Tailored Annealing and Surface Treatment of Bi₂S₃ Thin Film to Enhance Optoelectronic Performance

A Major Qualifying Project:

Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science

By

Zhehao Zhu

Date: April 26, 2017

Approved By

Professor N. Aaron Deskins, Advisor

Professor Pratap M. Rao, Advisor

Professor Drew R. Brodeur, Advisor

ABSTRACT

Metal sulfides with moderate band gaps are desired for efficient generation of electricity or fuels from sunlight via photovoltaic or photoelectrochemical energy conversion. Bi₂S₃, with a direct optical band gap of 1.3 eV, has been commonly synthesized by successive ion layer adsorption and reaction (SILAR) to produce quantum dots or nanocrystalline films. Annealing of the solution-deposited Bi_2S_3 nanocrystals has been attempted at temperatures equal to or lower than 300 °C, which may not improve the crystallinity of Bi₂S₃. Here, we report a highly crystalline Bi₂S₃ photoelectrode synthesized by hightemperature annealing of the solution-deposited nanocrystalline films in a sulfur vapor environment, which simultaneously improves the crystallinity and phase purity of Bi₂S₃. The S-annealed Bi₂S₃ film exhibits greatly enhanced light absorption (η_{abs}) and charge separation (η_{sep}) efficiencies compared to the nanocrystalline film. Furthermore, photoelectrochemical measurements show that Bi₂S₃ demonstrates significantly larger photocurrent by either pre-treating the material with aqueous Na₂S solution or by directly measuring the material in an electrolyte containing Na₂S. X-ray photoelectron spectroscopy analysis shows that the sulfide ions displace anionic surface impurities and passivate defect states of $B_{12}S_3$ that form during the synthesis and the photoelectrochemical measurement. These results indicate that sulfur vapor annealing and sulfide surface treatment can improve the optoelectronic performance of Bi_2S_3 for solar-electricity or solar-chemical energy conversion processes.

EXECUTIVE SUMMARY

In this work, we synthesized Bi₂S₃ thin film photoelectrodes via a combination of solution deposition and sulfur vapor annealing. We identified four major advantages of the tailored annealing process from materials characterizations and photoelectrochemical measurements. Firstly, the sulfur vapor annealing improves crystallinity of the solution-deposited Bi₂S₃ nanocrystals by increasing the crystallite size from 10 nm to 50 nm. Secondly, introducing sulfur vapor during high-temperature annealing prevents formation of Bi₂O₃ bulk crystal impurities and leads to phase-pure Bi₂S₃. Thirdly, sulfur vapor annealing may fill in sulfur vacancies of the un-annealed film to sulfides. Lastly, sulfur vapor annealing may fill in sulfur vacancies of the un-annealed Bi₂S₃ to significantly increase the photoexcited carrier lifetimes. The S-annealed Bi₂S₃ exhibits significantly enhanced light absorption and charge separation efficiencies, which makes it promising for photovoltaic and photoelectrochemical energy conversion applications. We additionally attempted Na₂S surface treatment and vacuum annealing of the S-annealed Bi₂S₃ to further passivate the surface defects that form during the synthesis. The Na₂S surface treatment may displace anionic surface impurities and passivate defect states of Bi₂S₃. However, the reason for the improved performance by vacuum annealing is still under investigation.

Moreover, we performed Density Functional Theory (DFT) calculations to elucidate the influence of defects and impurities on the electronic structure of Bi_2S_3 . We discovered that sulfur vacancy in Bi_2S_3 creates mid-gap charge trapping states that act as active electron-hole recombination sites, while sulfur interstitial results in shallow charge trapping states close to the valence band that cause much less recombination. We additionally found that Bi_2S_3 is tolerant to low concentrations of oxygen substitution of sulfur, while oxygen interstitial creates shallow hole trapping states close to the valence band. Additionally, DFT density of states calculations show that hydrogen doping creates effective donor levels at the conduction band edge, which should increase electron conductivity without introducing recombination sites.

Overall, we have demonstrated several synthetic and processing methods to effectively improve the optoelectronic performance of Bi_2S_3 thin films, in conjunction with DFT calculations to provide fundamental understanding of these improvements. These strategies could also be extended to synthesize and process many other sulfide materials to enhance their optoelectronic performance for photovoltaic and photoelectrochemical energy conversion applications. Future work should be focused on (1) experimentally investigating the influence of sulfur vacancies and hydrogen impurities on the optoelectronic properties and performance of Bi_2S_3 and (2) fabricating Bi_2S_3 into solid-state or liquidjunction photovoltaic devices and studying chemical properties and charge dynamics at the interfaces.

ACKNOWLEDGEMENTS

Special Thanks to Professors Pratap Rao (ME), Aaron Deskins (CHE), and Drew Brodeur (CH), whose support and advice are motivation and inspiration for Zhehao to accomplish the experimental and theoretical studies. Thanks to Professor Ron Grimm (CH) and Alex Carl (CH) for advice on XPS. Thanks to Professor Lyubov Titova (PH) for performing TRTS characterizations. Thanks to Satish Iyemperumal (CHE) for assistance with DFT calculations. Thanks to Lite Zhou (MTE) for performing SEM and TEM characterizations.

TABLE OF CONTENTS

A	BS	TRA	ACTi	
E	XE	CƯ	TIVE SUMMARYii	
A	CK	NO	WLEDGEMENTS iv	
Ľ	LIST OF FIGURES vi			
1.	Ι	INT	RODUCTION	
2.	I	BAG	CKGROUND	
	2.1	1.	Synthesis of Bi ₂ S ₃	
	2.2	2.	Photoelectrochemical Performance of Bi ₂ S ₃	
	2.3	3.	Bi ₂ S ₃ -based Solid-state Photovoltaics	
3.	ł	EXI	PERIMENTAL AND THEORETICAL METHODS 4	
	3.1	1.	Synthesis of Bi ₂ S ₃ Thin Films	
	3.2	2.	Materials Characterizations	
	3.3	3.	Photoelectrochemical Measurements	
	3.4	1.	Density Functional Theory Calculations	
4.	ł	RES	SULTS AND DISCUSSION	
	4.1	1.	Sulfur Vapor Annealing	
	4.2	2.	Sulfide Surface Treatment	
	4.3	3.	Vacuum Annealing	
5.	(COI	NCLUSIONS	
6.	ł	REF	FERENCES	
7.	A	APF	PENDIX	

LIST OF FIGURES

Figure 1. (a) XRD patterns of Bi_2S_3 thin films without annealing and with Ar and sulfur vapor annealing
at 445 °C. (b) TEM images of un-annealed Bi_2S_3 nanocrystals. (c) and (d) Top-view and cross-section
SEM images of 10 layers of un-annealed and S-annealed Bi ₂ S ₃ thin films
Figure 2. X-ray Photoelectron Spectra of Bi_2S_3 thin films without annealing and with Ar and sulfur vapor
annealing at 445 °C. (a) Bi 4f and S 2p XPS spectra and (b) S 2s XPS spectra12
Figure 3. (a) DFT-calculated density of states (DOS) of pristine Bi_2S_3 , Bi_2S_3 with sulfur vacancies (S_v),
sulfur interstitials (S _i), oxygen substituting sulfur (O _s), and oxygen interstitial (O _i). Also shown with each
DOS plot are the formation energies of the defects in eV. (b) Charge localization at S_v , S_i and O_i defect
sites. Purple and orange spheres correspond to Bi and S atoms, respectively. Yellow indicates electron
density at the defect states
Figure 4. (a) Photoexcited carrier lifetimes, (b) Optical absorption efficiencies, and (c) Tauc plots to
determine the indirect band gaps of 10 layers of un-annealed and S-annealed Bi ₂ S ₃ thin films
Figure 5. (a) IPCE and (c) APCE of 10 layers of un-annealed and S-annealed Bi ₂ S ₃ thin films measured
at 0.6 V _{RHE} in 0.3 M Na ₂ S aqueous electrolyte at pH 13. (b) Products of η_{abs} and η_{sep} , and (d) η_{sep} of 10
layers of un-annealed and S-annealed Bi ₂ S ₃ thin films at different potentials measured in 0.3 M Na ₂ S
aqueous electrolyte
Figure 6. Photoelectrochemical measurements of 10 layers of S-annealed Bi ₂ S ₃ under back illumination.
(a) 1^{st} and 3^{rd} J-V measurements in 0.3 M Na ₂ S aqueous electrolyte. (b) 1^{st} and 3^{rd} J-V measurements in
0.3 M Na ₂ SO ₃ aqueous electrolyte. (c) J-t measurement in 0.3 M Na ₂ S aqueous electrolyte at 0.6 V_{RHE} .
(d) J-t measurement in 0.3 M Na ₂ SO ₃ aqueous electrolyte at 0.6 V _{RHE}
Figure 7. (a) and (b) SEM images and XRD patterns of S-annealed Bi_2S_3 before and after 3 times J-V
measurements in 0.3 M Na ₂ SO ₃ aqueous electrolyte (pH 10.2). (c) Bi 4f/S 2p and S 2s XPS spectra of S-
annealed Bi ₂ S ₃ after 10 min J-t measurement in 0.3 M Na ₂ SO ₃ at 0.6 V _{RHE}

1. INTRODUCTION

Energy harvested from sunlight is believed to a viable option to satisfy the increasing world energy demand.¹ Photovoltaics (PV) allow us to use semiconductors to harvest solar energy and simultaneously convert it to electric power. Conventional crystalline silicon-based solar cells have demonstrated up to 25% efficiency and high stability, but have rigid construction and high manufacturing cost due to the energyintensive production of silicon wafers. While the emerging thin-film photovoltaic technologies have the potential to decrease the cost/performance ratio of solar cells, many of the materials such as CdTe, copper indium gallium selenide (CIGS), and lead halide-based perovskite contain toxic or rare elements, which limit their sizable deployments. Photovoltaic devices including dve-sensitized solar cells (DSSCs) and polymer-based organic solar cells (OSCs) are considered as low-cost alternatives. However, liquid electrolyte-based DSSCs suffer from solvent leakage and instability of dyes, and polymer-based OSCs experience substantial degradation.² To overcome these disadvantages, semiconductor-sensitized metal oxide solid-state solar cells, which are based on the configuration of DSSCs but are composed of semiconductor light absorbers and organic hole transporting materials (HTMs), have been designed and investigated. With their small band gaps, metal sulfides such as Sb₂S₃ (Eg \approx 1.7 eV),²⁻⁷ PbS (1.0 eV),^{8,9} and Bi_2S_3 (1.3 eV)¹⁰⁻¹⁶ have been studied as the light absorber semiconductor materials to photosensitize metal oxides (TiO₂, WO₃, SnO₂, ZnO) with large band gaps. Polymers such as P3HT,^{2-4, 6, 7} PEDOT:PSS,²⁻ ^{4, 6} and spiro-MeOTAD.¹⁷ and inorganic p-type semiconductors such as CuSCN⁹ have been commonly utilized as the HTMs. One of highest certified efficiencies for a single metal sulfide sensitized solar cell was reported to be 10.2%, which was achieved by a p-n junction PbS quantum dot sensitized ZnO solar cell with I₂ treatment.⁹ Additionally, one of the highest power conversion efficiencies reported for Sb₂S₃based solar cells was around 5.7%, which was achieved by a Ti-doped Sb₂S₃-based ETA nanocrystalline-TiO₂ solar cell.⁵ In contrast, Bi₂S₃ has been mostly studied as sensitizer in photoelectrochemical applications.^{11, 14-16, 18} There have not been many reports on Bi₂S₃-based solid state solar cells until recent

years. A study fabricated a Bi₂S₃ nanowire core/AgS shell solar cell with spiro-MeOTAD HTM, which achieved an efficiency of 2.5%,¹⁷ and another study synthesized a hybrid solar cell comprised of Bi₂S₃ nanowires and P3HT, which achieved an efficiency of 3.3%.¹⁹ These promising efficiencies motivated us to discover effective synthesis and processing methods and to study the fundamental materials properties. The knowledge gained will be essential to further improve the efficiencies of Bi₂S₃-based solar cells.

2. BACKGROUND

2.1. Synthesis of Bi₂S₃

Many groups have synthesized Bi₂S₃ as either powder or thin film using various techniques, such as hydrothermal synthesis,^{16, 18} electrochemical deposition,²⁰ chemical bath deposition,^{21, 22} vapor deposition,²³ and successive ionic layer adsorption and reaction (SILAR).^{12-15, 17} Among these synthetic methods, SILAR is one of the most common method due to its facile processing, versatile application to different surfaces and nanostructures, and tunable coating thickness and packing density. However, Bi₂S₃ synthesized by SILAR consists of nanocrystalline films or quantum dots. The solution-deposited film has poor electric contact at the semiconductor/substrate interface, which leads to high resistance at the heterojunction.¹⁶ Additionally, the high concentration of grain boundaries may favor formation of defects, which could reduce the optoelectronic performance of the material. Several studies have reported annealing of the solution-deposited Bi₂S₃ at relatively low temperatures (\leq 300 °C), as a post-synthesis method to improve the crystallinity.^{13, 14, 18} However, this low-temperature annealing may not lead to highly crystalline Bi₂S₃. Therefore, it is necessary to find alternative annealing methods to improve crystallinity and phase purity of the solution-deposited Bi₂S₃.

2.2. Photoelectrochemical Performance of Bi₂S₃

The Bi₂S₃ quantum dots or nanocrystals have been utilized to sensitize mesoporous n-type metal oxide semiconductors (WO₃, TiO₂ and SnO₂) for photoelectrochemical applications. Several reports have studied the photoelectrochemical performances of the Bi₂S₃-sensitized metal oxide photoanodes in various aqueous electrolytes. It has been discovered that these photoanodes can generate significantly greater photocurrents in aqueous electrolytes containing Na₂S than in electrolytes without Na₂S but containing other hole scavengers such as Na₂SO₃ and ethanol.^{14-16, 18} One report has proposed possible explanations for the effect of Na₂S by studying the band-edge tuning strategies of Bi₂S₃ quantum dots sensitized TiO₂, which is the most commonly used metal oxide scaffold. The study discovered that in the absence of Na₂S, the conduction band of TiO₂, which restricts electron injection from Bi₂S₃ to TiO₂. In contrast, in the presence of Na₂S, the adsorbed HS⁻ ions will change the surface dipole of the Bi₂S₃ quantum dots, which shifts the conduction bands to more negative potentials. The negative shift leads to more negative photocurrent onset and also facilitates the electron injection to TiO₂ from the Bi₂S₃ quantum dots are too large to act as sensitizers in the absence of Na₂S.¹⁰

This influence of Na₂S on the band alignment between Bi_2S_3 and TiO_2 is possible when the Bi_2S_3/TiO_2 interface is exposed to the Na₂S electrolyte, as in the case of TiO_2 sensitized by Bi_2S_3 quantum dots. This allows direct contact between the interface and the electrolyte, which causes the change in surface dipole of Bi_2S_3 to simultaneously shift the conduction band energy at the Bi_2S_3/TiO_2 interface. In the case of bulk Bi_2S_3 on TiO_2 , the change in surface dipole caused by Na₂S might only influence the band energies of Bi_2S_3 at the Bi_2S_3 /electrolyte interface without changing the band alignment at Bi_2S_3/TiO_2 interface. This should only result in more negative photocurrent onset but not photocurrent magnitudes when the bulk Bi_2S_3/TiO_2 photoanode is measured in Na₂S electrolyte compared to other aqueous

electrolytes. However, there has been no report on the influence of Na_2S on bulk Bi_2S_3 . Thus, the photoelectrochemical performance of Bi_2S_3 in the presence of Na_2S needs more in-depth study.

2.3. Bi₂S₃-based Solid-state Photovoltaics

Despite the fact that there have been studies on Bi_2S_3 quantum dot sensitized solar cells based on polysulfide electrolytes, Bi_2S_3 has never been utilized in solid-state photovoltaic application due to the reported unfavorable band energy alignment at the Bi_2S_3/TiO_2 interface in the absence of sulfide ions. One study has synthesized nanocrystalline Bi_2S_3 onto mesoporous TiO_2 by annealing bismuth xanthate at 160 °C and has measured the band energies at the interface using X-ray photoelectron spectroscopy. The study has shown that the conduction band potential of Bi_2S_3 is more positive than that of TiO_2 , which is consistent with the study discussed previously.²⁴ These studies have indicated that Bi_2S_3 nanocrystals or quantum dots cannot efficiently sensitize TiO_2 in a solid-state solar cell configuration. However, this does not limit the application of Bi_2S_3 to a solid-state solar cell due to two reasons. Firstly, other n-type metal oxide semiconductors (WO₃, SnO₂) which have more positive conduction band potentials can be utilized in place of TiO_2 .^{11, 12, 15, 16} This would enable favorable electron transfer from Bi_2S_3 to the metal oxides. Second, all the studies on Bi_2S_3 -based solar cells have only focused on the applications of nanocrystals or quantum dots. Thus, knowledge gaps exit in the electronic properties of highly crystalline or bulk Bi_2S_3 .

3. EXPERIMENTAL AND THEORETICAL METHODS

3.1. Synthesis of Bi₂S₃ Thin Films

 Bi_2S_3 thin films were synthesized by a combination of solution deposition and sulfur vapor annealing. First, Bi_2S_3 thin films were deposited onto fluorine-doped tin oxide (FTO) substrates (2.5 × 1.5 cm, 2.2 mm thick, TEC 7, Hartford Glass) by spin-coating a bismuth nitrate solution as a Bi^{3+} source and reacting with a sodium sulfide solution to form Bi_2S_3 . The bismuth precursor was prepared by dissolving 0.485 g of Bi(NO₃)₃·5H₂O (98%, Sigma Aldrich) in 10 mL acetic acid (≥99.7%, Sigma Aldrich). The sodium sulfide solution was prepared by dissolving 0.033 g of Na₂S (anhydrous, Sigma Aldrich) in 35 mL methanol. Each layer of Bi₂S₃ was first spin-coated onto FTO using 150 µL of the Bi(NO₃)₃·5H₂O solution at a spin speed of 2000 rpm for 40 s, then immersed in the Na₂S solution for 2 min, thoroughly washed with methanol, and completely dried under compressed air.¹⁵ After 5, 10 or 15 layers of Bi₂S₃ were coated, the samples were annealed in sulfur vapor with argon as a carrier gas. Control experiments were performed by annealing the solution-deposited Bi_2S_3 in argon only. The annealing in sulfur vapor or argon was performed in a tube furnace (Lindberg/Blue M 1100 °C, Thermo Fisher Scientific) equipped with a 1-inch diameter quartz tube (Quartz Scientific). For annealing in sulfur vapor, sulfur powder (2.5 g, 99.5%, Sigma Aldrich) was placed outside the hot zone and sublimed at ~110 °C. Argon (99.995% purity, 80 sccm flow rate) was used to convey the sulfur vapor to the downstream substrate. The substrates coated with solutiondeposited Bi₂S₃ films were placed inside the hot zone at 400 °C, 445 °C and 470 °C, respectively. For annealing in pure argon, the substrates coated with solution-deposited Bi₂S₃ films were annealed at 445 °C with argon flowing at 100 sccm. For all annealing conditions, the annealing pressure was set at one atmosphere with an annealing time of ~ 60 min.

3.2. Materials Characterizations

The morphologies, crystal structures, and chemical compositions of the Bi_2S_3 thin films were characterized by scanning electron microscopy (SEM, JEOL 7000F, 10 kV), transmission electron microscopy (TEM, JEOL 2010F, 200 kV), parallel beam X-ray diffraction (XRD, PANalytical Empyrean, Cu-Ka, 45 kV, 40 mA), and X-ray photoelectron spectroscopy (XPS, PHI 5600, Al-Ka, 13.5 kV, 300 W). The average crystallite size was calculated from the Scherrer equation (Equation 1):

$$\tau = \frac{0.94\lambda}{\beta\cos\theta_B},$$

where λ is the X-ray wavelength, β is the measured width of the peak at half-maximum intensity in radians, and θ_B is the Bragg angle.

The wavelength-dependent optical absorption properties of the samples were obtained using illumination from a Xe lamp (Model 66902, Newport). Two spectrometers (USB 2000+ and Flame-NIR, Ocean Optics) were used to measure the incident, transmitted and reflected light at UV-visible and near-infrared regions, respectively. Bi₂S₃ thin films were prepared on quartz slides (1 mm thick, Ted Pella) for the optical measurements to minimize diffuse scattering by FTO substrates. For both the transmission and reflection measurements, light was incident at a 45° angle to the back-side (quartz) surface of the sample. For the transmission measurements, the spectrometers were aligned with the incident light to capture the transmitted light (*T*). For the reflection measurements, the spectrometers were placed at a 90° angle to the incident light to capture the reflected light (*R*). The absorption efficiency was calculated by Equation 2:

 $A(\lambda) = 100 \% - T(\lambda) - R(\lambda).$

The absorption coefficient (α) was then calculated by Equation 3:

$$\alpha = \frac{1}{z} \ln \left[\frac{100 \% - R (\lambda)}{T (\lambda)} \right],$$

where z is the film thickness measured from cross-section SEM images.

3.3. Photoelectrochemical Measurements

The PEC measurements were performed in a three-electrode configuration, using a potentiostat (Model SP-200, BioLogic) under back-side broadband illumination from a Xe lamp. Linear sweep voltammograms (LSVs, i.e. *J-V* curves) were measured at a scan rate of 10 mV/s. LSVs in aqueous electrolytes were measured in a three-electrode configuration with the Bi₂S₃ photoanode as the working electrode, a Pt wire (0.5 mm diameter) as the counter electrode, and a saturated calomel (SCE) reference electrode. The aqueous electrolytes used were 0.3 M Na₂S electrolyte (pH \approx 13) and 0.3 M Na₂SO₃

electrolyte (pH \approx 10). Potentials (in volts) in aqueous electrolytes are reported versus RHE using Equation 4:

$$V_{\rm RHE} = V_{\rm SCE} + 0.244 + [0.059 \times \text{pH}].$$

The incident light intensity from the Xe lamp at each wavelength was measured by a spectrometer. The integrated power of the Xe lamp output at wavelengths shorter than 950 nm (1.3 eV) was 81.7 mW/cm², as compared to 71.0 mW/cm² for the standard AM 1.5G spectrum (Figure A1a). The incident photon-to-current efficiencies (IPCE), also known as external quantum efficiency (EQE), were measured at 0.6 V_{RHE} using a Xe lamp equipped with a monochromator (Cornerstone 130 1/8 m, Newport). The spectral irradiance of monochromatic light at each wavelength was measured by a spectrometer. The IPCE was calculated using Equation 5:

IPCE
$$(\lambda) = \frac{J_{\rm ph} \times 1240}{P_{\rm mono} \times \lambda} \times 100\%$$
,

where J_{ph} is the measured photocurrent density in mA/cm², P_{mono} is the intensity of the incident monochromatic light in mW/cm², and λ is the wavelength of the monochromatic light in nm. The absorbed photon-to-current efficiency (APCE), also known as internal quantum efficiency (IQE) was then calculated by Equation 6:

APCE
$$(\lambda) = \frac{\text{IPCE } (\lambda)}{A (\lambda)} \times 100\%$$

The product of light absorption efficiency (η_{abs}) and charge separation efficiency (η_{sep}) was calculated at each potential by Equation 7:

$$\eta_{\text{sep}}(V) \times \eta_{\text{abs}}(V) = \frac{J_{\text{max}}}{J_{\text{ph}}(V) \times \eta_{\text{trans}}(V)}$$

where J_{max} is the maximum photocurrent of the photoelectrode under the Xe lamp illumination in mA/cm², J_{ph} is the measured photocurrent in mA/cm² at different potentials, η_{trans} is the charge transfer efficiency

at the semiconductor/electrolyte interface. The maximum photocurrent (J_{max}) for Bi₂S₃ photoanodes is 43.5 mA/cm², which was obtained by integrating the Xe lamp spectrum at wavelengths shorter than 950 nm (1.31 eV). The surface charge transfer efficiency is assumed to 100% for PEC measurements in a Na₂S electrolyte due to the fast kinetics of sulfide oxidation.

3.4. Density Functional Theory Calculations

DFT calculations were implemented in the Vienna *ab initio* simulation package (VASP) code.^{25, 26} We used the generalized gradient approximation (GGA) exchange and correlation functionals as parameterized by Perdew, Burke, and Ernzerhof (the PBE functional).^{27, 28} The electron–ion interactions were treated within the framework of the standard frozen-core projector augmented-wave (PAW) method with valence configurations of $6s^26p^35d^{10}$ for Bi and $3s^23p^4$ for S.^{29, 30} An energy cut-off of 400 eV was used in the plane-wave basis-set expansion. Gaussian smearing with width of 0.2 eV was used for ionic relaxation and the tetrahedron method with Blöchl corrections was used for density of states (DOS) calculations. The Grimme D3 correction method was used to account for dispersion interactions between layers of Bi₂S₃.³¹ For calculations of the pristine Bi₂S₃ bulk unit cell (1 × 1 × 1), a 6 × 2 × 2 Monkhorst–Pack *k*-point sampling was used for ionic relaxation. Spin-polarized DFT calculations were performed for Bi₂S₃ bulk supercell (3 × 1 × 1). A 2 × 2 × 2 *k*-point sampling was used for ionic relaxation and a higher 8 × 8 × 8 *k*-point sampling was used for density of states calculations. Electronic band structure calculations were performed with 50 *k*-points for each high symmetry direction in the reciprocal space of the crystal. Defect formation energies were calculated by Equation 8:

$$\Delta E_{\text{defective}} = E_{\text{defective}} - E_{\text{stoichiometric}} + \sum n_{\text{defect}} \mu_{\text{defect}},$$

where $E_{\text{defective}}$ and $E_{\text{stoichiometric}}$ are the ground-state energies of Bi₂S₃ with and without defect, respectively and n_{defect} is the number of atoms removed (added) from (to) the system to form the defect. $n_{\text{defect}} = 1$ if an atom is removed from the system, whereas $n_{\text{defect}} = -1$ if an atom is added to the system.

4. RESULTS AND DISCUSSION

4.1. Sulfur Vapor Annealing

The XRD pattern (Figure 1a) of the un-annealed Bi₂S₃ shows peaks indexed to FTO only, which suggests that the film is either amorphous or nanocrystalline. The crystallite size of the un-annealed Bi₂S₃ nanocrystals is measured to be ~10 nm by TEM (Figure 1b). The Bi₂S₃ film annealed in pure argon at 445 °C contains a large amount of tetragonal Bi₂O₃ (ICDD PDF 04-007-1443), which is likely due to oxidation of the film by oxygen and water vapor adsorbed on the tube wall in the annealing environment. In contrast, pure orthorhombic Bi₂S₃ (ICDD PDF 04-014-6675) can be consistently synthesized by annealing the solution-deposited Bi₂S₃ thin film in sulfur vapor. The average crystallite size of the S-annealed Bi₂S₃ film at 445 °C was calculated from the (112) reflection plane as ~50 nm, which is similar to the average diameter of the nanoparticles measured by SEM (Figure 1c). This indicates that sulfur vapor annealing significantly improves the crystallinity and phase purity of the solution-deposited Bi₂S₃ thin film.

Figure 1. (a) XRD patterns of Bi_2S_3 thin films without annealing and with Ar and sulfur vapor annealing at 445 °C. (b) TEM images of un-annealed Bi_2S_3 nanocrystals. (c) and (d) Top-view and cross-section SEM images of 10 layers of un-annealed and S-annealed Bi_2S_3 thin films.

The surface chemical composition of the Bi_2S_3 films was characterized by XPS. The XPS spectra were calibrated based on a binding energy of 284.8 eV for adventitious carbon. It was reported that the binding energies of Bi $4f_{7/2}$ are 158.9 eV for Bi_2S_3 and 159.3 eV for Bi_2O_3 .³² As shown in Figure 2a, both Bi_2S_3 (158.6 eV binding energy) and a large amount of Bi_2O_3 (159.4 eV binding energy) are present on the surface of the un-annealed Bi_2S_3 , which suggests that the film was oxidized in the solution deposition by air and/or solvents. Additionally, low intensity S 2s peaks exist at binding energies of about 232.6 eV

(Figure 2b), which indicates that a small amount of S^{2-} (225.8 eV binding energy) was also oxidized to SO_x species. The oxidation is further confirmed by the O 1s (Figure A2). According to Figure A2, an O 1s peak is observed at lower binding energy of 530.4 eV than the adventitious oxygen (531.9 eV) for the un-annealed Bi₂S₃ film, which is due to the presence of Bi₂O₃ on the surface. Another O 1s peak is observed at higher biding energy of 533.1 eV than the adventitious oxygen, which is then assigned to oxygen in SO_x species. However, a large amount of Bi₂O₃ and SO_x species are present on the surface of the Ar-annealed Bi_2S_3 film, while the amount of S^{2-} species significantly decrease, which suggests that surface was completely oxidized. In contrast, the surface of the S-annealed Bi₂S₃ thin film mainly contains Bi_2S_3 with a small amount of Bi_2O_3 , which further confirms the purity of the film. This also suggests that sulfur vapor annealing converts the surface oxide formed in the solution deposition process to sulfide, and suppresses oxidation of the material at high temperatures. Additionally, a greater amount of elemental sulfur species was observed on the surface of the S-annealed Bi₂S₃ film (S 2s, 228.3 eV binding energy, Figure 2b) as compared to the un-annealed Bi_2S_3 . This is likely attributed to incorporation of interstitial sulfur into the Bi₂S₃ crystal lattice and/or residual sulfur that remains on the surface of the film during the cooling-down process.

Figure 2. X-ray Photoelectron Spectra of Bi_2S_3 thin films without annealing and with Ar and sulfur vapor annealing at 445 °C. (a) Bi 4f and S 2p XPS spectra and (b) S 2s XPS spectra.

The influence of defects on the electronic structures was then analyzed by calculating the density of states of pristine Bi_2S_3 as well as Bi_2S_3 containing sulfur vacancy (S_v) , sulfur interstitial (S_i) , oxygen substitution of sulfur (O_S) , and oxygen interstitial (O_i) along with their formation energies (Figure 3). The fundamental band gap of pristine Bi_2S_3 was found to be 1.25 eV indirect band gap (Figure 3a and Figure A3). The defect states related to S_v are filled electronic states found deep in the band gap, at 0.63 eV above the VBM. This finding is consistent with previous reports that S_v creates deep hole trapping states that allow electron-hole recombination.³³⁻³⁶ These defect states are "deep" in a sense that the energy required to remove a hole from the trapping states to the valence band is much larger than the characteristic thermal

energy at room temperature, 0.026 eV. Thus, the photoexcited holes trapped in the defect states will likely recombine with the electrons that occupy these states, which results in reduced photoexcited carrier lifetime. Additionally, Bi₂S₃ containing two S_v possesses a higher DOS of mid-gap charge trapping states, which further shows that S_v in Bi₂S₃ can act as recombination sites. In contrast, S_i creates shallow hole trapping sites that are 0.12 eV above the VBM, which would cause much less recombination than S_v due to the lower energy required to remove the trapped holes to the valence band. On the other hand, $Os-Bi_2S_3$ exhibits similar electronic structure to pristine Bi_2S_3 . Oxygen has the same number of valence electrons as sulfur, so we expect similar chemical properties and behavior for oxygen-substituted Bi_2S_3 . O_i - Bi_2S_3 has a similar DOS to S_i-Bi₂S₃, resulting in shallow electronic states 0.12 eV above the VBM. Based on the XRD and XPS results, the un-annealed Bi_2S_3 likely contains more oxygen impurities in the form of Os and O_i, the formation of which are thermodynamically favorable due to the negative formation energies, -0.93 and -0.57 eV, respectively. S-annealed Bi₂S₃ likely contains more S_i due to the low formation energy of this defect in a S-rich environment,³⁵ which is consistent with the elemental sulfur species observed on the surface of the film. Moreover, previous reports have shown that sulfur vacancies are abundant defects in solution-processed Bi₂S₃.³³⁻³⁶ Additionally, we postulate that the sulfur vapor may fill sulfur vacancies of the un-annealed Bi₂S₃ during the annealing by diffusing into the Bi₂S₃ crystals. Therefore, it is expected that while both un-annealed and S-annealed Bi₂S₃ films may possess shallow hole trapping states due to the presence of oxygen defects and sulfur interstitial, respectively, the un-annealed Bi_2S_3 may contain a higher concentration of mid-gap S_v charge trapping states that can act as active recombination sites, which will significantly decrease its photoexcited carrier concentrations and lifetimes. Moreover, the electrons occupying the defect states of S_v , S_i and O_i are found to be localized at the defect sites (Figure 3), which can also limit the photoexcited electron mobility of the material.

The n-type conductivity of Bi₂S₃ has been attributed to the presence of S_v and S_i donor defects.³⁵ However, for defect states to become effective donor levels, the energetic barrier between the defects states and the CBM should be equal to or smaller than the characteristic thermal energy at room temperature (0.026 eV). Therefore, S_v and S_i defect states cannot act as effective donor levels due to the large energetic barrier between the defect states and the CBM, suggesting that these defects cannot be responsible for the n-type conductivity of Bi₂S₃. We additionally calculated the density of states of Bi₂S₃ containing hydrogen substitution of sulfur (H_s) and hydrogen interstitial and the corresponding formation energies. As shown in Figure 3b, DOS of H_S and $H_i - Bi_2S_3$ show Fermi levels within the conduction band of Bi₂S₃, which suggests that these hydrogen impurities can create effective donor levels in Bi₂S₃ without introducing mid-gap charge trapping states. Moreover, the formation energy of H_i is negative and the formation energy of H_S is lower than those of S_v and S_i, which indicate that the incorporation of hydrogen is energetically favorable. In fact, hydrogen impurities have previously been to found to determine the ntype conductivity of BiVO₄.³⁷ Hydrogen can be incorporated in to Bi₂S₃ during the solution deposition process via decomposition of metal-organic precursors and/or from water vapor in the annealing environment.

Figure 3. (a) DFT-calculated density of states (DOS) of pristine Bi_2S_3 , Bi_2S_3 with sulfur vacancies (S_v), sulfur interstitials (S_i), oxygen substituting sulfur (O_s), and oxygen interstitial (O_i). Also shown with each DOS plot are the formation energies of the defects in eV. (b) Charge localization at S_v , S_i and O_i defect sites. Purple and orange spheres correspond to Bi and S atoms, respectively. Yellow indicates electron density at the defect states.

The photoexcited carrier lifetimes of the un-annealed and S-annealed Bi_2S_3 films were analyzed by time-resolved terahertz spectroscopy. As shown in Figure 4a, the photoexcited charges decay after 0.7 ps. The short lifetime indicates that the un-annealed Bi_2S_3 film contains a large concentration of active recombination sites, which can be associated with the presence of a large concentration of mid-gap S_v defect states in the un-annealed film. In contrast, the S-annealed Bi_2S_3 exhibits significantly improved lifetimes with bi-exponential decays of 3 ps and 23 ps. The shorter decay of 3 ps is likely due to charge recombination on the surface of the film, while the longer decay of 23 ps may be attributed to the recombination in the bulk crystal, which does not possess as much defects states as the surface of the film. This also suggests that sulfur vapor annealing leads to reduction of the active recombination sites by filling in sulfur vacancies.

The light absorption efficiency of the Bi₂S₃ thin film significantly increases after sulfur vapor annealing (Figure 4b), with an overall absorption of 60.8 % of above-gap photons for the S-annealed film as compared to 39.6 % for the un-annealed. From the measured optical absorption spectra, the indirect band gaps can be determined from the $(\alpha h v)^{1/2}$ vs hv Tauc plot (Figure 4c). The S-annealed Bi₂S₃ was thus determined to possess an indirect band gap of ~1.24 eV, which corresponds well to the theoretically predicted fundamental band gap. However, the un-annealed Bi₂S₃ appears to have a larger band gap of ~1.37 eV, which may be due to quantum confinement caused by nanoscale grain size. The S-annealed Bi₂S₃ has higher absorption at longer wavelengths due to the increased crystallite size. The sub-bandgap absorption of the un-annealed Bi₂S₃ is lower than 10%, which suggests that the diffuse scattering by quartz substrate is negligible. Moderate sub-bandgap absorption is observed for the S-annealed Bi₂S₃, which is attributed to electronic transitions from the defects states to the conduction band, as will be discussed later along with IPCE.

Figure 4. (a) Photoexcited carrier lifetimes, (b) Optical absorption efficiencies, and (c) Tauc plots to determine the indirect band gaps of 10 layers of un-annealed and S-annealed Bi₂S₃ thin films.

The PEC performance of the 10 layers of Bi₂S₃ thin film photoanodes with and without sulfur vapor annealing at 445 °C was evaluated by measuring the potential-dependent charge separation efficiencies (η_{sep}) and wavelength-dependent photon-to-current efficiencies (Figure 5). The film thickness and annealing temperature were optimized for maximum photocurrent under white light illumination (Figure A4 a and b). IPCE and APCE were measured at 0.6 V_{RHE}, which is the onset potential for sulfide oxidation in the dark, as can be seen from the dark J-V curves. IPCE shows photon-to-current conversion up to 1100 nm for the S-annealed Bi₂S₃ film and 1050 nm for the un-annealed Bi₂S₃, with the IPCE of the S-annealed higher than that of the un-annealed at all wavelengths (Figure 5a). The enhanced IPCE with sulfur vapor annealing is due to simultaneous improvements in both light absorption efficiencies and photoexcited carrier lifetimes. The IPCE at 1000-1100 nm (1.24-1.13 eV) is low, and increases more sharply for wavelengths shorter than 950 nm (1.31 eV). The band gaps of both un-annealed and S-annealed Bi_2S_3 films were then estimated to be between 1.24 eV and 1.31 eV. The sub-bandgap IPCE for the unannealed Bi_2S_3 is likely attributed to the electronic transition from the O_i defect states to the CBM (1.10 eV) due to the expected abundance of O_i in the un-annealed film. As for the S-annealed Bi₂S₃, the IPCE at 1000–1100 nm is likely due to transition from the S_i defect states to the CBM (0.93 eV) due to the large amount of S_i expected in the film. Additionally, the products of η_{abs} and η_{sep} at 0.6 V vs. RHE are calculated from the J-V curves to be 16.3% for the S-annealed Bi₂S₃ and 4.0% for the un-annealed (Figure 5b). Moreover, the APCE of S-annealed Bi₂S₃ is higher than that of un-annealed at all wavelengths (Figure 5c). This indicates that the S-annealed Bi_2S_3 has significantly increased charge separation efficiencies as a result of improved photoexcited carrier lifetime by the sulfur vapor annealing. Additionally, η_{sep} at 0.6 V vs. RHE are calculated to be 26.8% for the S-annealed Bi₂S₃ and 10.1% for the un-annealed (Figure 5d).

Figure 5. (a) IPCE and (c) APCE of 10 layers of un-annealed and S-annealed Bi₂S₃ thin films measured at 0.6 V_{RHE} in 0.3 M Na₂S aqueous electrolyte at pH 13. (b) Products of η_{abs} and η_{sep} , and (d) η_{sep} of 10 layers of un-annealed and S-annealed Bi₂S₃ thin films at different potentials measured in 0.3 M Na₂S aqueous electrolyte.

4.2. Sulfide Surface Treatment

The PEC performance of S-annealed Bi₂S₃ thin films was also evaluated by measuring the threeelectrode *J-V* and *J-t* curves in aqueous Na₂S and Na₂SO₃ electrolytes (Figure 6). During the first *J-V* measurements, the photocurrent of S-annealed Bi₂S₃ reaches ~3.93 mA/cm² in 0.3 M Na₂S aqueous electrolyte at 1.0 V_{RHE} as compared to ~0.31 mA/cm² in 0.3 M Na₂SO₃ aqueous electrolyte (Figure 6 a and b). This indicates that the charge separation efficiencies of S-annealed Bi₂S₃ thin film in Na₂S

electrolyte are significantly higher than those in Na₂SO₃ electrolyte, considering that the absorption efficiencies remain the same and that the surface charge transfer efficiencies are comparable for these two electrolytes. When Bi₂S₃ is measured in Na₂S electrolyte, the sulfide ions may fill in sulfur vacancies on the surface of Bi₂S₃ to reduce the active charge recombination sites at the semiconductor/electrolyte interface, which will lead to improved charge separation efficiencies. However, when Bi_2S_3 is measured in Na₂SO₃ electrolyte, the material might be oxidized during the measurements by $S^{2-} + SO_3^{2-} + 2h^+ \rightarrow$ $S_2O_3^{2-}$. The oxidation may create more sulfur vacancies and oxide impurities on the surface of Bi_2S_3 , which introduce a higher concentration of recombination sites at the semiconductor/electrolyte interface. This can be further supported by J-t measurements at 0.6 V_{RHE} and consecutive J-V measurements in Na₂S and Na₂SO₃ electrolytes. The photocurrent of S-annealed Bi₂S₃ increases between the first and third J-Vmeasurements and during the J-t measurement in Na₂S electrolyte (Figure 6 a and c), while it drastically decreases in Na₂SO₃ electrolyte (Figure 6 b and d). This photocurrent enhancement in Na₂S electrolyte can be mainly attributed to the improved charge separation efficiencies, which are likely due to reduced recombination sites at the Bi₂S₃/Na₂S electrolyte interface, as have been discussed. In contrast, the photocurrent degradation in Na₂SO₃ further suggests that Bi_2S_3 might undergo oxidation in the electrolyte. The high stability and photoelectrochemical performance of Bi_2S_3 in Na₂S electrolyte suggest that the material can be potentially applied in a liquid-junction solar cell using polysulfide electrolyte to achieve high photovoltaic performance.

Figure 6. Photoelectrochemical measurements of 10 layers of S-annealed Bi₂S₃ under back illumination. (a) 1^{st} and 3^{rd} *J-V* measurements in 0.3 M Na₂S aqueous electrolyte. (b) 1^{st} and 3^{rd} *J-V* measurements in 0.3 M Na₂SO₃ aqueous electrolyte. (c) *J-t* measurement in 0.3 M Na₂S aqueous electrolyte at 0.6 V_{RHE}. (d) *J-t* measurement in 0.3 M Na₂SO₃ aqueous electrolyte at 0.6 V_{RHE}.

The morphologies of Bi_2S_3 before and after three *J-V* measurements in Na_2SO_3 electrolyte were then characterized by SEM. As shown in Figure 7a. the Bi_2S_3 thin film after 3 times consecutive *J-V* measurements exhibits porous structure as compared to the nonporous structure for the as-annealed film. The drastic change in surface morphology also suggests corrosion or oxidation of the film by Na_2SO_3 electrolyte during the PEC measurements. Moreover, XRD patterns show that the Bi_2S_3 film after consecutive *J-V* measurements in Na₂SO₃ do not contain bulk crystalline impurities as compared to the as-annealed film, which suggests that defects likely form on the surface of the film (Figure 7b). However, the XPS spectra of the Bi₂S₃ films before and after 10 min *J-t* measurements in Na₂SO₃ at 0.6 V_{RHE} exhibit similar characteristics (Figure 7c and Figure 2). The surfaces of both films mainly contain Bi₂S₃ with a small amount of SO_x and S⁰ species. It is likely that the amount of oxides that are formed on the surface during the *J-t* measurements are below the detection limit. Longer duration and/or higher voltages can be used to measure the *J-t* curves of Bi₂S₃ film in Na₂SO₃ electrolyte to study the oxidation of the film by SO_3^{2-} .

Figure 7. (a) and (b) SEM images and XRD patterns of S-annealed Bi_2S_3 before and after 3 times *J-V* measurements in 0.3 M Na₂SO₃ aqueous electrolyte (pH 10.2). (c) Bi 4f/S 2p and S 2s XPS spectra of S-annealed Bi_2S_3 after 10 min *J-t* measurement in 0.3 M Na₂SO₃ at 0.6 V_{RHE}.

The influence of Na₂S on the photoelectrochemical performance of Bi₂S₃ was further evaluated by soaking the S-annealed Bi₂S₃ in 0.3 M Na₂S aqueous solution for 10 min and measuring the three-electrode *J-V* curves in 0.3 M Na₂SO₃ aqueous electrolyte. As shown in Figure 8a, the photocurrent of the Na₂S-treated Bi₂S₃ is higher than that of as-annealed Bi₂S₃. This improvement in photocurrent can further support that sulfide ions fill in sulfur vacancies on the surface of the film to reduce the number of recombination sites. Moreover, by soaking Bi₂S₃ film that was measured in Na₂SO₃ once and then measuring the *J-V* curve of the film again, the photocurrent increases as compared to the first measurement (Figure 8b). In contrast, consecutive *J-V* measurements of Bi₂S₃ in Na₂SO₃ without intermediately soaking the sample in Na₂S will result in decrease of the photocurrent (Figure 6b). These results suggest that the Na₂S soaking treatment can also passivate the oxide impurities that are formed in the PEC measurements in Na₂SO₃ electrolyte. Overall, these results indicate that the sulfide surface treatment can be used as a potential method to passivate surface defects of the as-annealed Bi₂S₃ thin films. In fact, similar effects have been observed for Sb₂S₃, where the performance of the material increases after soaking the film in a solution containing sulfur ions.³⁸

Figure 8. (a) *J-V* curves of S-annealed Bi_2S_3 with and without soaking in 0.3 M Na₂S measured in 0.3 M Na₂SO₃. (b) Blue: 1st *J-V* measurement of Bi_2S_3 measured in 0.3 M Na₂SO₃; red: *J-V* measurement in Na₂SO₃ of the same sample soaked in Na₂S after the sample was measured three times in 0.3 M Na₂SO₃. Note that the Bi_2S_3 samples in (a) and (b) are not synthesized under the same sulfur vapor annealing condition.

The morphologies of the Bi_2S_3 film with and without Na_2S soaking were characterized by SEM. Na_2S -treated Bi_2S_3 exhibits similar morphologies to the as-annealed Bi_2S_3 , which indicates that the improved charge separation is not due to structural changes (Figure 9a). XRD patterns indicate that Na_2S soaking does not change the bulk crystallinity or phase purity of the Bi_2S_3 film (Figure 9b). Moreover, the surface chemical compositions were characterized by XPS, which shows similar characteristics for the film with and without Na_2S soaking (Figure 9c). It is likely that the amount of defects that was passivated by Na_2S soaking is below the detection capability of the XPS. Therefore, more sensitive measurement is needed to elucidate the change in surface properties. It is also recommended that charge dynamics including photocarrier lifetime and mobility of Bi_2S_3 with and without Na_2S soaking can be characterized in the future to elucidate the change in trapping site concentrations.

Figure 9. (a) and (b) SEM images and XRD patterns of S-annealed Bi₂S₃ with and without soaking in Na₂S. (c) Bi 4f/S 2p and S 2s XPS spectra of S-annealed Bi₂S₃ with Na₂S soaking.

4.3. Vacuum Annealing

Vacuum annealing of the S-annealed Bi_2S_3 was attempted in 70 millitorr vacuum at five temperatures ranging from 150 °C to 445 °C to evaporate the elemental sulfur in B₂S₃ films, which may create shallow hole trapping sites to decrease the performance of the material. Since sulfur has a relatively low melting point of 115 °C, it was expected that the elemental sulfur in the film can be removed at sufficiently high temperatures. It was also expected that with increasing vacuum annealing temperature, the amount of elemental sulfur will decrease while the amount of sulfur vacancies will increase. Thus, an optimum PEC performance of the Bi₂S₃ films with vacuum annealing was expected to occur at an intermediate vacuum annealing temperature, at which elemental sulfur defects can be sufficiently removed without creating a large amount of sulfur vacancies. However, J-V measurements in 0.3 M Na₂S aqueous electrolyte of S-annealed Bi₂S₃ with vacuum annealing shows that the photocurrent increases as the vacuum annealing temperature increases from 150 °C to 375 °C and then decreases at 445 °C (Figure 10a). The photocurrents of Bi₂S₃ films annealed in vacuum at 150 °C and 225 °C are lower than that of the S-annealed sample, while those annealed in vacuum at 300 °C and 375 °C are higher (Figure 10a). The S-annealed Bi₂S₃ film annealed in vacuum at 445 $^{\circ}$ C changes from opaque black to transparent, which suggests decomposition of the film. Moreover, XPS of the S-annealed Bi₂S₃ with vacuum annealing at 375 °C (the best-performing sample) shows that vacuum annealing introduces more Bi_2O_3 impurities without removing the elemental sulfur (Figure 10b). Oxide impurities in the form of oxygen interstitials should decrease the PEC performance of Bi_2S_3 by creating hole trapping sites. Thus, the present vacuum annealing results are not consistent with what we expected. One possibility is that vacuum annealing at higher temperatures introduces more hydrogen impurities to Bi₂S₃, which increase the conductivity of the film, as predicted by the DFT density of calculations. However, more experimental evidence is needed to elucidate the discrepancy between our expectation and measured PEC results.

Figure 10. (a) *J-V* measurements of as-annealed Bi_2S_3 and S-annealed Bi_2S_3 with vacuum annealing at 70 millitorr at different temperatures. (b) Bi 4f/S 2p and S 2s XPS spectra of S-annealed Bi_2S_3 with vacuum annealing at 375 °C.

5. CONCLUSIONS

We have synthesized Bi₂S₃ thin film photoelectrode via a combination of solution deposition and sulfur vapor annealing. We have identified four major advantages of the annealing process. Firstly, the sulfur vapor annealing improves crystallinity of the solution-deposited Bi₂S₃ nanocrystals by increasing the crystallite size from 10 nm to 50 nm. Secondly, introducing sulfur vapor during high-temperature annealing prevents formation of Bi₂O₃ bulk crystal impurities and leads to phase-pure Bi₂S₃. Thirdly, sulfur vapor annealing converts the surface oxides of the un-annealed film to sulfides. Lastly, sulfur vapor annealing may fill in sulfur vacancies of the un-annealed Bi₂S₃ to significantly reduce the concentration of mid-gap charge recombination sites, resulting in longer photoexcited carrier lifetimes. Overall, the Sannealed Bi₂S₃ exhibits significantly enhanced light absorption and charge separation efficiencies, which makes it promising for photovoltaic and photoelectrochemical energy conversion applications. The sulfur vapor annealing method could be utilized as a general approach to process solution-deposited metal sulfide materials to enhance the optoelectronic performance of these promising materials. Moreover, DFT density of states calculations show that hydrogen doping creates effective donor levels at the conduction band edge of Bi₂S₃, which should increase electron conductivity without introducing recombination sites. We will explore the influence of hydrogen impurities on the optoelectronic properties and performance of the material in future work.

We have also attempted sulfide surface treatment and vacuum annealing to further improve the optoelectronic performance of the S-annealed Bi₂S₃. Both Na₂S-treated and vacuum-annealed Bi₂S₃ thin films demonstrate further improvement in charge separation efficiencies. For the Na₂S treatment, it is likely that the sulfide ions fill in sulfur vacancies and displace anionic defects of S-annealed Bi₂S₃ films, which may increase the photoexcited carrier lifetime and electron mobility. However, more experimental evidence is needed to support this hypothesis. For the vacuum annealing, more experiments coupled with

XPS characterizations are needed to elucidate the improvement in photoelectrochemical performance. Future work should also be focused on fabricating Bi_2S_3 into solid-state or liquid-junction photovoltaic devices and studying chemical properties and charge dynamics at the interfaces.

6. REFERENCES

1. Lewis, N. S. Science 2007, 315, (5813), 798-801.

2. Chang, J. A.; Rhee, J. H.; Im, S. H.; Lee, Y. H.; Kim, H.-j.; Seok, S. I.; Nazeeruddin, M. K.; Gratzel, M. *Nano Letters* **2010**, 10, (7), 2609-2612.

3. Moon, S.-J.; Itzhaik, Y.; Yum, J.-H.; Zakeeruddin, S. M.; Hodes, G.; Grätzel, M. *The Journal of Physical Chemistry Letters* **2010**, 1, (10), 1524-1527.

4. Boix, P. P.; Larramona, G.; Jacob, A.; Delatouche, B.; Mora-Seró, I.; Bisquert, J. *The Journal of Physical Chemistry C* **2012**, 116, (1), 1579-1587.

5. Ito, S.; Tsujimoto, K.; Nguyen, D.-C.; Manabe, K.; Nishino, H. *International Journal of Hydrogen Energy* **2013**, 38, (36), 16749-16754.

6. Englman, T.; Terkieltaub, E.; Etgar, L. *The Journal of Physical Chemistry C* **2015**, 119, (23), 12904-12909.

Lei, H.; Yang, G.; Guo, Y.; Xiong, L.; Qin, P.; Dai, X.; Zheng, X.; Ke, W.; Tao, H.; Chen, Z.; Li,
 B.; Fang, G. *Physical Chemistry Chemical Physics* 2016, 18, (24), 16436-16443.

8. Kim, B.-S.; Neo, D. C. J.; Hou, B.; Park, J. B.; Cho, Y.; Zhang, N.; Hong, J.; Pak, S.; Lee, S.; Sohn, J. I.; Assender, H. E.; Watt, A. A. R.; Cha, S.; Kim, J. M. *ACS Applied Materials & Interfaces* **2016**, 8, (22), 13902-13908.

Lan, X.; Voznyy, O.; Kiani, A.; García de Arquer, F. P.; Abbas, A. S.; Kim, G.-H.; Liu, M.; Yang, Z.; Walters, G.; Xu, J.; Yuan, M.; Ning, Z.; Fan, F.; Kanjanaboos, P.; Kramer, I.; Zhitomirsky, D.; Lee, P.; Perelgut, A.; Hoogland, S.; Sargent, E. H. *Advanced Materials* **2016**, 28, (2), 299-304.

10. Peter, L. M.; Wijayantha, K. G. U.; Riley, D. J.; Waggett, J. P. *The Journal of Physical Chemistry B* **2003**, 107, (33), 8378-8381.

11. He, H.; Berglund, S. P.; Xiao, P.; Chemelewski, W. D.; Zhang, Y.; Mullins, C. B. *Journal of Materials Chemistry A* **2013**, 1, (41), 12826-12834.

12. Lin, Y.-C.; Lee, M.-W. Journal of The Electrochemical Society 2014, 161, (1), H1-H5.

13. Zeng, Q.; Bai, J.; Li, J.; Li, Y.; Li, X.; Zhou, B. Nano Energy **2014**, 9, 152-160.

- 14. Ai, G.; Mo, R.; Chen, Q.; Xu, H.; Yang, S.; Li, H.; Zhong, J. *RSC Advances* **2015**, *5*, (18), 13544-13549.
- 15. Liu, C.; Yang, Y.; Li, W.; Li, J.; Li, Y.; Shi, Q.; Chen, Q. ACS Applied Materials & Interfaces **2015**, 7, (20), 10763-10770.
- 16. Liu, C.; Yang, Y.; Li, W.; Li, J.; Li, Y.; Chen, Q. Scientific Reports 2016, 6, 23451.
- Cao, Y.; Bernechea, M.; Maclachlan, A.; Zardetto, V.; Creatore, M.; Haque, S. A.; Konstantatos, G. *Chemistry of Materials* 2015, 27, (10), 3700-3706.
- 18. Liu, C.; Li, J.; Li, Y.; Li, W.; Yang, Y.; Chen, Q. *RSC Advances* **2015**, *5*, (88), 71692-71698.
- 19. Whittaker-Brooks, L.; Gao, J.; Hailey, A. K.; Thomas, C. R.; Yao, N.; Loo, Y.-L. *Journal of Materials Chemistry C* 2015, 3, (11), 2686-2692.
- 20. Peng, X. S.; Meng, G. W.; Zhang, J.; Zhao, L. X.; Wang, X. F.; Wang, Y. W.; Zhang, L. D. *Journal* of Physics D: Applied Physics **2001**, 34, (22), 3224.
- 21. Gao, C.; Shen, H.; Sun, L.; Shen, Z. Applied Surface Science **2011**, 257, (17), 7529-7533.
- 22. Hussain, A.; Begum, A.; Rahman, A. *Materials Science in Semiconductor Processing* **2014**, 21, 74-81.
- 23. Zhao, Y.; Chua, K. T. E.; Gan, C. K.; Zhang, J.; Peng, B.; Peng, Z.; Xiong, Q. *Physical Review B* **2011**, 84, (20), 205330.
- 24. Lindblad, R.; Cappel, U. B.; O'Mahony, F. T. F.; Siegbahn, H.; Johansson, E. M. J.; Haque, S. A.; Rensmo, H. *Physical Chemistry Chemical Physics* **2014**, 16, (32), 17099-17107.
- 25. Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, (16), 11169-11186.
- 26. Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, (1), 15-50.
- 27. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, (18), 3865-3868.
- Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais,
 C. *Phys. Rev. B* 1992, 46, (11), 6671-6687.
- 29. Blöchl, P. E. Phys. Rev. B 1994, 50, (24), 17953-17979.
- 30. Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, (3), 1758-1775.
- 31. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. *The Journal of Chemical Physics* **2010**, 132, (15), 154104.
- 32. Morgan, W. E.; Stec, W. J.; Van Wazer, J. R. *Inorganic Chemistry* **1973**, 12, (4), 953-955.

33. Aresti, M.; Saba, M.; Piras, R.; Marongiu, D.; Mula, G.; Quochi, F.; Mura, A.; Cannas, C.; Mureddu, M.; Ardu, A.; Ennas, G.; Calzia, V.; Mattoni, A.; Musinu, A.; Bongiovanni, G. *Advanced Functional Materials* **2014**, 24, (22), 3341-3350.

- 34. Calzia, V.; Piras, R.; Ardu, A.; Musinu, A.; Saba, M.; Bongiovanni, G.; Mattoni, A. *The Journal* of Physical Chemistry C **2015**, 119, (29), 16913-16919.
- 35. Han, D.; Du, M.-H.; Dai, C.-M.; Sun, D.; Chen, S. *Journal of Materials Chemistry A* **2017**, *5*, (13), 6200-6210.
- 36. Zhan, S.-Q.; Wan, H.; Xu, L.; Huang, W.-Q.; Huang, G.-F.; Long, J.-P.; Peng, P. *International Journal of Modern Physics B* **2014**, 28, (23), 1450150.
- 37. Cooper, J. K.; Scott, S. B.; Ling, Y.; Yang, J.; Hao, S.; Li, Y.; Toma, F. M.; Stutzmann, M.; Lakshmi, K. V.; Sharp, I. D. *Chemistry of Materials* **2016**, 28, (16), 5761-5771.
- 38. Choi, Y. C.; Lee, D. U.; Noh, J. H.; Kim, E. K.; Seok, S. I. *Advanced Functional Materials* **2014**, 24, (23), 3587-3592.

7. APPENDIX

Figure A1. Spectral output of illumination sources used in this work measured with calibrated spectrometers. (a) Spectral irradiance of the class-AAA Solar Simulator (81.7 mW/cm² overall intensity), compared to the air mass 1.5 global (AM1.5G, ASTM-G173-3) standard. (b) Irradiance of Xe lamp with monochromator, used for incident photon-to-current conversion efficiency (IPCE) measurements.

Figure A2. O 1s XPS of un-annealed, Ar-annealed, and S-annealed Bi₂S₃ thin films.

Figure A3. Band Structure of pristine Bi_2S_3 .

Figure A4. *J-V* measurements in 0.3 M Na₂S aqueous electrolyte. (a) 10 layers of Bi_2S_3 thin films without annealing and with sulfur vapor annealing at different temperatures. (b) Bi_2S_3 thin films with different thickness annealed at 445 °C in sulfur vapor.

Figure A5. Absorption coefficients of un-annealed and S-annealed Bi₂S₃ thin films.