxygen, 5% carbon dioxide and 85% relative humidity, cells were stained with 

Live-Dead Viability/Cytotoxicity kit for mammalian cells (Invitrogen) and Hoechst 33342 dye 

(Invitrogen).  

The Live-Dead Viability/Cytotoxicity kit for mammalian cells (Invitrogen) involves staining 

cells which are to be tested for viability with two dyes – Calcein AM and Ethidium Homodimer-

1. Live cells are distinguished from dead or damaged ones by the presence of ubiquitous 

intracellular esterase activity, determined by the enzymatic conversion of the virtually non-

fluorescent cell-permeant Calcein AM to the intensely fluorescent Calcein. The polyanionic dye 

Calcein is well retained within live cells, producing an intense uniform green fluorescence in the 

cytoplasm of live cells (excitation/emission ~495 nm/~515 nm).Ethidium Homodimer-1 only 

enters cells with damaged membranes and undergoes a40-fold enhancement of fluorescence 

upon binding to nucleic acids, thereby producing a bright red fluorescence in dead cells 

(excitation/emission ~495 nm/~635 nm). Ethidium Homodimer-1 is excluded by the intact 

plasma membrane of live cells. (Product data sheet from Molecular Probes, Invitrogen, Carlsbad, 

CA).  

Even though the Live-Dead viability kit was sufficient to distinguish between live and dead cells, 

hMSCs were additionally stained with Hoechst 33342 dye (excitation/emission ~350 nm/~461 

nm) which stains double stranded DNA present in the nucleus. This was done for the purpose of 

facilitating software-based image analysis, which requires that the nuclei of all cells in the image 

to be analyzed be stained and clearly defined, for accurate count results. Calcein AM in the Live-

Dead viability kit gets enzymatically converted to brightly fluorescent Calcein in the cytoplasm 

of live cells, thus clearly defining the cytoplasm; however, it does not stain the nucleus. To 

complement this cytoplasmic stain, a nuclear dye Hoechst 33342 dye was used. (In case of the 

dead cells, the Ethidium Homodimer-1 penetrates damaged membranes and binds to nucleic 

acids inside the cells – mostly the DNA of the nucleus, clearly defining the nucleus and 

facilitating identification by the software). 
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4.2.1: Protocol for the hMSCs-viability Comparison Assay: 

1. Programming the cell printer: Prior to conducting the viability comparison assay, a 

program was written to aspirate cell suspension from a well of a 96 well plate and 

dispense twelve aliquots of 10 µL each of the aspirated cell suspension into twelve wells 

of another 96-well plate mounted on the printer’s deck. The program was tested for errors 

(debugging) using water and corrected as necessary. 

2. Trypsinizing cells and setting up control group: Human mesenchymal stem cells 

(passage 9) were trypsinized and re-suspended in DMEM containing 10% fetal bovine 

serum (FBS), 1% Penicillin and 1% Streptomycin (Lonza, Walkersville, MD). Cells were 

re-suspended so as to yield a final concentration of 500,000 cells per mL. Aliquots of 10 

µL each of cell suspension (equivalent to 5000 cells) were pipetted manually into twelve 

wells of a sterile 96-well plate pre-filled with 200 µL of cell culture media (indicated by 

pink colored wells in the control group in the figure below). Provision for appropriate 

controls for dyes was also made – no cells were added to these wells (Figure 17). 

 

 

 

 

 

  

Figure 17: Experimental design for hMSC-viability-comparison assay. A sterile 96-well 

plate was used for the viability comparison assay. Twelve wells were seeded with hMSCs in 

each group, 24 in total (A5-A8 and B1-B8 in cell printer group, and C5-C8 and D1-D8 in 

manual-pipetting group). hMSCs treated with 70% ethanol were used as dead control in both 

groups (wells A3, A4, C3, C4). Control wells for dyes to test for auto-fluorescence were not 

seeded with cells (A1, A2, C1, C2).  
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3. Dispensing cells using the cell printer: The remaining cell suspension was transferred 

to a single well of a fresh sterile 96-well plate, and mounted on the front holder of the cell 

printer’s deck taking sterile precautions. The 96-well plate with twelve wells, already 

seeded with hMSCs manually using a micropipette, was also mounted on the deck of cell 

printer on the rear holder. The print program, previously written and tested to aspirate cell 

suspension from one well of a 96-well in the front holder and dispense twelve aliquots of 

10 µL each into twelve wells of 96-well plate in the back holder (in the pattern shown in 

Figure 17), was then executed. After completion of the print run, the 96-well plate seeded 

with hMSCs was transferred to an incubator and incubated for 24 hours at 37
o
C under 

atmospheric oxygen, 5% carbon dioxide and 85% relative humidity.  

4. Staining cells for viability: Just prior to completion of the 24-hour incubation period, 

Calcein AM and Ethidium Homodimer-1 dye solution was prepared fresh in serum free 

Dubecco’s modified Eagle’s medium (DMEM) (0.5 µL Calcein AM and 2 µL Ethidium 

Homodimer-1 in 1 mL of serum-free DMEM). Total 6 mL of dye solution was prepared 

(200 µL per well for 30 wells in total including controls). 

 

Note: Calcein AM degrades spontaneously into Calcein in aqueous solutions, therefore it 

is necessary to prepare the dye solution fresh and use it within an hour. Also, bovine(and 

human) serum has esterase activity which converts Calcein AM into Calcein. Thus, it is 

necessary to use serum-free media as solvent for these dyes (product data sheet). 

 

After the dye solution was prepared, the 96-well plate seeded with hMSCs was removed 

from the incubator and transferred to a biosafety cabinet. The cell media from all wells in 

the 96-well plate was suctioned out and 200 µL of freshly prepared Calcein AM and 

Ethidium Homodimer-1 dye solution was added to each well (as shown in Figure 17). 

The cells were incubated at 37
o
C under atmospheric oxygen, 5% carbon dioxide and 85% 

relative humidity for 15 minutes. While the cells incubated with the dye solution, a 

second dye solution containing Hoechst and the Live-Dead stains was prepared: 0.5 µL 

Calcein AM, 2 µL Ethidium Homodimer-1, and 0.5 µL Hoechst 33342 dye in 1 mL of 

serum-free DMEM. Total 6 mL of dye solution was prepared for 30 wells in both groups, 

including dye controls. 

 

After 15 minutes, the 96-well plate was transferred from the incubator to the biosafety 

cabinet; the first dye solution was suctioned out of all wells, and second dye solution 

containing Hoechst in addition to Live-Dead stains was added to all wells (200 µL per 

well). The cells were incubated for another 15 minutes with the second dye solution and 

then visualized with fluorescence microscopy (Leica DM IL microscope) (Figure 18). 
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5. Imaging using fluorescence microscopy and post-processing: All wells seeded with 

cells were imaged with fluorescence microscopy (Leica DM IL inverted microscope). 

Imaging each well in its entirety was essential to obtain total number of cells and 

percentage of viable cells in each well. For this, a ‘tiling’ technique was used in which 

images of different but slightly overlapping regions of the wells were taken, to cover the 

entire well region by region. Three images were taken for each region, using three optical 

filters - one each of the three dyes – Calcein, Ethidium and Hoechst. These three images 

for each region were then overlaid using software (Adobe Photoshop) to obtain a single 

image showing objects stained by all three dyes for that region. All regions of a well 

imaged and processed similarly were then stitched using software (Adobe Photoshop) to 

Figure 18: Fluorescence microscopy for hMSC-viability comparison assay. Cytoplasm of live 

cells fluoresce bright green with Calcein (top left), nucleic acids (mostly DNA in the nucleus) of 

dead cells take up Ethidium that fluoresces red (top right). Hoechst (bottom left) was used as a 

counter stain for the cytoplasmic dye Calcein. Overlay of all three images is shown on the bottom 

right. 
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obtain a single image of the entire well showing all objects in the well stained with all 

three dyes. (Figure 19) 

 

Figure 19: Stitched image showing an entire 96-well plate well seeded with hMSCs. ‘Tiling’ 

(imaging different but slightly overlapping areas of the well) was done to image an entire well, 

using three fluorescent filters for each region – one for each dye. Images of separate regions (or 

‘tiles’) were then stitched together to form a single image of the entire well as shown in this 

figure. The same procedure was followed to image all wells seeded with hMSCs and dye 

controls in both groups.  
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6. Image Analysis using Cell Profiler: Images of all wells were analyzed using an open 

source image analysis software – Cell Profiler (Broad Institute, Cambridge, MA) – 

www.cellprofiler.org. 

 

 

 

4.2.1.1: Obtaining Accurate Counts of Viable hMSCs from Image Analysis: 

 

Initial attempts at identifying the live-cells based on the cytoplasmic staining (Calcein) yielded 

inaccurate results because all object identification algorithms in Cell Profiler (and other 

equivalent open source software) are designed to identify fairly round objects, not irregularly 

shaped ones. hMSCs are stellate, triangular or spindle shaped when in tissue culture in vitro and 

the bright green Calcein cytoplasmic signal in viable hMSCs follows the same contour in images 

taken by fluorescence microscopy. These were not conducive to being identified accurately by 

any of the algorithms in the software. Attempts were also made to design custom algorithms on 

MatLab (Mathworks, Inc.) but were unsuccessful. The algorithms of the software are most 

accurate at identifying nuclei of cells due to their round morphology. Thus, it was decided to add 

an additional counter-staining for the nuclei - Hoechst 33342, using the count of the nuclei as a 

representation of the count of cells. 

However, with Hoechst staining, not all objects that showed the Hoechst signal showed 

cytoplasmic Calcein signal around them. The reasons for this observation are not known, but it is 

speculated that these objects were nuclei of cells that were damaged or had weak esterase 

activity; not enough to catalyze conversion of Calcein AM into fluorescent Calcein. A few of 

these round objects (probably nuclei) showed an Ethidium signal, while the rest did not. Due to 

such non-uniformity of co-localization of nucleic Hoechst signal, cytoplasmic Calcein signal and 

nucleic Ethidium signal, defining a uniform rule to classify all Hoechst stained objects as 

belonging to the class of either viable or non-viable cells was not possible in the raw images 

without further post-processing. 

http://www.cellprofiler.org/


47 
 

To circumvent this problem, images of entire wells were scanned by eye for round objects that 

showed a Hoechst signal (nuclei) but did not co-localize with either Calcein cytoplasmic signal, 

or nucleic Ethidium signal. Under the reasonable assumption that such nuclei could not be 

conclusively considered as belonging to viable or non-viable cells, these objects were excluded 

from the images by manually masking them with black color (same as background color) using 

the paintbrush tool in Adobe Photoshop. These modified images were then used for image 

analysis in Cell Profiler. This post-processing prior to analysis was done for images obtained 

from all wells in both groups (Figure 20).  

Also, nuclei that stained with both Hoechst and Ethidium Homodimer-1 (i.e. round objects where 

the red and blue color co-localized) were considered as those belonging to dead cells. (Recall 

that Ethidium Homodimer-1 can permeate only damaged cell membranes, not intact ones in 

viable cells). To account for these, objects that showed both Hoechst and Ethidium signal were 

counted manually in all images. The count of such objects was subtracted from the total count of 

objects that stain with Hoechst obtained from the modified images using Cell Profiler. Recalling 

that the modified images contained only those objects that showed a Hoechst signal co-localized 

with Calcein or Ethidium, subtracting the count of objects that showed a Hoechst signal co-

localized with an Ethidium signal yielded the count of only those objects that showed a Hoechst 

signal co-localized with or surrounded by a Calcein signal i.e. viable cells.  
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Figure 20: Image correction for 

objects stained with Hoechst but 

not with Caclein or Ethidium. 

Objects that showed a Hoechst 

signal and a Calcein signal around 

it were considered as live cells. 

Those that showed a Hoechst signal 

and an Ethidium Homodimer-1 

signal or Ethidium Homodimer-1 

signal alone, were considered as 

dead cells. Those that showed 

Hoechst signal but did not co-

localize with a Calcein signal or an 

Ethidium Homodimer-1 signal 

were identified manually in all 

images (depicted in the top image 

by broken white circles). Such 

objects were masked using the 

paintbrush tool in Adobe 

Photoshop to yield a modified 

image as shown in the bottom 

image, lacking only these objects 

but preserving all others. These 

modifed images were used for 

analysis in Cell Profiler software, 

to obtain a count of the total 

number of objects that showed a 

Hoechst signal. Additionally, 

objects that showed both Hoechst 

and Ethidium Homodimer-1 signal 

were also identified and counted 

manually in each image (depicted 

by broken red circle in bottom 

image). The count of such objects 

was subtracted from the count of 

total number of Hoechst stained 

objects (nuclei) obtained from in 

the modified images using Cell 

Profiler to correct for dead cells 

that picked up both Hoechst and 

Ethidium. This entire process 

yielded the count of only those 

objects that picked up Hoechst 

signal (nuclei), co-localized with a 

Calcein signal, and did not co-

localize with an Ethidium signal, 

i.e. viable cells. 
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4.2.1.2: The Image Analysis Process: 

Detailed description of how the image analysis software Cell Profiler works is beyond the scope 

of this work. However, the basic steps that were followed in the algorithms to obtain a count of 

Hoechst and Ethidium stained objects in the modified (post-processed) images are described. 

Identification of Hoechst-stained nuclei: (Figure 21) 

i. The images to be analyzed were first ‘loaded’ onto the analysis software, by specifying a 

folder location where the images were located on a local drive on the computer. 

ii. The intensity of blue color (Hoechst signal) at each pixel in the image was displayed on a 

grey scale i.e. the blue channel was converted to grey scale. Based on the intensity of the 

background in immediate surroundings of each object, a local threshold for minimum 

acceptable intensity for foreground objects was calculated by the software for that region 

(Otsu-adaptive algorithm). Pixels in the image having intensity higher than this calculated 

threshold were considered as belonging to the foreground. 

iii. Foreground pixels were then grouped into ‘objects’ based on shape; objects with elliptical 

shape were sought for by the software algorithm (assuming the objects are all nuclei 

which are more or less round). The number of such individual objects identified (object 

count representing number of Hoechst-stained nuclei) was exported to a MS Excel sheet. 

To obtain the total number of Hoechst-stained nuclei in each well, individual counts of 

Hoechst-stained nuclei obtained from images representing all sub-regions of each well 

were summed. This gave the total number of nuclei in each well, most of which belonged 

to live cells and a few to dead cells (showing Ethidium signal as well). The exact number 

of nuclei belonging to live cells was obtained after manually correcting for those that 

stained with Ethidium Homodimer-1 as well; as described in Figure 20.  

Identification of Ethidium-stained nuclei: (Figure 22) 

A similar algorithm was used to identify Ethidium-stained nuclei, with the exception that 

the red channel was converted to grey scale. A threshold was similarly calculated to 

differentiate pixels into foreground and background based on the intensity of the red 

color at each pixel. Pixels were grouped into ‘objects’ and the number of objects 

identified in each image was exported to an excel sheet. This represented the number of 

Ethidium-stained nuclei in the image, i.e. number of dead cells. To obtain the count of 

total number of dead cells in each well, individual counts of Ethidium-stained objects 

obtained from images representing all sub-regions of each well were summed.   
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Figure 21: Identification and counting of Hoechst-stained nuclei using Cell Profiler. The 

original image depicting an overlay of the Calcein, Hoechst and Ethidium signals in 1/16
th

 of a well 

is shown on the top left. From this, only the Hoechst signal (blue channel) was used for analysis 

after post processing. In the first step, the software converted the input image (top-right) into a grey 

scale image based on the intensity of blue color at every pixel in the image (bottom-left). A 

threshold for minimum intensity to segregate foreground objects from the background was 

calculated by the software based on the background color and intensity. All pixels in the image that 

had intensity higher than this minimum threshold intensity in the blue color were assigned to 

foreground, while the rest were assigned to background. The foreground pixels were then grouped 

into individual ‘objects’ based on the shape of adjoining foreground pixels (bottom right). The 

count of individual objects identified was exported to an MS Excel sheet. 
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Figure 22: Identification and counting of Ethidium-stained nuclei using Cell Profiler. The 

original image depicting an overlay of the Calcein, Hoechst and Ethidium signals in 1/16
th

 of a well 

is shown on the top left. From this, only the Ethidium signal (red channel) was used for analysis. In 

the first step, the software converted the input image (top-right) into a grey scale image based on 

the intensity of red color at every pixel in the image (bottom-left). A threshold for minimum 

intensity to segregate foreground objects from the background was calculated by the software 

based on the background color and intensity. All pixels in the image that had intensity higher than 

this minimum threshold intensity in the red color were assigned to foreground, while the rest were 

assigned to background. The foreground pixels were then grouped into individual ‘objects’ based 

on the shape of adjoining foreground pixels (bottom-right). 
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4.2.1.3: Calculation of percentage of viable cells: 

Nuclei that showed both Hoechst and Ethidium signal as shown in the bottom image in Figure 20 

(i.e. nuclei of cells with damaged membranes) were counted manually in the post-processed 

image of the entire well, for all wells. The count of such nuclei was subtracted from the total 

number of nuclei that stained with Hoechst for the respective well obtained using Cell Profiler, 

for all wells. Recalling that image post-processing allowed only those objects that showed a 

Hoechst signal co-localizing with either Ethidium or Calcein signal to remain, this subtraction 

yielded the count of objects (nuclei) that showed a Hoechst signal co-localizing with a 

cytoplasmic Calcein signal i.e. count of viable cells. Such a count of viable cells was obtained 

for all wells seeded with hMSCs in both groups. 

The count of objects that stained with Ethidium Homodimer-1 in a well was used as the count of 

non-viable cells in that well. As for the viable cell count, the count of non-viable cells was also 

obtained for all wells.  

The sum of viable and non-viable cells of respective wells gave the total number of cells for all 

wells. Percentage of viable cells was obtained by dividing the number of viable cells by the total 

number of cells for all wells. 

4.2.1.4: Comparison of cell viability  

Mean cell viability was calculated for both groups - wells seeded with hMSCs using the cell 

printer or by manual pipetting, and used for comparison. The hypothesis that there was no 

difference between the viability of hMSCs between the two groups was tested statistically. 
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4.3: Fibrin Microthread Production and Bundling 
Fibrin microthreads were extruded using a previously established protocol (61). Two separate 1 

mL syringes were each filled with thrombin and fibrinogen taken from bovine plasma (Sigma 

Aldrich, St. Louis, MO). A blending application tip was used to combine the thrombin and 

fibrinogen and the combined solution was extruded through 0.38 mm inner diameter 

polyethylene tubing (Beckton Dickinson, Franklin Lakes, NJ) (drawn by hand) into a 10 mM 

HEPES, 7.4 pH bath that was kept at room temperature (Figure 24). After 15 minutes in the bath, 

the microthreads were taken out and air dried (Figure 23). Dry microthreads have an average 

diameter of about 35 µm (Figure 25). 

 

 

  

Figure 24: Diagram depicting extrusion of fibrin microthreads (61) 

 

 

 

 

 

 

 
Figure 23: Fibrin 

microthreads - gross 

appearance. Fibrin 

microthreads are stretched 

and hung to be dried at room 

temperature on the lab bench 

top, usually overnight. Dry 

fibrin microthreads are thin, 

long, hair-like, shiny greyish 

white in appearance. Red 

arrows to the left of the 

image mark one end of the 

microthreads in this image.  
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Individual dry fibrin microthreads have a diameter ranging from 20 to 50 µm (61). They are 

quite delicate and do not have sufficient mechanical strength to be used as sutures on a needle. 

They also do not have sufficient surface area to allow attachment of hMSCs. To circumvent this 

problem, individual fibrin microthreads were ‘bundled’ to form a thicker, stronger suture-like 

structure, having sufficient mechanical strength to be used as a suture and having enough surface 

area to allow cellular attachment.  

Each fibrin thread bundle used for this work consisted of 12 fibrin microthreads. For bundling, 

12 fibrin microthreads were placed adjacent to each other and bunched together at one end, held 

in place by using adhesive tape. Droplets of de-ionized water were slowly ‘dragged’ along the 

length of the bunched thread from the taped end to the other end, to wet all the bundles end to 

end. As the microthreads hydrate, they aggregate spontaneously and stick to each other when 

sufficiently wet. Once aggregation was observed after repeated wetting of the bunched 

microthreads, they were suspended freely; vertically held at their taped end and hanging freely at 

the other end (Figure 26). The microthread bundle was then twisted repeatedly by hand at its free 

end in a clockwise direction (when looking at the cross-section of the thread bundle from its free 

Figure 25: Scanning electron micrograph of fibrin microthreads (61) 



55 
 

end). Twisting of the bundle has been observed to help the individual threads adhere better and 

prevents fraying. To make sure the entire length of the bundle was twisted uniformly, the bundle 

was twisted repeatedly from the free end until the twists on the bundle ‘traveled’ all the way 

along the length of the bundle from the free end to the taped end. The twisted bundle was then 

secured at the free end with adhesive tape and allowed to dry in the air.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Air dried bundles prepared in this manner were then incorporated into the bioreactor assemblies 

used in the two seeding methods - the cell printer and the tube rotator method for seeding hMSCs 

onto the thread bundles.  

Adhesive tape Fibrin microthreads 

Step 1: Twelve individual microthreads 
were anchored in a bunch at one end using 
tape 

Step 2: The bunched microthreads were 
wet from one end to the other with de-
ionized water in order to hydrate them. 
Wetting causes them to aggregate into a 
bundle spontaneously. 

Step 3:  The hydrated bundle was twisted 
by hand at its free end in the clockwise 
direction, repeatedly, until the twists 
traveled the entire length of the bundle. 

Step 4:  After twisting, the bundle was 
secured at the free end with adhesive tape 
and was allowed to air dry. 

Figure 26: Schematic depicting steps of making a bundle of twelve fibrin microthreads 
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4.4: Comparison of Seeding efficiency 
 

4.4.1: Overview 

In order to compare the efficiency of the two methods – the current method (tube rotator method) 

and the cell printer method – for seeding of hMSCs onto fibrin thread bundles, special 

bioreactors were designed for both methods.  These were designed so as to allow hMSCs in cell 

suspension to come in contact with fibrin thread bundles for a sufficient period of time and to 

provide an environment conducive to cell survival and seeding. Cell seeding onto thread bundles 

was carried out simultaneously with both methods using the same cell suspension, for 

comparability. The bioreactors freshly seeded with cell suspension were then incubated for 24 

hours at 37
o
C under atmospheric oxygen, 5% carbon dioxide and 85% relative humidity. 

Visualizing the threads by confocal microscopy after staining with fluorescent dyes was selected 

as method of choice to count the number of cells on each thread bundle over other methods due 

to reasons detailed in the discussions chapter. For this, seeded threads were then fixed, stained 

and mounted on cover-slips for examination using confocal microscopy. The entire length of 

each bundle was imaged on the confocal scope in serial segments from one end to the other end. 

Maximum projections were generated for each segment of the bundle, which were then stitched 

using Adobe Photoshop into a single image showing one side of the entire length of the seeded 

thread bundle. The number of cells visible in this image (on one side of the bundle) on each 

thread was counted manually at least twice by different individuals to account for subjectivity. 

The counts were then averaged to obtain the count of cells on one side of the bundle. Under the 

reasonable assumption that the bundles seeded uniformly on both sides, this count was multiplied 

by two to obtain the total number hMSCs seeded on the entire thread bundle. The count was then 

normalized to the length of the thread bundle (for comparability across threads with minor 

variations in length) and used for calculation of seeding efficiency. The mean seeding efficiency 

of three experiments using one thread bundle each was used for comparison of the two methods. 

Bioreactors used in the two methods, the protocol followed for seeding the threads, fixation and 

staining, imaging using confocal microscopy, image post-processing to obtain images of entire 

length of thread bundles, counting the number of cells on each bundle, and calculation of seeding 

efficiency are described in this section. 

4.4.2: Bioreactor assembly for tube rotator method and the seeding process 

Twelve fibrin microthreads, each of approximately 18 cm length, were bundled using the above 

described method to form a single bundle of the same length. This bundle was air-dried and cut 

into two halves of 9 cm each. One half was used for making the bioreactor assembly for the tube-

rotator method (the current method for seeding hMSCs onto fibrin microthread bundles), while 

the other half was incorporated in the bioreactor assembly for seeding cells onto the bundle using 

the cell printer.  
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Slide clamps 

Silastic tubing Fibrin 
microthread 

bundle 

Because fibrin microthreads are extruded and bundled by hand, there is inherent variation in the 

diameter and number of twists from bundle to bundle. By using two halves of the same bundle as 

a set, one half being used in assembly for the current method and the other half being used for 

the assembly for the cell printer method, the effect of variability in the bundle dimensions on cell 

seeding was minimized, thus allowing fair comparison between the two seeding methods. 

For making the bioreactor assembly for the tube-rotator method (Figure 27), the fibrin 

microthread bundle was cut to a length of 2 cm and placed inside a 4-cm length of 1.98 mm 

inner-diameter Silastic tubing (Dow Corning, Midland, MI). Slide clamps (Qosina, Edgewood, 

NY) were applied at both ends of the tubing making the compartment containing the thread 

bundle water-tight. The tubing was gas permeable allowing for gas exchange when the cell 

suspension was injected into the assembly. 

The bioreactor assembly was then sterilized with Ethylene Oxide gas. One end of the bioreactor 

was kept open by sliding out one of the slide clamps, in order to allow proper permeation of 

Ethylene Oxide gas into the Silastic tubing and around the thread bundle (Figure 28). 

At the time of seeding, the bioreactor assembly in sterile packing was transferred to a biosafety 

cabinet along with the cell suspension that was going to be used to seed the thread bundle in the 

assembly. The single slide clamp closing one end of the tubing was removed leaving the tubing 

containing the thread bundle open at both ends. After hydrating the thread bundle with deionized 

water for 30 minutes, 100 µL of cell suspension containing 500,000 hMSCs was pipetted into the 

tubing and slide clamps were replaced at both ends to make the assembly water-tight. The 

bioreactor assembly freshly loaded with cell suspension was then placed inside a 50 mL conical 

tube with apertures to allow gas exchange. The conical tube was then placed on a tube rotator 

(MACSmix™ rotisserie (MiltenyiBiotec, BergischGladbach, Germany, see Figure 29). 

Figure 27: Tube-rotator assembly for seeding fibrin microthread bundles with 

hMSCs.  
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Figure 28: Bioreactor assembly for tube-rotator method in sterile 

packing after ethylene oxide gas sterilization. Note that one end of the 

silastic tubing containing the fibrin thread bundle was left open (the slide 

clamp was taken off to allow better gas penetration). 

Unfastened slide clamp Silastic tubing with fibrin 
thread bundle 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Seeding bioreactor assembles in 50 mL conical tubes mounted on a tube rotator. 
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The tube rotator is a battery operated device with a rechargeable battery and can rotate at speeds 

of 4, 8 or 12 rotations per minute. After the bioreactor assembly was mounted onto the tube 

rotator, it was set to its lowest rotation speed setting of 4 rpm and placed inside the incubator to 

allow hMSCs to attach to the fibrin thread bundles for 24 hours at 37
o
C under atmospheric 

oxygen, 5% carbon dioxide and 85% relative humidity. After 24 hours, the bundles were 

removed, fixed, stained and prepared for examination using confocal microscopy.  

The rationale behind this dynamic method of seeding versus a static method is that the gentle 

rotation of the bioreactor containing the cell suspension with hMSCs around the fibrin thread 

bundle along the axis of the bundle would cause the hMSCs to come in contact with all sides of 

the thread bundle, aiding uniform seeding on the entire circumference of the bundle. Because this 

current method of seeding relies mainly on the tube rotator, it is referred to as the ‘tube rotator 

method’ in this work, against which the ‘cell printer method’ of seeding is compared. 

It should be mentioned that the bioreactor assembly used for the tube rotator method in this study 

had minor modifications from the one currently used for seeding thread bundles with hMSCs. 

The current assembly uses a thread bundle attached to a suture needle because these bundles are 

meant to be sutured into a rat heart by surgery (18). For this reason, the assembly uses a 27G-

hypodermic injection needle fixed at one end of the Silastic tubing with the slide clamp, which is 

used as a port to inject cell suspension into the tubing containing the thread bundle. Because this 

study does not involve surgical implantation of seeded thread bundles, suture needles were not 

used in the bioreactor assembly. This eliminated the need for using a hypodermic injection 

needle as a port for injecting cell suspension into the tubing, because the same could now be 

achieved using a 200 µL micropipette. Thus, hypodermic injection needles were not used as a 

part of this bioreactor assembly to seed threads using the tube rotator method. 

 

4.4.3: Bioreactor assembly for seeding thread bundles with hMSCs using cell printer 

and the seeding process 

It is most convenient to generate print programs containing linear print paths on the cell printer. 

Therefore, the main criterion for designing a bioreactor assembly was one that could hold a fibrin 

thread bundle straight and parallel to the deck of the printer to allow the cell suspension to be 

printed onto it in a linear path. It was also necessary that the assembly be able to mount at least 

2-cm length of fibrin thread bundle (same length of thread used in the tube-rotator assembly) 

when held straight, and that the assembly be able to fit in a microtiter plate well format that was 

commonly available in sterile packaging. Six-well plates were chosen as the platform for the 

bioreactor assembly as they offered enough room to accommodate the required length of the 

fibrin thread bundle. A 3D model of a circular ring with dimensions designed to fit a six well 

plate was designed in a 3D modeling software - Solidworks (Dassault Systèmes SolidWorks 

Corp., Waltham, Massachusetts, USA).  
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Delrin plastic (McMaster Carr, CA) was selected as the material to make the ring due to its 

biocompatibility, compatibility with all sterilization techniques, ready availability, low-cost and 

easy machinability. Twelve rings were machined according to the drawings, so that multiple 

bundles (up to 6) could be seeded in a single experiment. Each ring was designed with holes to 

fit 2 dowel pins at diametrically opposite ends of the ring to act as anchoring posts for the fibrin 

thread bundle. The ring assembly before and after fibrin thread bundle was mounted on it is 

shown in Figure 30. Ring assemblies fit into six well plates as shown in Figure 31. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 30: Delrin ring assembly to mount fibrin thread bundles.  Top image – 

top view: left – ring without the thread bundle, right – ring with the thread bundle 

mounted on it. Bottom image – angled view of the same rings. In the ring assembly 

on the right, the bundle is wound twice around the dowel pins at both ends to keep 

it positioned horizontal and straight. The scale in both images is in centimeters. 



61 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.4: Protocol for seeding fibrin thread bundles using the cell printer 

Preparing the bioreactor assembly for seeding 

Recalling from the section describing the tube rotator assembly, 12 fibrin microthreads, each of 

approximately 18 cm length, were bundled to form a single bundle of the same length. The 

bundle was air-dried and cut into two halves of 9 cm each. One half was used for making the 

bioreactor assembly for the tube-rotator method, while the other half was incorporated in the 

bioreactor assembly for seeding cells onto the fibrin thread bundle using the cell printer i.e. the 

Delrin ring assembly.  

Figure 31: Delrin ring assembly 

inside wells of a six well plate. The 

top image shows 2 assemblies 

placed in wells of a six well plate, 

one with the thread bundle mounted 

(top well), and one without the 

thread bundle. The image to the left 

shows an angled view of the 

assembly inside the top well for 

better depth perception. 
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The 9-cm length of the fibrin thread bundle was first hydrated by immersing in de-ionized water 

for 15 minutes. Because dry fibrin thread bundles are stiff and brittle, a fibrin bundle could be 

wound around the dowel pins of the delrin plastic ring assembly only when hydrated, which is 

when they become quite flexible and compliant. After hydration, the two ends of the 9-cm length 

of the bundle were held with 2 pairs of forceps. Using the two forceps, the bundle was wound 

twice around the dowel pins on the bioreactor assembly to position the thread straight and 

parallel to the plane of the top-surface of the ring. 

The mounted bundle was then air-dried for 15 minutes and then placed in a sterilizing packaging. 

After sterilizing the assembly with the mounted thread with Ethylene oxide gas, this assembly 

was kept in a moisture free environment until the seeding experiment was conducted.  

Writing a Print Program on the Cell Printer for seeding 

A print program on the cell printer was written and tested well before the seeding experiment. A 

delrin ring bioreactor assembly with a fibrin thread bundle mounted onto it was placed in a well 

of a six well plate which in turn was mounted onto the cell printer’s deck in the plate holder. This 

assembly was used to identify X, Y, Z co-ordinates of important landmarks to write a print 

program on the cell printer to dispense 10 µL of cell suspension onto the thread bundle. The 

program was written so as to evenly distribute the 10 µL of cell suspension onto 2 cm length of 

the thread bundle presented to the printer, with a total run time duration of about 10 minutes.  

A brief outline of the print program for seeding was as follows: 

- A 6-well plate the delrin ring assembly with the fibrin thread bundle was mounted on the 

rear plate holder on the printer’s deck. The thread bundle was aligned along the X-axis of 

the cell printer. 

- The motion control of the dispense head was homed in X, Y and Z axes.  

- One motorized syringe pump (synQUAD pump) (one channel) was used for this print 

program; this pump was initialized and primed. 

- The dispense tip (ceramic tip mounted on the dispense head) was cleaned of any residual 

liquid post-priming by vacuum suctioning. 

- The dispense head was moved towards the front of the deck and positioned in a manner 

that would be convenient to present a hand-held Eppendorf to the dispense tip. The 

operator was then prompted to present a source tube (typically an Eppendorf tube 

containing the cell suspension). ‘Presenting’ the tube implies holding the Eppendorf tube 

by hand inside the biosafety cabinet housing the cell printer in front of the printer’s 

dispense tip such that the tip is immersed in the suspension as deep as possible, without 

touching the bottom of the Eppendorf tube. (Figure 32) 

- 10 µL of cell suspension was aspirated from the Eppendorf tube, after which the operator 

was prompted to remove the tube from the Biosafety cabinet. 

- The dispense head was programmed to move so as to position the dispense tip exactly 

over the thread bundle mounted on the delrin ring in the 6-well plate. (Figure 33) 
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- The tip was then moved to one end of the bundle to begin dispensing the cell suspension. 

The hMSC-suspension was gently dispensed over 2 cm-length of the thread bundle in 

100 nL droplets spaced 100 µm apart as the tip moved slowly (at 5 mm/sec) over the 

bundle towards the other end. 2 µL of cell suspension was dispensed in a single pass over 

the thread bundle. Four more such passes were made from end to end to distribute 10 µL 

of cell suspension along the length of the thread bundle.  

- End to end sweeping movements over the length of the bundle with the tip positioned at 

the same Z-height as for dispensing (close to the thread bundle) were repeated a few 

more times to further even the distribution by capillary action. 

- The tip was then raised and moved over to the wash and waste station, the channel was 

flushed by priming a few times and the motion control repositioned back to home in X, Y 

and Z to end the print program. 

- At this point, the operator was expected to unmount the 6-well plate with the freshly 

seeded thread bundle from the printer’s deck by hand, and transfer it to the incubator.  

The print program was tested for errors over multiple iterations until satisfactory results were 

achieved and the final version then saved on the hard-drive of the controlling computer. Prior to 

the seeding experiment, this tester version of the print program was loaded from memory. 

Figure 32: Presenting cell suspension to the cell printer's dispense tip for 

aspiration 
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Seeding Procedure 

Human mesenchymal stem cells (passage 9 or lower passage), were expanded until an 

approximate sufficient number of cells for seeding were available (at least 100,000 cells per 

thread). At a time, usually a pair of thread bundles was seeded with hMSCs, one bundle with 

each of the two comparison methods. 

 

On the day prior to the seeding experiment, articles necessary for the seeding experiment were 

sterilized by ethylene oxide gas sterilization or by autoclaving.  

 

Just prior to the start of the seeding experiment, the cell printer was then turned on and the print 

program previously written and saved for seeding thread bundles with cells was loaded. The 

printer was kept in a ready-to-go condition as soon as cells were trypsinized and available for 

seeding onto the bundle. 

 

At the start of the seeding experiment, a sterile delrin ring assembly with the thread bundle 

mounted on it inside its sterile packaging was transferred to a biosafety cabinet along with a 

sterile 6-well plate, pre-warmed cell media and other materials necessary for the experiment 

following necessary sterile procedure. The delrin ring assembly was transferred to a well of the 

Figure 33: Cell printer's tip positioned over the thread bundle ready to begin 

dispensing hMSC-suspension 
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6-well plate using sterile procedure. 4 mL of sterile cell culture media – DMEM + 10% FBS + 

Penicillin/Streptomycin – pre-warmed to 37
o
C was added to the well containing the delrin ring 

assembly with the thread. The amount of media added was enough to submerge the thread 

bundle which was necessary for hydrating the thread bundle prior to seeding it with hMSCs. The 

lid of the 6-well plate was replaced and the plate was transferred to an oven to be warmed at 

60
o
C until the cells were trypsinized and the cell printer prepared for seeding. 

 

A T75 flask of hMSCs at near cent per cent confluence was transferred to the biosafety cabinet, 

and the cells trypsinized following standard Trypsinization procedure. The suspension was 

centrifuged and supernatant media containing trypsin suctioned out. The cell pellet was re-

suspended at a concentration of 500,000 cells/mL (equivalent to 50,000 cells per 100 µL).  

 

100 µL of cell suspension was added to a sterile bioreactor assembly for the tube-rotator method 

(described previously) containing a 2 cm long fibrin thread bundle composed of 12 individual 

microthreads. Slide clamps were attached at both ends of the tubing to make it water-tight. The 

assembly was then placed in a 50 mL conical tube which was then mounted on the tube rotator 

(Figure 29), while the awaiting the other bundle to be seeded using the cell printer. 

 

A much smaller volume of cell suspension could be accommodated on the thread bundle 

mounted on the bioreactor assembly for the cell printer. It was determined by empirical testing, 

that 10 µL of cell suspension could be accommodated on 2 cm length of the fibrin thread bundle. 

In order to deliver 50,000 cells in 10 µL to the thread bundle (instead of 100 µL in the tube 

rotator method), the cell suspension had to be concentrated 10 times. For this, the remaining cell 

suspension was centrifuged at 1000 rpm for 3 minutes. The supernatant media was suctioned out 

and the cell pellet was re-suspended in fresh pre-warmed cell culture media at a concentration of 

5,000,000 cells/mL (equivalent to 50,000 cells per 10 µL). This cell suspension (which was 

usually no more than 100 µL total) was transferred to a sterile 0.65 mL Eppendorf tube.  

 

The 6-well plate containing the bioreactor assembly for the cell printer placed in the oven for 

warming was removed and transferred to the biosafety cabinet housing the cell printer, along 

with the Eppendorf tube containing the cell suspension. The 6-well plate was then mounted on 

the rear plate-holder of the cell printer’s deck and the media inside the well containing the delrin 

ring assembly suctioned out leaving the hydrated thread bundle suspended in mid-air, held 

horizontal, parallel to the printer’s deck. The thread bundle was then aligned along the X-axis of 

the printer (to follow the print pattern of the print program). 

 

The seeding program on the cell printer which was kept ready at the start of the experiment was 

then executed, and the cell suspension seeded onto the thread bundle, following the procedure 

described in the previous section, over a run-time duration of ten minutes. Note that the hydrated 

thread bundle was suspended in mid-air and was not in contact with any culture medium. 
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Because of this, all the cell suspension that was dispensed onto the thread bundle remained on 

the bundle due to hygroscopic properties of the fibrin thread bundle and surface tension of the 

cell suspension, not allowing it to fall off.  

 

The 6-well plate containing the thread bundle freshly seeded with hMSCs was then unmounted 

from the printer’s deck and transferred to the incubator to be incubated at 37
o
C under 

atmospheric oxygen, 5% carbon dioxide and 85% relative humidity for twenty minutes. 

 

The thought behind this short incubation was to allow some initial attachment of the hMSCs on 

the fibrin thread bundle, while at the same time not causing cell damage due to dehydration. If 

the freshly seeded thread bundle would be immersed in media immediately, the cells would 

disperse and the advantage of using the cell printer to target the thread bundle would be lost. 

However, preventing dehydration was also important. Immediately after the cell suspension was 

dispensed onto the thread bundle using the cell printer, the little amount of media (10 µL) was 

the only source of hydration for the cells and the thread bundle. At room temperature and 

moisture conditions, this amount of media would evaporate within minutes. So it was also 

necessary to hydrate the seeded thread bundle with media soon, at the same time allow some 

time to initiate the process of cell attachment to the threads. 

 

It was empirically determined that twenty minutes inside the incubator was the ‘sweet spot’ 

where the media was be evaporated enough so as to not leave any visible liquid on the thread 

bundle, at the same time, not so much that the thread would be visibly dehydrated. Whether this 

twenty minute incubation period inside the incubator was enough time to allow any cell 

attachment at all, or if a different approach can be employed to facilitate targeted attachment on 

the bundle, will require further work, but for now, the assumption was some cell attachment was 

occurring.  

 

After this twenty minute initial incubator period, the 6-well plate with the seeded fibrin thread 

bundle was transferred to a biosafety cabinet. The thread bundle was cut at both ends (beyond 

the region of where the cells were seeded) to separate the seeded thread from the delrin ring 

assembly. The bundle was then carefully transferred to a bioreactor assembly similar to the one 

used for the tube-rotator method: into a sterile 4 cm long silastic tubing. (Figure 27) (The twenty 

minute incubation period would cause the bundle to stiffen just enough so that it would hold its 

linear shape when held at one end with a small vascular clamp. This made it possible to insert the 

bundle into the silastic tubing without scraping their surfaces).  

 

After transferring the bundle into the silastic tubing, 100 µL of media was added to the tubing 

using a pipette, and slide clamps were attached at both ends of the tubing to make the bioreactor 

compartment containing the thread bundle water-tight. The bioreactor was then labeled and 



67 
 

placed inside a 50 mL conical tube and mounted on the tube rotator alongside the bioreactor 

seeded previously with cell suspension (tube-rotator method). (Figure 29) 

 

The tube rotator was set to its lowest rotation speed setting (4 rpm) and placed inside the 

incubator at 37
o
C under atmospheric oxygen, 5% carbon dioxide and 85% relative humidity for 

24 hours.  

4.4.5: Protocol for staining thread bundles for microscopy 

After 24 hours, the tube rotator with the conical tubes containing the bioreactor assemblies with 

seeded fibrin thread bundles was removed from the incubator. The thread bundles were removed 

from their respective bioreactor assemblies and were rinsed with phosphate-buffered saline to 

prepare them for fixation. 

The bundles were then immersed in 4% paraformaldehyde (Boston Bioproducts, Worcester, 

MA) for ten minute to fix the thread bundle and the cells attached to it. 

Two stains were used to stain the threads for confocal microscopy – Phalloidin and Ethidium 

Homodimer-1.  

Phalloidin (Alexa Fluor 488 conjugated Phalloidin, Molecular probes, Invitrogen, Carlsbad, CA) 

stains F-actin filaments which constitute the cytoskeleton of cells. F-actin filaments are present 

in the cytoplasm. Their orientation indicates the alignment and morphology of a cell. Phalloidin 

staining not only helps identify the cytoplasm but also helps identify cell alignment and 

orientation. Phalloidin fluoresces bright green (excitation⁄ emission: 495nm⁄518 nm). 

Ethidium Homodimer-1 (part of Live/Dead Viability/Cytotoxicity kit, Molecular probes, 

Invitrogen, Carlsbad, CA), stains nucleic acids – both DNA and RNA, in cells whose cell 

membranes have been compromised (fixation by paraformaldehyde was sufficient to allow 

penetration of Ethidium in cells). DNA present in the nucleus takes up the dye strongly 

fluorescing bright red (excitation/emission ~495 nm/~635 nm). Ethidium Homodimer-1 was 

selected as a nuclear dye for this project because of its resistance to bleaching over time with 

exposure to laser light (used in confocal microscopy), compared to other nuclear stains such as 

Hoechst 33342. 

While awaiting the bundles to be fixed by 4% paraformaldehyde, fresh dye solutions of the dyes 

were prepared: 25 µL if Phalloidin added to 975 µL of phosphate buffered saline (PBS) and 2 µL 

of Ethidium Homodimer-1 in 998 µL of PBS. (Concentrations were selected as per the 

recommendations by the manufacturer). 

The fixed thread bundles were transferred onto a 24x50 mm rectangular cover slip (VWR, 

Radnor, PA) and washed twice with PBS to remove residual paraformaldehyde before adding 

dyes. (Cover slips were used instead of regular microscope slides to facilitate viewing of deeper 

fields on confocal microscopy).  



68 
 

The microthread bundles were permeabilized with 0.25% Triton X-100 (Sigma Aldrich, St. 

Louis, MO) in PBS for 10 minutes, followed by rinsing with PBS. The bundles were then treated 

with 1% bovine serum albumin (Sigma Aldrich, St. Louis, MO) in PBS for 30 minutes to reduce 

non-specific binding of the dyes.  

The bundles were then stained with Phalloidin for 30 minutes, washed with PBS thrice, and 

treated again with 1% bovine serum albumin again thrice for 5 minutes each, to wash off any 

residual Phalloidin that did not bind to the thread bundles. 

Thereafter, Ethidium Homodimer-1 dye solution was added to the bundles for 15 minutes, 

followed by two washes of PBS.  

Finally, spacers for were placed around the thread bundles on the coverslips to prevent the 

threads from being flattened under the weight or pressure of the opposite coverslip. Another 

coverslip of the same size (24x50 mm) was used for sealing each mounted thread bundle, with a 

sealing solution – Cytoseal 60 (Thermo Scientific, Waltham, MA) being used to seal two 

coverslips together(Figure 34). The sealant was allowed to cure for 4 hours before any imaging 

was done.  

Centimeters 

Fibrin  thread 
bundleSpeed and 
acceleration input 
interface for the 
motion-control 
stepper motors for 
the X and Y axes 

Cytoseal Spacer between 2 coverslips 

Figure 34: Stained fibrin thread bundle mounted in between two 24x50 mm coverslips.  
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4.4.6: Confocal Imaging 

Fluorescent microscopy was good enough to qualitatively assess if a particular fibrin thread 

seeded with hMSCs and if so, how well. However, because of the 3 dimensional shape of the 

thread bundle, the cells attached on the entire semi-cylindrical circumference of the bundle and 

the groves in between individual microthreads, cells were situated in different planes. Capturing 

cells situated in different focal planes ordinary fluorescent microscopy was proving to be 

extremely time consuming and tedious.  

With confocal microscopy, light from different focal planes of the object to be visualized can be 

captured separately. This way a separate image can be constructed for each focal plane. Images 

of different focal planes of the same region of the object can then be overlaid to generate a 

‘Maximum Projection’ of that region, revealing objects spanning different focal planes in a 

single image. This was ideal to visualize a thread bundle seeded with hMSCs situated in different 

focal planes along the contours of its semi-cylindrical surface, complicated by twisting of the 

fibrin microthreads on each other. 

Seeded thread bundles were visualized using confocal microscopy (Leica TCS SPS II point 

scanning confocal microscope) from end-to-end in partly overlapping segments at 20x 

magnification using laser-lights of specific wavelengths to excite the fluorescent dyes and 

appropriate filters with photomultiplier tubes used to capture emitted light in specific 

wavelengths.  

Two lasers were utilized to excite the fluorescent molecules in the sample: an Argon laser 

emitting at 488 nm for Alexa Fluor 488 conjugated Phalloidin, and a Diode-pumped solid state 

(DPSS) laser emitting at 561 nm for Ethidium Homodimer-1 (which is excited over a wide range 

of wavelengths around 495 nm). Two photomultiplier tubes were used to collect and amplify the 

signal from the two fluorophores: one capturing a bandwidth of 499 to 545 nm for Phalloidin, 

and another capturing a bandwidth of 595 to 647 nm for Ethidium Homodimer-1.  

For the actual imaging process, the thread bundle mounted in between two coverslips was 

mounted on the stage of the confocal microscope. The stage was moved to locate one end of the 

thread bundle, which was then positioned in the center of the viewing field of the confocal 

microscope. Serial Z-sections of the thread bundle (known as a ‘Z-stack’) were taken at 2 µm 

intervals to a depth of about half of its circumference, starting from the most superficial plane, 

visualizing progressively deeper planes until approximately half thickness of the thread bundle 

was reached (a total depth of about 250 µm, varying slightly from bundle to bundle). A 

maximum projection was generated to visualize all focal planes of that segment of bundle in a 

single image. The microscope stage was then moved to bring the adjacent segment of the thread 

bundle in the microscope’s view, followed by Z-stack of that section, and a maximum projection. 

This process was repeated until the other end of the thread bundle was reached. (Figure 35) 
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A slight overlap between two adjacent segments of the bundle was maintained while imaging all 

segments, to facilitate ‘stitching’ of the images together.  

  

Centimeters 

  
 

Figure 35: Confocal imaging of a seeded fibrin thread bundle from end to end in partially 

overlapping segments 



71 
 

4.4.7: Post-processing of images – Stitching using Adobe Photoshop 

Maximum projections of all segments of the thread were stitched together using software (Adobe 

Photoshop) to generate a single image of one half of the circumference of the entire length of the 

thread. This image was effectively a 2-dimensional projection of one side (semi-cylindrical half) 

of the thread bundle. (Figure 36, Figure 37) 

 

 

 

 

 

 

  

Figure 36: Stitching images of adjacent segments of a fibrin thread bundle. Individual 

segments of the seeded fibrin thread bundle were imaged in different planes of depth starting 

from the most superficial to the deep, covering about half the diameter of the bundle, creating a 

‘Z-stack’. Maximum projections of these yielded a 2D projection of one half of the 

circumference of that segment of the bundle. Such maximum projections of two adjacent 

segments are shown here in the top two images. These images were then stitched together using 

Adobe Photoshop to yield a single image depicting the segment of the thread covered by the 

individual images (bottom image). Similar, images of adjacent segments of the entire bundle 

were stitched together to yield a single image of the bundle from end to end. 
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Figure 37: Image of a thread bundle obtained by stitching images of segments of the bundle 

together. Note the characteristic twisting appearance of the individual microthreads on each 

other in the bundle. Green = Phalloidin (F-actin filaments of cytoplasm of seeded hMSCs). Red 

= Ethidium Homodimer-1 (Nucleic acids, predominantly DNA of nuclei of cells).  

 

4.4.8: Counting cells seeded on thread bundles and calculation of seeding efficiency 

Phalloidin and Ethidium stained hMSCs seeded on thread bundles were counted manually by eye 

from the image of the entire bundle obtained by stitching images of individual segments of the 

bundle from end to end. Counting was done by at least two individuals for each thread bundle to 

account for variability in counts due to subjectivity, and the average of all counts was considered 

for calculations of seeding efficiency. 

The count was obtained from the image of half the circumference of the thread bundle. Under the 

fair assumption that cells seeded evenly on both sides of the fibrin thread bundle, this count was 

considered as representing half the number of cells seeded on the entire bundle. Thus, the total 

count of number of cells seeded was obtained by multiplying this count by 2. 

Calculation of seeding efficiency 

Because fibrin thread bundles were bundled and cut manually, there was some variation in length 

and diameter from bundle to bundle.  

To account for the variations in diameter from bundle to bundle, full length bundle of 18 cm was 

cut into two halves, with one half being used in the bioreactor assembly to seed with the cell 

printer while the other half being used in the bioreactor assembly for the tube rotator method. 

These were always used in pairs for comparison of seeding efficiency, to make sure that the 

diameter of the seeded bundles being compared was similar. 

To account for the variations in the length of the bundles, the number of seeded cells counted for 

each bundle was normalized to the length of the bundle, i.e. the number of cells seeded per 

millimeter length of the bundle was calculated for each bundle. 
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For this, first the total number of cells seeded on the bundle was manually counted as described 

previously. The length of each bundle was measured using software from the image of the entire 

bundle generated after stitching using software (Adobe Photoshop). The number of cells seeded 

per millimeter length of the bundle was then calculated by dividing the total number of cells 

seeded by the length of the bundle in millimeters. 

The number of cells available for seeding each millimeter length of the bundle was calculated by 

dividing the total number of cells used for seeding the bundle (50,000) by the length of the 

bundle in millimeters. 

The efficiency of seeding was calculated per millimeter length of the bundle by dividing the 

number of cells that seeded per millimeter by the number of cells that were available for seeding 

per millimeter length of that bundle. 

For example, if the count of cells obtained from the image of a bundle was 2500, the total count 

of cells seeded on the bundle would be 2500 x 2 = 5000 cells. Suppose the length of this 

particular bundle was 20 mm. The number of cells seeded per mm =5000/20 = 250 cells per mm. 

The number of cells available for seeding each millimeter of the bundle = Number of cells used 

to seed the bundle (50,000) divided by the length of the bundle in millimeters (20) = 50000/20 = 

2,500 cells per mm 

Efficiency of seeding = (Number of cells seeded per mm) / (Number of cells available for 

seeding per mm) *100 

 = (2,500/25,000)*100 = 10 % 

4.4.9: Comparison of seeding efficiency 

The mean seeding efficiency per millimeter length of bundle was calculated for each group, and 

was used for comparison between the groups. The hypothesis that there is no difference in the 

efficiency of seeding hMSCs onto the bundles using the two methods – the tube rotator method 

and the cell printer – was tested statistically. 

 

4.5: Statistical Analysis 
Statistical analyses were performed using a combination of manual calculations and Analysis 

ToolPak in Microsoft Excel 2010. Statistical differences were determined using unpaired, two-

tailed T tests assuming that the two comparison groups had unequal and unknown population 

variances. All data was reported in the following format unless otherwise noted: mean ± standard 

deviation. All experiments had a minimum of n = 3. A p-value < 0.05 was considered as a 

statistically significant difference between groups. 
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Chapter 5: Results 

5.1: Post-printing Viability of Human Mesenchymal Stem Cells: 

For each well of the 96-well plate seeded with hMSCs, an image of the entire well was 

constructed by stitching images of different regions of the well using Adobe Photoshop. 

Representative images of wells seeded using the cell printer and a hand-held pipette are shown in 

respectively. 

Figure 38: Representative image of a well of a 96-well plate seeded with hMSCs using the 

cell printer. Cytoplasms of live cells show a bright green Calcein signal. Nuclei of dead cells 

show a red Ethidium Homodimer-1 signal. All nuclei show a blue Hoechst 33342 signal. 
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Figure 39: Representative image of a well of a 96-well plate seeded manually with hMSCs 

using a hand-held pipette. Cytoplasms of live cells show a bright green Calcein signal. Nuclei 

of dead cells show a red Ethidium Homodimer-1 signal. All nuclei show a blue Hoechst 33342 

signal. 
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Images of all wells were analyzed using CellProfiler as described earlier in order to obtain the 

percentage of viable cells in all wells seeded either using the cell printer or a handheld pipette. 

The mean percentage of viable cells in the two groups – cell-printer dispensed and manually 

pipetted is shown in Figure 40. The viability of hMSCs 24 hours post-dispensing using the cell 

printer was found to be 90.9 ± 4.0 % and by manual pipetting was 90.6 ± 8.2 % (mean ± standard 

deviation) with an n of 12 in both groups (Figure 40). P-value obtained by applying a Students’ 

T-test assuming the samples in two groups are derived from independent populations with 

unequal and unknown variances was 0.90 (not significant).  

The number of cells counted in individual wells - live, dead and total, and the percent viability 

for each well for the cell printer group are listed in  
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Table 1, and the same for the manually pipetted group are listed in Table 2. 
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Figure 40: Viability of hMSCs 24 hours post dispensing. Mean viability for all wells 

containing cells dispensed using the cell printer is depicted in blue, and for wells with cells 

dispensed manually using a hand-held pipette is depicted in maroon.  
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Table 1: Viability of cell dispensed using the cell printer 

Well no. Live cell count Dead cell count Total cell count Percentage of live cells 

 1 2364 247 2611 90.54 

 2 1988 119 2107 94.35 

 3 1792 351 2143 83.62 

 4 1836 167 2003 91.66 

 5 1800 70 1870 96.26 

 6 2158 161 2319 93.06 

 7 2477 120 2597 95.38 

 8 2728 318 3046 89.56 

 9 3000 197 3197 93.84 

 10 1879 302 2181 86.15 

 11 2702 270 2972 90.92 

 12 2095 342 2437 85.97 

 Average 2235 222 2457 90.94 % 

 Standard dev. 413 96 434 4.00 % 

 

Table 2: Viability of cells dispensed manually using a handheld pipette 

Well no. Live cell count Dead cell count Total cell count Percentage of live cells 

 1 4288 190 4478 95.76 

 2 4616 235 4851 95.16 

 3 3299 196 3495 94.39 

 4 3174 323 3497 90.76 

 5 1595 746 2341 68.13 

 6 3355 804 4159 80.67 

 7 3304 230 3534 93.49 

 8 3612 191 3803 94.98 

 9 3593 177 3770 95.31 

 10 4091 342 4433 92.29 

 11 3635 152 3787 95.99 

 12 4123 439 4562 90.38 

 Average 3357 335 3893 90.61 % 

 Standard dev. 765 222 671 8.24 % 

 

Counts of nuclei of live and dead cells from the data obtained by analyzing images of entire 

wells using Cell Profiler image analysis software for individual wells in both groups based on the 

protocol described in section 4.2.1.1: Obtaining Accurate Counts of Viable hMSCs from Image 

Analysis: is listed in tables in Appendix A: Post-Printing Cell Viability Measurements. 
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There is a noticeable difference in the average live, dead and total cell count per well in the two 

groups. Upon statistical analysis, this difference was found to be significant (p<0.05) with the 

number of live and total cells per well in the cell printer group significantly less than the number 

of live and total cells per well in the handheld pipetted group.  

The reason for this observation is unclear. A possible scenario that explains the observed 

difference is non-uniform splitting of cell suspension: when the cell suspension was split into 

two halves of equal volume (into two 0.65 mL Eppendorf tubes), each half to be used for 

dispensing cells for each of the two methods, it is possible that more cells were transferred in the 

aliquot used for dispensing using a hand-held pipette than in the aliquot used for dispensing 

using the cell printer. This could be due to non-uniform distribution of cells in suspension 

because of cell settling or otherwise. Alternatively, in a less likely scenario, the cell printer was 

dispensing less cell suspension than it was programmed to, and thus correspondingly less number 

of cells were dispensed per well.  

In view of this, another experiment was performed to determine whether the observed difference 

was due to accidental non-uniform splitting of the cell suspension or due to an actual defect in 

the dispensing mechanism of the cell printer. A fixed volume (10 µL) of suspension of human 

fibroblasts (P14) (Lonza, Walkersville, MD) in Dubecco’s modified Eagle’s medium having a 

concentration of 600,000 cells/mL was dispensed using the cell printer in ten 0.65 mL Eppendorf 

tubes. Ten µL of the same cell suspension was dispensed into another ten 0.65 mL Eppendorf 

tubes using a handheld pipette, in parallel. 

Ten µL of 0.04% Trypan Blue (Invitrogen, Carlsbad, CA) was added to all Eppendorf tubes 

containing 10 µL of cell suspension. The number of live, dead and total cells was counted using 

the Trypan Blue exclusion principle on a hemocytometer (Hausser Scientific, Horsham, PA) 

using an inverted light microscope (Nikon TMS, Tokyo, Japan) in all ten samples in both groups.  

The counts of live, dead and total cells per 10 µL of suspension dispensed using the cell printer 

are given in Table 3, while the same for 10 µL of cell suspension dispensed using a handheld 

pipette are given in Table 4. A graphical comparison of the number of cells dispensed in the 

same volume using the two methods is made in Figure 41. Comparison of cell viability is shown 

in Figure 42. 

The number of live cells, dead cells, total number of cells and percent viability were found 

comparable in both groups (p-value not significant for all categories). This indicates that the 

volume of cell suspension dispensed using the cell printer (and thus the number of cells 

dispensed) is the same as programmed. Thus, the observed difference in the average number of 

live and total cells dispensed in the cells dispensed in the previous experiment was probably due 

to uneven cell distribution in suspension rather than an error in the dispensing mechanism of the 

cell printer. 
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Additionally, the percent viability data obtained experiment using human fibroblasts indicates 

that the dispensing process using the cell printer does not affect the viability of the cells, which 

correlates well with the cell viability data obtained in the previous experiment using hMSCs. 

 

Table 3: Number of cells per 10 µL of cell suspension dispensed using the cell printer* 

Sample no. Live cells Dead cells Total Viability % 

1 5889 222 6111 96.36 

2 5444 222 5667 96.08 

3 5022 200 5222 96.17 

4 5267 267 5533 95.18 

5 5578 244 5822 95.80 

6 6267 311 6578 95.27 

7 6000 467 6467 92.78 

8 5311 467 5778 91.92 

9 5378 156 5533 97.19 

10 6422 67 6489 98.97 

Average 5658 262 5920 95.57 

Standard Deviation 463 126 468 2.02 

 

Table 4: Number of cells per 10 µL of cell suspension dispensed using a handheld pipette* 

Sample no. Live cells Dead cells Total Viability % 

1 5133 244 5378 95.45 

2 5333 156 5489 97.17 

3 5333 289 5622 94.86 

4 6289 333 6622 94.97 

5 4822 422 5244 91.95 

6 6067 222 6289 96.47 

7 5800 178 5978 97.03 

8 6244 222 6467 96.56 

9 6044 378 6422 94.12 

10 6222 200 6422 96.89 

Average 5729 264 5993 95.55 

Standard Deviation 530 89 517 1.64 

 

*p-value was found to be non-significant for all categories (live cells, dead cells, total cells and 

viability %) between the two groups with the null-hypothesis that there is no difference between 

the two groups (cell printer and handheld pipette) tested using an unpaired two-tailed Student’s 

T-test assuming independent populations with unequal variances.   
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Figure 41: Comparison of number of cells (human fibroblasts) dispensed per 10 µL of cell 

suspension using a handheld pipette and the cell printer 

 

Figure 42: Comparison of cell viability of human fibroblasts dispensed using a handheld 

pipette and the cell printer 
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The presented data from the viability experiment using hMSCs and human fibroblasts indicates 

that the dispensing (or ‘printing’) process from the cell printer does not affect the viability of the 

cells. This is consistent with findings of previous in-house studies by Digilab, Inc. in which 

viability of other cell types was assessed at different time points after dispensing using the cell 

printer and was found to be satisfactory: mean viability of human myosatellite (satellite) cells 

assessed 3 hours post-printing was 98.4 %, and that of rat arterial smooth muscle cells 12 hours 

post-printing was 97.5 % (unpublished data from Digilab, Inc.; via personal communication).  

Considering that the mechanical forces acting on the cell suspension when it is aspirated and 

dispensed using the cell printer with sufficiently low flow velocity are not very different from 

those that the suspension would experience in a hand-held pipette, the consistent high cell 

viability observed post-printing with different cells types is not unexpected (described in the 

discussion chapter). This observation has far reaching implications if various current and 

possible applications of the cell printer are considered – the cell printer is equivalent to a 

handheld pipette as far as viability of cells is concerned, with the added advantages of robotic 

dispensing, automation and user-specified pattern generation in two and three dimensions of 

space. 

Other cell printing technologies such as inkjet printers modified for bioprinting and laser-induced 

forward transfer (LIFT) bioprinters have their limitations with regard to cell viability, 

undesirable mechanical or other physical stresses on the cells, low throughput, and commercial 

non-availability of printing equipment (3), (63), (5) (detailed in Discussion chapter). These 

technologies have a sub-micron level printing accuracy and may be the method of choice for 

applications where such accuracy of cell printing is desired. However, for applications where 

printing accuracy of tens of microns is acceptable, Digilab’s automated liquid handling 

technology on which the cell printer is based has distinct advantages over Inkjet and Laser-based 

bioprinters. 

Having determined that the printing process on the cell printer following a certain set of 

parameters does not affect the viability of human mesenchymal stem cells, whether the printer 

could deliver cells to a linear target such as a fibrin thread bundle was explored. As described in 

the methods and materials, a bioreactor assembly was developed for mounting the thread bundles 

onto the printer’s deck (Figure 30, Figure 31) so that a fibrin thread bundle could be held 

horizontal suspended in mid-air, parallel to the deck to be presented to the printer’s dispense tip.  
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5.2: Dispensing hMSCs on fibrin thread bundles: 
With a combination of the bioreactor assembly designed to present a fibrin thread bundle to the 

cell printer’s dispense tip and a print program written with special precautions to keep dispense 

parameters conducive to allowing the dispensed cell suspension cling onto the thread bundle, a 

highly precise delivery of the cell suspension onto the thread bundle was achieved. These 

precautions included dispensing cell suspension at low flow velocities (5 µL/sec), maintaining 

minimal distance between the dispense tip and target (thread bundle) (< 100 µm), slow 

movement of the dispense head (5 mm/sec), and dispensing the total solutions in aliquots of 

individual droplets of small volume (50 nL) distributed over a 2 cm length of the bundle with 

sufficient inter-droplet distance, to prevent accumulation and subsequent spillage at any single 

point on the thread bundle. 

The total 10 µL of cell suspension was distributed over 2 cm length of the thread bundle using 

repeated side to side movement of the print head, distributing the suspension uniformly over the 

length, over a period of 10 minutes. The evaporation of media over the 10 minutes allowed just 

enough media to remain on the thread bundle to be accommodated in the 2 cm length of the 

bundle, with some excess for subsequent 20-min incubation period. 

Briefly reiterating the staining and imaging protocol, after the 24-hour incubation period, seeded 

thread bundles were fixed and stained with Phalloidin and Ethidium Homodimer-1. Stained 

bundles were visualized using confocal microscopy from end to end in partially overlapping 

segments. Each segment of the bundle was visualized in a series of parallel planes, starting from 

the most superficial going progressively deeper by 2 µm with each plane, until half the 

circumference of the bundle was reached. Images of all planes of that segment were then 

overlaid to form a ‘maximum projection’ yielding a single image showing half the circumference 

of the bundle in that segment. Each segment required between 120 to 130 images to cover half 

the circumference depending upon thickness of the thread bundle. 

Maximum projections of individual segments were ‘stitched’ together using software (Adobe 

Photoshop) to yield a single image of half the circumference of the entire thread bundle. Number 

of cells visible in this image was counted to obtain the count of total number of threads seeded 

on the bundle, and from that, the seeding efficiency. This was done for all thread bundles seeded 

with hMSCs using either of the two seeding methods – tube rotator or cell printer, to compare the 

seeding efficiency.  

Sample images of thread bundles stained, visualized and stitched as described above are given in 

Figure 43. 
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Figure 43: Stitched image of fibrin thread bundles seeded with hMSCs using the cell printer 

(top) and tube rotator method (bottom), stained with Phalloidin and Ethidium Homodimer-1 

and visualized by confocal microscopy. Approximately half the length of a fibrin thread bundle 

seeded with hMSCs using the cell printer is shown in the top image and the entire bundle length of 

another bundle seeded using the tube rotator method is show in the bottom image. Cytoskeletal 

protein F-Actin shows a bright green Phalloidin signal while nucleic acids, predominantly nuclear 

DNA, show a bright red Ethidium Homodimer-1 signal. Due to reasons not entirely known, the 

fibrin thread bundles were observed emitting a signal in the Ethidium range, appearing dark red. 

The twisting of the individual fibrin microthreads on each other is visible in both bundles. Seeding 

of the cells appeared to be patchy and non-uniform, with preferential seeding in the grooves in 

between the individual microthreads. Each image was constructed by stitching several individual 

maximum projection images of segments of the respective bundle from one end to the other. One 

such segment from each bundle is shown in an inset alongside images of both bundles.  

 

1000 µm 
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From the image of the entire thread bundle, the number of cells seeded for each bundle was 

counted manually by at least two individuals and the average of all counts was considered for 

calculation of seeding efficiency. 

In order to account for variations in the length from bundle to bundle, seeding efficiency was 

calculated per millimeter length for all bundles as explained in the methods and materials 

chapter. The number of cells per millimeter length of the bundle for each bundle is given in 

Table 5. 

Table 5: Count of number of cells seeded per millimeter length of thread bundle 

Thread bundle Number of cells seeded per mm Length of thread bundle in mm 

Cell-Printer-1 37.89 20.96 

Tube-Rotator-1 196.65 17.73 

Cell-Printer-2 181.13 16.41 

Tube-Rotator-2 250.99 14.02 

Cell-Printer-3 70.87 20.08 

Tube-Rotator-3 51.95 8.78 

 

The seeding efficiencies calculated on the basis of these numbers per millimeter length of the 

bundle for each seeded bundle are given in Table 6. 

Table 6: Seeding efficiency per millimeter length of thread bundle 

Thread bundle pair number Cell Printer method Tube Rotator method 

1 1.59 % 6.97 % 

2 5.94 % 7.04 % 

3 2.85 % 0.91 % 

   

Average 3.46 % 4.97 % 

Standard Deviation 2.24 % 3.52 % 

p-value  0.57 (ns) 

 

The bundle ‘Tube-Rotator-3’ was inadvertently damaged during the staining process leaving 

only about half the original length for staining and examination. The physical damage to the 

bundle is likely to have caused some attached cells to come off the bundle in addition to 

damaging the ones that remained attached to the half that was available for analysis. The effect 

of this damage was evident in the morphology of the thread bundle when the image of the entire 

bundle was generated. Additionally, the count of cells seeded per mm was markedly lower than 

those on the other two bundles seeded with the same method (Table 5). Also, when seeding 

efficiency calculations were performed, the calculated per millimeter cell seeding efficiency was 

noticeably low as is evident in Table 6.  
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Due to time constraints, a repeat of the cell seeding experiment on one more pair of bundles was 

not possible. In light of these events and observations, and bound by the limited available data, 

the average of per mm seeding efficiency of the other two bundles (‘Tube-Rotator-1’ and ‘Tube-

Rotator-2’) was used as the representative seeding efficiency of the damaged bundle (‘Tube-

Rotator-3’), and a revised comparison of seeding efficiency was made. (Table 7, Figure 44) 

Table 7: Revised comparison of seeding efficiency per mm length of thread bundle, after 

correcting for damaged bundle ('Tube-Rotator-3') 

Thread bundle pair number Cell Printer method Tube Rotator method 

1 1.59 % 6.97 % 

2 5.94 % 7.04 % 

3 2.85 % 7.01 % 

   

Average 3.46 % 7.01 % 

Standard Deviation 2.24 % 0.03 % 

p-value  0.11 (ns) 

 

A detailed discussion of the rationale and impact of using the average of per mm seeding 

efficiency of the former two bundles to represent the latter is done in the Discussion chapter.  

 

Figure 44: Comparison of efficiency of two methods to seed hMSCs onto Fibrin thread bundles 
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Even though hMSCs did show attachment to the fibrin thread bundle after being dispensed by 

the cell printer onto the bundle, lower number of cells seeded per mm length of bundle and lower 

seeding efficiency was observed using the cell printer. Probable factors contributing to this 

observation were sought. 

The factor contributing most to low hMSC attachment and survival is thought to be dehydration 

of cells due to drying of thread bundles during the dispensing process in the laminar flow 

environment of the biosafety cabinet housing the cell printer, and during the 20-minute 

incubation period that immediately followed. 

The deck of the prototype cell printer was open to laminar flow of air of the biosafety cabinet in 

which the printer was housed. As a result local temperature, humidity and gas level control on 

the deck of the printer was not possible and the evaporation of media from the bundle could not 

be prevented. The rationale behind incubating the freshly bundle freshly loaded with cell 

suspension for 20 minutes inside the cell culture incubator, before adding any additional media 

was to allow initial attachment of hMSCs onto the bundle. (Transferring the freshly loaded 

bundle into a bioreactor containing media would cause the unattached cells to disperse in the 

culture media, yielding the same, if not lesser, seeding efficiency as the tube rotator method). 

However, this additional 20-minute incubation period also meant that further drying of the 

seeded bundle and more dehydration of the cells.  

If a theoretical scenario is considered where local temperature, humidity and gas level control 

was available, and conditions similar to a cell culture incubator could be established on the deck 

of the cell printer (37
o
C with atmospheric oxygen, 5% carbon dioxide and 85% or higher relative 

humidity), the seeding efficiency is highly likely to improve, as described in detail in the 

Discussions chapter.  

The purpose of this study was to explore the feasibility of using Digilab’s prototype cell printer 

to deliver cell suspension onto thin linear targets such as a fibrin thread bundle as a seeding 

method. 10 µL of cell suspension was delivered to the bundle each time, uniformly distributed 

over the 2 cm length of the bundle, with repeatable precision without any visible spillage on each 

occasion. Thus, the capability of the printer to perform such delivery of cell suspension was 

convincing established.  

Additionally, attachment of human mesenchymal stem cells on fibrin thread bundles was 

observed, albeit with lower efficiency than the current method. Substantial addition to existing 

knowledge  was made by means of this project in that the probable factors to improve the 

seeding efficiency were identified, thus laying groundwork for further development of this 

method towards similar applications. 
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Chapter 6: Discussion 
 

Results of experiments performed in this project indicate that the printing process does not affect 

the viability of hMSCs, as determined 24 hours after printing. Additionally, it was demonstrated 

that the cell printer could deliver microliter volumes of cell suspension onto fibrin thread bundles 

suspended in mid-air, in a manner that allows the cells to seed over 24 hours. The significance of 

these results will be discussed in this chapter. The rationale behind certain protocols followed in 

this work will also be detailed.  

6.1: High Post-printing cell viability 
Probable reasons for high post-printing cell viability observed using Digilab’s cell printer are: 

1. Aspirate-dispense mechanism: If the design of the cell printer’s print, head and the 

mechanism of aspiration and dispense are considered, the mechanical forces experienced 

by cells in suspension while the suspension is handled by the cell printer are not very 

different from those that the cells might experience when dispensed using a hand-held 

pipette. Theoretically ignoring the microsolenoid valve for the time being (or considering 

that it is permanently open), the aspirate-dispense mechanism at the dispense tip of the 

printer is identical to that of a pipette. When negative pressure is applied at the dispense 

tip as liquid due to withdrawal of the plunger by the synQUAD pump, it causes the cell 

suspension to be aspirated into the dispense tip, while positive pressure applied at the 

dispense tip when the plunger is pushed into the syringe causes the cell suspension to be 

dispensed.  

 

2. Gentle handling of cells: The cell printer allows the user to adjust the flow velocities 

during aspirate and dispense steps, which in turn lets the user to set aspirate and dispense 

speeds to low settings such that cell suspension is handled gently and minimal shear 

stress is caused on the cells while they flow through the narrowest segments of the fluid 

path (typically orifice of the dispense tip).  

 

3. Positioning the dispense tip close to the print surface: Because the cell printer has a Z-

axis control, it allows the user to position the dispense tip close to the dispense surface 

while droplets of cell suspension are released. In combination with the low dispense 

velocity, bringing the dispense tip close to the print surface prevents the cells from 

crashing onto the surface. A gentle landing is facilitated which contributes to preservation 

of cell viability. 
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Solenoid valves 

Reservoir for 
aspirated cells 

Dispense tip 

4. Reservoir for aspirated cells & lack of need to pass through a valve: The 300 µL 

reservoir for aspirated cells (coiled tubing directly above the dispense tip on the head of 

the cell printer, see Figure 45) was designed specifically for high cell viability.  

 

Because this reservoir is situated between the solenoid valves above and the dispense tip 

below, cells present in a suspension that is aspirated by the tip remain contained inside 

this reservoir (coil of transparent tubing) and do not reach the microsolenoid valve above. 

This prevents the cells from being constricted at the valve lumen as the valve fires open 

and close at high frequency. 

Comparing to other technologies used for cell printing such as laser or inkjet based bioprinters, 

Digilab’s cell printer’s aspirate-dispense mechanism is simpler, more intuitively understood due 

to its likeness to the handheld pipette, and is a major advantage.  

Inkjet printers used to print cells rely on modification of existing commercial printers designed to 

print ink on paper which are thermal or piezo-electric inkjet printers (3). These modified versions 

of commercial inkjet printers require the cell suspensions to either come in contact with a heating 

Figure 45: Reservoir for aspirated cells in between solenoid valves and dispense tip. 

The coil of transparent tubing connecting the solenoid valve(s) to the dispense tip(s) acts 

as a reservoir for aspirated cells in suspension, preventing them from passing through 

the solenoid valve opening and closing at high frequency. 
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element with temperatures ranging from 250 - 600
o
C momentarily in order to dispense the cell 

suspension (thermal inkjet), or constrict the cell suspension in order dispense it in a droplet form 

(3). Additionally, cell suspension is dispensed through narrow microfluidic channels (25 – 75 µm 

or smaller depending upon type of ink cartridge used) at high velocity, causing shear stress on 

the cells. Such thermal and mechanical stresses may affect the cell viability or may lead to 

undesirable physiological phenomena. In fact, certain types of thermal inkjet printers are known 

to cause transient cell membrane defects, a phenomenon that has been exploited to transport 

macromolecules across the membrane into the cell (63). Additionally, to dispense the cells with 

this technique, cells must be suspended in a concentrated salt solution (3x PBS or equivalent) in 

order to shrink their size by osmosis, to reduce damage when they pass through narrow channels 

of the print cartridge (63). Such stresses may not be desirable while handling highly sensitive 

cells such as embryonic or adult stem cells or other primary cell types. 

Laser induced forward transfer (LIFT) or its modifications such as absorbing film assisted LIFT 

(AFA-LIFT) employ a high-energy laser pulse to ‘transfer’ cells suspended in a viscous medium 

loaded on a cartridge to the print substrate (5). The cartridge consists of a special film of silver or 

other material on top of which the cells to be transferred are laid in a thin layer of culture 

medium. The laser pulse is fired at the cartridge from the other side, such that it first contacts the 

silver film. The silver film (or equivalent) absorbs most of the laser energy preventing it from 

scorching the cells, while imparting kinetic energy to the film of cells in culture medium on the 

other side, causing them to detach (‘desorb’) from the cartridge and get deposited onto the print 

substrate placed opposite the cartridge (Figure 46). The biggest advantage of laser based 

bioprinters is their printing accuracy in terms of position, which is usually in the submicron 

range. This is advantageous when printing individual proteins or substances with subcellular 

dimensions, but has limited application when it comes to dispensing live cells, which have 

dimensions in tens of microns. Laser bioprinting requires modification of high-capital equipment 

and considerable technical expertise in printing technology, electronics and optics, before it can 

be adapted for cell printing. Additionally, it is limited by throughput because of the need to 

reload the print cartridge repeatedly, and is thus not suitable for bulk dispensing as of yet. 

Limited Z-axis movement is also an issue, if 3-dimensional constructs are desired. 

Overall, despite advantages of micron or sub-micron level accuracy of inkjet and laser 

bioprinting techniques, both these techniques have limitations with regard to cell viability, 

undesirable mechanical or other physical stresses on the cells, low throughput, and commercial 

non-availability of printing equipment. Digilab’s prototype (and commercial) cell-printer shows 

consistently high cell viability, does not induce any undue physical stresses on the cells, has an 

option of bulk dispensing for throughput and has a commercially available version of the 

equipment for use and repeatability by independent researchers. When acceptable positional 

accuracy for bioprinting is in tens of microns, Digilab’s cell printer has distinct advantages over 

these two cell printing technologies. Other syringe based bioprinters such as Envision TEC’s 3D 

bioplotter or Sciperio’s BioAssembly Tool may have similar dispense mechanics as well. 
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6.2: Seeding hMSCs onto fibrin thread bundles using the cell printer 
Using the cell printer for delivering cell suspension to fibrin microthreads in order to allow the 

cells to efficiently attached turned out to be more difficult than estimated at the start of this 

project. Several problems arose, and many were addressed in this project, while few others 

remain for future work. 

Designing a bioreactor for mounting fibrin thread bundles 

In order to deliver cell suspension onto a fibrin thread bundle using the cell printer, a device to 

mount the bundle onto the printers deck, so that it could be presented to the printer’s dispense tip 

for laying the cell suspension on. It also had to be sterilizable, biocompatible and facilitate sterile 

mounting and handling of the bundle before and after the cell suspension was dispensed. 

Additionally, it had to be large enough to accommodate at least 2 cm length of the thread bundle 

when held straight, preferably a little more than that, so that the printer could dispense cell 

Figure 46: Mechanism of absorbing film-assisted laser-induced forward transfer (AFA-

LIFT) of printing cells. Experimental arrangement for the absorbing film-assisted laser-

induced forward transfer (AFA-LIFT) of living cells used by a group of researchers in 

University of Szaged, Szaged, Hungary, is depicted (5). The silver layer served as the 

absorbing and carrying layer. During the transfer process this layer absorbed the laser 

energy, and transformed the electronic excitation into kinetic energy that caused the film 

contain the cells to detach and transfer to the print substrate (acceptor plate). To avoid the 

extreme hard impact of transferred cells the acceptor plate was covered with a gelatin layer. 
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suspension onto 2 cm length of the bundle to make the method comparable to the length of 

bundles currently used in the tube rotator method. Considering all these factors, a ring assembly 

could be accommodated into a standard 6-well plate well was determined to fulfill the criteria.  

The initial design of the bioreactor assembly is shown in Figure 47.  

 

 

 

  
   

 

 

Figure 47: Initial design of bioreactor assembly to mount fibrin thread bundles onto cell 

printer. A delrin plastic ring that could support the positioning of a silastic tubing that was cut 

into a semi-cylinder along its diameter to act as a trough to hold the fibrin thread bundle 

(indicated by horizontal wavy black lines bundled together) was conceptualized in the early 

stages of the seeding assembly design. This would allow the printer’s dispense tip (indicated 

by yellow vertical structure tapering at its bottom positioned above the horizontally placed 

thread bundle) would be able to dispense a small amount of concentrated cell suspension 

(indicated by red dots inside the tip) onto the bundle, with the cell suspension pooling around 

the bundle inside the trough. This would allow the cell suspension to remain in close contact 

with the bundle while coating its entire circumference by capillary action. Additionally, the 

trough formed by the silastic tube would also allow pooling of small amounts of culture media 

that could be added periodically to the seeded bundle to prevent dehydration and cell death.  
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After the delrin rings were machined, initial experiments to test the working of the assembly 

were performed, which revealed the flaws in the concept. Because the thread bundle was not 

anchored at the diametrically opposite ends in this assembly, upon hydration the bundle would 

curl up, or become wavy at the very least and not retain a linear shape. Programming the cell 

printer to dispense the cell suspension along the curves of the hydrated bundle sitting in the 

trough formed by the semi-cylindrical silastic tubing was not feasible. Alternatively, the cell 

suspension could be dispensed into the trough holding the wavy bundle assuming that the bundle 

would be sitting at the bottom of the trough and the cell suspension would gravitate onto it. 

However, parts of the bundle would very often not sit at the bottom of the trough, but rather stick 

to its sides or sometimes even protrude out of it a little bit. This prevented the cell suspension 

from reaching all parts of the bundle. 

Secondly, the cell suspension dispensed onto the trough was observed to seep out through the 

ends of the semi-cylindrical trough of silastic tubing, sometimes in a matter of minutes. This 

would leave very little, if any, cells available for attachment onto the bundle. Attempts were 

made to block both ends of the trough by sterile sodium alginate, but were not successful. 

Even if the seeping problem was corrected, the bundles would still not remain straight after 

hydration if they were not fixed at diametrically opposite ends of the delrin ring. Considering this 

fact, dowel pins made of stainless steel were introduced in the design of the assembly to act as 

anchors or posts for the fibrin thread bundle at diametrically opposite ends of the delrin ring, 

which is the assembly as was finally used for seeding. (Figure 30) Additionally, the trough of 

silastic tubing was removed altogether to prevent cell suspension from seeping out. 

The problem of holding the thread bundle straight for printing cell suspension onto it in a straight 

line was addressed with this modification. However, the lack of a collection trough below the 

thread bundle meant that a very small amount of cell suspension (or media) could be dispensed 

onto the bundle at a time, if overflowing and spillage was to be avoided. This led to problems of 

thread dehydration and drying, which could only be addressed with local temperature and 

humidity control on the printer’s deck, as discussed later in this section. 

However, it was decided to use this bioreactor assembly for seeding cells with the cell printer in 

this project as it conceptually allowed for very high seeding efficiency, pending modifications on 

the printer’s deck. 

 

Counting cell seeded on fibrin thread bundles 

To compare efficiency of seeding methods, a reliable way to count cells seeded on fibrin thread 

bundle had to be developed. This also was challenging task.  

Murphy et al. had developed a method to count cells seeded on a bundle of four fibrin 

microthreads after fixing and staining the cells attached to the bundle, on the bundle itself, and 
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visualizing them using fluorescence microscopy (17). However, with twelve fibrin microthreads 

in each bundle, this was extremely tedious using epifluorescent microscopy because of the 

considerable depth of field with the average diameter of thread bundle being in the range of 300 

– 400 µm, and the cells seeding on the entire circumference which could be visualized only in 

parts at each focal plane.  

Fakharzadeh et al. had developed a method to count the cells using the hemocytometer after 

detaching them from the bundle using trypsin (18). However, the duration of trypsinization 

required to detach the majority of cells from the thread bundle was quite long (30 minutes), 

which caused several cells to die in the process of detachment. This was evident from the 

subsequent Trypan blue staining performed for counting the cells after trypsinization using a 

hemocytometer. Additionally, the cell suspension contained a lot of debris from the fibrin 

degradation. This, along with several dead and fragmented cells, made counting cells using this 

method quite difficult and unreliable. Also, any count obtained using this method would 

inevitably under-count the number of cells seeded by a variable and unknown proportion, 

because of considerable cell death in the trypsinization process.  

Methods based on measuring amount of DNA present in a particular sample as a representation 

of the number of cells present such as CyQuant Cell Proliferation Assay (Molecular probes, Life 

technologies, Carlsbad, CA), also had limitations. These assays typically perform well only in a 

specific range of cell counts (50 to 50,000 cells for CyQuant, from manufacturer’s product data 

sheet), and require that the cell suspension be prepared in a certain manner in a medium 

containing minimal impurities. Such methods are not tested for accuracy in presence of 

impurities such as fibrin degradation products (which would be present in suspension if seeded 

threads were trypsinized to detach seeded cells before counting) and thus could not be relied 

upon for counting for the purpose of this project. 

Finally, a method to visualize one surface of a thread bundle in its entirety was developed in this 

study, using confocal microscopy, as described in the methods and materials section. In addition 

to being able to visualize cells seeded on half the circumference of each seeded bundle for 

counting the cells, this method also offered valuable qualitative data such as the morphology of 

the cells – whether they were spread out or bunched, what was their distribution along the length 

of the bundle, what part of the bundle did they preferentially attach to. This data can be used for 

extracting a lot of valuable information regarding the process of seeding and factors that affect 

cell attachment may be evaluated. Because individual microthreads were also visible in the 

confocal images due to their mild auto-fluorescence in the emission range of Ethidium 

Homodimer-1, the morphology of the bundle and cells could be evaluated with respect to each 

other, and compared from bundle to bundle. Thus, this method had several advantages in 

addition to offering a way to count the seeded hMSCs. 

However, owing to the twisting geometry of the thread bundle with the individual fibrin 

microthreads twisting on one another, several cells would seed in the grooves in between 
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individual microthreads. The confocal images showed only the surface of the bundle. As a result, 

only the cells that could be seen on the surface were counted. It is likely that the cells sitting deep 

inside grooves between individual microthreads or inside the bundle between microthreads (if 

any) were missed and thus were not included into the counts considered for calculating seeding 

efficiency. Thus, the seeding efficiency calculated from the number of cells seeded as counted 

from images from confocal microscopy, was probably falsely low. It is hard to determine by 

what factor were the calculations off, however the number of cells seeded using the tube rotator 

method correlated well with previously obtained counts in the lab (18). From this, it was 

assumed that the magnitude of error was small and not significant, an assumption that can be 

tested when a more accurate counting method is developed. However, considering that this 

method of counting was consistently applied to all seeded bundles in both groups, the 

comparison of seeding efficiency between the two groups can be considered scientifically valid.  

 

Compensating for damaged thread bundle ‘Tube-Rotator-3’ 

As described in the results section, the third bundle in the tube rotator group was inadvertently 

damaged during the staining process, leaving only about half of the bundle available for analysis. 

Upon imaging and counting, the bundle was found to have unusually low amount of seeded cells 

compared to previously observed numbers for the same method. For this reason, the original 

count of cells on this bundle was not considered for seeding efficiency calculations of this group. 

Instead, the average of the seeding efficiency of the remaining two bundles in the group was 

considered as representative seeding efficiency for the third bundle. This can be justified 

considering the fact that the tube rotator method is fairly consistent from bundle to bundle, when 

the number of cells used for seeding is the same, the passage of cells used is comparable and the 

bundles used have similar diameters. 

This is evident from the measurements of seeding efficiency obtained from bundles seeded using 

this method during experiments performed while refining the seeding protocol for the cell printer 

(Table 8, Table 9). The average per mm seeding efficiency of the bundles is 9.44% which is 

close to the 7.05% seeding efficiency obtained by taking the average of seeding efficiency of 

bundles ‘Tube-Rotator-1’ and ‘Tube-Rotator-2’. 

 

Table 8: Number of cells per mm of thread bundle for bundles seeded with tube rotator 

method in developmental phases of seeding protocol for cell printer 

Thread bundle Number of cells seeded per 

mm 

Length of thread bundle in mm 

Expt_3_Tube_Rotator 280 18.60 

Expt_4_Tube_Rotator 302 14.02 
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Table 9: Seeding efficiency per mm length of thread bundle for bundles seeded with tube 

rotator method in developmental phases of seeding protocol for cell printer 

Thread bundle  Seeding Efficiency 

Expt_3_Tube_Rotator 10.42 % 

Expt_4_Tube_Rotator 8.47 % 

  

Average 9.44 % 

 

Although cell seeding data from only 3 bundle pairs (which were seeded after refinement of 

seeding protocol) has been admitted for the purpose of comparison of seeding efficiency in the 

results section of this study, more bundles had been seeded successfully with cells using the tube 

rotator method as comparison for the cell printer method, during the developmental stages of the 

seeding protocol. The above data is obtained from two such bundles. For seeding each bundle, 

50,000 cells (P9 hMSCs) were used.  

 

Local temperature, humidity & gas control on the cell printer’s deck 

The factor contributing most to low hMSC attachment and survival observed in the cell printer 

group to seed cells onto a fibrin thread bundle using the cell printer is thought to be dehydration 

of cells due to visible drying of thread bundles during the dispensing process in the laminar flow 

environment of the biosafety cabinet housing the cell printer, and during the 20-minute 

incubation period that immediately followed. 

The deck of the prototype cell printer was open to laminar flow of air of the biosafety cabinet in 

which the printer was housed. As a result local temperature, humidity and gas level control on 

the deck of the printer was not possible and the evaporation of media from the bundle could not 

be prevented.  

If a theoretical scenario is considered where local temperature, humidity and gas level control 

was available, conditions similar to a cell culture incubator could be established on the deck of 

the cell printer (37
o
C with atmospheric oxygen, 5% carbon dioxide and 85% or higher relative 

humidity). This would eliminate the need to transfer the seeded thread bundle to an incubator to 

allow cells to survive and attach to the bundle.  

Additionally, the cell printer could be used to rehydrate the thread bundle as often as required in 

small, frequent aliquots of warmed media, to prevent dehydration of the cells, in addition to 

providing the necessary nutrition to the cells. The media could be added in aliquots small enough 

to prevent any of it from spilling or overflowing from the thread bundle, thus not causing any 

inadvertent loss of cells into the well below the thread bundle.  
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This would allow the entire bulk of cell suspension containing 50,000 cells to remain in contact 

with the thread bundle for an extended period of time, in conditions favorable to cell growth and 

attachment, and would also eliminate the need to place the bundle on a tube rotator. Such static 

seeding process, which is closer to culture conditions the hMSCs are used to seeing compared to 

the dynamic method of seeding in the tube rotator, is likely to result in a higher rate of cell 

attachment and thus increase seeding efficiency.  

If localized temperature, humidity and gas control are introduced on the deck of the cell printer, 

several other bioprinting applications involving use of temperature sensitive hydrogels such as 

Collagen or Agarose, in addition to live cells, will become possible, opening doors for exciting 

possibilities of novel tissue constructs. 

 

 

Future work: 

The feasibility to use this automated liquid handling technology to deliver cells to biological 

scaffolds in specified patterns to develop vehicles for cell therapy was shown in this study, with 

plenty of room for improvement. 

Options for local temperature, humidity and gas control on the cell printer’s deck should be 

explored, inasmuch as this is a highly desirable feature for creating constructs with live cells. 

Seeding other cell types on scaffold materials other than fibrin or a combination of materials, in 

more complex patterns in 2 and 3 dimensions may also be attempted. Loading selective portions 

of the scaffolds with growth factors or multiple cell types, or loading them in different 

concentrations at different parts of the scaffold may allow creation of ‘gradients’ of these 

biological agents. 

Once methods to generate biologically relevant constructs for therapy, testing or research are 

established using the cell printer, the potential for automation of parts or whole of the 

construction method and scaling up the technology for manufacturing on a larger scale may also 

be evaluated. 

De novo tissue construction of multilayered 3 dimensional constructs, starting from relatively 

simple tissues such as skin, to more complex tissues, is an exciting, challenging and promising 

prospect that the cell printer offers. As knowledge boundaries of biology, material science, and 

engineering disciplines expand, this approach which is in its infancy right now may become a 

reality with tools such as this cell printer. 
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Conclusion 
A novel cell printing technology – Digilab’s prototype cell printer, was explored in this work, 

and was found to handle human mesenchymal stem cells and human fibroblasts as gently as 

manual pipetting, preserving the viability of cells – a highly desirable quality for a bioprinter. 

Printing accuracy of the cell printer was found to be sufficient to consistently dispense small 

volumes of cell suspension directly onto fibrin thread bundles, a thin linear target suspended in 

mid-air, without any observable spillage. Cell attachment to the surface of fibrin thread bundles 

(seeding) was demonstrated following such delivery of cell suspension to the bundles and factors 

likely to contribute to better seeding efficiency were identified. In sum, the cell printer shows 

considerable potential to develop novel vehicles for cell therapy. It empowers researchers with a 

supervision-free, patterned cell dispensing robotic tool while preserving cell viability. In the 

future, de novo biofabrication of tissue replicates on a small scale using this technology by 

dispensing cells, extracellular matrices, and growth factors in different combinations is a very 

realistic possibility.  
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Appendix A: Post-Printing Cell Viability Measurements 
 

Cells dispensed using the cell printer – Calculation of number of nuclei belonging to live 
cells in each well 

Well 
address 

Objects showing Hoechst 
signal (total # of nuclei) 

 
(A) 

Objects showing Hoechst 
and Ethidium signal 
(nuclei of dead cells) 

(B) 

Objects showing only 
Hoechst signal (nuclei 

of live cells) 
(A – B) 

A5 2504 140 2364 

A6 2045 57 1988 

A7 1957 165 1792 

A8 1955 119 1836 

B1 1837 37 1800 

B2 2246 88 2158 

B3 2551 74 2477 

B4 2854 126 2728 

B5 3104 104 3000 

B6 1984 105 1879 

B7 2817 115 2702 

B8 2225 130 2095 

 

Cells dispensed manually using a hand-held pipette – Calculation of number of nuclei 
belonging to live cells in each well 

Well 
address 

Objects showing Hoechst 
signal (total # of nuclei) 

 
(A) 

Objects showing Hoechst 
and Ethidium signal 
(nuclei of dead cells) 

(B) 

Objects showing only 
Hoechst signal (nuclei 

of live cells) 
(A – B) 

C5 4422 134 4288 

C6 4772 156 4616 

C7 3402 103 3299 

C8 3311 137 3174 

D1 1823 228 1595 

D2 3633 278 3355 

D3 3446 142 3304 

D4 3721 109 3612 

D5 3657 64 3593 

D6 4229 138 4091 

D7 3718 83 3635 

D8 4273 150 4123 
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Cells dispensed using the cell printer – Nuclei belonging to dead cells 

Well address Objects showing Ethidium Homodimer-1 signal (nuclei of dead cells) 

A5 247 

A6 119 

A7 351 

A8 167 

B1 70 

B2 161 

B3 120 

B4 318 

B5 197 

B6 302 

B7 270 

B8 342 

 

 

Cells dispensed manually using a hand-held pipette – Nuclei belonging to dead cells 

Well address Objects showing Ethidium Homodimer-1 signal (nuclei of dead cells) 

C5 190 

C6 235 

C7 196 

C8 323 

D1 746 

D2 804 

D3 230 

D4 191 

D5 177 

D6 342 

D7 152 

D8 439 

 

 

 

 


