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Abstract 

 Computational modeling of chemical systems has provided a fast and cost-effective 

method of approximating molecular properties and interactions, especially those that cannot be 

determined experimentally. Here, the POSSIM (POlarizable Simulations with Second order 

Interaction Model) force field is used in order to demonstrate the efficacy of polarizability in 

accurately reproducing experimentally and quantum mechanically derived results for gas phase 

dimers and geometries, liquid properties, and energies of binding. Specifically, parameters for 

small-molecule analogs of tryptophan and arginine are fitted and then transferred to their full size 

peptides for incorporation into proteins. Pyrrole and methyl guanidinium ion were used as analogs 

for tryptophan and arginine, respectively, and the largest energy error after fitting was only 3.7%, 

demonstrating good agreement. The conformational energy error for tryptophan was 0.06% and 

for arginine 14.9%, although in comparison to other results this is reasonably accurate. 

Additionally, it was investigated how well a non-polarizable force field, Optimized Potentials for 

Liquid Simulations (OPLS), models the binding energy of the oncoprotein c-Myc for a library of 

known anti-cancer inhibitors. While this force field provided an average error of binding energy 

of about 8.9 kcal/mol with Molecular Dynamics and 4.2 kcal/mol with one inhibitor with Monte 

Carlo without fitting, it is anticipated that the POSSIM model will achieve a higher accuracy when 

implemented, with the hope that parameters can be developed as tools for investigating protein-

ligand binding.   

 



Introduction 

 Molecular modeling has been an integral part of chemical and physical research ever since 

the advent of the computer. While wet laboratory techniques have been invaluable in elucidating 

many of the daunting questions that these fields present, practical considerations such as time and 

cost can hinder the progress of this form of research. Molecular modeling seeks to prepare 

scientists for experiments in the laboratory by providing an initial guess that can be used as a 

heading, much like that which a compass provides when the desired direction is not known. At the 

same time, in silico techniques cut down on costs and save researchers time. Using the known 

properties of atoms and their behavior, one can perform calculations beforehand in order to inform 

about experiments needed to be run further on in the investigation process. Furthermore, 

theoretical calculations can be used to characterize atomic-scale properties that cannot be 

realistically investigated in the wet laboratory. Such properties ought to follow mathematically-

derived physical principles, so molecular modeling can be used to test their validity. 

 However, molecular modeling is just a model like any other. Models have been used widely 

in any area of research because they simplify systems to forms that are not necessarily accurate 

but provide approximate answers to questions in order to guide researchers in the right direction. 

For example, model aircraft are often used to investigate how well the target airplane will perform. 

The observer understands that while this model will not operate on its own nor bear the same 

weight as the aircraft being represented, the model can still be used to assess the shape of the 

wings, the positioning of the rotors, and the distribution of cargo, just to name a few properties. 

Using such a model is much more trivial and practical than building a real size airplane and then 

performing these assessments, because doing this would require too much time and resources than 

is realistically feasible. In this same way, molecular modeling and computational chemistry aim to 



represent real intermolecular interactions and molecular properties using knowledge derived from 

previous experiments.  

 Using the computational power of molecular modeling software, the research presented 

here sought to develop parameters for two of the twenty side chains of proteins commonly found 

in nature, namely tryptophan and arginine. Additionally, the group investigated the energetics of 

the interaction between a known oncoprotein (one that causes cancer, and here, specifically, 

Burkitt’s lymphoma), c-Myc, and a host of inhibitors in an effort to model these interactions and 

develop new and more effective inhibitors. Additionally, an overarching aim of this research was 

to include a novel approximation of polarizability, one that requires fewer parameters than earlier 

polarizable models, to molecular modeling and thus more accurately reproduce ligand-protein 

binding energies. 

Background 

 Here the group presents information pertinent to the understanding of how the field of 

computational chemistry arose and how it works to accurately represent the laws of nature. 

Additionally, information about force fields and how they are a crucial part of molecular modeling 

is given, as well as an explanation and analysis of previous attempts at developing these force 

fields and how the polarizable force field intends to fix some of the issues present in these earlier 

versions. Details of the goals of the research project are also provided, but generally these goals 

were as follows: 

1. Develop parameters for the small molecule analogues of the residues tryptophan and 

arginine, which are called pyrrole and methylguanidinium, respectively, 

2. Transfer these parameters to the whole dipeptides of tryptophan and arginine, 



3. Characterize the energetic interactions between the oncoprotein c-Myc and individual 

inhibitors initially determined by Yin et. al. 

In general, the aim is to use developed parameters for each atom type as a tool for ligand-protein 

applications, with c-Myc investigations as a first attempt in doing so. 

Computational Chemistry and Molecular Modeling 

 Quantum mechanics essentially and specifically describes how molecules are put together 

and provides the most accurate data in molecular modeling. The way in which two atoms form a 

bond is the basis for building molecules and quantum mechanics provides mathematical reasons 

for this event to occur. Quantum mathematics can also be used to describe bulk processes in which 

the system is much larger than a simple pair of atoms and contains many different molecules 

moving around each other. Some positions and other properties of these molecules are more 

favorable than others. Thus arises the concept that the way in which molecules behave can be 

characterized by a set of probabilities. But how can one determine how probable some molecule 

is to move from one place to another and how likely this molecule is to adopt certain geometrical 

conformations? The answer lies within the basis for all computational chemistry, the Schrodinger 

equation, which seeks to predict the probabilistic behavior of particles in a given system: 

ĤѰ = 𝐸Ѱ, 

where Ĥ is the Hamiltonian operator acting on the wave function Ѱ, and E is the energy of the 

system. Essentially, the wave function describes the position of all particles within the system and 

equation seeks to describe the probability of finding these particles in that system in consideration 

of their energy. Additionally, it is important to note that this is time-independent Schrodinger 

equation, and thus only describes the probabilistic positions of particles in an instantaneous state 

of a given system. However, the most important idea to understand here is that particles move 



according to their energy and that everything in nature seeks to lower its potential energy. The 

Schrodinger is powerful because it follows this law and states that energy informs position.  

The ideal molecular modeling program will seek to find the solution of the Schrodinger 

equation and output the most probable position of the input atoms. The advantage of such quantum 

mechanical methods is that they are always accurate because these methods predict the behavior 

of electrons exactly. It is somewhat trivial to solve this equation for single electron systems and 

this can be even be done out by hand, but the complexity of the system exponentially increases 

with each electron added. Thus, eventually it becomes impractical to seek exact solutions to the 

Schrodinger equation for chemical systems in which many electrons are present. If a molecular 

modeling software is given such a chemical system and then asked to solve the Schrodinger 

equation exactly, it will take an enormous amount of time and CPU power to arrive at the solution, 

so much so that such a calculation would be impractical for research purposes. In addition, 

different quantum mechanical approaches may arrive at different solutions. For this reason, 

empirical and semi-empirical methods have been developed and are used in this research.  

These methods seek, much like models, to approximate the solutions to the Schrodinger 

equation in various ways. Some of these methods are more accurate than others and some utilize 

more CPU time as well, but all of them require parameterization. This means that numerical 

parameters need to be developed and inputted into the method in order to maximize its accuracy. 

These parameters are derived from exact results that come either from quantum mechanical or 

experimental methods. Understandably, it would seem that performing these preliminary 

calculations and then importing the results into an empirical method is redundant. However, once 

these parameters are developed, they are transferrable from one computational experiment to 

another. Transferability is invaluable in computational chemistry research since parameterization 



need only occur once and can then be used to run many different experiments. This technique is 

used in this research, for example, when simulating peptides. Once parameters have been 

developed for a certain side chain, they can then be used when in the context of a protein that 

contains that side chain. This approach is especially useful in polarizable models, since the 

polarizability parameter describes responses to changing electrostatic environments, while fixed-

charge models do not contain this feature.  

Force Fields 

 While empirical and semi-empirical methods are certainly effective for smaller organic 

systems, for biochemical systems that include proteins, lipids, ribonucleic polymers, and other 

many-atom molecules, the cost using these methods is far too great to be practical any longer. For 

situations like these, molecular mechanics methods are most useful. These methods are unique in 

that they do not employ wave functions or electron density functions, like quantum mechanical 

methods do. Instead, the energy of a molecule is described by an arithmetic combination of energy 

terms resulting from certain electrostatic and geometric aspects of the molecule in question, 

depending on the particular method, of course. Force fields constitute these equations. There are 

many different types that have been developed and some are more accurate than others. The goal 

of a researcher developing a force field is to maximize the accuracy so that the results are as close 

to quantum or experimental results as possible and to minimize the CPU time it takes in order to 

complete the calculations.  

 Generally, all force fields take the functional form 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 + 𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑. 



The bonded energy term pertains to the geometry of a molecule, a factor that greatly influences 

the energy of that molecule. These terms are collectively named valence terms. These can include 

expressions for the energy due to bond stretching, angle bending, and dihedral angles. The 

difference between these terms is the number of atoms that define each quantity. Bond stretching 

is determined by two atoms and is described by their distance from each other, angle bending by 

three atoms and the angle defined by these atoms, and dihedral angle by four atoms and the angle 

between the two planes formed by them. Should a molecule choose to adopt a conformation that 

strains any of these properties, the energy of the molecule will increase and that conformation will 

be deemed unfavorable. For example, Figures 1 and 2 depict the dihedral angle formed in ethane 

and the energy of ethane as a function of the magnitude of this angle.  

Note that the eclipsed conformation, in which the atoms overlap when viewing the 

molecule down the rotationary bond, results in a higher energy due to the proximity of these atoms. 

In this way, valence terms in the force field have a significant affect on the stability of a given 

molecule and parameters for each of these terms must be fit in order to maximize this stability. In 

Figure 1 Ethane molecule depicting bond length, angle 

bending, and dihedral angle (shown here as -60.0°). This is 

the staggered conformation and is most stable. 

Figure 2 Energy as a function of dihedral angle in ethane, as 

pictured in Figure 1. Note the cosine behavior of the function. 



this particular case, dihedral energy terms contain the cosine function to reflect the energy curve 

given in Figure 2 and are generally in the form  

𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = ∑ 𝑘𝑖[1 ± cos(𝑛𝜃)]𝑖 , 

where k is a parameter that needs to be fitted based on quantum mechanical or experimental results 

and will change based on the types of atoms involved, steric hindrance, and other geometrical 

factors. Parameterizing a force field in this manner is a major part of its development, so there are 

many different ways in which this can be achieved. Parameters must be fit for multiple energy 

terms and parameterization protocols can become quite complicated as a result. The protocol for 

parameterizing the force field used in this research will be presented in a later section, but generally 

the technique involves mapping energy terms to geometric states and then developing coding 

routines that will use the potential energy surface of a molecule to output an optimal parameter 

set.  

 Force fields also contain energy terms that reflect non-bonded interactions. While valence 

terms result from geometries determined by the position of atoms that are bonded together, non-

bonded terms describe the energy resulting from the interactions of charged particles, in which 

nuclei are treated as positive charges and electrons as negative charges. Non-bonded terms often 

include electrostatic and Van der Waals interactions that are treated separately. The Coulombic 

term adopts the point charge-point charge interaction formalism of  

𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏𝑖𝑐 =
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
, 



where i and j are particles, q is the charge for each respective particle, and rij is the distance between 

the two particles. Figure 3 depicts this energy between two such particles as a function of the 

distance between them.  

 

On the other hand, Van der Waals interactions among atoms is included in the Lennard-

Jones potential energy term, which describes all electrostatic interactions other than those due to 

point charges. Figure 4 depicts the energy trends for the Lennard-Jones term also in terms of the 

distance between two atoms. The equation shown in the figure is the form that many force fields 

take and is known as the 12-6 Lennard-Jones potential. There is also the 12-10 potential, in which 

the attractive term is treated more significantly. In the expression, ε denotes the depth of the well 

of the graph or the vertical distance from the x-axis to the function minima and σ is the value of 𝑟 

at which the potential is zero. σ is an important parameter because it defines the distance at which 

the attractive and repulsive forces cancel. In Figure 4, the potential function is asymptotic with the 

x-axis so the interaction energy is zero as the distance between the particles approaches infinity. 

Given two atoms that are at an infinite distance from one another, the Lennard-Jones potential is 

Figure 3 Electrostatic potential as a function of distance from a 

charged particle. (Note on electric, 1999) 

Figure 4  Lennard-Jones potential function. (Hansson & Jans, 

2012) 



zero. Upon bringing the two atoms into closer proximity, an attractive force will ensue from the 

dipole moments that are induced and the energy will decrease because the distance between the 

atoms is favorable. However, if the two atoms are brought further into proximity, orbital effects 

will need to be considered. According to the Pauli Exclusion Principle, two electrons of the same 

directional spin cannot occupy the same orbital. Thus, as orbitals come closer together and begin 

to overlap unfavorably, the energy will begin to increase, ultimately overcoming the initial 

attractive force and approaching infinity as the distance shrinks. The expression describing the 

Lennard-Jones energy is an example of an implicit treatment of electrostatic polarization. Some 

force fields will even combine this energy term with the Coulombic term into one that describes 

the total electrostatic energy. As we will see, such implicit treatment often leads to inaccurate 

results, especially when reproducing systems that contain atoms with large polarizable electron 

clouds and/or ions.  

 In summary, there are many different aspects of molecular properties that contribute to 

their stability and reactivity. In simulating these molecules, it is important to include as many of 

these aspects as possible in order to reflect the reality of nature. The principal aim of this study 

was to develop a force field that expanded the non-bonded term to include polarizability, in which 

electron charges around nuclei could move in response to an external electrical field and induce a 

dipole moment. However, describing polarization mathematically is complex and explicit and 

thorough treatment of electrostatic polarization can lead to the large CPU time that good molecular 

modeling practices seek to avoid. Thus, the goal was to introduce an expression that approximates 

the polarization energetic effect enough so that the computational expense is not too large but also 

to minimize the loss of accuracy resulting from this simplification. The following sections will 

discuss some of the force fields that are employed in computational laboratories today, both 



polarizable and non-polarizable, and how well they reflect the quantum mechanical or 

experimental results upon which they are based.  

 Non-Polarizable Force Fields 

 These force fields employ electrostatic energy terms that do not attempt to explicitly define 

polarization. Here, we show what particular expressions such a force field uses and discuss some 

of its reported advantages and drawbacks. In a later section, we also present data on how these 

force fields compare in accuracy and robustness with respect to the specific systems we investigate 

in this study.  

  OPLS-AA 

 Jorgensen et al. initially developed the Optimized Potentials for Liquid Simulations – 

United Atom (OPLS-UA) force field in order to better describe intermolecular interactions in the 

liquid state. This force field, in contrast to that of OPLS-All Atom (OPLS-AA), implicitly treated 

hydrogens by only considering interaction sites that included non-hydrogen atoms. This was done 

in an attempt to minimize the CPU time required for computation, as it has been generally found 

that this amount of time is approximately the square of the number of interaction sites. Thus, for 

example, the number of interaction sites on ethane can be reduced from the full 8 to only 2, 

dramatically reducing computational time. However, it became clear that an explicit treatment of 

hydrogen sites was required in order to correctly account for charge distribution and torsional 

energy, ultimately boosting accuracy. This came in the form of the OPLS-AA force field, one of 

the most successful and chemically complete fixed-charge models. For example, the average error 

for the energy hydration of alkanes was reduced from 0.9 kcal/mol to 0.3 kcal/mol:  

 



Additionally, results from liquid simulations have also been shown to yield good accuracy: 

The energy terms for OPLS-AA are as follows. The non-bonded interactions between 

molecules a and b are described by an energy term combining Coulombic and Lennard-Jones 

terms: 

𝐸𝑎𝑏 = ∑ ∑ [
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
+ 4𝜀𝑖𝑗 (

𝜎𝑖𝑗
12

𝑟𝑖𝑗
12 −

𝜎𝑖𝑗
12

𝑟𝑖𝑗
12)]𝑓𝑖𝑗

𝑜𝑛 𝑏
𝑗

𝑜𝑛 𝑎
𝑖 , 

where i and j are atoms, q is charge, r is the distance between atoms i and j, ε and σ are Lennard-

Jones parameters to be fitted, and fij is a coefficient. fij assumes the value 0 if atoms i and j are 

bonded (a 1-2 interaction) or are on the same bond angle (a 1-3 interaction). 1-4 interactions 

between these two atoms make the coefficient value 0.5 and 1.0 in all other cases.  The Lennard-

Jones parameters are combined between atoms i and j in a geometric fashion, such that  

𝜎𝑖𝑗 = √𝜎𝑖𝑖𝜎𝑗𝑗  

and 

Table 1 Comparison of OPLS-UA and -AA for calculation of 

hydrocarbon hydration. (Kaminski, 1994) 

Table 2 Liquid ethane simulation results.”2M” refers to 2 x 106configurations in the MC simulation. V (volume) is given in Ǻ3, ϱ 

(density) in g/cm3, ΔHvap (heat of vaporization) in kcal/mol, and Cp (heat capacity) in cal/(mol K). (Jorgensen, 1996) 



𝜀𝑖𝑗 = √𝜀𝑖𝑖𝜀𝑗𝑗. 

The bond stretch and angle bend terms are  

𝐸𝑏𝑜𝑛𝑑 = ∑ 𝐾𝑟(𝑟 − 𝑟𝑒𝑞)
2

𝑏𝑜𝑛𝑑𝑠

 

and 

𝐸𝑎𝑛𝑔𝑙𝑒 = ∑ 𝐾𝜃(𝜃 − 𝜃𝑒𝑞)
2

𝑏𝑜𝑛𝑑𝑠 , 

respectively. Here, Kr and Kθ are coefficients, r is the distance between two atoms and θ is the 

angle between three atoms. These energy terms are reminiscent of Hooke’s law, 

𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ = 𝐾(𝑟 − 𝑟𝑒𝑞)
2 

and thus treats bond stretching and angles as spring-like vibrations. This formalism is generally 

conserved among molecular mechanics force fields and is included in the polarizable force field. 

Finally, the energy due to torsion is given by 

𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = ∑
𝑉1

𝑖

2
[1 + cos(𝜙𝑖)] +

𝑉2
𝑖

2
[1 − cos(2𝜙𝑖)] +

𝑉3
𝑖

2
[1 + cos(3𝜙𝑖)]𝑖 , 

where Vi is a Fourier coefficient that requires parameterization and ϕi is the dihedral angle.  

 Polarizable Force Fields 

 These force fields seek to explicitly treat electrostatic polarization. The two force fields 

presented here take different approaches in this approximation but each are a step forward in trying 

to accurately reproduce polarizable results. However, introducing polarizability is a non-trivial 

task. First, this involves adding additional parameters, which can exponentially increase the 

difficulty in parameterization. Simply put, imagine trying to solve a single variable equation, 

which is a fairly simple task. Suppose that another variable is introduced, so that now one is left 

to solve a system of equations in order to find two variables. Thus, for every additional variable 

and equation that is added, the more time consuming and challenging it is to determine each 



variable. This is the challenge with polarization. A good approximation has to be implemented so 

that the benefit of increase in accuracy outweighs the additional CPU time required for 

calculations. For this reason, good error determinations are used to thoroughly assess the improved 

accuracy.  

 Generally, there have been two great limitations determined for force fields that do not 

explicitly treat electrostatic polarization, i.e. fixed-charge models. One is that, while these force 

fields perform well in calculating properties of pure liquids, doing so in non-condensed phases and 

non-uniform environments such as those found in biochemistry have resulted in large errors. 

Above is a table comparing Polarizable Force Field (PFF) and OPLS in calculating the properties 

of various organic liquids. One can observe that OPLS and PFF display an approximately equal 

accuracy in reproducing experimental results. For example, OPLS had an error of 0.0 for the heat 

of vaporization of methanol, 0.6 for volume, and 0.007 for density, in comparison to PFF, which 

had errors of 0.11, 0.7, and 0.008, respectively. However, OPLS failed to provide good results for 

dimer calculations in the gas phase: 

Table 3 Pure liquid properties comparing OPLS and PFF with experimental values.(Kaminski 2004) 



Here, for methanol, OPLS had an error of 0.82 for energy of the dimer and 0.02 for dimer distance, 

versus 0.04 and .01 with PFF. OPLS does perform well with nonpolar aliphatic compounds such 

as methane, however. Dimerization energies and distances calculated by this point-charge force 

field with polar compounds have proven to be unreliable and thus the need for explicit treatment 

of polarization is apparent, especially for biochemical systems containing peptides with carbonyl-

amino backbones as well as polar side chains. 

A second issue with point-charge models is that, in agreement with the dimerization results 

presented above, hydrogen bonding interactions are not adequately represented. It has been shown 

that such intermolecular interactions, including hydrogen bonding between carbonyl and amine 

groups as well as hydrocarbon groups, require explicit polarization in order to reflect quantum 

chemical results (Stern, Kaminski 1999). Such interactions are critically important to the stability 

of proteins, as hydrogen bonding routinely takes place between residues and certain areas of the 

backbone. Energetic analyses of the conformations of several different polypeptides was 

performed by Stern et al. in order to confirm this concept. One of these included an alanine 

tetrapeptide, whose results are given in the following table: 

 

 

Table 4 Dimerization properties for various compounds, comparing 

OPLS and PFF with ab initio quantum mechanical results.(Kaminski 

2004) 



From the above results it is clear that the fix-charge model failed to correctly reflect quantum 

mechanical data, which has been verified for excellent accuracy by Vargas et al. (Vargas 2001). 

The inaccuracy of point charge models in representing these charge-charge interactions can be 

explained by the fact that a given point charge will induce localization of an opposite charge in the 

immediate vicinity, and thus lower the overall energy. This is a result of polarization. If, however, 

such polarization were not permitted to take place, as in OPLS, such energy changes would not be 

observed and the energy would be overestimated. This is particularly important in conformational 

studies, in which hydrogen bonding is participant. Polarizable models correctly reflect these 

energy changes. 

 While explicit polarization has been shown to solve some of the problems present in fixed-

charge models, polarizable force fields have some problems of their own, especially those force 

fields that adopt the Fluctuating Charge (FQ) formalism. This model is based on the 

electronegativity equalization method, which describes how electron clouds centered about a 

nucleus seek to equalize their electrochemical potential across the entirety of the cloud. Electrons 

are treated as dynamic variables and move according to Newtonian mechanics from areas of low 

Table 5 Energies of the various conformers of the alanine tetrapeptide, comparing the results from ab initio quantum 

mechanics to those of OPLS and a polarizable force field that incorporated fluctuating charge in order to represent 

polarizability. The results for this polarizable force field are shown here both with and without dihedral ϕ/ψ refitting from the 

alanine dipeptide, from which torsional parameters were transferred. (Stern et al., 1999)   



to high electronegativity (χi), which depends on the chemical potential (μi) in the following 

manner: 

𝜇𝑖 =
𝜕𝐸

𝜕𝑁
= −𝜒𝑖 = −𝑒

𝜕𝐸

𝜕𝑄𝑖
, 

where E is the ground state energy of the electron gas, N is the number of electrons, Q is the atomic 

charge, and e is the fundamental electron charge. The model takes into account the fact that 

electronegativities of a given atomic site depends on its charge and the electronegativities of its 

environment. Thus, electrons in this model will fluctuate in an effort to equalize the atomic 

electronegativity, redistributing partial charges with changing electrostatic potential. (Rick et al., 

1994) 

One of these issues with FQ is replicating accurate results for bifurcated hydrogen bonding. 

These occur when either a hydrogen bond donor is interacting with two hydrogen bond acceptors, 

or when an acceptor is interacting with two donors. An example of this is the C7ax conformer of 

the alanine dipeptide, pictured below.  

Figure 5 The alanine dipeptide C7ax conformation is shown to the left. Note the carbonyl accepting electrostatic 

interactions from the two fixed-charge dipole probes. A linear comparison of the Fluctuating Charge polarizable model 

with quantum mechanical results is shown to the right. The two plus signs indicate trimer results. (Banks et al 1999) 



The two dipole-dipeptide trimer yielded poor agreement with ab initio quantum mechanical 

calculations, as can be observed by the graph in the above figure, in which the linear line represents 

perfect agreement between the two calculation methods. Such discrepancy in three-body energies 

has been noted by other groups, who have studied the three-body energies of water trimers and 

found differences in results between the FQ model and ab initio data in the case of bifurcated 

hydrogen bonding (Liu et al 1998). Liu et al. recognized three different scenarios in which 

bifurcated hydrogen bonding occurred between three water molecules if randomly taken out of a 

bulk solution of water. It was in these cases that the Fluctuating Charge model failed to adequately 

reflect quantum mechanical results. 

  Another problem encountered with the Fluctuating Charge model is the representation of 

out-of-plane polarization, which is actually quite similar to the problem with bifurcated hydrogen 

bonds. This stems mainly from the fact that FQ will be insensitive to the vectors of an induced 

electric field. Suppose there is an atomic site somewhere in space, and that two dipole probes are 

place adjacent to each other next to this site and oriented in the same way. Let us state that the 

Figure 6 Three different bifurcated hydrogen bonds in water trimers is pictured to the left. The graph to the right compares FQ 

results to those of ab initio. The solid line represents perfect agreement with quantum results. (Rick et al., 1994) 



angle formed by these three points is zero. Further suppose that these two probes were to separate 

from each other so that the angle determined by the three particles were to increase and approach 

180°, so that the probes are now opposite each other, with the atomic site in the middle. The 

electrochemical potential the atomic site will be equal in these two cases according to FQ. To 

illustrate this point, out-of-plane polarization cases in which an aromatic ring has been subjected 

to an external electric field due to two dipole probes have been tested with different force fields in 

comparison to ab initio data: 

 

Having described some of the advantages and disadvantages of polarizable force fields, it 

is also important to consider how to best develop one. One of the biggest issues with this 

development is the functional form that the force field should take, which is essentially the 

mathematical description of polarization. One method, whose results have been analyzed here, is 

the fluctuating charge method, or FQ, that was developed by Berne et al. in 1994 in applications 

to liquid water (Rick et al., 1994). However, as has been shown, this model fails to perform 

accurately in several key cases that are required for biochemical modeling, which actively involves 

Figure 7 A linear comparison of FQ, PD (Polarizable Dipoles), and combinations thereof. The dotted line represents perfect 

agreement. The lowest energy trimer corresponds to the figure at left, demonstrating out-of-plane polarization. In addition, the 

second lowest energy trimer corresponds to a bifurcated hydrogen bond at the oxygen site. (Stern et al., 1999) 



multi-body interactions and contains many instances of hydrogen bonding. This may be due to the 

same reason that fixed-charge models such as OPLS fail, since the development of FQ was based 

on a pure liquid. Since the basis for the force field was homogeneous, it may not respond very well 

to heterogeneous solutions such as those present in biochemical systems. The functional form that 

is taken by the force field used here, POSSIM, as well as its parent force field, PFF, is the induced 

dipole and has shown great promise in replicating both experimental and quantum mechanical 

results for systems that include peptides and peptide-ligand interactions. These results will be 

discussed in a later section titled “Peptide Modeling.”  

The out-of-plane polarization problem has been resolved using an inducible dipole 

formalism with copper-benzene complex calculations. Geometry optimization was performed on 

a copper (I) ion and a benzene ring, with the ion sitting directly above the ring so as to interact 

with the electron clouds electrostatically. The results are shown here: 

Here, the inducible dipole model PFF gave an average error of 4.7 kcal/mol and 0.01 Å, while 

OPLS gave best resultant error of 33.1 kcal/mol and 0.2 Å. The fixed-charge model significantly 

underestimated the interaction energy, probably due to the fact that it did not take into account the 

favorable energy drop due to induce dipole affinity.  

Figure 8 A visual model of the Cu (I) – benzene ring complex is shown at left, while calculation results for each model is shown at right. 

Parameters were refit for OPLS in the hopes that energy agreement with QM would improve. (Ponomarev et al., 2011) 



The success of the inducible dipole functional form has already been shown to improve 

upon the OPLS results for gas-phase dimers as well as the FQ results for out-of-plane and 

bifurcated hydrogen bonding. POSSIM uses a second-order approximation of the full inducible 

dipole formalism adopted by PFF, whose mathematical descriptors are described in the next 

section. This approximation has been made in an attempt to reduce the computational cost required 

for calculating explicit polarization. Therefore, it has been tested to ensure that no sacrifice in 

accuracy is present in the model in exchange for the reduced CPU time. Kaminski et al. calculated 

the dimerization energies of several biochemically important aliphatic hydrocarbons in the gas 

phase and compared the results to those of the full-dipole PFF model, OPLS, and QM: 

 The approximation model predicted all energies to within 0.5 kcal/mol, which shows good 

agreement with quantum mechanical results. Additionally, dimers of hydrocarbons with water 

have been analyzed as a test of realistic solvation, which had not been previously implemented in 

the development phase. Liquid phase calculations of the heats of vaporization as well as molecular 

volumes were performed with pure liquids of water and several hydrocarbons: 

Table 6 Gas-phase dimerization energies as computed by QM, OPLS, the full dipole PFF (PFF0), and POSSIM (PFF). (Kaminski 

et al., 2009) 

Table 7 Liquid phase calculations with the POSSIM (PFF), full-dipole model (PFF0), and OPLS force fields in comparison to 

experimental results. Simulations were performed using the Monte Carlo method. (Kaminski et al., 2009) 



 

The average POSSIM error for heats of vaporization were 0.083 kcal/mol, as opposed to 

PFF0 and OPLS which displayed errors of 0.129 and 0.240 kcal/mol, respectively. As for 

molecular volume, POSSIM had 1.485 Ǻ3, which is significantly better than that of PFF0 and 

slightly so for OPLS. Additionally, Table 8 demonstrates the differences in the computational time 

that the second-order approximation and full model required for the same length Monte Carlo 

simulation. The average time required to simulate each of the five molecules listed were .0942 

s, .372 s, and 1.03 s for POSSIM, PFF (tolerance = 0.01), and PFF (tolerance = 10-6). Thus, it has 

been shown that the second order approximation model is not only 

appropriate for gas and liquid phase calculations, but also that this 

model achieves roughly the same level of accuracy as the full dipole 

model with a substantial decrease in computational cost. It should also 

be noted that N-methylacetamide (NMA) is included in this and many 

other biochemical computation works because it represents the most fundamental unit of a protein. 

This molecule is pictured at left. The peptide bond characteristic of the backbone is present, 

connecting the carbonyl carbon to the nitrogen. The methyl groups two either side of the molecule 

normally bear amino acids. Thus, this molecule is often used as an initial stepping stone in force 

Table 8 Monte Carlo simulation time comparisons between the POSSIM second-order model and the full PFF model. Times are 

those required for each simulation step. Tolerances displayed here are convergence criteria and are in units of charge units •Ǻ. 

(Kaminski et al., 2003) 

Figure 9 NMA 



field development so that the researcher can be sure that larger peptides will be modelled 

accurately.  

  POSSIM 

 The POlarizable Simulations with Second order Interaction Model (POSSIM) force field 

has shown great promise so far in being able to replicate organic and biochemical systems. This 

model adopts the traditional formalism of OPLS for bonded terms and the Lennard-Jones potential, 

but adds on an explicit electrostatic energy term. As opposed to FQ, POSSIM treats polarization 

as an induced dipole μ: 

𝐸𝑝𝑜𝑙 = −
1

2
∑ 𝝁𝑖𝑬𝑖

0
𝑖 , 

where 

𝝁𝒊 = 𝛼𝑖𝑬𝑖
𝑡𝑜𝑡𝑎𝑙 

and Etotal is the total electric field, including that due to induced dipoles. Furthermore, αi is the 

scalar polarizability coefficient, which is a crucial parameter that requires adjusting when 

developing atom types for the force field. The smaller α is, the less polarizable the atom. However, 

the polarizability coefficient is typically entered as a parameter in reciprocal form. Thus, hydrogen 

atoms are given an α-1 of 9999.99 and oxygen atoms some value less than 1 in order to reflect their 

relative electron cloud sizes. Etotal is given by the expression 

𝑬𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝑬𝑖

0 + ∑ 𝑻𝑖𝑗𝝁𝑗𝑗≠𝑖 , 

where the dipole-dipole interaction tensor Tij is expressed as  

𝑻𝑖𝑗 =
1

𝑅𝑖𝑗
3 (

3𝑹𝑖𝑗𝑹𝑖𝑗

𝑅𝑖𝑗
2 − 𝑰) 

and E0 is the electric field matrix in the absence of induced dipoles. I is the unit tensor and Rij is 

the distance between atoms i and j. Thus, 



𝝁𝒊 = 𝛼𝑖𝑬𝑖
0 + 𝛼𝑖 ∑𝑻𝑖𝑗𝝁𝑗

𝑗≠𝑖

 

The above equation contains a summation that is taken iteratively. This model uses a second-order 

approximation of this equation, so that it becomes 

𝜇𝑖
𝐼𝐼 = 𝛼𝑖𝑬𝑖

0 + 𝛼𝑖 ∑𝑻𝑖𝑗𝝁𝑗
0

𝑗≠𝑖

 

= 𝛼𝑖𝑬𝑖
0 + 𝛼𝑖 ∑ 𝑻𝑖𝑗𝛼𝑗𝑬𝑖

0
𝑗≠𝑖 . 

Geometry Optimization 

 One of the methods used in this research to test the accuracy and functionality of the force 

field was to perform geometry optimizations on the molecules in question. These protocols seek 

to search the potential energy surface of the molecule, which is a function of its shape and 

conformation, in order to find a minimum and output the corresponding geometry. The geometry 

of a single molecule is composed of the corresponding bonded terms in the force field: bond 

stretches, angle bends, and dihedral angles. However, here we perform geometry optimizations of 

dimers, and so the non-bonded terms are also included. Using geometry optimizations in 

developing a force field is critical because the physical parameters describing the atoms in a system 

must be optimized to reflect reality. Often, quantum mechanical geometry optimizations are 

performed first as a basis and then geometrical measurements are taken so as to benchmark what 

the force field under development ought to output. If a force field can be shown to recreate the 

same potential energy surface as a quantum mechanical or experimental method, then the 

experimenter can be sure that the force field can be used for further geometry-energy predictions.  



 Geometry optimizations begin with defining the initial input structure of the molecule in 

question. Since the geometry is going to be perturbed during the potential surface search process, 

it is most convenient to define a molecule in the form of a z-matrix:  

Returning to the simple example of ethane, its z-matrix begins by defining the first atom, C1. This 

is usually positioned at the coordinate (0,0,0). Then, the second atom, C2, is defined through a 

distance from C1 and is positioned at (CClength, 0, 0). The third atom is then defined through the 

angle it forms with C1 and C2, and the fourth atom is defined through the dihedral angle it forms 

with the first three atoms. Every atom thereafter is defined in the same way as this fourth atom, 

except that its definition may not be based on the immediately previous atoms. For example, in 

this Z-matrix H4 is defined through its angle with C2 and C1, rather than H3 and C2. This is 

because the latter set of atoms are not bonded to each other and the geometrical values cannot be 

defined this way. An important facet to keep in mind is that there are many different permutations 

of a Z-matrix, that is, there are multiple ways of defining the matrix for one molecule. Generally, 

especially with larger molecules such as peptides, it is crucial that atom definitions follow the 

backbone of the molecule as much as possible. Otherwise, the optimization algorithm will perturb 

side chain atoms that do not have very much impact on the overall energy of the molecule, and the 

result will not have searched enough of the potential energy surface to find a good minimum.   

Figure 10 An example Z-matrix of ethane. Note how convenient it is to define all lengths and angles initially, so 

that it is easier for the program to modulate these values. 



Another method of defining input geometry is to simply list the coordinates of each atom: 

While this format is convenient for many-molecule calculations and simulations, it is not as good 

for geometry optimizations. The program will try to determine which atoms are bonded to each 

other by plotting each of the atom coordinates given and then seeing which interatomic distances 

are reasonable enough for bonding. However, adjusting geometrical parameters will not be as 

smooth as with a Z-matrix, and so the trajectory of the optimization may take the following form: 

 There are numerous algorithms for finding the energy minimum. The most basic method 

is simply perturbing each of the parameters in the Z-matrix and calculating the resultant energy, 

which is ultimately time consuming and inefficient. More accurate methods employ second 

derivative or Hessian matrices in order to monitor the gradient of the energy surface as a function 

of each parameter, and will thus follow the gradient downwards until a minimum is reached. 

Regardless of the particular method being used, the output geometry is always visually 

investigated to ensure that it is reasonable and no extraneous strains or steric hindrances present.  

Figure 11 Coortesian input for ethane. 

Figure 12 The paths taken to adjust an angle bend when the molecule is defined through (a) a Z-

matrix and (b) Coortesian coordinates. 



Molecular Dynamics and Monte Carlo Simulations 

 While force fields provide the energy gradient for the movement of molecules by 

mathematically describing which interactions are favorable and which are not, the simulation of a 

chemical system still requires that an algorithm be used to predict how molecules will behave once 

a force field is applied. Such an algorithm uses the energetic results from the force field expressions 

and try to determine where molecules will move. After all, particles in nature, at least in the liquid 

and gas phases, are subject to motion. There are two classes of simulation algorithms that seek to 

make these predictions: Molecular Dynamics (MD) and Monte Carlo (MC). Both of these 

techniques have been shown to be reliable in predicting molecular behaviors but rely on vastly 

different approaches in their forecasts. However, simulations in general are unique in that they 

take temperature into account with thermodynamic sampling, whereas geometry optimizations do 

not. 

 Molecular Dynamics 

 Unlike Monte Carlo simulations, MD simulations are time-dependent and averages 

structures over real time. In addition, each particle in an MD simulation is propelled by a force in 

accordance with Newton’s second law of motion, the basis of this simulation technique. It is 

important to note that minutes viewing a trajectory of an MD simulation are often only on the order 

of milliseconds in real time. An MD trajectory with frames picoseconds apart may seem to be 

moving at a reasonable pace but in fact these molecules move extremely quickly around in solution 

in real time. So what algorithm does MD use?  

1. The user usually builds the initial configurations of molecules in the preferred system with 

the software provided. In biochemical research, proteins and associated complexes are 



provided by their PDB structures. Additionally, MD software often allows explicit 

solvation. 

2. Given the starting setup of the input structures, the program will begin the simulation by 

choosing an initial velocity for each atom from a Boltzmann distribution, depending on the 

target temperature set by the user, which is usually room temperature at 298 K. This 

distribution is pictured in Figure 13.  

3. The momentum of each atom is computed using the velocity chosen and the mass of the 

atom. 

4. The force acting on each atom is calculated based on the molecular mechanics force field 

being implemented in the simulation. 

5. A new location for each atom is determined for the next period in time following the time 

step period set by the user (usually a fraction of a picosecond; if it is any larger the 

calculations will not converge). The program integrates Newton’s law of motion 𝐹𝑛𝑒𝑡 =

𝑚𝑎 over the duration of the time step based on the integration algorithm being used.  

Figure 13 Various Boltzmann distributions based on the temperature of the system. As 

the temperature increases, there is a wider range of molecular speeds and thus, having 

the number of particles conserved, fewer particles having a given molecular speed.  

http://ibchem.com/IB/ibnotes/full/sta_htm/Maxwell_Boltzmann.htm 



6. Given the new location, a new velocity and acceleration is calculated from the force field 

equations. 

7. Steps 3-6 are repeated for the duration of the simulation that is set by the user. 

The ultimate goal in simulating chemical systems with MD is to run it for a sufficient 

number of iterations so that the system reaches equilibrium, that is, the total energy becomes 

relatively constant. It is important to note that equilibrium is not necessarily reached when the 

potential energy surface meets a minimum, but we will see this later with some of the simulations 

run here. Typical MD simulations with rather small systems require about 106 steps in order to 

reach equilibrium, however, with larger systems that contain macromolecules such as proteins, 

equilibrium may not be reached for 5 × 106 steps or more. Once equilibrium is achieved, the 

energy is stable enough for analysis and conclusions can be drawn about how certain molecules in 

the system interact. The total time in an MD simulation is simply the product of the magnitude of 

the time-step and the number of steps. So, for example, if the time-step is 0.001 ps and the 

simulation has been run for 106 steps, the total time is 1000 ps, or 1 ns.  

There are several different algorithms used in MD to integrate the net force over the time 

step. The most popular is the Verlet method due to its low computational cost and time required. 

Simply put, the algorithm seeks to solve the equation 

𝑥𝑛⃗⃗⃗⃗ = 𝑥 (𝑡𝑛), 

where 

𝑡𝑛 = 𝑡0 + 𝑛∆𝑡 

and ∆𝑡 is the size of the time step and 𝑛 is the current time step number, by defining the initial 

position of a given atom as 

𝑥0⃗⃗⃗⃗ = 𝑥 (𝑡0). 



and iterating the following standard equation 

𝑥𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 2𝑥𝑛⃗⃗⃗⃗ − 𝑥𝑛−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑎(𝑥𝑛⃗⃗⃗⃗ )∆𝑡2 

to determine the next position after the end of the time step.  

 The velocities used for the above algorithm will vary depending on the type of ensemble 

being used for the simulation. An ensemble is a collective term describing the macromolecular 

properties of a system containing many particles with differing micromolecular properties. For 

example, there is the NVT ensemble, which is the ensemble used for the simulations run in this 

study, which states that the number of molecules, the volume, and temperature of the system ought 

to be the same throughout the simulation. There is also the NPT and NVE ensembles, which seek 

to keep the pressure and energy of the system constant, respectively. What is different between 

this ensembles is the goal of the researcher. Should one be interested in simulating a system that 

is in the gas phase, for example, the NPT ensemble should be used and the size of the system will 

change accordingly to stay at the pressure set by the user. Since most biochemical systems remain 

in the liquid phase with relatively constant density, we use the NVT ensemble in the work 

presented here.  

  Periodic Boundary Conditions 

 In keeping with the idea that a good molecular modeling protocol minimizes the 

computational cost required, it is essential to work with as few molecules as possible in order to 

reduce the CPU time. However, the protocol must do so sparingly in order to preserve the accuracy 

of the representation of the natural system. One problem that must be overcome is that these natural 

systems often contain many millions of molecules. It is impractical to simulate all of these 

molecules at once in a computer program because the computational cost would simply be too 



great. One approach at simplifying this is through the use of periodic boundary conditions. Figure 

14 is a simple depiction of this concept. 

 Essentially, this approach takes advantage of the fact that often a molecular system is 

composed of some solute(s) and a solvent composed of the same molecules. In biochemical 

systems, this solvent is almost always water. A solute in question is placed in some solvent in a 

cubic box of a certain size, which is usually twice the size of the solute system so that there is 

enough space for solvent-solute interactions. While calculations are only performed in this one 

box, the box is iterated infinitely around itself, as is shown in Figure 14. Thus, should a molecule 

drift to the edge of the box and out of it, the molecule will appear on the opposite side of the box 

with the same velocity and acceleration vectors as before. Periodic boundary conditions severely 

cut down the CPU time required to perform calculations and is used in the context of this research, 

as is demonstrated in Figure 15, which shows a protein and ligand (not seen here) as well as the 

water solvent in a defined box.  

Figure 14 Simple demonstration of periodic boundary 

conditions, with red dots indicating atoms. The rcut is 

the cutoff radius for force calculation about each 

atom.http://www.compsoc.man.ac.uk/~lucky/Democri

tus/Theory/pbc-mi.html 

Figure 15 An example of periodic boundary 

conditions used in this research. The lightly 

colored protein can be seen with water molecules 

surrounding it. The purple and green lines 

delineate the boundaries. 



An error can be encountered with the periodic boundary approach, however. If all 

intermolecular interactions are considered, then long range interactions will be inaccurately 

represented. Take for example an atom this is positioned in the corner of the box and one is 

interested in calculating the energy due to its interaction with an atom that is on an opposite corner 

of the same box. The researcher will notice that this same atom is also positioned in the same 

corner of the adjacent simulation box, so a short range and long range interaction energy will be 

calculated that is inaccurate. For this reason, a cutoff radius is applied so that all interactions 

beyond this radius will not be calculated, as is shown in Figure 14. This cutoff must be less than 

half of the length of an edge of the box so as to avoid double counting interaction energies. In 

addition, Ewald summation can be used to estimate long-range electrostatic effects, but the 

Lennard-Jones potential is generally short-range so it does not require a designated cut-off.  

 Additionally, certain constraints can be applied to an MD simulation if it is especially large 

in order to decrease computational cost. One possible constraint is to eliminate all bond rotations, 

so that the simulation will only proceed with the input conformations of the molecules. 

Additionally, water molecules can be constrained or frozen in their structure but not position, so 

as to not have to calculate the bond stretch and angle bend energy terms for the thousands of water 

molecules present in the system.  

 Monte Carlo 

 Monte Carlo (MC) simulations take a more probabilistic approach than the integration 

method used by MD. Generally, an MC will rely more heavily on the energy of a system than the 

forces acting on each individual molecule. The algorithm for an MC abides by the following steps:  

1. An initial configuration of atoms in the system is chosen, usually inputted by the user as in 

MD. 



2. The current energy of the system is computed. 

3. Attempt a random trial move for an atom. The program will try to make such a move 

follows the Boltzmann distribution.  

4. Compute the hypothetical energy of the system after having moved each atom.  

5. Determine if this new energy is reasonable. If it is, accept the move; otherwise, reject the 

move and revert all coordinates to their previous values and begin from step 3 again. 

Acceptance or rejection of a move is based on the Metropolis-Hastings algorithm, which 

follows a probability distribution of random sampling. In essence, the new move will be 

accepted if the resultant energy is lower than the previously, or if it is not too much higher 

than what is allowable within the Boltzmann distribution. Ultimately, each new set of 

coordinates is termed a configuration. 

6.  Repeat steps 2-5 for the number of configurations set by the user. 

One difference between an MC and an MD is that the real time equivalent of the simulation 

duration cannot be determined in an MC. However, the goal of reaching equilibrium is still the 

same, even if MD averages structures over time and MC over ensembles; in any case, as long as 

convergence has been reached, the properties of a system using either method ought to be the same 

at the end of the simulation. Each system is different, so there is no standard for how many 

configurations to run in order to reach equilibrium. At the end of the run, an output file will be 

created that includes the number of accepted and rejected moves, so the user can determine how 

favorable the simulation was. If the size of the moves attempted in step 3 is too large or a 

Boltzmann distribution of movement probabilities is not reached, the number of rejected moves 

will be very large. A good acceptance ratio, defined as the number of accepted moves divided by 

the number of total attempted moves, is usually anywhere between 0.5 and 0.7. Ensembles such 



as those used in MD can also be applied here, but periodic boundary conditions cannot. One 

advantage of the MC is that it takes less CPU time to run a simulation of the same size, since it 

does not need to calculate force vectors for each particle in the system. Simulations used here, for 

example, in an MC take only a few hours, while the same system in MD may take several days. 

Additionally, larger noise in the progress of the system energy has been observed with MD 

simulations.    

Peptide Modeling 

 The POSSIM model has shown to be reliable in full peptide contexts. Having developed 

parameters for the protein backbone analog, NMA, Ponomarev et al. (2011) confirmed the 

transferability of these parameters to the alanine dipeptide molecule. Below are results describing 

the conformational errors of this peptide in comparison to those of OPLS and QM: 

 

Table 9 Comparison of the energies and φ and ψ angles for each alanine dipeptide conformer as calculated 

via QM, OPLS, and POSSIM. Average errors are shown in the bottom row. (Ponomarev et al., 2011) 



Given the relatively good error for our polarization model, the data demonstrates that bonded 

parameters can be transferred. In testing the transfer of non-bonded parameters for those including 

electrostatic and Van der Waals forces, the group investigated the geometries and binding energies 

associated with an alanine dipeptide-water dimer: 

While OPLS seems to demonstrate better binding energy agreement with QM, having an error of 

0.89 kcal/mol vs 1.12 kcal/mol for POSSIM, this difference was also observed with NMA-water 

dimers, in which the POSSIM model underestimated the interaction energy by 0.89 kcal/mol on 

average. Since these parameters were transferred, this is not unexpected. However, the hydrogen 

bonding lengths determined by POSSIM were 0.09 Å closer to QM results than OPLS on average, 

and the average conformational angle error for POSSIM was 5.3º vs. 12.8 for OPLSº. Generally, 

both models are in good agreement with quantum mechanical results, which indicates two things: 

(1) parameters can be transferred without modification between model molecules and full peptides 

and result in good property calculations and (2) such parameters are reliable enough to then be 

transferred to larger polypeptides.  

Table 10 Properties of alanine dipeptide-water dimer. Structures A and B contain different positions of the water molecule, 

which hydrogen bonds twice. (Ponomarev et al., 2011) 



 Thus, parameters were then transferred to a tridecaalanine peptide (Ala-13) and simulated 

in water in order to see if the POSSIM force field is robust enough to maintain this peptide’s alpha-

helix conformation.  

The above results show that not only did the alpha-helix form in aqueous solution with the 

polarizable model but also that this conformation was stable over the course of the simulation. 

(Kaminski et al., 2011) This is a large step in the development of parameters for full scale proteins, 

Figure 16 Side and down-the-barrel views of the tridecaalanine peptide are given to the left, while the right graph shows a 

recording of the average φ angles throughout the 40 × 106 configuration simulation as compared to the experimental measures. 

(Ponomarev et al., 2011) 

Figure 17 Tridecaalanine peptide with lysine added to the C-terminus is shown at the left, while that with lysine added to the N-terminus is 

shown at the right. Both appear to maintain the alpha helix, with the C-terminus addition showing some distortion of the secondary structure. 

(Ponomarev et al., 2012) 



however only for one type of side chain. Ponomarev et al. (2012) investigated whether a lysine 

substitution with one of the alanine side chains in Ala-13 would perturb the alpha helix or maintain 

it, as seen in Figure 17. Having performed Monte Carle simulations with such a substition on both 

the N- and C-termini, the group further demonstrated the capacity of POSSSIM to be robust. 

Lysine substitution was not random. It was important to show that the model could be upheld in 

strong electrostic environments, as this side chain is usually positively charged and contains 

polarizable atoms. This is yet another large step in the full-scale protein direction. All that remains 

is development of parameters for the rest of the side-chain ensemble, and we can begin to construct 

proteins with any amino acid sequence. (Ponomarev et al., 2012).   

Modeling Protein-Ligand Interactions 

 Lamb and Jorgensen (1997) reviewed some of the ways in which the interaction energies 

between proteins and ligands can be approximated. One such method, developed by Åqvist et al. 

(1994), used linear response in order to model binding energy as a function of the Coulombic and 

Lennard-Jones interactions: 

∆𝐺𝑏𝑖𝑛𝑑 = 𝛽(∆𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏𝑖𝑐) + 𝛼(∆𝐸𝐿𝑒𝑛𝑛𝑎𝑟𝑑−𝐽𝑜𝑛𝑒𝑠) 

ΔE in this case the difference between the ligand-solvent and ligand-protein interaction energies 

for the bound and unbound ligand states, as depicted by: 

Figure 18 An illustration of the binding energy concept, showing the replacement of 

proximal solvent with a protein in the bound state. (Lamb & Jorgensen, 1997) 



Essentially what this relationship is describing is the favorability of replacing part of the solvent 

area surrounding the ligand with the protein, that is, does the total energy decrease if this 

replacement takes place? Generally, the group showed that the β parameter is usually 0.5, such 

that the total binding energy between the ligand and the protein is usually about a half of the 

Coulombic energy, and the Lennard-Jones coefficient α is relatively small, about 0.1 in many 

cases, and serves more as a correction to the electrostatic term. Åqvist et al. performed several MD 

simulations with HIV protease (Hansson & Åqvist, 1995), trypsin (Åqvist, 1996), and 

glucose/galactose receptor (Åqvist & Mowbray, 1995) and found that the 0.5 value for β and 0.161 

for α upheld in those cases. This technique is employed in the protein-inhibitor interactions 

investigated here, in which we assume 0.5 for β and then fitted α for optimal binding energy 

agreement with experimental results.  

Burkitt’s lymphoma and the Leucine Zipper Formed by Myc and Max Proteins 

 As it has been shown that POSSIM is reliable for some smaller peptides, the next step after 

developing parameters for all of the commonly found side chains is to model inhibitor-protein 

interactions in therapeutic contexts. In this study in particular we examine the binding energies of 

six inhibitors identified by Yin et al. (2003) for the oncoprotein c-Myc. This protein typically 

dimerizes with Max to form the leucine zipper, a transcription factor complex that has been shown 

to be overexpressed in Burkitt’s lymphoma and other cancers (Grandori et al., 2005; Felton-Edkins 

et al., 2003; Dang et al., 2006). It appears that the overexpression of the MYCC gene leads to 

deregulation of 10-15% of Polymerase II-regulated genes and rRNA and tRNA genes regulated 

by RNA pol I and III, respectively. The Myc protein together has two domains: an N-terminus 

domain that contains the trans-activation region, which is not present in the Max protein, and a C-



terminus basic-Helix-Loop-Helix leucine zipper (bHLH-zip) domain that contains the 

dimerization and DNA-binding regions. It is this c-Myc peptide that we seek to investigate. 

 What is most interesting about the c-Myc protein is that it is an Intrinsically Disordered 

(ID) protein. Such proteins have a great degree of backbone flexibility in aqueous solution and 

tend to lack any tertiary structure, as well as having an unstable secondary structure that unravels 

in physiological context. However, such proteins are still biologically active in this disordered 

form and can actually make use of their unusual flexibility to adhere to many partners. ID proteins 

have recently received great attention in the drug discovery field since they appear to violate the 

protein structure-function dogma and their tendency to undergo a disordered to ordered geometry 

upon partner-binding. In the approach taken by Hammoudeh et al. (2009) in order to investigate 

the binding constants for each inhibitor as well as their respective specific binding regions, the 

inhibitors are used to stabilize a local part of the protein in order to restrict its flexibility. Such 

rigidity weakens the affinity of this region of the protein for the Max obligate heterodimer, and so 

simultaneous binding of these inhibitors should prevent dimerization and thus halt cancer cell 

Figure 19 The crystal structure of the leucine zipper is shown at left, with Myc red and Max blue. Inhibitors identified by Yin 

et al. are shown at right, with their corresponding codes. (Hammoudeh et al., 2009) (Nair et al., 2003) 



development (Hammoudeh et al., 2009). The binding constants found by this group via 

fluorescence polarization assay were as follows: 

These values were converted to ΔGbinding using the standard equation  

∆𝐺 = 𝑅𝑇𝑙𝑛𝐾𝐷 

in order to yield the following target experimental results for our simulations and force field 

approximations: 

  

 

 

 

Methods 

 The methods employed in this study can be essentially broken down into two overarching 

goals: (1) having had backbone parameters already developed and the rest of the side chain 

parameter sets being constructed simultaneously by other members of the laboratory, to develop 

parameters for the amino acids tryptophan and arginine, and (2) to simulate each inhibitor in 

complex with c-Myc according to the binding sites located by Hammoudeh et al. Development of 

parameters follows a protocol that has been implemented in other force fields such as OPLS and 

Inhibitor ΔG (Hammoudeh et al.) (kcal/mol) 

10009-G9 -5.99 

10031-B8 -6.54 

10050-C10 -8.24 

10058-F4 -7.2 

10074-G5 -7.6 

10075-G5 -6.3 

Table 12 Experimental binding constants converted to ΔG values, 

to which calculated values will be compared. 

Table 11 Summary of the experimentally determined binding constants (Kobs) via 

fluorescence polarization competition assay. (Hammoudeh et al., 2009) 



has been shown to be robust with respect to transferability. The goal of such a protocol is to test 

the atom parameters in as many different contexts as possible and see if good accuracy can be 

upheld in each. As for the source of data for fitting, it is preferable to have solely experimental 

data to work off of but this is simply not realistic, as many of the features explored here contain 

micro-scale descriptors that cannot be determined in the laboratory with any reliable accuracy. 

Thus, experimental data is used whenever available and quantum mechanical calculations are 

performed in order to fill in the gaps.  

Developing parameters for tryptophan and arginine 

 Since backbone parameters have already been developed, molecules that encapsulate the 

structure of the side chain itself are investigated and are dubbed small molecule analogs of their 

respective amino acids. Here, pyrrole is used as an analog for 

tryptophan and the methyl guanidinium ion for arginine. Since 

there are far fewer atoms in these analogs than in the full size 

peptides, parameterization will be easier and then a simple transfer 

of parameters can be done in conjunction with those for the 

backbone.  

First, non-bonded parameters, including the polarizability α, partial charge q, and σ and ε 

from the Lennard-Jones potential were fitted via 3-body energies. These 3-body interactions 

involved the molecule and two dipole probes placed at plausible hydrogen bonding sites in close 

proximity. The configurations for pyrrole and methyl guanidinium are depicted here: 

Figure 20 (A) Tryptophan (B) Pyrrole (C) 

Arginine (D) Methyl guanidinium 



  

These dipole probes may be appear to contain a nitrogen and phosphorous group, but in reality 

they are atom types approximated by the software. These probes only carry fixed charges and are 

oriented in such a way as to mimic favorable electrostatic interaction. For example, positive ends 

face the electronegative nitrogen atoms and negative ends near the hydrogen atoms. Such a probe 

will induce an electric field around the molecule and the non-bonded terms can be scaled to 

appropriately represent the resultant energy. There were 21 three-body configurations with methyl 

guanidinium and 3 with pyrrole. Three body energies were calculated with the following formula: 

𝐸3−𝑏𝑜𝑑𝑦 = 𝐸(1 + 2 + 3) − 𝐸(1 + 2) − 𝐸(1 + 3) − 𝐸(2 + 3) + 𝐸(1) + 𝐸(2) + 𝐸(3), 

where E(i) is the energy of molecule i. Quantum mechanical calculations were performed as a 

basis for comparison with the Jaguar Suite, using Density Functional Theory (DFT) with the 

B3LYP method and the cc-pVTZ(-f) basis set (Becke, 1988). 

Figure 21 Arrangements of dipole probes meant to perturb the surrounding electrostatic environment. Each probe carries 

only partial charge, and the nitrogen-phosphorous assignments are arbitrary.  



 Then, the two small molecules were subjected to dimerization with a single water molecule 

at a likely hydrogen bonding location, with non-bonded parameters being transferred without 

change, using the following configurations: 

The dimer distances and energies were calculated quantum mechanically using the LMP2/cc-

pVTZ(-f) – LMP2/cc-pVQZ method, and LMP2/cc-pVTZ(-f) was used to construct torsional 

profiles for each molecule. Thus, bonded terms for the Fourier coefficients in the torsional 

expression were fitted as well. Terms for the bond stretch and angle bending were taken from a 

previously determined database of atom types. Additionally, a pure liquid MC simulation was 

performed with 216 pyrrole molecules, using an NPT ensemble and a target temperature and 

pressure of 25 ºC and 1 atm, respectively. This was performed in both the liquid and gas phases in 

order to determine the heat of vaporization using the following thermodynamic relationship: 

∆𝐻𝑣𝑎𝑝 = ∆𝑈𝑣𝑎𝑝 + 𝑅𝑇 = 𝑈𝑔𝑎𝑠 − 𝑈𝑙𝑖𝑞𝑢𝑖𝑑 + 𝑅𝑇 

The density of the pure liquid was also determined and compared to experimental data presented 

by Jorgensen and McDonald (1998).  

Figure 22 Water dimer structures. The distances shown here are those determined by QM. Note the perpendicularity of the 

water plane to that of the analyte molecule.  



 Parameters were then transferred from analog to side chain in the 

form of a dipeptide, such that the side chain structure can be easily 

inserted into a protein, as depicted to the left. Adjustment of torsional 

parameters was done by fitting conformational states to those derived 

from LMP2/cc-pVTZ(-f)//HF-6-31G** quantum mechanics. A 

torsional subspace was set up so as to correlate conformation with energy. A single point was 

mapped to the quantum mechanical energy minima, corresponding to certain φ, ψ, and χ angle 

values, and then four points were placed in all four directions outward from this first point in 

increments of 20º. Thus, torsional parameters were fit to these 17 points in order to recreate the 

potential energy surface. In arginine, all torsional angles were fixed during torsional scanning, 

while these angles were allowed to change in the case of tryptophan. Initial estimations of these 

torsional parameters was determined by applying non-Boltzmann distribution weights to each 

dihedral angle, based on their influence on the molecular energy: 

𝑊𝑖 = 𝐴𝑒−𝑏∙𝐺𝑖, 

where  𝑊𝑖 is the weight for the point i in the subspace, A is a coefficient that is fitted for optimal 

weight application, and  𝐺𝑖 is the magnitude of the torsional surface gradient at point i. Parameters 

were then optimized for agreement with QM results. 

Simulating c-Myc:inhibitor complexes 

 The c-Myc structure was imported into the Schrödinger Maestro Suite using the 1NKP 

PDB and isolated. Docking for each individual inhibitor was performed using the docking 

sequences identified by Hammoudeh et al. The c-Myc protein was truncated according to the 

extent of each of these binding sites in order to minimize any potential energy reading noise from 

the movement of the rest of the protein. Side-by-side simulations were done in both the truncated 

Figure 23 The dipeptide format 

used here, where R is the side 

chain under study. 



and full length cases in order to ensure that conformations remained essentially the same and such 

truncation was legitimate. Soaking of the complex with water was done with the Impact feature 

and the box size made large enough in each individual case based on the system size, such that the 

edge of the box was at least 12 Å (the cutoff radius) from any atom within either the protein or 

ligand. Impact Molecular Dynamics with periodic boundary conditions with the same size as the 

water box was performed for 5 × 106 steps with a time step of 0.001 ps, resulting in a total real 

time of 5 ns.  

 A Monte Carlo simulation performed with the MCPRO program was done only with 

10075-G5 to test how these results compare to those with MD. The same truncated protein was 

used and a water solvent sphere with a radius of 30 Å was applied, as well as an 8.5 Å cutoff 

radius. The MC was run for 1 × 106 configurations. The force field used in both the MC and the 

MD simulations was OPLS, in an effort to see how well the fixed-charge model upheld 

experimental observations. 



Results 

 The three-body energy calculations yielded an average error of 0.118 kcal/mol for methyl 

guanidinium and 0.184 kcal/mol for pyrrole. Dimerization optimization yielded a qualitatively 

good result for methyl guanidinium, as the plane of the water molecule was exactly perpendicular 

to that of the ion, matching the quantum mechanical geometry. Quantitatively, the average error 

in O··N distances was 0.055 Å and for energy 0.67 kcal/mol. For pyrrole, the distance and 

dimerization energy error was 0.1 Å and 0.58 kcal/mol, respectively. Below are the torsional 

results after fitting:  

The average energy error for methyl guanidinium was 0.099 kcal/mol and 0.009 kcal/mol for 

pyrrole. For the MC simulations with pyrrole, the calculated ΔHvap was 10.60 kcal/mol and volume 

117.4 Å3, vs. 10.80 kcal/mol and 115.3 Å3 experimentally, resulting in 1.9% error for heat of 

vaporization and 1.8% for molecular volume.  

Molecule Dihedral
Angle 

Values

Energy, 

QM

Energy, 

POSSIM

C2N3H8
+ H–N(H2)–C–N 0º 0 –0.333

30º 0.175 0.482

60º 2.615 2.641

C–N–C–N(H2)  0º 0 –0.097

15º 0.14 0.217

30º 1.115 1.136

H–C(sp
3
)–N–C 0º 1.191 1.176

60º 0 0.008

180º 0 0.008

C4NH5 H–N–C–C 180° 0 –0.001

165° 0.424 0.438

150° 1.345 1.432

Table 13 Characteristic dihedral angles and energy values for methyl 

guanidinium, compared to calculated results. 



 Torsional results for the full peptides of arginine and tryptophan were as follows: 

With regard to the MD simulations, the following graph compares the reference ΔG values 

to those averaged throughout the entire simulation: 

Conf. QM P QM P QM P QM P QM P

1 0 0.03 –154.5 –158.7 148.4 160.2 –171.8 –171.2 –112.6 –122.8

2 0.15 0.31 –156.0 –159.6 145.8 157.9 –175.5 –170.4 87.6 85.1

3 1.3 2.57 –87.8 –81.7 77.3 38.3 –53.8 –65.8 115.3 131

4 1.65 2.27 –160.1 –164.3 165.2 163.1 52.8 65.9 84.4 79.3

5 2.18 2.36 –89.9 –82.7 76.6 47.8 –62.9 –68.1 –23.7 –11.1

6 2.22 2.52 –152.8 –160.3 164.7 161.4 58.5 68.3 –89.8 –92.9

7 3.26 2.37 –126.9 –82.7 140 48.9 –59.8 –68.2 –89.1 –12.0

8 2.91 2.36 –118.8 –82.7 146.7 47.8 –70.2 –68.1 –7.6 –11.0

9 3.41 2.28 –155.9 –164.2 171.7 162.8 68.5 65.9 –6.1 79.1

Error 0.75 13.5 32.9 6.5 23.9

c  2Energy f y c1

Conformer QM POSSIM

1 0 0

2 10.76 10.73

3 3.29 3.28

4 13.87 19.97

5 8.58 8.65

6 4.25 4.19

Error 1.05

Energy

Table 15 Tryptophan conformer energies as well as dihedral angles for both the backbone and side chain. Average 

errors are given in the last row. 

Table 14 Arginine conformer energy errors. 

Figure 24 Graphical summary of the calculated ΔGbinding (orange) vs. experimental values (blue). 



The average error in predicted binding energy was 8.9 kcal/mol, or 42.0%. In order to observe the 

stability of each inhibitor’s interactive Coulombic energy with c-Myc over the course of the 

simulation, this energy was recorded and a running average produced for the last nanosecond of 

the five, where it should be closest to equilibrium:  

Since a truncated c-Myc protein was used, two MD simulations were run for a total of 1 ns 

with the 10050-C10 inhibitor: one with the truncated protein and one with the full protein. Phi and 

psi angles on the backbone in the overlapping residue sequence were calculated at the end of the 

simulation. The average unsigned difference in φ was 24.87° and in ψ 33.57°, demonstrating good 

homology and justifying the truncation method. Below are graphs showing phi and psi angles for 

each residue between the two proteins as a snapshot after 1 ns simulation: 

Inhibitor Standard Deviation (kcal/mol)

10009-G9 27.84

10031-B8 45.76

10050-C10 12.8

10058-F4 25.81

10074-G5 19.63

10075-G5 10.45

Figure 25 Running average Coulombic inhibitor-protein energy over 

the course of 1 ns. 

Table 16 Standard deviations of the data presented 

in Figure 25. 



The Monte Carlo simulation run with 100075-G5 resulted in an error of 4.2 kcal/mol, vs. 

7.16 kcal/mol from MD. Running average interaction energy was also recorded throughout the 

extent of the simulation: 
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Figure 27 Running average Coulombic 10075-G5-protein energy for 106 configurations, with data points recorded every 500 configurations. 

Figure 26 Comparison of instantaneous average backbone φ and ψ angles for both the truncated and full 

protein for each residue after a 1 ns simulation. 



The standard deviation observed here was 0.61 kcal/mol.  

Discussion 

 Having produced an average energy error of less than a kcal/mol using the parameters 

developed for the POSSIM force field in the context of the peptides examined here, it can be said 

that these deviations are small enough to imply good agreement with both quantum mechanical 

and experimental observations. Considering the disadvantages seen with non-polarizable models 

such as OPLS, it seems that explicit treatment of polarization is indeed necessary for accurate 

representation of biochemical molecules. Perhaps the improvement in representing hydrogen 

bonding among and between peptides as well as multiple-body interactions has led to this increase 

in accuracy and reliability. In addition, it has been shown in this work that the small to large 

molecule transfer of parameters method is a robust way of saving time in such development and 

paves the way for further transfer to large polypeptides dependably. In a sense, this method 

represents development of a model within a model, such that a minimal amount of CPU time can 

be used and the results amplified towards larger applications.  

 With regards to the simulations performed, it appears that the Molecular Dynamics 

simulations performed with OPLS did not achieve a satisfactory level of accuracy nor consistency. 

Considering that the experimental results indicate that the binding energy between each inhibitor 

and c-Myc is only about -7.0 kcal/mol on average and that the predicted error was 8.9 kcal/mol, 

such deviation discounts credibility in energetic predictions of future inhibitors. Further, the 

instability observed within the ligand-protein interaction energy exacerbates this problem. 

However, better results were observed with the Monte Carlo simulation technique. Here, binding 

energy error was reduced by 3 kcal/mol and average standard deviation was reduced from 23.7 

kcal/mol to only 0.61 kcal/mol, which is a marked improvement. This stability can probably be 



attributed to the fact that MC uses statistical sampling to judge if an atom move is favorable or 

not, and thus large movements, such as those in the backbone of the protein, will often be rejected. 

Thus, molecules are much more constrained in MC than in MD, and greater stability in energy can 

be observed. It is our goal to examine the rest of the inhibitors’ binding energy using this method 

and see if the stability and accuracy can be increased. Furthermore, since these simulations were 

run using the OPLS fixed-charge model, it will be a next step to implement POSSIM and see how 

well the results turn out, given the accuracy of the polarizable parameters of the peptides developed 

here. However, a caveat may be that the simulations will take much longer, since the program will 

have to take polarization into account for each pair-wise interaction.  

In any case, it is imperative, now that good parameters have been determined for all 

constituents of a protein, to start to construct these larger macromolecules. The applications thereof 

would be tremendous, allowing researchers to theoretically investigate the consequences of 

potential missense and frameshift mutations as well as the effects of protein-bound therapeutic 

drugs on a much faster time scale than in the wet laboratory. Further testing of the POSSIM force 

field will have to be done, but this framework has been shown here to serve as a good model, 

providing both suitable accuracy and requiring a practical amount of CPU time.  
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