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Abstract

The shape of a liquid’s surface is determined by both the body force and surface

force of the liquid. In this report, the body force is solely from the gravitational

force. The surface force is generated from the movement of an elastic interface

between the solid and liquid. To obtain the shape of the surface, both asymp-

totic analysis and numerical approaches are used in this report. The asymptotic

analysis is applied on the potential flow. The initial conditions are chosen to be

the function of the shape of the interface between the solid and liquid and the

free stream velocity far away from the interface. The time dependent contribu-

tions from the fluid system are also considered. The initial condition changes

according to the function of the calculated velocity potential. The numerical ap-

proach includes two parts: calculation the velocity potential and a formalism of

the change of the system as time evolves. For the first part, two idealized ver-

tical boundaries are utilized to give a unique solution of the Laplace equation.

The boundary conditions are determined as the flow under linear viscosity. For

the second part, the flow is first assumed to be a potential flow, and a boundary

layer is considered to make the no-slip condition valid and to give a more precise

approximation for the shear stress.
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1 Introduction

Faraday waves are used to describe the non-linear standing waves in liquids.

The non-linearity often comes from the vibration of the liquids’ interfaces. The

surface of the liquid will become unstable when the vibration exceeds a critical

value. This is known as the Faraday Instability.1 It is important to predict proper-

ties, such as the amplitude and the velocity field, of the liquid’s surface. Faraday

instability is not a pure mathematical problem. The starting point to model the

shape of a free surface on fluid depends on particular physical situations. Dif-

ferent setups aim to solve different practical problems. For example,8 the plane

below is the ground which could shake due to an earthquake and cause large

waves in the water, which is a tsunami. Also, although the governing behaviors

of the fluid mechanics are mainly given by the Navier-Stokes equation, different

assumptions can dramatically change the physical situation. Due to the com-

plexity of the Navier-Stokes equation, the general solution for all kinds of fluid

are hard to be obtained. Different applications will have different assumptions

which can properly simplify the Navier-Stokes equation. The observations and

boundary conditions will consequently be modified.

This report focuses on the interaction between two different phases. A brief

overview of the model used in this report is given by the following figure.
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Figure 1: Major Modeling Set Up

This figure gives a quick view of the model used in some of the sections. The
bottom shaded wave line represents the elastic surface and the other two lines
are related to the velocity of the fluid. v∞ is the free stream velocity. Note that
some of the parameters in this figure are defined differently than in the rest of

this report. Taken from [4], chapter 20.

The main region of the flow will be considered as the potential flow. The most

important quantity in potential flow is the velocity potential. The boundary condi-

tions and governing equations in the potential flow are fixed. However, the initial

condition can be measured or obtained from many different methods. It would

be helpful to generalize a method of solving the velocity potential when given a

certain set of initial conditions. This report considers the shape of the interfaces

and the free stream velocity as the initial conditions. The asymptotic method is

introduced to solve for the velocity potential given a particular set of initial con-

ditions. Once the velocity potential has been found, it can be used to update the

initial conditions, therefore the time stepping strategies can be used to track the

evolution of the interface in time.

The shape of the free surface is found by solving the curvature force. Under the

Kinetic boundary condition and dynamic boundary conditions, the stress tensor

from the fluid side can be used to balance the stress tensor from the air side. For

both sides, the stress tensor can be easily calculated as there is no viscid force.
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The boundary layer between the liquid and the elastic surface is also discussed

in this report. By considering the boundary layer, the non slip condition can

be applied to make the calculation more accurate. Although the viscid force is

present in the boundary layer, the Navier-Stokes equation along with boundary

conditions can still be simplified. Therefore, the shape of the elastic surface can

also be calculated based on the idea of balancing the stress tensor.

Numerical methods are discussed and performed in MATLAB. With proper

boundary conditions, the numerical method can be used to solve general fluid as

well as more complete set ups.

2 Potential flow

An important calculation in this report is to solve for pressure and displace-

ment filed related quantities in flow when the boundary conditions are well de-

fined. The flow in this calculation is described as the potential flow. Details

describing the properties of potential flow are given in Appendix. 7.2. This sec-

tion introduces the methodology of solving for the velocity potential when the

boundary conditions are prescribed in two dimensional flows.

2.1 Governing Equations

The most important property for potential flow is the existence of a velocity

potential. The velocity potential in fluid mechanics is a scale function whose gra-

dient is the velocity field. By the definition, in two dimensional flow, the velocity

potential, denoted by Φ, satisfies the equation

∂Φ

∂x
= vx;

∂Φ

∂y
= vy; (1)
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where v = [vx, vy] is the velocity field of the fluid and the subscripts of v specifies

the component. Potential flow should also satisfy conservation of mass. That is,

the time rate of change of the mass in a selected region is zero. Therefore, the

potential flow should still satisfy the continuity equation:

∂ρ

∂t
+
∑

i

∂ρvi
∂xi

= 0, i = 1, 2. (2)

Here, ρ is the density of the flow, v is the velocity field as before, and xi refers

the direction vector, that is, x1 = x and x2 = y. The subscript i denotes the ith

component in its corresponding vector. For incompressible flow, the density ρ of

the flow does not change with respect to both the time and the position. With

this property, Eq.2 becomes
∑

i

∂vi
∂xi

= 0. (3)

Substituting Eq. 3 into Eq. 1, one obtains that the velocity potential satisfies the

Laplace equation

∇2Φ = 0. (4)

The general analytic solution of the Laplace equation is well-defined. For two

dimensions, the solution is

L(x, y) = (α1 cos(λx) + β1 sin(λx)) (α2 cosh(λy) + β2 sinh(λy)) . (5)

Here, α1, α2 ,β1, β2, and λ are superposition parameters which can be determined

from boundary conditions.

The other important variable in potential flow is the pressure. The pressure is

a the normal components of the driving force applied on the surfaces of a subject.

The pressure is a scalar function for a non-rotational surface since the normal

vector remains same. In fluid mechanics, pressure is one of the main source of
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the flow’s motion. Also, the balance of the pressure determines the boundary

condition at interfaces. Most often, one can calculate the value of pressure or

use the value of pressure from the Euler equation and the Bernoulli equation.

For potential flow, the Euler equation gives

ρ

(

∂v

∂t
+ (v ·∇)v

)

= ∇p+ ρF . (6)

Here, ρ is the density of of the fluid which is a constant for incompressible flow,

v is the velocity field, p is the pressure, and F is the body force. The Bernoulli

equation can also relate the pressure and the velocity

p1
ρ

+
v1

2

2
+ gy1 +

∂Φ1

∂t
=

p2
ρ

+
v2

2

2
+ gy2 +

∂Φ2

∂t
. (7)

Bernoulli equation is derived from the conservation of energy. That is, the to-

tal energy should be the same when the liquid in a given region flow from one

position to another position. In Eq. 7, the subscripts denote the corresponding

position for each variable, p and v are pressure and velocity field as above, g is

the gravitational acceleration, yi is the height with respect to the reference height

for each point, and Φ is the velocity potential function.

2.2 Example of Asymptotic Analysis

As stated above, the first aim of this section is to solve the velocity potential

with well-defined boundary conditions. In potential flow, the word ‘well-defined‘

means that the boundary conditions should give a unique solution to the velocity

potential if the constant term is ignored. Several boundary conditions are given

by assuming continuity and the no-penetration condition. A set of proper initial

conditions should have both physical meaning and mathematical meaning and
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allow for the determination of a unique solution. The choice of initial conditions

in this section will be the function of the interface’s shape between solid and

liquid and the free stream velocity. These two boundary conditions are easy to

detect for most of cases and clearly make sense from both the mathematical and

physical perspectives. If the viscous layer between the flow and the surface were

thin enough to make its effect negligible, it can be demonstrated that by applying

asymptotic analysis, these two initial conditions are sufficient to obtain a unique

velocity potential.

Table 1: Dimensional Analysis Table

Scalar Description Units

Vf The velocity of free stream [Length per time]
L The length of the domain of interest [Length]
h The amplitude of the interface [Length]

Dimensional function/ Description Units
quantity

Φ Velocity Potential [Length Square per time]
x The movement in horizontal direction [Length]
y The movement in vertical direction [Length]

To start the asymptotic analysis, the perturbation parameter should be defined

first. The common choice of the perturbation parameter in fluid mechanics is the

ratio of the boundary’s amplitude and the length of the interested area ǫ = h
L
.

The perturbation parameter is unitless and it is used to define the shape of the

interface. Here the amplitude of the interface is assumed to be much less than

the length of domain. Therefore, the perturbation parameter is also much less

than one.

From Table 1, the variables in the calculation process can be nondiemsional-

ized as

Φ̂ =
Φ

VfL
, x̂ =

x

L
, ŷ =

y

L
.

Another quantity that should be defined before the calculation is the reference
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height. This quantity can be freely chosen as the fluid and gravity are two domi-

nant sources of potential energy. In this section, the reference height will be set to

be the average amplitude of the interface between solid and liquid. As mentioned

at the beginning, the initial conditions of this section’s set up include the shape

of the interface and the free stream velocity. The free stream velocity will be con-

sidered as a constant with respect to x̂. Therefore, after nondimensionalization,

the boundary condition of the velocity potential very far away from the reference

point should be

Φ̂

x̂
= 1, as y → ∞. (8)

The other boundary condition happens at the interface between solid and liquid.

The initial condition for this boundary condition is given as the function of the

interface’s shape. In practice, the shape might be a complicated function. This

might make the calculation harder, but conceptually it follows the same solution

process. Thus, it would be nice to illustrate the asymptotic analysis by providing

a relatively simple function for the shape of the interface between the solid and

the fluid. The shape in this set up is defined as

ŷs = sin(2πx̂)ǫ, (9)

where ŷs is the the height of the interface between the liquid and solid. Substi-

tuting the function of the interface’s shape into the no-penetration condition(the

fluid cannot penetrate into or leave a space between to the solid), one obtains

dŷs
dx

=
∂Φ̂

∂ŷ
/
∂Φ̂

∂x̂
, at y = ys. (10)
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Taking the derivative of Eq. 9, Eq. 10 becomes

2πǫ cos(2πx̂)
∂Φ̂

∂x̂
=

∂Φ̂

∂ŷ
. (11)

Recall the definition of the velocity potential, the non-dimensional velocity com-

ponents were given by Eq. 1. From the continuity equation of the potential flow,

the velocity field should satisfy

∂v̂x
∂x

+
∂v̂y
∂y

= 0. (12)

Combine the two equations, one gets

∂2Φ̂

∂x̂2
+

∂2Φ̂

∂ŷ2
= 0. (13)

Since the asymptotic analysis is used to solve the velocity potential, with the

defined perturbation parameter, the solution is expected to have the form

Φ̂(x̂, ŷ, ǫ) =
∑

i

ǫiΦ̂i(x̂, ŷ). (14)

Where ǫi is the ith power of the perturbation parameter and Φ̂i is the perturba-

tion function of ith order. The above form is valid since the velocity potential is

a bounded function in a finite domain and the perturbation parameter is suffi-

ciently small. Both the function Φ and the boundary conditions can be expanded

to give an approximated solvable relation.

If the concerned order of accuracy is one, that is, the error terms of order O

(ǫ2) is small enough to be dropped, the perturbation series above becomes

Φ̂(x̂, ŷ, ǫ) = Φ̂0(x̂, ŷ) + ǫΦ̂1(x̂, ŷ). (15)
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All the perturbation functions Φ̂i should also satisfy the continuity condition be-

cause the perturbation parameters are assumed to be independent. Therefore,

we have

0 =
∂2Φ̂0

∂x̂2
+

∂2Φ̂0

∂ŷ2
; (16)

0 =
∂2Φ̂1

∂x̂2
+

∂2Φ̂1

∂ŷ2
. (17)

The boundary conditions of the velocity potential are given by Eq. 8 and Eq. 10.

Substituting into Eq. 15, one obtains

∂Φ̂

∂x̂
(x̂, ŷ → ∞) + ǫ

∂Φ̂

∂x̂
(x̂, ŷ → ∞) = 1, (18)

2πǫ cos(2πx̂)

(

∂Φ̂

∂x̂
(x̂, ŷs) + ǫ

∂Φ̂

∂x̂
(x̂, ŷs)

)

=
∂Φ̂

∂x̂
(x̂, ŷs) + ǫ

∂Φ̂

∂x̂
(x̂, ŷs). (19)

The perturbation parameter

epsilon is independent of the approximated velocity potential functions. Therefore,

Eq. 18 can be restated as

∂Φ̂0

∂x̂
(x̂, ŷ → ∞) = 1, (20)

∂Φ̂1

∂x̂
(x̂, ŷ → ∞) = 0, (21)

Since ŷs in Eq. 18 is also a function of the perturbation parameter, one should

find the zero and first order of ǫ to extract more information from Eq. 18. One can

begin the analysis by using Taylor series to expand derivatives in Eq. 18 about

the reference height ŷ = 0. As an example, the first derivative of of Φ̂0 with respect

to x̂ is

∂Φ̂0(x̂, ŷs)

∂x̂
=

∂Φ̂0(x̂, 0)

∂x̂
+

∂2Φ̂0(x̂, 0)

∂x̂∂ŷ
+O(ǫ2). (22)

Notice that all the higher order terms can be ignoredif one is only concerned with
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the first order solution with respect to the perturbation parameter. Expanding

all the derivative terms in Eq. 19 and substituing the function of ŷs,

(

Φ̂0(x̂, 0

∂x̂
+

Φ̂0(x, 0)

∂x̂∂ŷ
ǫ sin(2πx̂)

)

2πǫ cos(2πx̂)

+

(

Φ̂1(x̂, 0

∂x̂
ǫ+

Φ̂1(x̂, 0)

∂x̂∂ŷ
ǫ2 sin(2πx̂)

)

2πǫ cos(2πx̂)

−

(

Φ̂0(x̂, 0

∂ŷ
+

Φ̂0(x̂, 0)

∂ŷ2
ǫ sin(2πx̂) +

Φ̂1(x̂, 0

∂x̂
ǫ+

Φ̂1(x, 0)

∂x̂∂ŷ
ǫ2 sin(2πx̂)

)

= 0

Dropping all the terms that have higher order than two in ǫ, one can approximate

Eq. 19 as

∂Φ̂0(x̂, 0)

∂x̂
2π cos(2πx̂)−

∂Φ̂0(x̂, 0)

∂ŷ
−

∂2Φ̂0(x̂, 0)

∂ŷ2
ǫ sin(2πx̂)−

∂Φ̂0(x̂, 0)

∂ŷ
= 0. (23)

Similarly, one can separate the terms which do not have the perturbation param-

eters from other terms, that is

0 =
∂Φ̂0(x̂, 0)

∂ŷ
, (24)

0 =
∂Φ̂0(x̂, 0)

∂x̂
ǫ2π sin(2πx̂)−

∂2Φ̂0( ˆx, 0)

∂ŷ2
ǫ sin(2πx̂)−

∂Φ̂1(x̂, 0)

∂ŷ
= 0. (25)

The boundary conditions for the zero order approximation of the velocity poten-

tial, Φ̂0 are now sufficient to calculate the parameters in the solution of Laplace

equation whose form is given by Eq. 5. The calculation is simple and straight

forward, the solution of Φ̂0 is found to be

Φ̂0 = x̂.

After having the exact form of the zero order approximation Φ̂0, one can substi-

tute Φ̂0 into Eq. 25 to obtain the other boundary condition for the first order
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approximation Φ̂1. This is solving the Laplace equation with the following setup

0 =
∂2Φ̂1

∂x̂2
+

∂2Φ̂1

∂ŷ2

0 =
∂Φ̂1(x̂, 0)

∂ŷ
− 2π cos(2πx̂)

0 =
∂Φ̂1(x̂, ŷ → ∞)

∂x̂
.

The solution is given as

Φ̂1 = − cos(2πx̂) exp(2πŷ). (26)

Figure 2: Velocity Potential
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This figure displays the velocity potential given in Eq. 27. The dominate term is
clearly x̂. For each x̂ value, there is a small fluctuation due to the second term.

Combining the two approximations, the velocity potential is then

Φ̂ = x̂− ǫ cos(2πx̂) exp(2πŷ). (27)
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Generally, the velocity potential can have one extra term which is any constant

function of x̂ and ŷ. The time contribution of the velocity potential is either from

the extra term or behind velocity components. For example, the velocity compo-

nents here are

v̂x = 1 + 2πǫ sin(2πx̂) exp(−2πŷ), (28)

v̂y = 2πǫ cos(2πx̂) exp(−2πŷ). (29)

As the velocity is not a trivial function, the states of the flow will continue to

change. Consequently, the initial conditions will no longer hold and the bound-

ary conditions will change accordingly. Then one will end up with new Laplace

equations which will give an updated velocity potential function.

2.3 The Solution of Potential Flow as Time Evolves

The velocity potential of the fluid for a given shape of the interface was calcu-

lated in the last section. However, since the flow is a continuous quantity, the

velocity potential should not be the same as time evolves. This section introduces

the general idea of calculating the velocity potential, including the dependence on

time.

The two initial conditions given in the previous section are the function of the

interface’s shape and the free stream velocity. The change from either of the initial

condition will cause a change in the velocity potential of the fluid. As discussed

above, the change of these two conditions is partially contributed by the velocity

potential. Therefore, the shape of the interface, the free stream velocity, and

the velocity potential are correlated. Consequently, from the previous set up,

it is not possible to obtain the full equation of either of these quantities as the

dependence of time is included. An alternative approach is to first discretize the
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time dimension into small intervals and calculate the velocity potential for each

interval by updating the initial conditions.

If the shape of the interface is forced to remain the same and the surface pres-

sure is negligible, the only condition that will change is the free stream velocity.

In each time interval, the free steam velocity is assumed to be a constant. Then

the value in the ith interval can be calculated from the (i− 1)th interval by setting

its value equal to the velocity in x direction at the height of the interface between

the fluid and air. It should be emphasized that for each time step, the parameters

should be non-dimensionlized independently as the scalar quantity Vf changes.

A more interesting situation is when the shape of the interface between the

flow and the solid changes over time due to an applied surface force. Without

losing generality, one can assume that the length of the domain is a constant.

The process of updating the function of the interface’s shape is more complicated

than updating the free stream velocity. In order to derive the interface’s shape for

the ith interval, the information of the displacement field of the (i − 1)th interval

has to be known. That is, we need to form a procedure to obtain the displacement

field from the velocity potential.

Before starting the formalism, let us assume that all the parameters have al-

ready been properly non-dimensionlized. That is, all the variables in this section

have no dimension and the hat notation will not be used. Let the time domain be

discretized into [t0, t1, t2, · · · ].

Suppose at t = t0, the shape of the interface is described by a function f0 and

the free stream velocity is given as V 0
f , that is

ys(x, t0) = f0(x), (30)

vy(x, y → ∞, t0) = V 0
f . (31)
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Following the procedure introduced in the last section, the velocity potential at

t = t0 can be calculated and suppose the result is Φ(x, y, t0) = Φ0. The subscript

for Φ here and later in this section will refer to the time instead of the order of the

the asymptotic analysis. By definition, the velocity components at t = t0 can be

directly calculated by taking partial derivatives of Φ0:

vx(t0) =
∂Φ0

∂x
,

vy(t0) =
∂Φ0

∂y
.

Since we are interested in the change of variables as the time moves from t0 to t1,

it would be ideal to have a relation which has the time involved. Fortunately, the

Navier-Stokes equation has such a term

ρ

(

∂v

∂t
+ (v ·∇)v

)

= −∇p + µ∇2v + ρF . (32)

Here, ρ is the density of the fluid, v is the velocity field, p is the pressure, µ is the

viscosity, and F is the body force per unit mass. In this report, the density of the

fluid is assumed to be a constant and the body force F is only attribute to the

gravitational force, that is

Fx = 0, Fy = g.

For the two dimensional non-viscous fluid, the Navier-Stokes equation can be

written explicitly as

ρ

(

∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

)

= −
∂p

∂x
, (33)

ρ

(

∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

)

= −
∂p

∂y
+ ρg (34)

The unknown in Eq. 33 and Eq. 34 is the pressure p(x, y). Since the pressure
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at the surface of the fluid is easy to measure, it can be used in the Bernoulli

equation to calculate the pressure everywhere. Using Eq. 7, for any point k, one

should expect

pk
ρ

+
vk

2

2
+ gyk +

∂Φt(k)

∂t
=

pa
ρ

+
va

2

2
+ gya +

∂Φt(a)

∂t
(35)

Here, the subscript a and k refer to two points, a is the any point at the average

height of the surface of the fluid, which is the reference pressure position. Φt(a)

and Φt(k) denote for the velocity potential at points a and k in a given time interval

t.

Since in any time interval, the flow should be considered as the steady flow.

Therefore, the time derivative of the velocity potential should be zero for all loca-

tion k, that is

∂Φt(k)

∂t
=

∂Φt(a)

∂t
= 0.

Also, the conservation of energy implies the change of the momentum is equal

to the change of potential energy for a unit mass, that is, ∆vy = ∆gy. Here y

is the vertical distance with respect to the reference position and ∆ denotes the

difference value. Then based on Eq. 35, the difference in pressure between any

layer and the surface of the flow can be expressed in terms of the ratio of their

squared velocity value:

pk − pa =
ρ

2
va

2

(

1−
vk

2

va2

)

, (36)

where the value of vk
2 is equal to vk

2
x + vk

2
y. Since the velocity at the surface of the

fluid is essentially the free stream velocity, the pressure can be derived from the

velocity potential function at a given time for any point.

Going back to Navier-Stokes equations, since the goal is to find the displace-

ment field, one should replace the time derivative of the velocity components as
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the second order time derivative of the displacement field components.

∂vx
∂t

=
∂2ux

∂t2
; (37)

∂vy
∂t

=
∂2uy

∂t2
. (38)

Where u is the displacement field and the subscripts denotes the component in

the corresponding direction. Rewriting the time derivatives of the displacement

field with a second order forward numerical differentiation, one obtains

∂vx
∂t

=
ux(t + 2∆t)− 2ux(t+∆t) + ux(t)

(∆t)2
; (39)

∂vy
∂t

=
uy(t+ 2∆t)− 2uy(t+∆t) + uy(t)

(∆t)2
. (40)

Where ∆t is the time step size. Equation 39 Eq. 40 are valid for calculating in

all the time interval except t = t1. A less accurate approximation for the value of

the displacement flied is to directly take the integral of the velocity components

which is calculated from the velocity potential. It can of course to approximate

the integral as

ux(t+∆t) = ux(t) + vx(t)∆t; (41)

uy(t+∆t) = uy(t) + vy(t)∆t. (42)

Substituting Eq. 39, Eq. 40, and Eq. 36 into the Navier-Stokes equation, one
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obtains

ρ

(

ux(t+ 2∆t)− 2ux(t+∆t) + ux(t)

(∆t)2
+ vx

vx
∂x

+ vy
∂vx
∂y

)

=− pa −
ρ

2
va

2

(

1−
vk

2

va2

)

(43)

ρ

(

uy(t+ 2∆t)− 2uy(t+∆t) + uy(t)

(∆t)2
+ vx

vy
∂x

+ vy
∂vy
∂y

)

=− pa −
ρ

2
va

2

(

1−
vk

2

va2

)

+ ρg (44)

Here, the subscript k denotes an arbitrary position, the subscript a denotes the

average y value of the fluid’s surface. All the parameters have no time specification

can be obtained from either t = t or t = t+∆t. But the choice should be consistent

for all parameters.

Rearranging these equations, one can obtain the expression for the displace-

ment components

−

(

pa
ρ

−
1

2
va

2

(

1−
vk

2

va2

)

− vx
vx
∂x

− vy
∂vx
∂y

)

(∆t)2

=ux(t+ 2∆t)− 2ux(t+∆t) + ux(t); (45)

−

(

pa
ρ

−
1

2
va

2

(

1−
vk

2

va2

)

− vx
vx
∂x

− vy
∂vx
∂y

)

(∆t)2

=uy(t+ 2∆t)− 2uy(t+∆t) + uy(t). (46)

The terms on the left hand of the above equations can all be calculated from

the velocity potential. Therefore, the value of displacement in each direction can

be updated from its value of the former two time interval. The function of the

interface’s shape can be then updated from the above procedure.

As a concrete example, let us use the set up from the former section as our
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initial conditions. The velocity potential is calculated to be

Φ0 = x− ǫ cos(2πx) exp(−2πy).

Where the subscript here denotes the time interval t0. The velocity components

are then

vx(x, y, 0) = 1 + ǫ2π sin(2πx) exp(−2πy);

vy(x, y, 0) = ǫ2π cos(2πx) exp(−2πy).

At the interface ys = sin(2πx)ǫ, one obtain the velocity components at the interface

are

vx(x, ys, 0) = 1 + ǫ2π sin(2πx); (47)

vy(x, ys, 0) = ǫ2π cos(2πx). (48)

The derivatives are

∂vx(x, ys, 0)

∂x
= ǫ4π2 cos(2πx); (49)

∂vx(x, ys, 0)

∂y
= −ǫ4π2 sin(2πx); (50)

∂vy(x, ys, 0)

∂x
= −ǫ4π2 sin(2πx); (51)

∂vy(x, ys, 0)

∂y
= −ǫ4π2 cos(2πx). (52)

With the free stream velocity being normalized to one, by dropping higher order

terms of the perturbation parameter, the pressure for any point k is given by

Bernoulli equation as

pk − pa = −
ρ

2
4πǫ sin(2πx) exp(−2πy). (53)
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Substituting the function of the interface’s shape between solid and liquid, the

pressure at the interface is,

ps = pa −
ρ

2
4πǫ sin(2πx) +O(ǫ2) (54)

Here, the subscript s denote the interface’s average height and the O(ǫ2) are all

the terms containing high powers of the small perturbation parameters ǫ. Substi-

tuting the function of the pressure and the velocity components at the interface

into the approximated Navier-Stokes equation, Eq. 45 and Eq. 46 becomes

ux(t2)− 2ux(t1) + ux(0)

(∆t)2

= −

(

pa
ρ

−
1

2
4πǫ sin(2πx)− ǫ4π2 cos(2πx) + ǫ216π3 sin(2πx) cos(2πx)

)

≈ −

(

pa
ρ

−
1

2
4πǫ sin(2πx)− ǫ4π2 cos(2πx)

)

(55)

uy(t2)− 2uy(t1) + uy(0)

(∆t)2

= −

(

pa
ρ

−
1

2
4πǫ sin(2πx) + (1 + ǫ2π sin(2πx))(ǫ4π2 sin(2πx)) + ǫ28π3 cos2(2πx))

)

≈ −

(

pa
ρ

−
1

2
4πǫ sin(2πx) + ǫ4π2 sin(2πx)

)

(56)

It is clear that for each time interval, the functions of the interface between solid

and liquid from the above equations are a function of x only. The updating of the

velocity of the free stream has been mentioned at the beginning of this section.

Therefore, the initial conditions for the next time interval are now obtained. One

can follow the same procedure from the former section to update the velocity

potential for the next time interval.

This section loosely discusses the shape change of the interface and derived a

formalism of updating the initial conditions and velocity potential for each time

step. A more careful calculation will be discussed in later sections by considering
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the constraints of the stress balancing.

3 Wave function of the flow at the interface with air

From previous sections, the velocity potential can be calculated based on the

functions of the shape of the solid elastic surface. However, the velocity potential

is a quantity that is difficult to be measured. Therefore, the result not only has

limited utility for practical applications, but also is difficult to check its correct-

ness. This then gives the motivation of deriving a formalism of the wave function

of the fluid’s surface from a given velocity potential.

The flow in this section will be still the potential flow to enable the existence

of the velocity potential. To have the wave function at the top of the fluid, one

should first consider the boundary conditions based on physical perspective.

The surface of the fluid can be treated as a thin layer which is called the free

surface. As time evolves, the free surface would have a different functional form.

Let us Consider particles on the free surface at a given time. Due to the surface

tension, the probability that these particles follows same vertical velocity of the

free surface is much larger than the probability of that other layers’ particles

come to top of the fluid. Therefore, these particles are assumed to remain on the

surface for all time. Mathematically, this means that the change of the height

of the surface over a short time period plus the normal velocity of the surface

should be equal to the vertical velocity of surface particles, that is

∂ya
∂t

+ (v(ya) · ∇)ya = vy(ya). (57)

Here, ya is the function of the free surface at a given time, v is the velocity field of

the fluid, v(ya) denotes the velocity field at the free surface, and vy is the vertical

component of the velocity field. In the form of the velocity potential, the two
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dimensional form of the Eq. 57 becomes

∂ya
∂t

+
∂Φ

∂x

∂ya
∂x

=
∂Φ

∂y
(58)

where Φ is the velocity potential and this equation is only valid for the free surface.

Let us then take a look at the continuity equation. For an arbitrary region,

applying Leibnitz’s rule to the density, one can obtain

d

dt

∫

ρdV = −

∫

ρ(vi − wi)nidS. (59)

Since the flow is assumed to be laminar in ẑ direction (fluid flows in parallel layers

with respect to ẑ direction), the volume integral can be reduced to an area inte-

gral. In above equation, ρ is the density, the subscript denotes the corresponding

direction, v is the velocity of the fluid, w is the velocity of the interface, and n

is the normal vector. Therefore, for a region containing the free surface, above

equation becomes

d

dt

∫

ρdV = −

∫

L

n · (v−w)ρdS +

∫

A

n · (v−w)ρdS (60)

Here, the subscripts L and A are used to denote the liquid and air phases. There-

fore, the first term on the right hand side of the equation deals with the region of

liquid and the second term computes the region of air. The negative sign is due

to the two regions having opposite normal direction.

As the thickness of the free surface goes to zero, the left hand side of the

equation approaches zero accordingly. Thus, for any point on the free surface,

one has, for the normal direction

ρ(vn − w) |L= ρ(vn − w) |A, (61)
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where the left hand side of the equation is for the region of liquid and the right

hand side of the equation is for the region of air, and the subscript n denotes the

normal direction. Here, w here is a scalar since the free surface is a function of

x only at a given time.

Similarly, one can also apply the Leibnitz’s rule to the momentum of for an

arbitrary region and obtain

d

dt

∫

ρvidV = −

∫

(ρnj(vj − wj)vi + nip− njτji)dS +

∫

ρFidV. (62)

Here, τij is the component of the viscid tensor. Since the thickness of the free

surface is negligible, the volume integral terms vanishes in the Eq. 62 and one

can then obtain

−

∫

L

(ρ(v − w)v + np− n · τ )dS +

∫

L

(ρ(v − w)v + np− n · τ )dS = 0 (63)

Which then implied

(ρ(v − w)v + np− n · τ ) |L= (ρ(v − w)v + np− n · τ ) |A (64)

As before, w here is a constant so it should have no attribution in the above

equation. For the tangential direction, by the no slip condition, the velocity of

the free surface from both sides should match. Therefore the tangential velocity

terms will be canceled on both sides of the equation. Since the pressure should

have no contribution in the tangential direction, the remaining term on each each

side of Eq. 64 is n · τ . Since the potential flow has no viscous force, the shear

stress from the viscosity at the side of the flow should be zero. Thus, in the

tangential direction, the momentum equation simply states that the free surface

is perfectly aligned with the stream lines of the air since n · τA = 0.
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For the normal direction, Eq. 64 gives

(ρ(vn − w)vn) + p− n · τ · n) |A= (ρ(vn − w)vn) + p− n · τ · n) |L (65)

Here, the left hand side of the equation is on the air side and the right hand side

is on the liquid side of the free surface. As before, the velocity of the free surface

should be the same for both sides of the equation. Substituting Eq. 61, one can

have,

n · τA · n− pAI = n · τL · n− pLI (66)

Where I is the identity matrix. Notice that the surface tension is ignored here,

the more general condition when including the surface tension is

(n ·TL · n)− (n ·TA · n) = γ(∇ · n). (67)

Here, γ is the surface tension, ∇ · n is the curvature force, and T is the full stress

tensor which has the form Tij = −pδij + τij, δij is the Kronecker delta.

Since the fluid is considered as a potential flow, then, for two dimensions,

Eq.67 gives

∆p = γ(∇ · n). (68)

This enables us to calculate the curvature force of the surface. The curvature

force of the surface is defined as

∇ · n =

(

∂2ya
∂x2

)

/

(

1 +
∂ya
∂x

)
3

2

. (69)

Equation 69 enables one to derive the form of ya. With specific boundary con-

ditions, such as constraining the end points or the velocity field which can be

derived from previous section, the exact form of the wave function of the free
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surface can be obtained. One can perform the calculation by choosing either to

calculate it calculate numerically or analytically. The latter is only feasible when

dealing with simple functions and boundary conditions.

4 Boundary Layer

The boundary Layer is a small region in the fluid which has two distinct value

of the velocity at the two end layers. The boundary layer can be located close to a

surface. The motivation for using and studying the boundary layer is to separate

the region with the viscous force and the region without the viscous force. Within

the boundary layer, the other boundary condition, the no slip condition can be

satisfied by the flow.

4.1 Background Information

This section will begin with an introduction of an important quantity in fluid

mechanics: the Reynolds number. Reynolds number is defined as the ratio of the

inertial force to viscous force, that is

Re =
ρvL

µ
(70)

Here, Re denotes Reynolds number, ρ is the density of the fluid, v is the velocity

of the flow, L is the characteristic length, µ is the dynamic viscosity. Let us

first check the unit of Reynolds number; the following table gives the units of all

parameters appearing in Eq. 70. It is trivial to check that the Reynolds number

is unitless. In fact, Reynolds number itself is often used as a characteristic scale

in fluid mechanics. It defines the relative motion of the flow. To have a sense of

the scale of Reynolds number, Table 316 gives values in some particular cases.
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Table 2: Units Analysis of Reynolds Number

Parameter Units

ρ [Weight per volume]
v [Length per time]
L [Length]
µ [Weight per time per Length]

By Eq. 70, the low Reynolds number indicates high viscous forces and inertia is

Table 3: Typical Value of Reynolds Number

Reynolds Number Value

Tiny Fish 5-50
Blood Flow 102 to 103

Turbulent Flow 104 to 106

Swimming Person 5 ∗ 106

Whale 108

Large Ship 5 ∗ 109

negligible. If Re ≫ 1, viscosity is small and inertial forces dominate. Viscosity is

the quantity which measures the difference in velocity between different layers of

the fluid. Until now, the viscous and the viscous force has not been included in

any discussion. However, in most of practical situations, the motion of the fluid

at the interface should be exactly same as the motion of the interface itself. This

gives another condition besides the no penetration condition which is the no slip

condition. If the no slip condition were to hold, then the non-viscous assumption

will no longer be valid for all region in the flow. However, as the value of Reynolds

number increase, the viscous effects can be confined to a thinner and thinner

region close to the surface. This region is call the boundary layer.

Boundary layer theory is an efficient tool to enforce the fluid to satisfy the

no slip condition. Outside of the boundary layer, one can still treat the fluid as

the potential flow. In the boundary layer, the flow is assumed to be completely

inviscid and enclosed by the existence of the surface. Also, the terms involving

25



the curvature of the surface will not be considered .10 Since the flow beyond the

boundary layer is potential flow, the velocity value at the top of the boundary

layer would be the same scale as the free stream velocity. Therefore, the term

∂vx
∂y

will vanish as the thickness for the boundary layer goes to zero. This is the

motivation of the boundary layer theory.

In the region of boundary layer, the continuity equation and the Navier-Stokes

equation should still hold for this set up. The continuity equation gives

∂vx
∂x

+
∂vy
∂y

= 0 (71)

Where as before, vx and vy are components of the velocity field in the x and y

direction.

If the fluid were steady flow in the boundary layer, the Navier-Stokes equation

is simplified to

ρ (v · ∇)v = −∇p + µ∇2v + ρF . (72)

Where ρ is the density of the flow, v is the velocity field, p is the pressure, and F

is the body force per unit mass.

Before applying the Navier-Stokes equation, let us first nondimensionalize all

the parameters. The dimension of each quantities appearing in the above equa-

tion and the characteristic scales are given in Table 4 and Table 5.

Table 4: Dimensional variables

Variables Description Units

vx The tangential velocity [Length per time]
vy The normal velocity [Length per time]
x The tangential distance [Length]
y The normal distance [Length]
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Table 5: Scale Quantities

Parameter Description Units

Vf The free stream velocity [Length per time]
L The characteristic length [Length]
T The thickness of boundary layer [Length]
Re The Reynolds number [None]

The non dimensional parameters are then

v̂x =
vx
Vf

, v̂y =
vy
Vf

x̂ =
x

L
, ŷ =

y

T

Since the pressure and the viscosity does not affect the following analysis, we do

not report the nondimensional pressure here.

We assume the body force has a contribution only from the gravitational force

and set the reference height to be the location of the surface. Then, the Navier-

Stokes equation becomes

ρ

(

vx
∂vx
∂x

+ vy
∂vx
∂y

)

= −
∂p

∂x
+ µ

(

∂2vx
∂x2

+
∂2vx
∂y2

)

, (73)

ρ

(

vx
∂vy
∂x

+ vy
∂vy
∂y

)

= −
∂p

∂y
+ µ

(

∂2vy
∂x2

+
∂2vy
∂y2

)

. (74)

Let us first discuss the dominant terms in Eq .73. The order of each term in the

Navier-Stokes equation is

O

(

Vf

L

)

+O

(

Vf

L

)

= O

(

Vf

L

)

+O

(

Vfµ

ρL2

)

+O

(

Vfµ

ρT 2

)

(75)

Where O is the big O notation which describes the limitation of the behavior of

the function. It is clear that the value of Vf and the L are of the same order.

Using the characteristic scalar Reynolds number to replace Lρ
µ

, the second term
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on the right hand side of the above equation can be dropped since it has zero

order as Reynolds number goes to infinity. Therefore, in the boundary layer, the

Navier-Stokes equation is the x direction becomes

ρ

(

vx
∂vx
∂x

+ vy
∂vx
∂y

)

= −
∂p

∂x
+ µ

∂2vy
∂y2

. (76)

Similarly, the order of each the terms in the y direction Navier-Stokes equation is

O

(

V 2
f T

L2

)

+O

(

V 2
f T

L2

)

= O

(

1

ρT

)

+O

(

VfTµ

ρL3

)

+O

(

Vfµ

LT

)

. (77)

The dominant term in Eq. 77 is clearly the term O
(

1
ρT

)

since the thickness of the

boundary layer and the small. Thus the Navier-Stokes equation in the y direction

becomes

∂p

∂y
= 0. (78)

Equation 78 simply states that the pressure is a function of only x and therefore,

is a constant at each tangential layer. Then the pressure is fixed on the top of

the boundary layer. The no-slip and no-penetration conditions give two boundary

conditions for the boundary layer as

vlx(x, y = ys) = vsx(x, y = yss); vly(x, y = ys) = vsy(x, y = yss). (79)

Here, the subscripts l and s denote the liquid and solid, respectively and specify

the side of corresponding quantities, The height of the interface is yss . One can

also assume that the velocity at the top of the boundary layer matches to the

velocity from the inviscid flow at the same layer.
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Figure 3: Viscosity in Boundary Layer

The velocity in x direction changes in the boundary layer due to the viscous
force. Outside the boundary layer, the velocity becomes uniform since the fluid

is non-viscid flow. Taken from [17].

To form a mathematically well-defined problem, one more condition is needed.

A proper choice is to give the function of the velocity in the x direction at a fixed

x value. Symbolically the condition can be given as vx(x0, y) = f(y), Where x0 is a

fixed position and f is a known function.

The other important information in boundary layer theory is the thickness of

the layer. The thickness of the boundary layer is defined as the distance between

the surface and the point where the velocity in the boundary layer is equal to the

velocity from the inviscid fluid. Let us first take a look at a simpler problem .

Suppose we have a uniform flow in the x direction on a plate which is stationary

in the y direction. The continuity equation immediately gives vy is a constant in

y because of the uniformity. Since the velocity in y direction of the flow is zero at

the surface, we have that vy = 0. Thus, the Navier-Stokes equation becomes

ρ
∂vx
∂t

= µ
∂2vx
∂y2

.
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The order on each side of the equation should agree with each other, thus we

have

O

(

Vf

t

)

=
µ

ρ

(

Vf

T 2

)

. (80)

Note that all parameters are same as defined previously. Therefore, the thickness

of the boundary layer has the order

T ∼

√

µt

ρ
. (81)

To replace the time dependence, one can use L
Vf

to replace t. Therefore, the Thick-

ness of the boundary layer becomes

T ∼

√

1

Re
L (82)

18

Figure 4: Example of the Boundary Layer’s Thickness

This is an example of the shape of the boundary layer around a wing. The
arrows outside the boundary layer denote the streamlines of the air and the
zoomed in region shows the change of the velocity due to the viscous force.

Taken from [18].
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4.2 Stress Balance for an Elastic Surface

The elastic surface is the interface between the liquid and the solid which can

move under constraints within a range of amplitude. The shape of the elastic sur-

face should be calculated based on the equation of motion. The linear elasticity

equations relates the stress to the movement of a particle. This section will follow

the idea of stress balancing to calculate the function of the elastic surface.

We have applied the stress balance on the free surface in previous section.

The major difference between the elastic surface and the free surface are first,

the viscid force is not negligible in the boundary layer, and second, the pressure

from the solid side is not a constant. However, the overall procedure should be

similar.

The first condition is also that all the particles which are originally on the

elastic surface should remain on the surface all the time. Therefore, similar to

Eq. 57, one can obtain

∂ye
∂t

+ (v(ye) · ∇)ye = vy(ye). (83)

Here, ye is the function of the elastic surface and v is the velocity field of the

fluid. ye in parentheses specifies the value of corresponding parameters on the

elastic surface. However, since the fluid is no longer a potential flow, the velocity

potential is not guaranteed to exist. Therefore, the above equation will not have

a form in terms of the velocity potential.

The continuity equation and the momentum equation should give exactly same

general conditions for the elastic surface. That is

d

dt

∫

ρdV = −

∫

ρ(vi − wi)nidS (84)
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and

d

dt

∫

ρvidV = −

∫

(ρnj(vj − wj)vi + nip− njτji)dS +

∫

ρFidV (85)

In Eq. 87, ρ is the density of either the liquid or the solid and it is still assumed to

be a constant, vi is the ith component of the velocity field and w is the prescribed

velocity of the elastic surface. The integration on the left hand side is the volume

integral and the one on the right hand side is the surface integral. In Eq. 85, n

is the unit normal vector(outwards) with respect to the elastic surface.

By the same analysis presented in Sec. 3, the continuity equation gives

ρ(vn − w) |L= ρ(vn − w) |S, (86)

the momentum equation in tangential direction gives

n · τ |S= n · τ |L, (87)

and the momentum equation in normal direction gives

(ρ(vn − w)vn) + p− n · τ · n) |L= (ρ(vn − w)vn) + p− n · τ · n) |S . (88)

Here, the subscript S stands for the solid side and all the other parameters are

defined the same as in Sec. 3. If the function of the elastic surface is given,

then the normal vector with respect to the surface can be calculated accordingly.

Therefore, the unknown terms in the above system of equations would be the

shear tensor, which is related to the velocity components. Let us take a detour to

introduce the shear tensor on the solid side.

In solid elastic analysis, there are important parameters called Lame’s param-
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eters. These two parameters are defined as

λ(K, ν) =
Kσ

(1 + ν)(1 − 2ν)
; (89)

σ(K, ν) =
K

2(1 + ν)
. (90)

Here, λ is the first Lame’s parameter and σ is the second Lame’s parameter. K is

the bulk modulus or the incompressibility and ν is the Poisson’s ratio which is

defined as the transversal expansion divided by the axial compression for small

deformation.

Lame’s parameters are material dependent parameters and usually can be

treated as a constant for a specific solid under a similar thermodynamic condi-

tion.

The summation of the two Lame’s parameters is

λ+ σ =
Kν

(1 + ν)(1 − 2ν)
+

K

2(1 + ν)
=

2Kν +K(1− 2ν)

2(1 + ν)(1− 2ν)
=

K

2(1 + ν)(1− 2ν)

The equation of motion for an elastic solid material can be derived from New-

ton’s second law as

∇ · T + F = ρ
∂2u

∂t2
. (91)

Here, T is the Cauchy stress tensor, F is the force applied on the body per unit

mass, and ρ is the density of the solid. The Cauchy stress tensor can be written

in terms of the Lame’s parameters

Tij = λδijεkk + 2σεij (92)

Here, δij is the Kronecker delta and εij is the strain. For infinitesimal deformation,
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the strain tensor ε is equal to the average of the displacement gradient tensor:

ε =
1

2

(

∇u+ (∇u)T
)

(93)

or more explicitly

εij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

(94)

Here the subscripts denote the specific component of parameters, u is the dis-

placement field, x is the direction vector where x1 is the x direction and x2 is the

y direction.

Similar to the Navier-Stokes equation in fluid mechanics, the governing equa-

tion in elastic is the Elasticity equations. It is expressed as

ρ
∂2u

∂t2
=

K

2(1 + ν)(1− 2ν)
∇(∇ · u) +

K

2(1 + ν)
∇2u− ρg, (95)

where g is the effective gravity. In terms of Lame’s parameters:

ρ
∂2u

∂t2
= (λ+ σ)∇(∇ · u) + σ∇2u− ρg. (96)

This background information on solid elasticity is enough for us to balance

the stress of the elastic surface. Going back to the boundary requirement of the

elastics surface, Eq. 87 and Eq. 88 can be now written explicitly.

For the fluid side, the viscid tensor can be calculated from µ∇v2
F . Where µ

is the viscosity of the boundary layer and vF is the velocity field in fluid. The

complete set up of the problem of solving these quantities are provided in the last

section. Numerically, one can solve the velocity field inside the boundary layer
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for any arbitrary initial condition given in the following form

∂vx
∂x

+
∂vy
∂y

= 0,

ρ

(

vx
∂vx
∂x

+ vy
∂vx
∂y

)

= −
∂p

∂x
+ µ

∂2∂vy
∂y2

,

vx(x, 0) = 0,

vy(x, 0) = 0,

vx(x, y → ∞) = Ve(x),

vx(x0, y) = f(y).

Here, Ve is the velocity of the inviscid flow at the top of the boundary layer. From

the Bernoulli equation, the pressure can be related to the velocity. Then the

second condition can be rewritten as

ρ

(

vx
∂vx
∂x

+ vy
∂vx
∂y

)

= Ve
∂Ve

∂x
+ µ

∂2∂vy
∂y2

.

The initial condition Ve can be found by following the procedure in Sec. 2 since

outside the boundary layer the fluid is potential flow. The other initial condition

f(y) can be either approximated by the velocity potential by first assuming the

entire domain has no viscid force or to interpolate the physical condition.

Since the boundary layer changes its thickness over the interested region, it

would be nice to adjust the scale of y so that the boundary layer’s thickness be-

comes a constant. The adjustment begins by introducing Falkner-Skan variables5

ξ =
x

L
; η = y

(

µx

ρVe(x)

)
1

2

. (97)

Here, ξ is a normal nondimensional parameter for x and η is the nondimensional

parameter for y such that the boundary layer’s height is fixed. Notice now the
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two velocity components are functions of Falkner-Skan variables. The nondi-

mensional velocity components are

v̂x =
vx
Ve

; v̂y =
µ

ρVe

(

ρVex

µ

)1/2

. (98)

Then, the initial condition becomes

v̂x(ξ, 0) = 0, v̂y(ξ, 0) = 0, v̂x(0, η) = vx(η), v̂x(ξ, y → ∞) = 1

To simplify the notation for later equations, let

Θ ≡
x

Ve

dVe

dx
, Υ ≡ v̂y +

1

2
ηv̂x(Θ− 1).

Substituting the nondimensional velocities into continuity equation gives

ξ
∂v̂x
∂ξ

+Θv̂x +
η

2
(Θ− 1)

v̂x
∂η

+
∂v̂y
∂η

= 0. (99)

The Navier-Stokes equation in the x direction of the boundary layer is given by

Eq. 76. In terms of the newly defined variables,

v̂xξ
v̂x
∂ξ

+Υ
∂v̂x
∂η

= (1− v̂2x)Θ +
∂2v̂x
∂η2

. (100)

Notice that since the height of the boundary layer is transferred to be a constant,

the domain can be treated as a rectangle and the mesh process will be straight

forward. We assume that the proper mesh is done over the domain formed by

ξ and η. The ξ direction is divided to have nodal points pi and the η direction

has nodal points qi. Since the numerical method is applied to solve velocity com-

ponents in the boundary layer, each derivative term should be approximated in
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terms of numerical differentiation. As an example:

∂v̂x
∂ξ

=
v̂x(pi+1, q)− v̂x(pi, q)

pi+1 − pi
, (101)

∂v̂x
∂η

=
v̂x(p, qi+1)− v̂x(p, qi)

qi+1 − qi
. (102)

The form of the numerical differentiation would be different if different numeri-

cal methods are applied. From here, there is nothing new about the numerical

approach of solving the velocity components in the boundary layer. Therefore,

along with the pressure found from the Bernoulli equation, the stress tensor on

the elastic surface can be then fully found on the side of the fluid.

For the side of the solid, the Cauchy stress tensor is given by Eq. 92. Since

the strain tensor is defined in three dimensions, one should first convert it to a

two dimensional form. The three dimensional strain tensor is

ε =













∂ux

∂x
1
2

(

∂ux

∂y
+ ∂uy

∂x

)

1
2

(

∂ux

∂z
+ ∂uz

∂x

)

1
2

(

∂ux

∂y
+ ∂uy

∂x

)

∂uy

∂y
1
2

(

∂uy

∂z
+ ∂uz

∂y

)

1
2

(

∂uz

∂x
+ ∂ux

∂z

)

1
2

(

∂uz

∂y
+ ∂uy

∂z

)

∂uz

∂z













. (103)

Where u is the displacement field. Since the set up is that the fluid flows only

in the x and y direction, the z direction derivatives should be zero for all the dis-

placement field components. We can also review the displacement in z direction

as a constant, thus ∂uz

∂x
= ∂uz

∂y
= 0. Therefore, the two dimensional strain tensor

becomes

ε =













∂ux

∂x
1
2

(

∂ux

∂y
+ ∂uy

∂x

)

0

1
2

(

∂ux

∂y
+ ∂uy

∂x

)

∂uy

∂y
0

0 0 0













. (104)
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For the two dimensional case, the explicit form of the Cauchy stress tensor is

T =
Kν

2(1 + ν(1− 2ν)







∂ux

∂x
+ ∂uy

∂y
0

0 ∂ux

∂x
+ ∂uy

∂y






+

K

1 + ν







∂ux

∂x
1
2

(

∂ux

∂y
+ ∂uy

∂x

)

1
2

(

∂ux

∂y
+ ∂uy

∂x

)

∂uy

∂y







(105)

Now, in the four equations giving the boundary conditions of the elastic surface,

Eq.83, Eq. 86, Eq. 87, and Eq.88, the unknown parameters are two velocity

components in the side of solid, the pressure from the solid side, and the velocity

of the interface w. Notice that w is the velocity of the the elastic surface; one

can directly update the function of the interface from this quantity. The velocity

components from each side of the elastic surface are not necessarily matched to

each other since the density also experiences a jump at the interface.

In the last section, the stress balancing process of the free surface is aiming

to use the curvature force to update the function of the surface. On the other

hand, the stress balancing for the elastic surface calculates the velocity from each

side and then directly uses the continuity equation to update the function of the

surface. In this process, the boundary condition defined for the numerical cal-

culation in the boundary layer would not match with the true condition since the

interface itself has a velocity w. However, the small deformation is the necessary

condition in determining the strain tensor for the solid side. Thus, the oscillation

of the elastic surface should be small.

5 Numerical Approach

5.1 Another Approach for Velocity Potential

This section will first discuss the finite difference method. The finite difference

method has three important components. First, both the domain of interest and
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the boundary should be discretized, the boundary condition will be translated

to values and assigned to corresponding points. Second, the derivative terms

should be approximated by the function value, the adjacent nodal values, and

the distance between each nodes. Third, a system of equations should be formed

from the governing equations for each node.

Let us first apply this numerical method on the problem discussed in Sec.

2. However, two more boundary conditions should be given to form a unique

solution for the velocity potential. Although the different added boundary condi-

tions implies a different physical situation, the mathematical procedure should

be similar. Therefore, we can specify two boundary conditions as

Φ(0, y) = f1(y),

Φ(L, y) = f2(y). (106)

Here, Φ is the velocity potential and L is the length of x domain. The conditions

from Sec. 2 are

2π cos(2πx)
∂Φ

∂x
=

∂Φ

∂y
, y = ys

∂Φ

∂x
= 1, y ≫ 1,

where ys = ǫ sin(2πx). The governing equations is the Laplace equation

∂2Φ

∂x2
+

∂2Φ

∂y2
= 0 (107)

The domain is

0 6 x 6 L; ys 6 y 6 ya,

where ya is the free surface. The first task is to divide the domain properly. The
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partition in the x direction is straight forward. One can choose to equally divide

the x coordinate into m nodes and denotes them as xi, i ranges from one to p.

For the y direction, although the amplitude of both the elastic surface and the

free surface are small, it would still help to not assume them to be flat. Since

the length of the slice of y at each xi is different, it would be totally p different

partitions of y. The ith partition of y is the slice at xi. If all the partition of y were

chosen to be equally spaced and have q nodes, then the ith partition of y will have

nodal coordinate xi, yj, where

yj = ys(xi) + (j − 1)
ya(xi)− ys(xi)

q − 1
.

The step size in the x direction is sx = L
p−1

and the step for the ith y partition is

sy(i) = ya(xi)−ys(xi)
q−1

.

The next step is to write the derivative terms of Φ as a function of the function

values. If the forward Euler method were chosen, then one can obtain

∂Φ(xi, yj)

∂x
=

Φ(xi+1, yj)− Φ(xi, yj)

sx
, (108)

∂Φ(xi, yj)

∂y
=

Φ(xi, yj+1)− Φ(xi, yj)

sy(i)
, (109)

∂2Φ(xi, yj)

∂x2
=

Φ(xi+1, yj)− 2Φ(xi, yj) + Φ(xi−1, yj)

sx2
, (110)

∂2Φ(xi, yj)

∂y2
=

Φ(xi, yj+1)− 2Φ(xi, yj) + Φ(xi, yj−1)

sy(i)2
. (111)
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Therefore, the boundary conditions become

2π cos(2πxi)
Φ(xi+1, yj)− Φ(xi, yj)

sx
=

Φ(xi, yj+1)− Φ(xi, yj)

sy(i)
, (112)

Φ(xi+1, yj)− Φ(xi, yj)

sx
= 1, (113)

Φ(0, yi) = f1(yi), (114)

Φ(L, yi) = f2(yi), (115)

and the governing equation becomes

Φ(xi+1, yj)− 2Φ(xi, yj) + Φ(xi−1, yj)

sx2
=

Φ(xi, yj+1)− 2Φ(xi, yj) + Φ(xi, yj−1)

sy(i)2
. (116)

Then, the number of unknown nodal values will be (p − 2)(q − 2), whereas the

number of the functions are also (p−2)(q−2). Thus, this will be a unique solution

for all the nodes. An alternate method of solving the Laplace equation will be

provided in Sec. 8.2, which which utilizes properties of the Laplace equation..

Let us then consider the time evolution to update the function of the surface’s

shape. The first issue here is that Φ is not a continuous function and therefore,

the velocity components cannot be obtained by taking derivatives of Φ. One so-

lution is to apply the least square fitting on the nodal values of interested layers.

The goal of a least square is to find an approximated function f based on the

condition that the summation of the squared error between f and the true value

of all nodes is minimized:

χ2 =
∑

i

(

fxi − fxi
c

σi

)2

. (117)

Here, fc is the calculated values, the superscripts refer to the position of these

values, and σi is the corresponding weight for each xi.

It is clear that the value of χ2 would be zero for a large group of function

f . However, the function f has to provide information and satisfy physical condi-
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tions. Therefore, the form of the function f is normally prescribed by using shape

functions. As its name describes, the shape function is chosen to have a desired

shape. One can of course use the polynomial functions as the shape functions,

that is, f =
∑

αix
i. Eq.117 then becomes the problem of solving for the parame-

ters αi. In the space of αi, the extreme value of χ2 will occur at the point such that

all derivatives of χ2 with respect to each parameter are equal to zero. For most

cases, the extreme value is the minimum value since such functions consist of

polynomial base functions with no upper bound. The process of solving the sys-

tem of equations from taking derivatives can be naturally processed by using the

matrix representation:

AT ·A ·α = ATb. (118)

Here, the superscript T denotes the transpose of the corresponding matrix, A is

the matrix containing all the values of the base function with its corresponding

weight at each point:

Aij =
xj

i

σj

,

b is the list which contains all of the experimental data values at each point with

its weight:

bT i =
fe
σi

,

and vector α is the list of all the parameters αi.

The issue for the polynomial interpolation is that if the least square fitting were

performed from element to element, the function value of a shared nodal point is

not necessarily the same for two adjacent elements. It is not acceptable since it

violates the physical requirement.

The method this section used to conquer this issue is Hermite interpolation.

Hermite interpolation functions also provide another nice property which is the

continuity of the first derivative of the function. If the first derivative values were
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known for every nodal point, the general Hermite interpolation of the function is

given as

fe(x) =
∑

i

fe(xi)Ni(x) + fe
′(xi)Ni(x).

Here, Ni and Ni are shape functions for Hermite interpolation. Similar to polyno-

mial functions, the Hermite interpolation function can be applied locally. If the

process were performed globally, the shape functions of Hermite interpolation

have to be found from element to element. An alternative method is to transfer

the interval of each element to a consistent region. If the form of the shape func-

tion did not differ for elements, then the shape function will maintain the same in

terms of the transformed variable. Suppose the position variable is transformed

to the interval from −1 to 1 and denote the new variable as ξ. Then to make sure

the continuity conditions at boundary nodes hold for each region the following

properties are desired:

• Ni(ξj) = δij ;
d
dξ
Ni(ξj) = 0;

• Ni(ξj) = 0; d
dξ
Ni(ξj) = δij.

Here, ξi are the nodal points of each element. For the one dimensional case,

there will be two nodal points for each element. It is easy to check that the

nodal values and the nodal derivative values are consistent across each region

and therefore continuous. For the one dimensional case, the four conditions of

the shape function are sufficient to determine any kind of shape function which

contains four undetermined coefficients, such as the coefficients of third order

polynomials. Once the shape function is calculated, the fitting function on each

element becomes

fi(x) =
∑

i

[

f(xi)Ni(ξ) +

(

df(xi)

dx

)

dx

dξ
Ni(ξ)

]

.
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An important fact is that the coefficients f(xi) and
(

df(xi)
dx

)

are not equivalent to

the true value at xi, they are determined by minimizing the error χ2 =
∑

i (fi − fei)

as the weight of all the points is assumed to be one. The positions of measured

points are substituted into the shape function to form a system of equations which

can be represented in the matrix form. As a concrete example, if there were five

points, say xi, i = 1..5, in element j. Then, the matrix Aj is

Aj =

























N1(x1) N1(x1) N2(x1) N2(x1)

N1(x2) N2(x2) N2(x2) N2(x2)

N1(x3) N3(x3) N2(x3) N2(x3)

N1(x4) N1(x4) N2(x4) N2(x4)

N1(x5) N1(x5) N2(x5) N2(x5)

























,

and the corresponding αj vector is

αT
j =

(

f(x1),
df(x1)

dx
, f(x5),

df(x5)

dx
)

)

.

Here, x1 and x5 are boundary positions of the jth element. Denote bTj as the vector

which consists of all the experimental data values and αj to be the parameters

of each shape function. Then in element j, the error from the least square fitting

function is

χj
2 = (bj −Aj ·αj)

T · (bj −Aj ·αj). (119)

Equation 119 can be easily extended globally. Let α be the vector consists of

all the undetermined nodal values and their derivative values, b be the vector

consisting of all the values of measured points. By carefully rewriting the system

of equations in the matrix form, one can then generate a global matrix A. For one

dimension, the matrix A is a block-diagonal matrix. Each block in the matrix Aj

is defined above. Geometrically, the problem is the same as finding the smallest
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χ2, which is same as to find the projection of A ·α onto b, then one can solve the

parameter vector α from Eq.118.

After having the approximated function for the velocity potential at any layer,

one can then perform the calculation process introduced in Sec 2.2.

We will now compare the numerical results for the problem introduced in Sec.

2. The following figures are the plots from applying the numerical method on the

same problem introduced in Sec 2.

Figure 5: Velocity Potential’s Contours
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This plot shows two dimensional contours of the velocity potential.
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Figure 6: Velocity Potential’s Contours
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This plot shows three dimensional contours of the velocity potential.

Figure 7: Velocity Potential

The velocity potential over the whole region.
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In comparison to the result in Sec 2, the main different is that we restrict the

values of velocity potential at x = 0 and x = L. Therefore, the dominant term is

no longer simply the x coordinate. The contribution from the depth of the fluid

is emphasized by the specified boundary conditions. The contour plots indicate

that the most of the change of velocity potential happen close the extreme y value,

which represents the height of the free surface.

Figure 8: Velocity Potential at Different Height
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Figure 9: This plot gives the function of the velocity potential at different fixed
height

At the free surface, the velocity potential is a straight line since the x derivative

of the velocity potential at the free surface is equal to the free stream velocity which

is set to be a constant. As Fig. 8 shows, the boundary conditions at two the ends

force the velocity potential to be zero at x = 0 at x = 20, where the length of the

domain is set to be 20. Also, as the value of x and y increases, both the value of

Φ and its derivative value increases. This agrees with the result of Fig. 5. This

indicates that a small change of the shape of the elastic surface can make the
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velocity potential vary much more at the free surface.

The details of the numerical algorithm is given in Sec 8.

5.2 More on Numerical Methods

Thus far, the region of the solid phase has been considered only to be the

elastic surface. What if the region has a certain height and there is force applied

from the bottom of the solid region? The first idea is to use Hooke’s law as the

governing equation. After properly meshing the solid region, the applied force will

become the nodal value for the base layer. Suppose the boundary conditions are

that the particles cannot move at the bottom layer and two vertical walls are at

the end of the region. Assuming the dominant terms in Hooke’s law are given

from the adjacent points, then from Newton’s third law, the displacement can

then be calculated for each node. Hence this can give the shape of the elastic

surface which can then be used in the former calculation. This process can be

also perform backwards as the pressure is calculated from the boundary layer or

the potential flow, then the displacement of each node in the solid region can be

updated. Notice that in this procedure, the change to all the particles does not

happen simultaneously. However, this is also acceptable since it is close to the

true physical situation. There are several other numerical methods which can

deal with the whole region at the same time such as the extended finite element

method.

6 Conclusion

In this report, an asymptotic method is first introduced to solve the velocity

potential in a potential flow. The boundary condition is given as the no penetra-

tion condition and the initial conditions are given as the shape of the interface
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between the fluid and the solid and the free stream velocity. Following the result

of the velocity potential, the time contribution is then considered. The velocity

potential can be used to update the free steam velocity directly by substituting

the coordinates value of the fluid’s surface. Since the interface is elastic, then its

shape should also be a function of time. If the flow were still potential flow for the

entire region, then the shape of the interface is updated from the Navier-Stokes

equation via a time stepping method. These two updated initial condition can be

used to calculate the velocity potential for the next time interval.

The shape of the free surface is the next discussion of this report. The proce-

dure is to first define physical conditions and then translate these conditions to

mathematical equations, and combine these equation to solve for the curvature

force which can give the displacement of the free surface. The physical condi-

tions are assumed to be the Kinetic and Dynamic boundary conditions. The

Kinetic boundary condition states that the particles located on the free surface

should always remain on the free surface. The Dynamic boundary conditions

states that the shear tensor should be continuous across the interface. Although

this report does not provide any concrete example to illustrate the calculation,

this procedure is easy to follow.

This report also discusses the boundary layer. The motivation of having the

boundary layer is to enforce the no-slip condition to make the analysis more

accurate. The Navier-Stokes equation in the boundary layer is derived first by

dropping the zero order terms. The thickness of the boundary is approximated

by matching the order of the Navier-Stokes equation. With the presence of the

viscous force, the stress balancing becomes more interesting and complicated.

The background of the solid elasticity is introduced to give the form of the stress

tensor on the solid side of the elastic surface. The stress tensor on the side

of the fluid is given by solving the velocity components in the boundary layers
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numerically. The x and y coordinates are transferred to keep the thickness of the

boundary layer to be a constant.

Finally, the numerical method is outlined to solve more complex problems.

Several approaches are introduced and these can be the direction of future efforts.
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7 Appendix

This appendix introduces some of the vocabularies’ definitions and mathe-

matical notation, as well as providing derivations and explanations of important

equations.

7.1 General

• velocity field: the velocity can be fully described as

v = [vx, vy, vz]

where vx,vy, and vz are themselves functions of x, y, and z. Hence the accel-

eration field is

a =
∂v

∂t
+ vx

∂v

∂x
+ vy

∂v

∂y
+ vz

∂v

∂z
.

• Displacement field: This is the collection of displacement vectors for all

points in a certain region. One displacement vector describes the reference

position of a point or a particle with contrast to its former or original position.

The displacement field is usually denoted as u and used to define the body’s

deformation. Mathematically

u = [ux, uy, uz].

7.2 Fluid

• Irrotational flow: is a kind of flow which does not have vorticity. Mathe-

matically it can be represented as ω = ∇× v = 0

Irrotational flow is a necessary and sufficient condition for the velocity po-
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tential to exist. The velocity potential is formally defined as :

φ =

∫ P

O

v · dx

where O is an arbitrary fixed point and can be chosen freely. In most of the

flow, φ is independent of the path between O and P , which implies that φ is

a single-valued function of the path, thus a constant. Partial differentiation

of the above integral gives:

v = ∇φ = [φx φy φz]

• Incompressible flow: Incompressible flow means that the density of the

flow is uniformly distributed. From the conservation of total mass, one can

get ∇ · v = 0.

• Steady flow: means that the properties of the flow at any position remain

unchanged. That is, at all the positions of the system, the velocity field,

density of the fluid, and all other properties has time derivative equal to

zero.

• Potential flow: is also called ideal flow. It is a kind of flow which has no

vorticity and no viscosity. Mathematically

∇ · v = 0; ∇× v = 0

The velocity potential is often used in potential flow. For a 2-D compressible

Newtonian fluid, one can derive the continuity equation as

∂vx
∂x

+
∂vy
∂y

= 0.
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Where vx and vy are the components of the velocity field. If the velocity

potential exists, by letting vx = ∂Φ
∂y

and vy = ∂Φ
∂x

, the continuity equation

can be always satisfied. For 3-D models, this continuity equation will be

∂vx
∂x

+ ∂vy
∂y

+ ∂vz
∂z

= 0 and this condition can still hold with selected velocity

potential.

• Incompressible Euler Equations for Inviscid Flow: for fluid of constant

density ρ

ρ

(

∂v

∂t
+ (v · ∇)v

)

= −∇p+ ρg

∇ · v = 0

As its name implies, Euler equation for inviscid flow requires the flow to

not be viscid. The no-slip condition from viscosity can no longer be satis-

fied. However, to obtain a solution, some boundary conditions have to be

assumed. The proper condition for inviscid flow should be that the velocity

normal to the boundary should be zero. Note: assuming viscous forces are

small in comparison to inertial forces, Re ≫ 1

Note: can be integrated along a streamline to get Bernoulli equation. When

the flow is the potential flow, we get Bernoulli’s equation to be valid every-

where. The Euler Equation for each direction is

ρgi −
∂p

∂i
= ρ

(

∂I

∂t
+ v

∂I

∂x
+ u

∂I

∂y
+ w

∂I

∂z

)

Where i ∈ (x, y, z) and I is the corresponding component of i.
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7.3 Solid

• Poisson’s ratio: when a material is being deformed, it changes on the axis

of the applied load and on the axis perpendicular

σ = −
εlat
εlong

– constant for all homogeneous, isotropic, linearly elastic materials

– usually between 0 and 0.5

– dimensionless, ratio of two strains that have units percentage, strain

is a measure of how much a given deformation differs locally from a

rigid-body deformation

• Equation of Motion: from Newton’s second law, one can obtain

∇τ + F = ρutt.

Here, τ is the Cauchy stress tensor, F is the force applied on the body per

unit volume, and ρ is the density of the solid. By applying Lame’s parame-

ters, the Cauchy stress tensor can be written as

τij = λδijεkk + 2µεij

Here, δij is the Kronecker delta and εij is the strain which is correlated to

the stress tensor by Hooke’s law as τij = Cijlk · εlk, where C is the stiffness

tensor.

• Navier-Cauchy or Lame or Elastostatic Equations: The governing equa-
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tion for a solid is expressed as

ρe
∂2u

∂t
=

K

2(1 + σ)(1− 2σ)
∇(∇ · u) +

K

2(1 + σ)
∇2u− ρeg

Here, u is the displacement, ρ is the density of the solid, and g is the effective

gravity. In terms of Lame’s parameters:

ρe
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u− ρeg.

As a quick demonstration of the derivation, let us take a look at the x direct.

We have

τxx = 2µεxx + λ(εxxεyy + εzz)

τxy = µ(
∂ux

∂y
+

∂uy

∂x
)

τxz = µ(
∂ux

∂z
+

∂uz

∂x
)

Balancing the force as ∂τxx
∂x

+ ∂τxy
∂y

+ ∂τxz
∂z

+ Fx = 0, then we can obtain

(λ+ µ)
∂

∂x

(

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z

)

+ µ

(

∂2u)x
∂x2

+
∂2ux

∂y2
+

∂2uz

∂z2

)

.

Where ui is the component of the displacement in i direction.

7.4 Boundary Conditions

• Boundary Conditions at a free surface:

– At an impermeable boundary, the flow of fluid relative to the boundary

must be tangential to it. If the boundary is fixed in space, this means

that the component of fluid velocity normal to the boundary must be
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zero. If the boundary is moving, then the normal component of the

fluid must be equal to the velocity of the boundary normal to itself. The

small motion in general can be expressed as (2-D)

zp + δzp = η(xp + δxp, t+ δt) = η(xp, t) +
∂δ

∂x
δxp +

∂η

∂t
δt.

Here, z is the free surface elevation, η is the wave elevation, and the

subscripts of x and z stands for any specific particle. Utilizing the above

boundary condition (z = η) one arrives at

∂z

∂t
=

∂η

∂x

∂xp

∂t
+

∂η

∂t

∇Φ · n̂ = U · n̂

Here Φ is the velocity potential of the fluid and U is the velocity of the

surface.

– Dynamic boundary conditions: at any point of the interface, the normal

stress tensor should be equal and in opposite direction:

τ 1ij · n̂1 = −τ 2ij · n̂2

n̂1 = −n̂2

For a curved free surface, there will be a pressure change due to the

surface tension:

∆p = σκ.

Where σ is the surface tension and κ is twice the curvature of the sur-
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face. Therefore the above stress condition should be adjusted to

τ 1ij · n̂1 +∆p · n̂1 = −τ 2ij · n̂2

Normal stress balance at a free surface must be balanced by the curva-

ture force associated with the surface tension:

n · T̃ · n = γ(∇ · n)

where γ is surface tension, n is the unit normal vector to the surface,

stress tensor is T̃ = −pĨ + µ[∇u + (∇u)T ] = −pĨ + 2µẼ where Ẽ is the

deviatoric stress tensor

– tangential stress at a free surface must balance the local surface tension

gradient:

n · T · t = ∇σ · t

where t is unit tangent to interface

7.5 Additional important quantities and descriptions

It is normal in fluid mechanics that a scalar function has multiple dimensions,

including the dimension of time. The Leibnitz’s theorem offers a mutual relation

between the time derivative of this function’s integral over its corresponding vol-

ume, the partial time derivative, and the change of the function over its surface.

d

dt

∫

Ω(t)

Tij..(xi, t)dV =

∫

Ω(t)

∂Tij..

∂t
dV +

∫

S(t)

nkwkTij..dS (120)

Here, Tij.. is a tensor of any rank, Ω is the domain of interested and in general it

is a function of time, S is the surface domain, and wi is the Eulerian velocity of
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the boundary. As an example, let the tensor T be 1, one obtains

dV (Ω)

dt
=

∫

S

nkwkdS (121)

This well-known equation states that the rate of volume change is related to the

boundary velocity in its normal direction over the surface.

Another most used idea in fluid mechanic is the material derivative. For any

material moving with certain velocity, the material derivative is the rate of change

of any physical quantity for this material under the continuum assumption. The

Reynolds transport theorem states

D()

Dt
=

∂()

∂t
+ v ·

∂()

∂x
. (122)

Let us turn our attention to the most important physical quantity of the flow:

the velocity. If the velocity were defined in Euclidean space, it should have three

components. Let the velocity field be

v = [v1, v2, v3] (123)

where vi = (x1, x2, x3, t) for each i.

Therefore, the flow at any point is not always moving straight forward. Imagine

the flow is made from a lot of blocks, these block will not only move, but also

rotate. This phenomena is described by the vorticity ω:

ωi = εijk ∂jvk (124)

ω = ∇× v (125)
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7.5.1 Continuity mass equation

The idea of conservation of total mass for any chosen material gives the con-

tinuity mass equation as

∂ρ

∂t
+
∑

i

∂ρvi
∂xi

= 0 (126)

Using the material derivative, the continuity mass equation can be expressed as

Dρ

Dt
= −ρ ∂ivi

1

ρ

Dρ

Dt
= −

1

V

dV

dt
as V− > 0

By applying Leibnitz’s theorem, for any domain one can have

d

dt

∫

Ω

ρdV = −

∫

Ω

∂i(ρvi)dV +

∫

S

niwiρdS = −

∫

S

ρ(vi − wi)nidS (127)

Notice here it is assumed that the volume flow can be expressed as

vx△y△z

This expression is valid if the domain were small enough. A more precise expres-

sion should be
∫

vxdydz

7.5.2 Continuity momentum equation

It is impossible to derive the momentum equation directly from Newton’s sec-

ond law. However, it still holds that the rate of momentum change equals the net

force:

d

dt

∫

Ω

ρvidV =

∫

Ω

[
∂

∂t
ρvi +

∂

∂xj

ρ vivj ]dV =

∫

Ω

ρFidV +

∫

Ω

RidS (128)

Where Fi and Ri are the body force and surface force.
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Substitute the stress equation

∫

[
∂

∂t
ρvi +

∂

∂xj
ρvjvi − ρFi −

∂

∂xj
Tji]dV = 0 (129)

Thus

∂

∂t
ρvi +

∂

∂xj

ρvjvi − ρFi −
∂

∂xj

Tji = 0

With

∂

∂xj
Tji =

∂

∂xj
τji −

∂

∂xi
p.

From the particle view point, or for a constant density fluid,

ρ

[

∂v

∂t
+ (v · ∇)v

]

= −∇p +∇ · τ + ρF (130)

Newton’s second law states that

m
∂vi
∂t

=
∑

Fi

By Leibnitz’s rule

d

dt

∫

Ω

ρvidV = −

∫

S

[ρnj(vj − wj)vi]dS +

∫

Ω

ρFidV +

∫

fluidS

(njτji − nip)dS +

∫

solidS

njTjidS

(131)

The equivalent form in the material derivative for momentum equations is

Dvi
Dt

= −
1

ρ

∂p

∂xi
+ ν

∂2vi
∂xi

2
+ Fi (132)
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7.5.3 Energy equation

The energy equation for incompressible flow is

d

dt

∫

ρ

(

1

2
v2 + gZ

)

dV = −

∫

ss

ρni(vi − wi)

(

1

2
v2 + gZ

)

dS +

∫

ss

niTijvjdS (133)

−

∫

fs

ρni(vi − wi)

(

1

2
v2 + gZ +

p

ρ

)

dS −

∫

fs

niwipdS (134)

+

∫

fs

niτijvjdS −

∫

τij∂ivjdV (135)

Where the subscripts fs and ss stand for solid surface and fluid surface.

7.5.4 Incompressible Flow

The conditions for incompressible flow are

1

ρ

Dρ

Dt
= −

∂

∂xi
vi = α

Dp

Dt
− β

DT

Dt
= 0 (136)

ρ
Dvi
Dt

= −
∂p

∂xi
+

∂

xj
τji + ρgi (137)

The Newtonian viscous stress is

∂

∂xj
τji = −

2

3

∂

∂xi
(µ

∂vj
∂xj

) + 2
∂

∂xj
(µSij) (138)

With ∂vi
∂xi

= 0, we have

2
∂

∂xj
Sji =

∂2vi

∂xj
2

and then

Dvi
Dt

= −
1

ρ

∂p

∂xi
+ gi + υ

∂2

∂x2
j

vi
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Where υ = µ
ρ

the potential gi = −g ∂Z
∂xi

= 1
ρ

∂
∂xi

(ρgZ) with Z is the height above the

plane. Thus we can write the pressure as

p = pkin + ppot = (p+ ρgZ) + (−ρgZ)

The force given by pressure is

Fpi = −

∫

S

ni · pdS = −

∫

S

ni · pkindS + ρg

∫

S

∂Z

∂xi

dS

The last term is equal to ρgiV and it is the buoyancy force.

The energy equation is

ρcp
DT

Dt
=

∂

∂xi
(k

∂

∂xi
T )−

2

3
µ(

∂vi
∂xi

)2 + 2µSijSji (139)

8 MATLAB code

8.1 Trivial function

G2L is the function converting the global node value to the interval [-1,1].

1 function [ LX ] = G2L(GX, a ,b )

2 % This is the function transfer global x value to local x value

3 % The interval of local x is [−1 ,1] , i f one use d i f f e rent local

interval ,

4 % this function should be redefined .

5

6 LX = (2∗GX−(a+b ) ) /(b−a ) ;
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7 end

L2G is the function converting the interval [-1,1] to its global value.

1 function [ GX ] = L2G(LX, a ,b )

2 % This is the function transfer local x value to i t s global value

3 % The interval of local x is [−1 ,1] , i f one use d i f f e rent local

interval ,

4 % this function should be redefined .

5 GX = ( a+b ) /2+(b−a ) ∗LX∗0.5;

6

7

8 end

sizeE is the function calculate the size of element ( equally spaced)

1 function [ E] = sizeE ( x ,n )

2 % This function is to calculate the size of element

3

4 m = Nop( x ) ;

5 E = ( x (m)−x ( 1 ) ) /n;

6

7

8 end

Nop is the function calculate the number of points

1 function [ N] = Nop( x )

2 % This function is to calculate the number of point

3 s = size ( x ) ;

4 N= s ( 1 ) ;

5 end
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Nshape is the 3rd order polynomial shape functions of hermite interpolation

1 function [ NS ] = Nshape ( )

2 % This is the f i l e for the shape functions in normal region with

local x

3 % The f i r s t column is the shape function

4 % The second colume is i t s der ivat ive w. r . t local x

5 syms LX

6 % The local value X ranges from −1 to 1

7 NS(1 ,1) = (2−3∗LX+LXˆ3) /4;

8 NS(3 ,1) = (2+3∗LX−LXˆ3) /4;

9 NS(2 ,1) = (1−LX−LXˆ2+LXˆ3) /4;

10 NS(4 ,1)= (−1−LX+LXˆ2+LXˆ3) /4;

11 for i = 1:4

12 NS( i , 2 ) = d i f f (NS( i , 1 ) ) ;

13 end

14

15 end
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8.2 Velocity Potential

L2 calculates the velocity potential

1 function [ PHI ] = L2 ( noi ,meshx,meshy, L ,S,A,VF, Condition )

2 % This function takes boundary conditions and uses numerical

approach

3 % The input variables are

4 % noi : the number of i terat ion

5 % mesh: the number of equally part it ions for each dimension

6 % S: the boundary function between sol id and l iquid

7 % L: the length of the domain of x

8 % h: the height of the inter face

9 % A: the function function between air and l iquid

10 % VF: the free ve loc i ty stream

11 % Condition : = 1 i f S&A are given , = 0 i f S&A are approximated

12

13

14

15

16 syms x y

17 % specify the mesh for the domain

18 X = ( 0 : 1 :meshx) ∗L/meshx;

19 ySI = zeros (1 ,meshx) ;

20 yAI = zeros (1 ,meshx) ;

21 yAPI = zeros (1 ,meshx) ;

22 ySPI = zeros (1 ,meshx) ;

23 % the boundary for the domain at inter face

24 i f Condition == 1
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25 for i = 1:meshx

26 ySI ( i ) = subs (S,X( i ) ) ; % the y value of the interfaces

27 yAI ( i ) = subs (A,X( i ) ) ;

28 ySPI ( i ) = subs ( d i f f (S, x ) ,X( i ) ) ; % the der ivat ive value on

the interfaces

29 yAPI ( i ) = subs ( d i f f (A, x ) ,X( i ) ) ;

30 end

31 else

32 for i = 1:meshx

33 ySI ( i ) = S( i , 1 ) ; % the y value of the interfaces

34 yAI ( i ) = A( i , 1 ) ;

35 ySPI ( i ) = S( i , 2 ) ; % the der ivat ive value on the

interfaces

36 yAPI ( i ) = A( i , 2 ) ;

37 end

38 end

39 % the y coordinate of the mesh

40 Y = zeros (meshy,meshx) ;

41 for j = 1:meshx

42 for i = 1:meshy

43 Y( i , j ) = ySI ( j ) +( yAI ( j ) − ySI ( j ) ) ∗ ( i −1)/(meshy−1) ;

44 end

45 end

46 for i = 1:meshx

47 Y(1 , i ) = ySI ( i ) ;

48 end

49 % the element s ize in x−direct ion
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50 hx = L/(meshx−1) ;

51 % the element s ize in y−direct ion

52 hy = zeros (meshx, 1 ) ;

53 for i = 1:meshx

54 hy ( i , 1 ) = (Y(meshy, i )−Y(1 , i ) ) /(meshy−1) ;

55 end

56

57 % Define the mesh for the potential equation

58 PHI = zeros (meshy,meshx) ;

59 % Define the boundary conditions

60 for i =1:meshy

61 PHI ( i , 1 ) = VF∗ i /(Y (meshy, 1 )−Y(1 ,1) ) ; % This is a made up

condition

62 PHI ( i ,meshx) = VF∗ i /(Y (meshy,meshx)−Y(1 ,meshx) ) ; % This is a

made up condition

63 end

64 for i = 1:meshx

65 PHI (meshy, i ) = X( i ) ∗VF; % d( Phi ) /dx = VF

66 end

67

68 for i = 2:meshx % This condition is from S ’ = [ d ( Phi ) /dy ] / [ d ( Phi

) /dx ] ( n i ∗ v i = 0)

69 i f ySPI ( i ) ˜= 0 % In case of S ’ = 0 , we w i l l use previous S ’

value

70 PHI(1 , i ) = ( PHI (2 , i −1)−PHI(1 , i −1) ) ∗hx/(hy ( i −1,1)∗ySPI ( i )

) + PHI (1 , i −1) ;
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71 % Since the above re lat ion requires Phi (2 , i ) , we need

updata i t

72 PHI(2 , i ) = ( PHI (1 , i )−PHI(1 , i −1) ) ∗hy ( i , 1 ) ∗ySPI ( i ) /hx+PHI

(1 , i ) ;

73 else

74 PHI(1 , i ) = ( PHI (2 , i −1)−PHI(1 , i −1) ) ∗hx/(hy ( i −1,1)∗ySPI ( i

−1) ) + PHI(1 , i −1) ;

75 PHI(2 , i ) = ( PHI (1 , i )−PHI(1 , i −1) ) ∗hy ( i , 1 ) ∗ySPI ( i −1)/hx+

PHI(1 , i ) ;

76 end

77 end

78

79

80 % the idea here is that the extreme values of laplace equation

81 % have to be located on bounrdries

82 % Therefore we can evalute the adjacent points ’ average value

83 % As

84 for i =1: noi ; % loop for i terat ion

85 for j = 2:meshx−1 ; % calculate the average of each points

excluding boundaries .

86 for k = 2:meshy−1 ;

87 PHI (k , j ) = ( PHI ( k−1, j ) +PHI (k+1, j ) +PHI ( k , j −1)+PHI (k , j

+1) ) /4 ;

88 end

89 end

90 end

91
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92 end
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8.3 Least Square Fitting

LSF returns the nodal value and nodal derivative values

1 function [ NodalValue ] = LSF( shape , x , y , noe )

2 % Thie function w i l l return the nodal value . ( NodalValue i , i i s

odd )

3 % and i t s corresponding f i r s t der ivat ive . ( NodalValue j , j i s

even )

4 % shape: shape function , 1 = 3rd poly , 2 = other . . .

5 % x : x values y : y values noe : number of element

6

7 syms GX

8 sizX = Nop( x ) ; % how many points

9 ele = Arrange ( x , noe ) ; % arrange x to proper element

10

11 % Decide which shape functions are using

12 i f shape == 1;

13 N = Nshape ( ) ;

14 end

15

16 % choice other shape functions

17 A = 10;

18 i f shape ==2;

19 TMP = Base (A) ;

20 for i = 1:4;

21 N( i , : ) = TMP( i , : ) ;

22 end

23 end
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24 i f shape ==3;

25 TMP = Base (A) ;

26 for i = 1:4;

27 N( i , : ) = TMP( i +4 , : ) ;

28 end

29 end

30 i f shape ==4;

31 TMP = Base (A) ;

32 for i = 1:4;

33 N( i , : ) = TMP( i +8 , : ) ;

34 end

35 end

36

37 % Global matrix

38 % the number of row should equal to the number of point .

39 % the number of colume should be 2+2∗number of element .

40 % the continuity condition is builded inside the shape function

41 % not the points ’ value here .

42 GA = zeros ( sizX ( 1 ) ,2∗noe+2) ;

43 tmprow = 1;

44 tmpcol = 1;

45 tmpx = zeros (1 ,1) ;

46 for i = 1:noe

47 tmp = ele ( i , : ) ; % eliminate 0s for the element

48 tmp(tmp==0) = [ ] ;

49 s i t = s ize ( tmp) ;

50 a = tmp( 1 ) ; % the boundary x−values of each element
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51 b = tmp( s i t ( 2 ) ) ;

52 % Transfer each global x to local in the element

53 p = 1;

54 while p <= s i t ( 2 )

55 tmpx( p ) = subs (G2L(GX, a ,b ) ,tmp(p ) ) ;

56 p = p+1;

57 end

58 rowc = 1;

59 for j = tmprow : ( tmprow+ s i t ( 2 ) −1) % loop for each point in

the element

60 k = tmpcol ;

61 % for each point in the element , we have

62 % f ( x1 ) = [N1∗y1 + N3∗y1 + N2∗d(GX) /d (LX) ∗y1 ’ + N4∗d (GX) /

d (LX) ∗y1 ’ ]

63 % f ( x2 ) = [N1∗y2 + N3∗y2 + N2∗d(GX) /d (LX) ∗y2 ’ + N4∗d (GX) /

d (LX) ∗y2 ’ ]

64 GA( j ,k ) = subs (N(1 ,1) ,tmpx( rowc ) ) ;

65 GA( j ,k+1) = 0.5∗ (b−a ) ∗subs (N(2 ,1) ,tmpx( rowc ) ) ;

66 GA( j ,k+2) = subs (N(3 ,1) ,tmpx( rowc ) ) ;

67 GA( j ,k+3) = 0.5∗ (b−a ) ∗subs (N(4 ,1) ,tmpx( rowc ) ) ;

68 rowc = rowc + 1; % for next substitution

69 end

70 tmprow = tmprow+ s i t ( 2 ) ; % The start ing row of global

matrix for next element

71 tmpcol = tmpcol+2; % The start ing column of global

matrix for next element

72 end
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73

74 % The corresponding y−value matrix

75 GB = zeros ( sizX ( 1 ) ,1) ;

76 for i = 1: sizX ( 1 )

77 GB( i ) = y ( i ) ;

78 end

79

80 % Calculate the nodal values and derivatives

81 NodalValue =GA\GB;

82

83 end
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GAssign used the value from LSF to generate the continuous function for each

element

1 function [ y ] = GAssign ( shape , x , noe ,Ans )

2 % This function give the value of y as a function of global x

3 % shape: 1 = 3rd order poly 2 = other . . .

4 % x : x values noe : number of element Ans: Nodal value and

der ivat ive

5 % The der ivat ive can be direc t ly calculated by d i f f ( y ) for each

element

6

7 syms LX

8 % Choosing he shape function

9 i f shape == 1

10 N = Nshape ( ) ;

11 end

12 % Here , the paramter is chosen to be 10, but i t can vary

13 % Usually , For global value assign , i t w i l l use the 3rd order

poly base

14 % Since the Fermi−l ike function is designed to solve the jump

condition

15 A = 10;

16 i f shape ==2;

17 TMP = Base (A) ;

18 for i = 1:4;

19 N( i , : ) = TMP( i , : ) ;

20 end

21 end
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22 i f shape ==3;

23 TMP = Base (A) ;

24 for i = 1:4;

25 N( i , : ) = TMP( i +4 , : ) ;

26 end

27 end

28 i f shape ==4;

29 TMP = Base (A) ;

30 for i = 1:4;

31 N( i , : ) = TMP( i +8 , : ) ;

32 end

33 end

34

35 SE = sizeE ( x , noe ) ; % The size of element

36

37 y ( 1 ) = LX;

38 for i = 1:noe % calculate functions for each element

39 a= x ( 1 ) +( i −1)∗SE; % the boundary values of each element

40 b= x ( 1 ) + i ∗SE;

41 GX = G2L(LX, a ,b ) ; % replace local variable by global

varible

42 k( 1 ) = Ans ( ( i −1)∗2+1)∗subs (N(1 ,1) ,GX) ;

43 k( 2 ) = Ans ( ( i −1)∗2+2) ∗0.5∗ (b−a ) ∗subs (N(2 ,1) ,GX) ;

44 k( 3 ) = Ans ( ( i −1)∗2+3)∗subs (N(3 ,1) ,GX) ;

45 k( 4 ) = Ans ( ( i −1)∗2+4) ∗0.5∗ (b−a ) ∗subs (N(4 ,1) ,GX) ;

46 y ( i ) = sum( k ) ; % The function of y as global x for ith

element
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47 end

48

49 end

76



8.4 Time Evolution

UPDATA returns discrete nodal values

1 function [ UPS ] = UPDATE( dT, PHI ,meshx,meshy, L ,S,A )

2 % This function updates the shape for the inter face

3 % This function returns nodal value and derivatives

4 % As equally spaced part i t ion

5 % UPS( 1 , : ) i s the nodal value for inter face between sol id and

l iquid

6 % UPS( 3 , : ) i s the nodal value for inter face between air and

l iquid

7 % UPS( 2 , : ) and UPS( 4 , : ) are their der ivat ive value

8 % dT is the value of time step

9 % PHI is the current ve loc i ty potential

10 % meshx and meshy is the number of part i t ion in x and y direct ion

11 % L is the length of domain

12 % S and A are matrix contain values of the current nodal value at

interfaces

13

14 syms x y

15 % Get values for the potential ve loc i ty close to interfaces

16 BS1 = PHI ( 1 , : ) ;

17 BS2 = PHI ( 2 , : ) ;

18 BA1 = PHI (meshy/10 ,:) ;

19 BA2 = PHI (meshy/10+1 ,:) ;

20 % Redefine the mesh to simpli fy the writt ing

21 X = ( 0 : 1 :meshx) ∗L/meshx;

22 % Redefine the size of each part i t ion
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23 hx = L/(meshx−1) ;

24 hy = zeros (meshx, 1 ) ;

25 for i = 1:meshx

26 hy ( i , 1 ) = ( PHI (meshy, i )−PHI(1 , i ) ) /(meshy−1) ;

27 end

28

29 % Assign size for each matrix

30 DBSX = zeros (meshx, 1 ) ; %The der ivat ive values of PHI w. r . t x on

sol id inter face

31 DBSY = zeros (meshx, 1 ) ; %The der ivat ive values of PHI w. r . t y on

sol id inter face

32 DBAX = zeros (meshx, 1 ) ; %The der ivat ive values of PHI w. r . t x on

air inter face

33 DBAY = zeros (meshx, 1 ) ; %The der ivat ive values of PHI w. r . t y on

air inter face

34

35 % Assign values for a l l points on interfaces

36 % Boundary points are assumed to be f ixed

37 % Therefore we only loop between the second node and the last

second node .

38 for i = 2:meshx−1

39 DBSX( i ) = (BS1( i )−BS1( i −1) ) /hx ;

40 DBSY( i ) = (BS2( i )−BS1( i ) ) /hy ( i , 1 ) ;

41 DBAX( i ) = (BA1( i )−BA1( i −1) ) /hx ;

42 DBAY( i ) = (BA2( i )−BA1( i ) ) /hy ( i , 1 ) ;

43 end

44

78



45 % Assign size for matrix

46 US = zeros (meshx, 1 ) ; % The updated y−value for nodes on

sol id inter face

47 USX = zeros (meshx, 1 ) ; % The updated x−value for nodes on

sol id inter face

48 UA = zeros (meshx, 1 ) ; % The updated y−value for nodes on

air inter face

49 UAX = zeros (meshx, 1 ) ; % The updated x−value for nodes on

air inter face

50

51 % Assign values t

52 for i = 1:meshx

53 US( i ) = S( i ) +DBSY( i ) ∗dT; % uy ( t+dt ) = uy ( t ) +du/dx∗dt

54 USX( i ) = X( i ) +DBSX( i ) ∗dT; % ux( t+dt ) = ux ( t ) +du/dx∗dt

55 UA( i ) = A( i ) +DBAY( i ) ∗dT;

56 UAX( i ) = X( i ) +DBAX( i ) ∗dT;

57 end

58

59 % Generate interpolat ion functions for updated coordinates

60 NVS = LSF(1 ,USX,US,meshx/5) ; % Nodal values on the updated

interfaces

61 NVA = LSF(1 ,UAX,UA,meshx/5) ;

62 FBS = GAssign (1 ,USX,meshx/5,NVS) ; % Global functions for the

updated interfaces

63 FBA = GAssign (1 ,UAX,meshx/5,NVA) ;

64

65 % Assign size
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66 UPS = zeros (meshx, 4 ) ;

67 for i = 1:meshx

68 for j = 1:meshx/5

69 % Find the proper function for each X( i )

70 i f X( i ) < X( 1 ) + 5∗L∗ j /meshx && X( i )>= X( 1 ) + ( j −1)∗L∗5/

meshx

71 UPS( i , 1 ) = subs (FBS( j ) ,X( i ) ) ;

72 UPS( i , 2 ) = subs ( d i f f (FBS( j ) ) ,X( i ) ) ;

73 UPS( i , 3 ) = subs (FBA( j ) ,X( i ) ) ;

74 UPS(1 ,4) = subs ( d i f f (FBA( j ) ) ,X( i ) ) ;

75 end

76 end

77 end

78 end
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