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ABSTRACT 

 Metal sulfides with moderate band gaps are desired for efficient generation of electricity or fuels 

from sunlight via photovoltaic or photoelectrochemical energy conversion. Bi2S3, with a direct optical 

band gap of 1.3 eV, has been commonly synthesized by successive ion layer adsorption and reaction 

(SILAR) to produce quantum dots or nanocrystalline films. Annealing of the solution-deposited Bi2S3 

nanocrystals has been attempted at temperatures equal to or lower than 300 °C, which may not improve 

the crystallinity of Bi2S3. Here, we report a highly crystalline Bi2S3 photoelectrode synthesized by high-

temperature annealing of the solution-deposited nanocrystalline films in a sulfur vapor environment, 

which simultaneously improves the crystallinity and phase purity of Bi2S3. The S-annealed Bi2S3 film 

exhibits greatly enhanced light absorption (ηabs) and charge separation (ηsep) efficiencies compared to the 

nanocrystalline film. Furthermore, photoelectrochemical measurements show that Bi2S3 demonstrates 

significantly larger photocurrent by either pre-treating the material with aqueous Na2S solution or by 

directly measuring the material in an electrolyte containing Na2S. X-ray photoelectron spectroscopy 

analysis shows that the sulfide ions displace anionic surface impurities and passivate defect states of Bi2S3 

that form during the synthesis and the photoelectrochemical measurement. These results indicate that 

sulfur vapor annealing and sulfide surface treatment can improve the optoelectronic performance of Bi2S3 

for solar-electricity or solar-chemical energy conversion processes. 
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EXECUTIVE SUMMARY 

 In this work, we synthesized Bi2S3 thin film photoelectrodes via a combination of solution 

deposition and sulfur vapor annealing. We identified four major advantages of the tailored annealing 

process from materials characterizations and photoelectrochemical measurements. Firstly, the sulfur vapor 

annealing improves crystallinity of the solution-deposited Bi2S3 nanocrystals by increasing the crystallite 

size from 10 nm to 50 nm. Secondly, introducing sulfur vapor during high-temperature annealing prevents 

formation of Bi2O3 bulk crystal impurities and leads to phase-pure Bi2S3. Thirdly, sulfur vapor annealing 

converts the surface oxides of the un-annealed film to sulfides. Lastly, sulfur vapor annealing may fill in 

sulfur vacancies of the un-annealed Bi2S3 to significantly increase the photoexcited carrier lifetimes. The 

S-annealed Bi2S3 exhibits significantly enhanced light absorption and charge separation efficiencies, 

which makes it promising for photovoltaic and photoelectrochemical energy conversion applications. We 

additionally attempted Na2S surface treatment and vacuum annealing of the S-annealed Bi2S3 to further 

passivate the surface defects that form during the synthesis. The Na2S surface treatment may displace 

anionic surface impurities and passivate defect states of Bi2S3. However, the reason for the improved 

performance by vacuum annealing is still under investigation.  

  

 Moreover, we performed Density Functional Theory (DFT) calculations to elucidate the influence 

of defects and impurities on the electronic structure of Bi2S3. We discovered that sulfur vacancy in Bi2S3 

creates mid-gap charge trapping states that act as active electron-hole recombination sites, while sulfur 

interstitial results in shallow charge trapping states close to the valence band that cause much less 

recombination. We additionally found that Bi2S3 is tolerant to low concentrations of oxygen substitution 

of sulfur, while oxygen interstitial creates shallow hole trapping states close to the valence band. 

Additionally, DFT density of states calculations show that hydrogen doping creates effective donor levels 



iii 

 

at the conduction band edge, which should increase electron conductivity without introducing 

recombination sites.  

 

 Overall, we have demonstrated several synthetic and processing methods to effectively improve 

the optoelectronic performance of Bi2S3 thin films, in conjunction with DFT calculations to provide 

fundamental understanding of these improvements. These strategies could also be extended to synthesize 

and process many other sulfide materials to enhance their optoelectronic performance for photovoltaic 

and photoelectrochemical energy conversion applications. Future work should be focused on (1) 

experimentally investigating the influence of sulfur vacancies and hydrogen impurities on the 

optoelectronic properties and performance of Bi2S3 and (2) fabricating Bi2S3 into solid-state or liquid-

junction photovoltaic devices and studying chemical properties and charge dynamics at the interfaces.  
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1. INTRODUCTION 

 Energy harvested from sunlight is believed to a viable option to satisfy the increasing world energy 

demand.1 Photovoltaics (PV) allow us to use semiconductors to harvest solar energy and simultaneously 

convert it to electric power. Conventional crystalline silicon-based solar cells have demonstrated up to 25% 

efficiency and high stability, but have rigid construction and high manufacturing cost due to the energy-

intensive production of silicon wafers. While the emerging thin-film photovoltaic technologies have the 

potential to decrease the cost/performance ratio of solar cells, many of the materials such as CdTe, copper 

indium gallium selenide (CIGS), and lead halide-based perovskite contain toxic or rare elements, which 

limit their sizable deployments. Photovoltaic devices including dye-sensitized solar cells (DSSCs) and 

polymer-based organic solar cells (OSCs) are considered as low-cost alternatives. However, liquid 

electrolyte-based DSSCs suffer from solvent leakage and instability of dyes, and polymer-based OSCs 

experience substantial degradation.2 To overcome these disadvantages, semiconductor-sensitized metal 

oxide solid-state solar cells, which are based on the configuration of DSSCs but are composed of 

semiconductor light absorbers and organic hole transporting materials (HTMs), have been designed and 

investigated. With their small band gaps, metal sulfides such as Sb2S3 (Eg ≈ 1.7 eV),2-7 PbS (1.0 eV),8, 9 

and Bi2S3 (1.3 eV)10-16 have been studied as the light absorber semiconductor materials to photosensitize 

metal oxides (TiO2, WO3, SnO2, ZnO) with large band gaps. Polymers such as P3HT,2-4, 6, 7 PEDOT:PSS,2-

4, 6 and spiro-MeOTAD,17 and inorganic p-type semiconductors such as CuSCN9 have been commonly 

utilized as the HTMs. One of highest certified efficiencies for a single metal sulfide sensitized solar cell 

was reported to be 10.2%, which was achieved by a p-n junction PbS quantum dot sensitized ZnO solar 

cell with I2 treatment.9 Additionally, one of the highest power conversion efficiencies reported for Sb2S3-

based solar cells was around 5.7%, which was achieved by a Ti-doped Sb2S3-based ETA nanocrystalline-

TiO2 solar cell.5 In contrast, Bi2S3 has been mostly studied as sensitizer in photoelectrochemical 

applications.11, 14-16, 18 There have not been many reports on Bi2S3-based solid state solar cells until recent 
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years. A study fabricated a Bi2S3 nanowire core/AgS shell solar cell with spiro-MeOTAD HTM, which 

achieved an efficiency of 2.5%,17 and another study synthesized a hybrid solar cell comprised of Bi2S3 

nanowires and P3HT, which achieved an efficiency of 3.3%.19 These promising efficiencies motivated us 

to discover effective synthesis and processing methods and to study the fundamental materials properties. 

The knowledge gained will be essential to further improve the efficiencies of Bi2S3-based solar cells.  

 

2. BACKGROUND 

2.1. Synthesis of Bi2S3 

 Many groups have synthesized Bi2S3 as either powder or thin film using various techniques, such as 

hydrothermal synthesis,16, 18 electrochemical deposition,20 chemical bath deposition,21, 22 vapor 

deposition,23 and successive ionic layer adsorption and reaction (SILAR).12-15, 17 Among these synthetic 

methods, SILAR is one of the most common method due to its facile processing, versatile application to 

different surfaces and nanostructures, and tunable coating thickness and packing density. However, Bi2S3 

synthesized by SILAR consists of nanocrystalline films or quantum dots. The solution-deposited film has 

poor electric contact at the semiconductor/substrate interface, which leads to high resistance at the 

heterojunction.16 Additionally, the high concentration of grain boundaries may favor formation of defects, 

which could reduce the optoelectronic performance of the material.  Several studies have reported 

annealing of the solution-deposited Bi2S3 at relatively low temperatures (≤300 °C), as a post-synthesis 

method to improve the crystallinity.13, 14, 18 However, this low-temperature annealing may not lead to 

highly crystalline Bi2S3. Therefore, it is necessary to find alternative annealing methods to improve 

crystallinity and phase purity of the solution-deposited Bi2S3. 
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2.2. Photoelectrochemical Performance of Bi2S3 

 The Bi2S3 quantum dots or nanocrystals have been utilized to sensitize mesoporous n-type metal 

oxide semiconductors (WO3, TiO2 and SnO2) for photoelectrochemical applications. Several reports have 

studied the photoelectrochemical performances of the Bi2S3-sensitized metal oxide photoanodes in various 

aqueous electrolytes. It has been discovered that these photoanodes can generate significantly greater 

photocurrents in aqueous electrolytes containing Na2S than in electrolytes without Na2S but containing 

other hole scavengers such as Na2SO3 and ethanol.14-16, 18 One report has proposed possible explanations 

for the effect of Na2S by studying the band-edge tuning strategies of Bi2S3 quantum dots sensitized TiO2, 

which is the most commonly used metal oxide scaffold. The study discovered that in the absence of Na2S, 

the conduction bands of Bi2S3 quantum dots with large particle diameters are more positive than the 

conduction band of TiO2, which restricts electron injection from Bi2S3 to TiO2. In contrast, in the presence 

of Na2S, the adsorbed HS- ions will change the surface dipole of the Bi2S3 quantum dots, which shifts the 

conduction bands to more negative potentials. The negative shift leads to more negative photocurrent 

onset and also facilitates the electron injection to TiO2 from the Bi2S3 quantum dots are too large to act as 

sensitizers in the absence of Na2S.10   

  

 This influence of Na2S on the band alignment between Bi2S3 and TiO2 is possible when the 

Bi2S3/TiO2 interface is exposed to the Na2S electrolyte, as in the case of TiO2 sensitized by Bi2S3 quantum 

dots. This allows direct contact between the interface and the electrolyte, which causes the change in 

surface dipole of Bi2S3 to simultaneously shift the conduction band energy at the Bi2S3/TiO2 interface. In 

the case of bulk Bi2S3 on TiO2, the change in surface dipole caused by Na2S might only influence the band 

energies of Bi2S3 at the Bi2S3/electrolyte interface without changing the band alignment at Bi2S3/TiO2 

interface. This should only result in more negative photocurrent onset but not photocurrent magnitudes 

when the bulk Bi2S3/TiO2 photoanode is measured in Na2S electrolyte compared to other aqueous 
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electrolytes. However, there has been no report on the influence of Na2S on bulk Bi2S3. Thus, the 

photoelectrochemical performance of Bi2S3 in the presence of Na2S needs more in-depth study.      

 

2.3. Bi2S3-based Solid-state Photovoltaics 

 Despite the fact that there have been studies on Bi2S3 quantum dot sensitized solar cells based on 

polysulfide electrolytes, Bi2S3 has never been utilized in solid-state photovoltaic application due to the 

reported unfavorable band energy alignment at the Bi2S3/TiO2 interface in the absence of sulfide ions. One 

study has synthesized nanocrystalline Bi2S3 onto mesoporous TiO2 by annealing bismuth xanthate at 160 

°C and has measured the band energies at the interface using X-ray photoelectron spectroscopy. The study 

has shown that the conduction band potential of Bi2S3 is more positive than that of TiO2, which is 

consistent with the study discussed previously.24 These studies have indicated that Bi2S3 nanocrystals or 

quantum dots cannot efficiently sensitize TiO2 in a solid-state solar cell configuration. However, this does 

not limit the application of Bi2S3 to a solid-state solar cell due to two reasons. Firstly, other n-type metal 

oxide semiconductors (WO3, SnO2) which have more positive conduction band potentials can be utilized 

in place of TiO2.
11, 12, 15, 16 This would enable favorable electron transfer from Bi2S3 to the metal oxides. 

Second, all the studies on Bi2S3-based solar cells have only focused on the applications of nanocrystals or 

quantum dots. Thus, knowledge gaps exit in the electronic properties of highly crystalline or bulk Bi2S3.  

 

3. EXPERIMENTAL AND THEORETICAL METHODS 

3.1. Synthesis of Bi2S3 Thin Films 

 Bi2S3 thin films were synthesized by a combination of solution deposition and sulfur vapor 

annealing. First, Bi2S3 thin films were deposited onto fluorine-doped tin oxide (FTO) substrates (2.5 × 1.5 

cm, 2.2 mm thick, TEC 7, Hartford Glass) by spin-coating a bismuth nitrate solution as a Bi3+ source and 

reacting with a sodium sulfide solution to form Bi2S3. The bismuth precursor was prepared by dissolving 
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0.485 g of Bi(NO3)3·5H2O (98%, Sigma Aldrich) in 10 mL acetic acid (≥99.7%, Sigma Aldrich). The 

sodium sulfide solution was prepared by dissolving 0.033 g of Na2S (anhydrous, Sigma Aldrich) in 35 mL 

methanol. Each layer of Bi2S3 was first spin-coated onto FTO using 150 μL of the Bi(NO3)3·5H2O solution 

at a spin speed of 2000 rpm for 40 s, then immersed in the Na2S solution for 2 min, thoroughly washed 

with methanol, and completely dried under compressed air.15 After 5, 10 or 15 layers of Bi2S3 were coated, 

the samples were annealed in sulfur vapor with argon as a carrier gas. Control experiments were performed 

by annealing the solution-deposited Bi2S3 in argon only. The annealing in sulfur vapor or argon was 

performed in a tube furnace (Lindberg/Blue M 1100 °C, Thermo Fisher Scientific) equipped with a 1-inch 

diameter quartz tube (Quartz Scientific). For annealing in sulfur vapor, sulfur powder (2.5 g, 99.5%, Sigma 

Aldrich) was placed outside the hot zone and sublimed at ~110 °C. Argon (99.995% purity, 80 sccm flow 

rate) was used to convey the sulfur vapor to the downstream substrate. The substrates coated with solution-

deposited Bi2S3 films were placed inside the hot zone at 400 °C, 445 °C and 470 °C, respectively. For 

annealing in pure argon, the substrates coated with solution-deposited Bi2S3 films were annealed at 445 

°C with argon flowing at 100 sccm. For all annealing conditions, the annealing pressure was set at one 

atmosphere with an annealing time of ~60 min. 

 

3.2. Materials Characterizations 

The morphologies, crystal structures, and chemical compositions of the Bi2S3 thin films were 

characterized by scanning electron microscopy (SEM, JEOL 7000F, 10 kV), transmission electron 

microscopy (TEM, JEOL 2010F, 200 kV), parallel beam X-ray diffraction (XRD, PANalytical Empyrean, 

Cu-Kα, 45 kV, 40 mA), and X-ray photoelectron spectroscopy (XPS, PHI 5600, Al-Kα, 13.5 kV, 300 W). 

The average crystallite size was calculated from the Scherrer equation (Equation 1): 

𝜏 =
0.94𝜆

𝛽 cos 𝜃𝐵
 ,  
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where λ is the X-ray wavelength, β is the measured width of the peak at half-maximum intensity in radians, 

and θB is the Bragg angle. 

 

The wavelength-dependent optical absorption properties of the samples were obtained using 

illumination from a Xe lamp (Model 66902, Newport). Two spectrometers (USB 2000+ and Flame-NIR, 

Ocean Optics) were used to measure the incident, transmitted and reflected light at UV-visible and near-

infrared regions, respectively. Bi2S3 thin films were prepared on quartz slides (1 mm thick, Ted Pella) for 

the optical measurements to minimize diffuse scattering by FTO substrates. For both the transmission and 

reflection measurements, light was incident at a 45 angle to the back-side (quartz) surface of the sample. 

For the transmission measurements, the spectrometers were aligned with the incident light to capture the 

transmitted light (T). For the reflection measurements, the spectrometers were placed at a 90 angle to the 

incident light to capture the reflected light (R). The absorption efficiency was calculated by Equation 2: 

𝐴 (𝜆) =  100 % − 𝑇(𝜆) − 𝑅(𝜆). 

The absorption coefficient (α) was then calculated by Equation 3: 

𝛼 =
1

𝑧
ln [

100 % − 𝑅 (𝜆)

𝑇 (𝜆)
], 

where z is the film thickness measured from cross-section SEM images. 

 

3.3. Photoelectrochemical Measurements 

The PEC measurements were performed in a three-electrode configuration, using a potentiostat 

(Model SP-200, BioLogic) under back-side broadband illumination from a Xe lamp. Linear sweep 

voltammograms (LSVs, i.e. J-V curves) were measured at a scan rate of 10 mV/s. LSVs in aqueous 

electrolytes were measured in a three-electrode configuration with the Bi2S3 photoanode as the working 

electrode, a Pt wire (0.5 mm diameter) as the counter electrode, and a saturated calomel (SCE) reference 

electrode. The aqueous electrolytes used were 0.3 M Na2S electrolyte (pH ≈ 13) and 0.3 M Na2SO3 
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electrolyte (pH ≈ 10). Potentials (in volts) in aqueous electrolytes are reported versus RHE using Equation 

4: 

𝑉RHE = 𝑉SCE + 0.244 + [0.059 × pH]. 

 

The incident light intensity from the Xe lamp at each wavelength was measured by a spectrometer. 

The integrated power of the Xe lamp output at wavelengths shorter than 950 nm (1.3 eV) was 81.7 

mW/cm2, as compared to 71.0 mW/cm2 for the standard AM 1.5G spectrum (Figure A1a). The incident 

photon-to-current efficiencies (IPCE), also known as external quantum efficiency (EQE), were measured 

at 0.6 VRHE using a Xe lamp equipped with a monochromator (Cornerstone 130 1/8 m, Newport). The 

spectral irradiance of monochromatic light at each wavelength was measured by a spectrometer. The IPCE 

was calculated using Equation 5: 

IPCE (𝜆) =  
𝐽ph × 1240

𝑃mono × 𝜆
 × 100%, 

where Jph is the measured photocurrent density in mA/cm2, Pmono is the intensity of the incident 

monochromatic light in mW/cm2, and λ is the wavelength of the monochromatic light in nm. The absorbed 

photon-to-current efficiency (APCE), also known as internal quantum efficiency (IQE) was then 

calculated by Equation 6: 

APCE (𝜆) =  
IPCE (𝜆)

𝐴 (𝜆)
 × 100%. 

 

The product of light absorption efficiency (ηabs) and charge separation efficiency (ηsep) was 

calculated at each potential by Equation 7: 

𝜂sep (𝑉) × 𝜂abs (𝑉) =
𝐽max

𝐽ph (𝑉) × 𝜂trans (𝑉)
, 

where Jmax is the maximum photocurrent of the photoelectrode under the Xe lamp illumination in mA/cm2, 

Jph is the measured photocurrent in mA/cm2 at different potentials, ηtrans is the charge transfer efficiency 
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at the semiconductor/electrolyte interface. The maximum photocurrent (Jmax) for Bi2S3 photoanodes is 

43.5 mA/cm2, which was obtained by integrating the Xe lamp spectrum at wavelengths shorter than 950 

nm (1.31 eV). The surface charge transfer efficiency is assumed to 100% for PEC measurements in a Na2S 

electrolyte due to the fast kinetics of sulfide oxidation. 

 

3.4. Density Functional Theory Calculations 

DFT calculations were implemented in the Vienna ab initio simulation package (VASP) code.25, 

26 We used the generalized gradient approximation (GGA) exchange and correlation functionals as 

parameterized by Perdew, Burke, and Ernzerhof (the PBE functional).27, 28  The electron–ion interactions 

were treated within the framework of the standard frozen-core projector augmented-wave (PAW) method 

with valence configurations of 6s26p35d10 for Bi and 3s23p4 for S.29, 30 An energy cut-off of 400 eV was 

used in the plane-wave basis-set expansion. Gaussian smearing with width of 0.2 eV was used for ionic 

relaxation and the tetrahedron method with Blöchl corrections was used for density of states (DOS) 

calculations. The Grimme D3 correction method was used to account for dispersion interactions between 

layers of Bi2S3.
31 For calculations of the pristine Bi2S3 bulk unit cell (1 × 1 × 1), a 6 × 2 × 2 Monkhorst–

Pack 𝑘-point sampling was used for ionic relaxation. Spin-polarized DFT calculations were performed for 

Bi2S3 bulk supercell (3 × 1 × 1). A 2 × 2 × 2 𝑘-point sampling was used for ionic relaxation and a higher 

8 × 8 × 8 𝑘-point sampling was used for density of states calculations. Electronic band structure 

calculations were performed with 50 k-points for each high symmetry direction in the reciprocal space of 

the crystal. Defect formation energies were calculated by Equation 8: 

∆𝐸defective = 𝐸defective − 𝐸stoichiometric + ∑ 𝑛defect𝜇defect, 

where Edefective and Estoichiometric are the ground-state energies of Bi2S3 with and without defect, respectively 

and ndefect is the number of atoms removed (added) from (to) the system to form the defect. ndefect = 1 if an 

atom is removed from the system, whereas ndefect = −1 if an atom is added to the system. 
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4. RESULTS AND DISCUSSION 

4.1. Sulfur Vapor Annealing 

The XRD pattern (Figure 1a) of the un-annealed Bi2S3 shows peaks indexed to FTO only, which 

suggests that the film is either amorphous or nanocrystalline. The crystallite size of the un-annealed Bi2S3 

nanocrystals is measured to be ~10 nm by TEM (Figure 1b). The Bi2S3 film annealed in pure argon at 445 

C contains a large amount of tetragonal Bi2O3 (ICDD PDF 04-007-1443), which is likely due to oxidation 

of the film by oxygen and water vapor adsorbed on the tube wall in the annealing environment. In contrast, 

pure orthorhombic Bi2S3 (ICDD PDF 04-014-6675) can be consistently synthesized by annealing the 

solution-deposited Bi2S3 thin film in sulfur vapor. The average crystallite size of the S-annealed Bi2S3 film 

at 445 °C was calculated from the (112) reflection plane as ~50 nm, which is similar to the average 

diameter of the nanoparticles measured by SEM (Figure 1c). This indicates that sulfur vapor annealing 

significantly improves the crystallinity and phase purity of the solution-deposited Bi2S3 thin film. 
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Figure 1. (a) XRD patterns of Bi2S3 thin films without annealing and with Ar and sulfur vapor annealing 

at 445 C. (b) TEM images of un-annealed Bi2S3 nanocrystals. (c) and (d) Top-view and cross-section 

SEM images of 10 layers of un-annealed and S-annealed Bi2S3 thin films.   

 

The surface chemical composition of the Bi2S3 films was characterized by XPS. The XPS spectra 

were calibrated based on a binding energy of 284.8 eV for adventitious carbon. It was reported that the 

binding energies of Bi 4f7/2 are 158.9 eV for Bi2S3 and 159.3 eV for Bi2O3.
32 As shown in Figure 2a, both 

Bi2S3 (158.6 eV binding energy) and a large amount of Bi2O3 (159.4 eV binding energy) are present on 

the surface of the un-annealed Bi2S3, which suggests that the film was oxidized in the solution deposition 

by air and/or solvents. Additionally, low intensity S 2s peaks exist at binding energies of about 232.6 eV 
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(Figure 2b), which indicates that a small amount of S2- (225.8 eV binding energy) was also oxidized to 

SOx species. The oxidation is further confirmed by the O 1s (Figure A2). According to Figure A2, an O 

1s peak is observed at lower binding energy of 530.4 eV than the adventitious oxygen (531.9 eV) for the 

un-annealed Bi2S3 film, which is due to the presence of Bi2O3 on the surface. Another O 1s peak is 

observed at higher biding energy of 533.1 eV than the adventitious oxygen, which is then assigned to 

oxygen in SOx species. However, a large amount of Bi2O3 and SOx species are present on the surface of 

the Ar-annealed Bi2S3
 film, while the amount of S2- species significantly decrease, which suggests that 

surface was completely oxidized. In contrast, the surface of the S-annealed Bi2S3 thin film mainly contains 

Bi2S3 with a small amount of Bi2O3, which further confirms the purity of the film. This also suggests that 

sulfur vapor annealing converts the surface oxide formed in the solution deposition process to sulfide, and 

suppresses oxidation of the material at high temperatures. Additionally, a greater amount of elemental 

sulfur species was observed on the surface of the S-annealed Bi2S3 film (S 2s, 228.3 eV binding energy, 

Figure 2b) as compared to the un-annealed Bi2S3. This is likely attributed to incorporation of interstitial 

sulfur into the Bi2S3 crystal lattice and/or residual sulfur that remains on the surface of the film during the 

cooling-down process. 
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Figure 2. X-ray Photoelectron Spectra of Bi2S3 thin films without annealing and with Ar and sulfur vapor 

annealing at 445 C. (a) Bi 4f and S 2p XPS spectra and (b) S 2s XPS spectra. 

 

The influence of defects on the electronic structures was then analyzed by calculating the density 

of states of pristine Bi2S3 as well as Bi2S3 containing sulfur vacancy (Sv), sulfur interstitial (Si), oxygen 

substitution of sulfur (OS), and oxygen interstitial (Oi) along with their formation energies (Figure 3). The 

fundamental band gap of pristine Bi2S3 was found to be 1.25 eV indirect band gap (Figure 3a and Figure 

A3). The defect states related to Sv are filled electronic states found deep in the band gap, at 0.63 eV above 

the VBM. This finding is consistent with previous reports that Sv creates deep hole trapping states that 

allow electron-hole recombination.33-36 These defect states are “deep” in a sense that the energy required 

to remove a hole from the trapping states to the valence band is much larger than the characteristic thermal 
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energy at room temperature, 0.026 eV. Thus, the photoexcited holes trapped in the defect states will likely 

recombine with the electrons that occupy these states, which results in reduced photoexcited carrier 

lifetime. Additionally, Bi2S3 containing two Sv possesses a higher DOS of mid-gap charge trapping states, 

which further shows that Sv in Bi2S3 can act as recombination sites. In contrast, Si creates shallow hole 

trapping sites that are 0.12 eV above the VBM, which would cause much less recombination than Sv due 

to the lower energy required to remove the trapped holes to the valence band. On the other hand, Os-Bi2S3 

exhibits similar electronic structure to pristine Bi2S3. Oxygen has the same number of valence electrons 

as sulfur, so we expect similar chemical properties and behavior for oxygen-substituted Bi2S3. Oi-Bi2S3 

has a similar DOS to Si-Bi2S3, resulting in shallow electronic states 0.12 eV above the VBM. Based on 

the XRD and XPS results, the un-annealed Bi2S3 likely contains more oxygen impurities in the form of 

OS and Oi, the formation of which are thermodynamically favorable due to the negative formation energies, 

-0.93 and -0.57 eV, respectively. S-annealed Bi2S3 likely contains more Si due to the low formation energy 

of this defect in a S-rich environment,35 which is consistent with the elemental sulfur species observed on 

the surface of the film. Moreover, previous reports have shown that sulfur vacancies are abundant defects 

in solution-processed Bi2S3.
33-36 Additionally, we postulate that the sulfur vapor may fill sulfur vacancies 

of the un-annealed Bi2S3 during the annealing by diffusing into the Bi2S3 crystals. Therefore, it is expected 

that while both un-annealed and S-annealed Bi2S3 films may possess shallow hole trapping states due to 

the presence of oxygen defects and sulfur interstitial, respectively, the un-annealed Bi2S3 may contain a 

higher concentration of mid-gap Sv charge trapping states that can act as active recombination sites, which 

will significantly decrease its photoexcited carrier concentrations and lifetimes. Moreover, the electrons 

occupying the defect states of Sv, Si and Oi are found to be localized at the defect sites (Figure 3), which 

can also limit the photoexcited electron mobility of the material. 
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The n-type conductivity of Bi2S3 has been attributed to the presence of Sv and Si donor defects.35 

However, for defect states to become effective donor levels, the energetic barrier between the defects 

states and the CBM should be equal to or smaller than the characteristic thermal energy at room 

temperature (0.026 eV). Therefore, Sv and Si defect states cannot act as effective donor levels due to the 

large energetic barrier between the defect states and the CBM, suggesting that these defects cannot be 

responsible for the n-type conductivity of Bi2S3. We additionally calculated the density of states of Bi2S3 

containing hydrogen substitution of sulfur (HS) and hydrogen interstitial and the corresponding formation 

energies. As shown in Figure 3b, DOS of HS and Hi – Bi2S3 show Fermi levels within the conduction band 

of Bi2S3, which suggests that these hydrogen impurities can create effective donor levels in Bi2S3 without 

introducing mid-gap charge trapping states. Moreover, the formation energy of Hi is negative and the 

formation energy of HS is lower than those of Sv and Si, which indicate that the incorporation of hydrogen 

is energetically favorable. In fact, hydrogen impurities have previously been to found to determine the n-

type conductivity of BiVO4.
37 Hydrogen can be incorporated in to Bi2S3 during the solution deposition 

process via decomposition of metal-organic precursors and/or from water vapor in the annealing 

environment. 
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Figure 3. (a) DFT-calculated density of states (DOS) of pristine Bi2S3, Bi2S3 with sulfur vacancies (Sv), 

sulfur interstitials (Si), oxygen substituting sulfur (Os), and oxygen interstitial (Oi). Also shown with each 

DOS plot are the formation energies of the defects in eV. (b) Charge localization at Sv, Si and Oi defect 

sites. Purple and orange spheres correspond to Bi and S atoms, respectively. Yellow indicates electron 

density at the defect states. 
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The photoexcited carrier lifetimes of the un-annealed and S-annealed Bi2S3 films were analyzed 

by time-resolved terahertz spectroscopy. As shown in Figure 4a, the photoexcited charges decay after 0.7 

ps. The short lifetime indicates that the un-annealed Bi2S3 film contains a large concentration of active 

recombination sites, which can be associated with the presence of a large concentration of mid-gap Sv 

defect states in the un-annealed film. In contrast, the S-annealed Bi2S3 exhibits significantly improved 

lifetimes with bi-exponential decays of 3 ps and 23 ps. The shorter decay of 3 ps is likely due to charge 

recombination on the surface of the film, while the longer decay of 23 ps may be attributed to the 

recombination in the bulk crystal, which does not possess as much defects states as the surface of the film. 

This also suggests that sulfur vapor annealing leads to reduction of the active recombination sites by filling 

in sulfur vacancies. 

 

The light absorption efficiency of the Bi2S3 thin film significantly increases after sulfur vapor 

annealing (Figure 4b), with an overall absorption of 60.8 % of above-gap photons for the S-annealed film 

as compared to 39.6 % for the un-annealed. From the measured optical absorption spectra, the indirect 

band gaps can be determined from the (αhν)1/2 vs hν Tauc plot (Figure 4c). The S-annealed Bi2S3 was thus 

determined to possess an indirect band gap of ~1.24 eV, which corresponds well to the theoretically 

predicted fundamental band gap. However, the un-annealed Bi2S3 appears to have a larger band gap of 

~1.37 eV, which may be due to quantum confinement caused by nanoscale grain size. The S-annealed 

Bi2S3 has higher absorption at longer wavelengths due to the increased crystallite size. The sub-bandgap 

absorption of the un-annealed Bi2S3 is lower than 10%, which suggests that the diffuse scattering by quartz 

substrate is negligible. Moderate sub-bandgap absorption is observed for the S-annealed Bi2S3, which is 

attributed to electronic transitions from the defects states to the conduction band, as will be discussed later 

along with IPCE. 
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Figure 4. (a) Photoexcited carrier lifetimes, (b) Optical absorption efficiencies, and (c) Tauc plots to 

determine the indirect band gaps of 10 layers of un-annealed and S-annealed Bi2S3 thin films.  
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The PEC performance of the 10 layers of Bi2S3 thin film photoanodes with and without sulfur 

vapor annealing at 445 C was evaluated by measuring the potential-dependent charge separation 

efficiencies (ηsep) and wavelength-dependent photon-to-current efficiencies (Figure 5). The film thickness 

and annealing temperature were optimized for maximum photocurrent under white light illumination 

(Figure A4 a and b). IPCE and APCE were measured at 0.6 VRHE, which is the onset potential for sulfide 

oxidation in the dark, as can be seen from the dark J-V curves. IPCE shows photon-to-current conversion 

up to 1100 nm for the S-annealed Bi2S3 film and 1050 nm for the un-annealed Bi2S3, with the IPCE of the 

S-annealed higher than that of the un-annealed at all wavelengths (Figure 5a). The enhanced IPCE with 

sulfur vapor annealing is due to simultaneous improvements in both light absorption efficiencies and 

photoexcited carrier lifetimes. The IPCE at 1000−1100 nm (1.24−1.13 eV) is low, and increases more 

sharply for wavelengths shorter than 950 nm (1.31 eV). The band gaps of both un-annealed and S-annealed 

Bi2S3 films were then estimated to be between 1.24 eV and 1.31 eV. The sub-bandgap IPCE for the un-

annealed Bi2S3 is likely attributed to the electronic transition from the Oi defect states to the CBM (1.10 

eV) due to the expected abundance of Oi in the un-annealed film. As for the S-annealed Bi2S3, the IPCE 

at 1000–1100 nm is likely due to transition from the Si defect states to the CBM (0.93 eV) due to the large 

amount of Si expected in the film. Additionally, the products of abs and sep at 0.6 V vs. RHE are 

calculated from the J-V curves to be 16.3% for the S-annealed Bi2S3 and 4.0% for the un-annealed (Figure 

5b). Moreover, the APCE of S-annealed Bi2S3 is higher than that of un-annealed at all wavelengths (Figure 

5c). This indicates that the S-annealed Bi2S3 has significantly increased charge separation efficiencies as 

a result of improved photoexcited carrier lifetime by the sulfur vapor annealing. Additionally, sep at 0.6 

V vs. RHE are calculated to be 26.8% for the S-annealed Bi2S3 and 10.1% for the un-annealed (Figure 

5d). 
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Figure 5. (a) IPCE and (c) APCE of 10 layers of un-annealed and S-annealed Bi2S3 thin films measured 

at 0.6 VRHE in 0.3 M Na2S aqueous electrolyte at pH 13. (b) Products of abs and sep, and (d) sep of 10 

layers of un-annealed and S-annealed Bi2S3 thin films at different potentials measured in 0.3 M Na2S 

aqueous electrolyte. 

 

4.2. Sulfide Surface Treatment 

The PEC performance of S-annealed Bi2S3 thin films was also evaluated by measuring the three-

electrode J-V and J-t curves in aqueous Na2S and Na2SO3 electrolytes (Figure 6). During the first J-V 

measurements, the photocurrent of S-annealed Bi2S3 reaches ~3.93 mA/cm2 in 0.3 M Na2S aqueous 

electrolyte at 1.0 VRHE as compared to ~0.31 mA/cm2 in 0.3 M Na2SO3 aqueous electrolyte (Figure 6 a 

and b). This indicates that the charge separation efficiencies of S-annealed Bi2S3 thin film in Na2S 
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electrolyte are significantly higher than those in Na2SO3 electrolyte, considering that the absorption 

efficiencies remain the same and that the surface charge transfer efficiencies are comparable for these two 

electrolytes. When Bi2S3 is measured in Na2S electrolyte, the sulfide ions may fill in sulfur vacancies on 

the surface of Bi2S3 to reduce the active charge recombination sites at the semiconductor/electrolyte 

interface, which will lead to improved charge separation efficiencies. However, when Bi2S3 is measured 

in Na2SO3 electrolyte, the material might be oxidized during the measurements by S2- + SO3
2- + 2h+ 

S2O3
2-. The oxidation may create more sulfur vacancies and oxide impurities on the surface of Bi2S3, 

which introduce a higher concentration of recombination sites at the semiconductor/electrolyte interface. 

This can be further supported by J-t measurements at 0.6 VRHE and consecutive J-V measurements in Na2S 

and Na2SO3 electrolytes. The photocurrent of S-annealed Bi2S3 increases between the first and third J-V 

measurements and during the J-t measurement in Na2S electrolyte (Figure 6 a and c), while it drastically 

decreases in Na2SO3 electrolyte (Figure 6 b and d). This photocurrent enhancement in Na2S electrolyte 

can be mainly attributed to the improved charge separation efficiencies, which are likely due to reduced 

recombination sites at the Bi2S3/Na2S electrolyte interface, as have been discussed. In contrast, the 

photocurrent degradation in Na2SO3 further suggests that Bi2S3 might undergo oxidation in the electrolyte. 

The high stability and photoelectrochemical performance of Bi2S3 in Na2S electrolyte suggest that the 

material can be potentially applied in a liquid-junction solar cell using polysulfide electrolyte to achieve 

high photovoltaic performance. 
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Figure 6. Photoelectrochemical measurements of 10 layers of S-annealed Bi2S3 under back illumination. 

(a) 1st and 3rd J-V measurements in 0.3 M Na2S aqueous electrolyte. (b) 1st and 3rd J-V measurements in 

0.3 M Na2SO3 aqueous electrolyte. (c) J-t measurement in 0.3 M Na2S aqueous electrolyte at 0.6 VRHE. 

(d) J-t measurement in 0.3 M Na2SO3 aqueous electrolyte at 0.6 VRHE. 

 

The morphologies of Bi2S3 before and after three J-V measurements in Na2SO3 electrolyte were 

then characterized by SEM. As shown in Figure 7a. the Bi2S3 thin film after 3 times consecutive J-V 

measurements exhibits porous structure as compared to the nonporous structure for the as-annealed film. 

The drastic change in surface morphology also suggests corrosion or oxidation of the film by Na2SO3 

electrolyte during the PEC measurements. Moreover, XRD patterns show that the Bi2S3 film after 
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consecutive J-V measurements in Na2SO3 do not contain bulk crystalline impurities as compared to the 

as-annealed film, which suggests that defects likely form on the surface of the film (Figure 7b). However, 

the XPS spectra of the Bi2S3 films before and after 10 min J-t measurements in Na2SO3 at 0.6 VRHE exhibit 

similar characteristics (Figure 7c and Figure 2). The surfaces of both films mainly contain Bi2S3 with a 

small amount of SOx and S0 species. It is likely that the amount of oxides that are formed on the surface 

during the J-t measurements are below the detection limit. Longer duration and/or higher voltages can be 

used to measure the J-t curves of Bi2S3 film in Na2SO3 electrolyte to study the oxidation of the film by 

SO3
2-. 
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Figure 7. (a) and (b) SEM images and XRD patterns of S-annealed Bi2S3 before and after 3 times J-V 

measurements in 0.3 M Na2SO3 aqueous electrolyte (pH 10.2). (c) Bi 4f/S 2p and S 2s XPS spectra of S-

annealed Bi2S3 after 10 min J-t measurement in 0.3 M Na2SO3 at 0.6 VRHE. 
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The influence of Na2S on the photoelectrochemical performance of Bi2S3 was further evaluated by 

soaking the S-annealed Bi2S3 in 0.3 M Na2S aqueous solution for 10 min and measuring the three-electrode 

J-V curves in 0.3 M Na2SO3 aqueous electrolyte. As shown in Figure 8a, the photocurrent of the Na2S-

treated Bi2S3 is higher than that of as-annealed Bi2S3. This improvement in photocurrent can further 

support that sulfide ions fill in sulfur vacancies on the surface of the film to reduce the number of 

recombination sites. Moreover, by soaking Bi2S3 film that was measured in Na2SO3 once and then 

measuring the J-V curve of the film again, the photocurrent increases as compared to the first measurement 

(Figure 8b). In contrast, consecutive J-V measurements of Bi2S3 in Na2SO3 without intermediately soaking 

the sample in Na2S will result in decrease of the photocurrent (Figure 6b). These results suggest that the 

Na2S soaking treatment can also passivate the oxide impurities that are formed in the PEC measurements 

in Na2SO3 electrolyte. Overall, these results indicate that the sulfide surface treatment can be used as a 

potential method to passivate surface defects of the as-annealed Bi2S3 thin films. In fact, similar effects 

have been observed for Sb2S3, where the performance of the material increases after soaking the film in a 

solution containing sulfur ions.38 
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Figure 8. (a) J-V curves of S-annealed Bi2S3 with and without soaking in 0.3 M Na2S measured in 0.3 M 

Na2SO3. (b) Blue: 1st J-V measurement of Bi2S3 measured in 0.3 M Na2SO3; red: J-V measurement in 

Na2SO3 of the same sample soaked in Na2S after the sample was measured three times in 0.3 M Na2SO3. 

Note that the Bi2S3 samples in (a) and (b) are not synthesized under the same sulfur vapor annealing 

condition. 

 

The morphologies of the Bi2S3 film with and without Na2S soaking were characterized by SEM. 

Na2S-treated Bi2S3 exhibits similar morphologies to the as-annealed Bi2S3, which indicates that the 

improved charge separation is not due to structural changes (Figure 9a). XRD patterns indicate that Na2S 

soaking does not change the bulk crystallinity or phase purity of the Bi2S3 film (Figure 9b). Moreover, the 

surface chemical compositions were characterized by XPS, which shows similar characteristics for the 

film with and without Na2S soaking (Figure 9c). It is likely that the amount of defects that was passivated 

by Na2S soaking is below the detection capability of the XPS. Therefore, more sensitive measurement is 

needed to elucidate the change in surface properties. It is also recommended that charge dynamics 

including photocarrier lifetime and mobility of Bi2S3 with and without Na2S soaking can be characterized 

in the future to elucidate the change in trapping site concentrations. 
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Figure 9. (a) and (b) SEM images and XRD patterns of S-annealed Bi2S3 with and without soaking in 

Na2S. (c) Bi 4f/S 2p and S 2s XPS spectra of S-annealed Bi2S3 with Na2S soaking. 
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4.3. Vacuum Annealing 

Vacuum annealing of the S-annealed Bi2S3 was attempted in 70 millitorr vacuum at five 

temperatures ranging from 150 C to 445 C to evaporate the elemental sulfur in B2S3 films, which may 

create shallow hole trapping sites to decrease the performance of the material. Since sulfur has a relatively 

low melting point of 115 C, it was expected that the elemental sulfur in the film can be removed at 

sufficiently high temperatures. It was also expected that with increasing vacuum annealing temperature, 

the amount of elemental sulfur will decrease while the amount of sulfur vacancies will increase. Thus, an 

optimum PEC performance of the Bi2S3 films with vacuum annealing was expected to occur at an 

intermediate vacuum annealing temperature, at which elemental sulfur defects can be sufficiently removed 

without creating a large amount of sulfur vacancies. However, J-V measurements in 0.3 M Na2S aqueous 

electrolyte of S-annealed Bi2S3 with vacuum annealing shows that the photocurrent increases as the 

vacuum annealing temperature increases from 150 C to 375 C and then decreases at 445 C (Figure 

10a). The photocurrents of Bi2S3 films annealed in vacuum at 150 C and 225 C are lower than that of 

the S-annealed sample, while those annealed in vacuum at 300 C and 375 C are higher (Figure 10a). 

The S-annealed Bi2S3 film annealed in vacuum at 445 C changes from opaque black to transparent, which 

suggests decomposition of the film. Moreover, XPS of the S-annealed Bi2S3 with vacuum annealing at 

375 C (the best-performing sample) shows that vacuum annealing introduces more Bi2O3 impurities 

without removing the elemental sulfur (Figure 10b). Oxide impurities in the form of oxygen interstitials 

should decrease the PEC performance of Bi2S3 by creating hole trapping sites. Thus, the present vacuum 

annealing results are not consistent with what we expected. One possibility is that vacuum annealing at 

higher temperatures introduces more hydrogen impurities to Bi2S3, which increase the conductivity of the 

film, as predicted by the DFT density of calculations. However, more experimental evidence is needed to 

elucidate the discrepancy between our expectation and measured PEC results. 
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Figure 10. (a) J-V measurements of as-annealed Bi2S3 and S-annealed Bi2S3 with vacuum annealing at 70 

millitorr at different temperatures. (b) Bi 4f/S 2p and S 2s XPS spectra of S-annealed Bi2S3 with vacuum 

annealing at 375 °C. 
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5. CONCLUSIONS 

We have synthesized Bi2S3 thin film photoelectrode via a combination of solution deposition and 

sulfur vapor annealing. We have identified four major advantages of the annealing process. Firstly, the 

sulfur vapor annealing improves crystallinity of the solution-deposited Bi2S3 nanocrystals by increasing 

the crystallite size from 10 nm to 50 nm. Secondly, introducing sulfur vapor during high-temperature 

annealing prevents formation of Bi2O3 bulk crystal impurities and leads to phase-pure Bi2S3. Thirdly, 

sulfur vapor annealing converts the surface oxides of the un-annealed film to sulfides. Lastly, sulfur vapor 

annealing may fill in sulfur vacancies of the un-annealed Bi2S3 to significantly reduce the concentration 

of mid-gap charge recombination sites, resulting in longer photoexcited carrier lifetimes. Overall, the S-

annealed Bi2S3 exhibits significantly enhanced light absorption and charge separation efficiencies, which 

makes it promising for photovoltaic and photoelectrochemical energy conversion applications. The sulfur 

vapor annealing method could be utilized as a general approach to process solution-deposited metal sulfide 

materials to enhance the optoelectronic performance of these promising materials. Moreover, DFT density 

of states calculations show that hydrogen doping creates effective donor levels at the conduction band 

edge of Bi2S3, which should increase electron conductivity without introducing recombination sites. We 

will explore the influence of hydrogen impurities on the optoelectronic properties and performance of the 

material in future work.   

 

We have also attempted sulfide surface treatment and vacuum annealing to further improve the 

optoelectronic performance of the S-annealed Bi2S3. Both Na2S-treated and vacuum-annealed Bi2S3 thin 

films demonstrate further improvement in charge separation efficiencies. For the Na2S treatment, it is 

likely that the sulfide ions fill in sulfur vacancies and displace anionic defects of S-annealed Bi2S3 films, 

which may increase the photoexcited carrier lifetime and electron mobility. However, more experimental 

evidence is needed to support this hypothesis. For the vacuum annealing, more experiments coupled with 
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XPS characterizations are needed to elucidate the improvement in photoelectrochemical performance. 

Future work should also be focused on fabricating Bi2S3 into solid-state or liquid-junction photovoltaic 

devices and studying chemical properties and charge dynamics at the interfaces. 
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7. APPENDIX 

 

Figure A1. Spectral output of illumination sources used in this work measured with calibrated 

spectrometers. (a) Spectral irradiance of the class-AAA Solar Simulator (81.7 mW/cm2 overall intensity), 

compared to the air mass 1.5 global (AM1.5G, ASTM-G173-3) standard. (b) Irradiance of Xe lamp with 

monochromator, used for incident photon-to-current conversion efficiency (IPCE) measurements. 
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Figure A2. O 1s XPS of un-annealed, Ar-annealed, and S-annealed Bi2S3 thin films. 

 

 

Figure A3. Band Structure of pristine Bi2S3. 
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Figure A4. J-V measurements in 0.3 M Na2S aqueous electrolyte. (a) 10 layers of Bi2S3 thin films without 

annealing and with sulfur vapor annealing at different temperatures. (b) Bi2S3 thin films with different 

thickness annealed at 445 °C in sulfur vapor. 

 

 

Figure A5. Absorption coefficients of un-annealed and S-annealed Bi2S3 thin films. 


