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Abstract

In this thesis we present a theoretical anaylsis of the instability in a cold atom in-

terferometer. Interferometers are often used to split a signal (e.g. optical beam,

matter wave), where each part of the signal evolves separately, then the interferom-

eter recombines the signal. Interference effects from the recombination can be used

to extract information about the different environments that the split signal tra-

versed. The interferometer considered here splits a matter wave, the wave function

of a Bose-Einstein Condensate, by using a guiding potential and then recombines

the matter wave. The recombination process is shown to be unstable and the nature

of the instability is characterized.
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Chapter 1

Introduction

1.1 Thesis Overview

In this thesis we present a theoretical anaylsis of the instability in a cold atom in-

terferometer. Interferometers are often used to split a signal (e.g. optical beam,

matter wave), where each part of the signal evolves separately, then the interferom-

eter recombines the signal. Interference effects from the recombination can be used

to extract information about the different environments that the split signal tra-

versed. The interferometer considered here splits a matter wave, the wave function

of a Bose-Einstein Condensate, by using a guiding potential and then recombines

the matter wave. The condensate is initally trapped in a single well (parabola-like)

potential and then split into two wells. The well separation allows the phase of the

wave function to evolve independently in each well, which in turn causes interference

upon recombination. The recombination process is shown to be unstable and the

nature of the instability is characterized.

In Chapter 1 we give a brief history of Bose-Einstein Condensation (BEC). Chap-

ter 2 presents the theoretical background of a BEC. Chapter 3 provides a descrip-

tion of the mathematical model used to study an atomic interferometer. Chapter

4 demonstrates the instability reported in this thesis and presents an analysis on
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the nature of the instability. Chapter 5 summarizes the results and the Appendix

describes the numerical methods used to solve the various computational problems

encountered.

1.2 A Short History of Bose-Einstein Condensa-

tion

In the early 1920s Satyendra Nath Bose was studying the idea that the light came

in discrete packets (photons). Bose gave a derivation of Planck’s law, and to do

so he postulated the rules for deciding when two photons should be counted as

either identical or different. These rules have come to be known as ”Bose-Einstein

statistics” [1].

Einstein’s name comes into the picture because Bose couldn’t get his ideas pub-

lished in the journals of the day, so he sent them to Einstein. Einstein liked the

ideas, got them published, and extended on them. He postulated that the same rules

might apply to atoms [2]. He found that a gas of bosons behaves rather different

from a classical gas at very low temperatures. Below some critical temperature, a

macroscopic fraction of the atoms occupy a single quantum state. Typical critical

temperatures range from 20nK to 1µK [3]. This transition is known as a Bose-

Einstein Condensation (BEC).

The BEC is unlike any other form of matter in the universe in that it behaves as

a single quantum entity despite its size and density. A BEC’s size can reach up to

1mm and typical experimental densities are as high as 1015atoms/cm3. This is one

reason why BEC’s are being intensely studied because they might provide a useful

means to test several fundamental issues of quantum mechanics. This thesis looks

at one such experimental set up, a cold atom interferometer [17, 18].
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After Einstein’s treatment of an ideal gas of bosonic atoms, London (1938) con-

sidered the super-fluidity of helium as an example of BEC. The theory of BEC also

led to the first successful analysis of super-conductivity [7]. Although BEC was

predicted in 1924 [1, 2] it wasn’t observed until 1995, in a series of experiments

with clouds of magnetically trapped alkali atoms at JILA [4], MIT [5] and RICE

[6]. BEC’s are also being considered for use on cold atom guides and microchips

[19, 20, 21, 22].
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Chapter 2

BEC Theory

2.1 A Bose Gas

In this section we present an overview of a Bose gas and since this thesis examines

the interference of matter waves, we will first give a brief qualitative explanation of

what are matter waves.

In classical physics a particle has associated with it a position and momentum.

However, this description is known to be incomplete. At the quantum mechanical

level we associate wave-like properties to a particle. This comes by way of what

is known as a wave function, which typically satisfies a Schrodinger type equation.

The characteristic wavelength of the particle is given by the de Broglie wavelength,

λ =
h

mv

where h is Planck’s constant, m is the particle’s mass, and v is the particle’s veloc-

ity. However, these two seemingly paradoxical properties of classical particles and

quantum mechanical waves are reconciled by the particle-wave duality. Namely,

when a particle is detected, it is in fact a point-like particle that is detected, but the

particle otherwise propagates like a wave. Consequently, all matter can be thought
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of as a wave when we aren’t looking, but as soon as you try and detect it, out comes

a particle.

However, even though all matter has these wave-like properties, we don’t ex-

perience them everyday because the typical de Broglie wavelength of matter is so

small that it is beyond human perception. The table shows the typical wavelength

of various physical processes that are described by waves.

Typical wavelengths (meters)

AM Radio 100

Sound 1

Light 10−6

Matter waves 10−10

Therefore, the wave nature of matter waves only becomes evident when explain-

ing microscopic physics. However, since BEC is concerned with matter at very cold

temperatures (micro-Kelvins) it deals with matter waves with long wavelengths.

This is seen from the de Broglie relation where the wavelength of a particle is in-

versely proportional to it’s velocity; and, since there is a direct relationship between

the temperature, T , and the kinetic energy of a particle, mv2 = kT , where k is

Boltzmann’s constant, then clearly λ ∝ 1√
T
. So as the temperature is lowered the

de Broglie wavelength is increased.

Bose-Einstein condensation is a quantum statistics phenomenon that occurs in

a collection of bosons (particles with integer spin) when the de Broglie wavelength

of the particles is greater than the average distance, d, between particles. Since λ is

inversely proportional to square root temperature then λ v d occurs at some critical

temperature, Tc.

For a thorough derivation of Tc see [13]. The critical BEC phase transition

temperature is defined as the highest temperature at which a macroscopic number
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of atoms occupy the lowest energy state. Einstein considered N non-interacting

bosonic atoms in a box of volume L3 with periodic boundary conditions. He showed

that in the thermodynamic limit, given by N,L→∞ with N
L3 = ρ = const, a phase

transition occurs at Tc given by Tc = 2π~2

mk

(
ρ

ζ(3/2)

)
, where ρ is the mean density of

particles in the box and ζ is the Riemann zeta function.

In the BEC regime the atoms in the gas behave coherently, as one collectively

wave. Therefore, a BEC of atoms differs from a classical gas of atoms much like laser

light differs from light bulb. A classical gas (light bulb) contains atoms (photons)

each of which has a different momentum, while in a BEC (laser), all the atoms

(photons) have the same momentum, within the uncertainty principle. It is this

collective behaviour that is described by a wave function governed by the Gross-

Pitaevskii equation, derived in the next section.

2.2 Gross Pitaevskii Equation

In this section we derive the governing equation for a Bose-Einstein condensate [12].

We begin with the N-body Hamiltonian for a system of N bosonic atoms. Then, we

employ the ”mean field approximation”, where an exact description of the N-body

system is replaced with a single classical field. We also assume that there are no

thermal excitations, which implies all the atoms are in the condensate. The resulting

expression yields the Gross-Pitaevskii equation, a nonlinear Schrodinger equation

which governs the evolution for the wave function of the condensate.

The N-body Hamiltonian for a collection of interacting bosons trapped by an
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external potential Vext is

Ĥ =

∫
drΨ̂†(r)

[
− ~

2

2m
∇2 + Vext(r)

]
Ψ̂(r)+

1

2

∫
drdr′Ψ̂†(r)Ψ̂†(r′)V (r−r′)Ψ̂(r′)Ψ̂(r)

(2.1)

where V (r − r′) is the two-body inter-atomic potential and Ψ̂†(r) and Ψ̂(r) are

the bosonic field operators that create and destroy a particle located at r. All the

properties of the system (e.g. ground state, time evolution) can be extracted from

Eq. (2.1). However, calculating them directly from Eq. (2.1) can be analytically and

computational burdensome for a large number of particles. Therefore, an alternative

mean-field approximation, developed by Bogoliubov [11], is used to circumvent this

problem. This approach not only simplifies the computational burden but it also

simplifies the understanding of the physics of the problem by reducing the problem

to just a few system parameters that have a simple physical interpretation.

The basic idea behind the mean-field approach is to factor out the contribution

due to the condensate from the bosonic field operator, which is defined as a linear

superposition given by Ψ̂(r) =
∑

i Ψi(r)ai, where Ψi(r) are a complete set of or-

thonormal single particle wave functions (e.g. plane waves) and ai are the particle

destruction operators which destroy particles with the wave functio Ψi. The creation

and destruction operators are defined in a Fock space by

a†i |n0, ..., ni, ...〉 =
√
ni + 1|n0, ..., ni + 1, ...〉, (2.2)

ai|n0, ..., ni, ...〉 =
√
ni|n0, ..., ni − 1, ...〉, (2.3)

where ni is the number of atoms in state i and is the eigenvalue of n̂i = a†iai. They
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also satisfy the commutation relations

[
ai, a

†
j

]
= δi,j,

[ai, aj] = 0,[
a†i , a

†
j

]
= 0.

The mean-field approximation then decomposes the field operator, in the Heisenberg

representation, as

Ψ̂(r, t) = Ψ(r, t) + Ψ̂′(r, t), (2.4)

where Ψ(r, t) = 〈Ψ̂(r, t)〉 is a complex function and corresponds to the condensate

wave function and Ψ̂′(r, t) destroys a particle not in the condensate. Ψ̂′(r, t) is

a small perturbation with 〈Ψ̂′(r, t)〉 = 0. The evolution of the condensate wave

function, Ψ(r, t), is derived from the Heisenberg equation of motion for the field

operator Ψ̂(r, t) using the N-body Hamiltonian Eq. (2.1),

i~
∂

∂t
Ψ̂(r, t) = [Ψ̂, Ĥ] (2.5)

=

[
− ~

2

2m
∇2 + Vext(r) +

∫
dr′Ψ̂†(r′, t)V (r′ − r)Ψ̂(r′, t)

]
Ψ̂(r, t).(2.6)

The interatomic potential used, V (r′ − r), assumes only low-energy two-body col-

lisions are dominant and they are characterized by the s-wave scattering length, a,

which for a repulsive BEC is given by a > 0. The s-wave scattering length is the

characteristic size of a particle that other particles experience when colliding with

the particle. Therefore, we set

V (r′ − r) = gδ(r′ − r), (2.7)
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where g is the interatomic interaction strength, defined as g = 4π~2a
m

, ~ is Planck’s

constant, a is the scattering lenth, and m is the atomic mass.

Finally, since we assume that there are no thermal excitations and all the atoms

are in the condensate, then we ignore the second term in Eq. (2.4) and then simply

replace the quantum field operator with the classical field,

Ψ̂(r, t)→ Ψ(r, t), (2.8)

which yields the Gross-Pitaevskii Equation,

i~
∂

∂t
Ψ(r, t) = − ~

2

2m
∇2Ψ(r, t) + V (r)Ψ(r, t) + g|Ψ(r, t)|2Ψ(r, t). (2.9)

The GPE is accurate assuming that a much smaller than then average inter-

particle distance. In other words, the effective scattering size of each atom, is much

smaller than the distance between atoms, so the only interactions occuring are atom-

atom collisions. Also, using Eq. (2.8) is valid only at zero temperature. In other

words, there are no thermal excitations of the gas and all the atoms remain in the

condensate. However, the GPE is approximately valid as long as the temperature

is well below the critical temperature required for a BEC transition to occur.

The use of GPE may seem puzzling at first since a wave function that was a

function of the N position vectors of the N atoms has been replaced by a wave

function that is a function of only one set of spatial coordinates. However, an intu-

itive justification is that an analogous procedure occurs in classical electro-magnetic

theory, where a description of the individuals photons is foregone and is instead

replaced by a single electro-magnetic field [15].
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Chapter 3

Interferometer Model

3.1 Model Description

In this section we describe the mathematical model of the condensate interferometer

to be analyzed later on [16, 17, 18]. The interferometric process is depicted in Fig.

(3.1). Splitting a condensate into two parts is achieved using a time dependent

guiding potential, V . The potential begins with a single well (i.e. parabolic). As

the system evolves in time the singe well is split into two symmetric wells. The

process of splitting the well is adiabatic. In other words it is slow enough so that

higher modes of the potential are not excited.

The condensate splitting occurs in one dimension while motion along the other

two dimension is tightly confined. The condensate is assumed to be initially in the

weakly nonlinear (N < 1) ground state of the single well, which is a solution of

µψ0 = − ~
2

2m
∇2ψ0 + V ψ0 + g|ψ0|2ψ0, (3.1)

where µ is the chemical potential, that is, the amount of energy required to add or

remove one atom from the BEC.

The potential is then adiabatically split into a double well. During separation,
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Figure 3.1: Schematic view of interferometer model.
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the system evolves into a symmetric wave function that spreads over the two poten-

tial wells. Likewise, had the condensate been prepared in an anti-symmetric state,

it would evolve into an anti-symmetric state that spreads out over the two wells. In

other words, the separation process, as well as the recombination process, preserves

the parity of the wave function, because the Hamiltonian is symmetric throughout

the whole process. Therefore, it will not cause transitions between states of opposite

symmetry.

The evolution of this one-dimensional BEC, in the mean-field approximation, is

governed by a 1D GPE which is obtained by projecting the 3D GPE, Eq. (2.9),

onto the lowest transverse mode of the linear guiding potential, φ0(y, z), and which

satisfies

ω0φ0 = − ~
2

2m
∇2
⊥φ0 + V⊥(y, z)φ0,

where ∇2
⊥ is the two-dimensional Laplacian in the y and z directions and V⊥(y, z)

is the potential used to trap the condensate in the transverse directions. To derive

the governing 1D GPE, we begin by assuming the wave function is separable and of

the form,

ψ3D(x, y, z, t) = φ0(y, z)ψ1D(x, t), (3.2)

then substitute Eq. (3.2) into Eq. (2.9), multiply by φ∗0(y, z) and integrate over the

entire range of y and z. Now, using the orthonormality of the potential’s eigenmodes,

∫ ∞

−∞
dy

∫ ∞

−∞
dz|φ0|2 = 1,

yields

i~
∂

∂t
ψ(x, t) = − ~

2

2m

∂2

∂x2
ψ(x, t) + V (x, t)ψ(x, t) + gI |ψ(x, t)|2ψ(x, t), (3.3)
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where

I =

∫ ∞

−∞
dy

∫ ∞

−∞
dz|φ0|4,

and the 1D label has been dropped. The GPE considered in the analysis will actually

be a non-dimensional form of Eq. (3.3),

i~
∂

∂t′
ψ = −1

2

∂2

∂x′2
ψ + V ′ψ +N |ψ|2ψ (3.4)

where the equation has been normalized by dividing through by ~ω0 and the new

variables are given by,

x′ =
x

a0
,

t′ = ω0t,

V ′ =
V

~ω0
,

N =
g

~ω0
.

a0 =

(
~

mω0

)1
2

.

Also, from here on in the primes will be dropped.

The interferometer’s splitting and recombination process is modeled in the guid-

ing potential V (x, t), Fig. (3.2). For our analysis we use a guiding potential of the

form

V (x, t) =

[
1 +

(
β(t)− x2

2

)2
] 1

2

,

where β(t) is a time dependent parameter that controls the separation of the two

wells. Since the minima of V (x, t) are at x = ±√2β, then the separation distance

of the two wells is given by d = 2
√

2β. This model was chosen because it easily
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models the desired parabolic shape needed to split and recombine the condensate.

3.2 Adiabatic Recombination

The validity of the analysis that follows is based on the assumption that the inter-

ferometer model used is adiabatic. That is, the condensate is split and recombined

slow enough so that modes not in the initial condensate are not excited. The pa-

rameters that characterize the guiding potential used were chosen to satisfy these

requirements. The following is a brief explanation of the adiabatic theorem [14].

For a time dependent Hamiltonian, H(t), which satisfies the Schrodinger equa-

tion

i~
∂ψ

∂t
= H(t)ψ, (3.5)

and has a given orthonormal, nondegenerate, discrete spectrum

H(t)φn(t) = Enφn(t). (3.6)

Given ψ(t = 0), then the solution of Eq. (3.5) can be written

ψ = Σnan(t)φn(t)exp

[
− i

~

∫ t

dt′En(t
′
)

]
. (3.7)

Substituting Eq. (3.7) into Eq. (3.5) and using the orthonormality of the eigenfunc-

tions gives a system ODEs for the coefficients an,

∂ak

∂t
= Σn6=kan

[
exp

(
i

~

∫ t

dt′(Ek − En)(t
′
)

)] ∫ t
dt′φ∗k

(
∂H
∂t

)
φn

Ek − En
, (3.8)

where Ek = ~ωk. This set of equation for all k’s is equivalent to the Schrodinger

equation, Eq. (3.5). Therefore, in order for additional modes to not be excited the
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Figure 3.2: The potential well at time t.
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adiabatic approximation requires all oscillating terms in Eq. (3.8) be negligible. In

order to do so the last term in Eq. (3.8) must be much smaller than one. Con-

sequently, the frequency differences ωk − ωn must be larger than the inverse time

associated with change in the system. So, if the wave function is placed in the k’th

eigenstate of the initial Hamiltonian, then at time t it is in the k’th eigenstate of

the Hamiltonian at time t. Therefore, th control parameter β(t), must be chosen so

that additional modes are not excited and the above criteria are met.

16



Chapter 4

Analysis

4.1 Interferometer Instability

In this section we demonstrate the instability that is present in the interferometer

model. In order to do so we will simulate the recombination process and show

the instability growth of one of the weak eigenmodes of the condensate. That is,

when the condensate is split and recombined adiabatically, one expects that if the

recombination is ”slow” enough, then the condensate will map onto the appropriate

eigenmode of the single well, where the ”appropriate” eigenmode is defined later.

The condensate is initially taken to be in a singe well. That is, the condensate

is taken to be initially in the lowest nonlinear mode of the potential

V (x, t) =

[
1 +

(
β(t)− x2

2

)2
] 1

2

,

with β = 0. Figure (4.1) shows this lowest eigenstate which satisfies,

µψ0 = − ~
2

2m

∂2

∂x2
ψ0 + V ψ0 +N |ψ0|2ψ0, (4.1)

and has an eigenvalue of µ = 1.4684.

17



−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

x − coordinate

|ψ
|2

Figure 4.1: The lowest nonlinear single well mode.

Then β is increased and the condensate is spread out over the two wells. The

separation is continued until there is a relative phase shift between the two wells close

to π. Since β determines the separation between the two wells in the interferometer,

the recombination process is modeled by using the following form for β,

β(t) = A ln[exp(−t/T ) + 1], (4.2)

where A and T are constants that determine the separation of the wells and the

rate of recombination, respectively, and are chosen so as to ensure the process is

adiabatic. The values A = 3 and T = 90 are used. Figure (4.2) shows that Eq.

(4.2) allows both wells to merge linearly for |t| � 0.

Figure (4.3) shows the condensate density before and after the wells have recom-

bined. However, due to the system’s weak nonlinearity, prior to recombination this

wave function is qualitatively similar to the first anti-symmetric linear mode of the
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Figure 4.2: Recombination control parameter, β.

potential V , which satisfies

λφ0 = −1

2

∂2

∂x2
φ0 + V φ0. (4.3)

Since the recombination is adiabatic the wave function should map onto the lowest

anti-symmetric mode of the single-well potential preserving its odd parity. However,

Fig. (4.3) shows that this is not the case. Instead, the anti-symmetric parity is

broken and the wave function is a combination of several modes. This break in

symmetry is the instability observed and will be explained in the next section.

4.2 Modal Analysis

In this section we present an analysis of the instability of the interferometric re-

combination presented in the last section. The interferometer adiabatically splits

the wave function into two wells with a guiding potential. The wave function then

develops in each well independently. Consequently, the wave function in each well
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Figure 4.3: Condensate density before and after the recombination.

develops a different phase over time. This phase difference then produces interfer-

ence upon recombination.

From the previous section, the condensate is loaded into the interferometer in

the lowest (symmetric) nonlinear mode. The system then evolves and recombination

is designed to occur when interference effects are at their greatest, namely when the

phase difference is close to π. The condensate is then left predominantly in the

first excited (anti-symmetric) state, but there’s is still a small component due to

the ground state. The instability will be shown to be caused by the weak nonlinear

coupling of the strong first excited state to the weak ground state. The coupling

causes the ground state to be amplified and depending upon it’s initial strength

it can potentially reach the same order of magnitude as the excited state. This

instability is manifested in the anti-symmetry of the wave function being broken

after recombination.

The evolution of the condensate is described by a 1D GPE.

i
∂

∂t
ψ(x, t) =

[
−1

2

∂2

∂x2
+ V (x, t) +N |Ψ|2

]
ψ(x, t). (4.4)

20



where V is the guiding potential, time is normalized to the characteristic eigenfre-

quency ω0 , x is normalized to the characteristic length
(

~

ω0m

)1/2

, m is the atomic

mass, and N is the normalized nonlinearity parameter.

In order to study the stability of the interferometer we perform a modal analysis

on Eq. (4.4). First we decompose the wave function with a complete set of linear

eigenmodes, φn(x, β), of the guiding potential which satisfy

ωnφn(x, β) = −1

2
∇2φn(x, β) + V (x, t)φn(x, β), (4.5)

where ωn are their associated eigenfrequencies and both φn(x, β) and ωn paramet-

rically depend on β . So, we set

ψ(x, t) =
∞∑

n=0

An(t)φn(x, β), (4.6)

An(t) =

∫
dxψ(x, t)φn(x, β). (4.7)

Substituting ψ(x, t) into Eq. (4.4) gives a system of equations for the mode ampli-

tudes

i
d

dt
An = ωnAn +N

∑
k,l,m

κnklmAkA
∗
lAm, (4.8)

where the overlap integrals are given by

κnklm =

∫
dxφnφkφlφm, (4.9)

and they show the degree of overlap between different potential eigenmodes. Fig.

(4.4) and (4.5) show the overlap integrals κ1111, κ1122, and κ2222, and the difference

in eigenfrequencies, ω2 − ω1, which will be the primary quantities of interest used

in later sections. Both are easily computed from Eq. (4.5) with a second order
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Figure 4.4: Overlap integrals.

discretization, where β is treated as a parameter.

Since upon recombination the condensate is predominantly in the lowest anti-

symmetric nonlinear mode, then we expect that the primary contribution to the

modal decomposition will be due to the lowest anti-symmetric linear mode, with

a small perturbation being caused by the lowest symmetric mode. Therefore we

assume that only two equations remain from Eq. (4.8)

i
d

dt
A1 = ω1A1 +Nκ1111|A1|2A1 + 2Nκ1122|A2|2A1 +Nκ1122A

2
2A

∗
1, (4.10)

i
d

dt
A2 = ω2A2 +Nκ2222|A2|2A2 + 2Nκ1122|A1|2A2 +Nκ1122A

2
1A

∗
2. (4.11)

In order to better demonstrate the instability presented in the last section, Eq.

(4.10) and (4.11) were solved numerically for a number of cases. Figures (4.6) - (4.9)

show the solutions of the modulus squared of the first two modal coefficients. A1 is

the coefficient for the first symmetric mode and A2 is the coefficient for the first anti-

symmetric mode. In order to model the case being considered we examine several
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initial conditions |A1|2(0) = 10−4, 10−5, 10−7, and 10−8. |A2|2(0) is determined from

the normalization constraint |A1|2 + |A2|2 = 1.

All four figures show that |A1|2 grows exponentially during the initial recombina-

tion and then levels off as the condensate evolves in the single well, t > 0. However,

Fig. (4.6) and (4.7) show that for sufficiently large initial values of |A1|2 the expo-

nential growth of A1 can cause it to grow to the same order of magnitude of the

initially dominant mode, A2. Also, Fig. (4.8) and (4.9) show that for sufficiently

small initial values of |A1|2, even though A1 grows exponentially, it levels off several

orders of magnitude below A2.

Whether or not the instability overwhelms the system clearly depends on the

initialization of the condensate. In order to gain some insight on how to design

an interferometer that avoids this instability we notice that the exponential growth

seems to only occur during certain regions of the recombination; that is, the weak

mode grows but then levels off. This indicates that the instability only occurs

during certain values of the potential control parameter β. In order to verify this we
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Figure 4.6: First two modal decomposition coefficients, |A1|2(0) = 10−4.
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Figure 4.7: First two modal decomposition coefficients, |A1|2(0) = 10−5.
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Figure 4.8: First two modal decomposition coefficients, |A1|2(0) = 10−7.
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Figure 4.9: First two modal decomposition coefficients, |A1|2(0) = 10−8.
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compute the solutions of Eq. (4.10) and (4.11) for various fixed values of β. In other

words, instead of modeling the recombination process dynamically, we will consider

the static case where the two wells are running in parallel at a fixed distance, 2
√

2β.

Then the value of β is varied. Figures (4.10) - (4.17) show the solutions of |A1|2 and

|A2|2 for β = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0. The results show that for β

values of about 2 to 3 |A1|2 has large oscillations, while below this region the solutions

remain small and periodic. Above this region the solutions grow exponentially but

the period of oscillation is large, thereby not giving the instability enough time to

grow significantly. In order to precisely define this instability region the next section

will solve for the growth rate of the weak mode as a function of β.

4.3 Stability Analysis

The growth rate of the instability is computed here by both a rigorous perturba-

tion of Eq. (4.4) and a simpler approximation to the modal equations Eq. (4.10)

and (4.11). However, both methods give qualitatively similar results, although the

former has a wider range of applicability.

To compute the growth rate we assume that the instability is caused by a small

perturbation δ(x, t), which perturbs the large first anti-symmetric eigenmode, φ(x).

Therefore, let

ψ = (φ(x) + δ(x, t))e−iµt, (4.12)

and substitute into

i
∂

∂t
ψ(x, t) =

[
−1

2

∂2

∂x2
+ V (x, t) +N |Ψ|2

]
ψ(x, t). (4.13)
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Figure 4.10: First two modal decomposition coefficients, β = 0.5.
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Figure 4.11: First two modal decomposition coefficients, β = 1.0.
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Figure 4.12: First two modal decomposition coefficients, β = 1.5.
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Figure 4.13: First two modal decomposition coefficients, β = 2.0.
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Figure 4.14: First two modal decomposition coefficients, β = 2.5.
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Figure 4.15: First two modal decomposition coefficients, β = 3.0.
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Figure 4.16: First two modal decomposition coefficients, β = 3.5.
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Figure 4.17: First two modal decomposition coefficients, β = 4.0.
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Equating the zeroth order terms yields,

µφ(x) =

[
−1

2

∂2

∂x2
+ V (x, t) +N |φ|2

]
φ(x), (4.14)

and first order terms yield

i
∂

∂t
δ(x, t) = −1

2

∂2

∂x2
δ(x, t) +

(
V + 2N |φ|2 − µ

)
δ(x, t) +

(
Nφ2

)
δ∗(x, t). (4.15)

We solve for δ by assuming a solution of the form

δ = (u(x) + iv(x)) eγt, (4.16)

and substituting into Eq. (4.15) then separating the real and imaginary parts yields,

γu = −1

2

∂2

∂x2
v +

(
V + 2|φ|2 −Nφ2 − µ

)
v, (4.17)

−γv = −1

2

∂2

∂x2
u+

(
V + 2N |φ|2 +Nφ2 − µ)

u. (4.18)

These equations can be decoupled to yield

γ2u = a1
∂4

∂x4
u+ b1

∂2

∂x2
u+ c1

∂

∂x
u+ d1u, (4.19)

γ2v = a2
∂4

∂x4
v + b2

∂2

∂x2
v + c2

∂

∂x
v + d2v, (4.20)
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where

a1,2 = −1

4
, (4.21)

b1,2 =
1

2
(A1 + A2) , (4.22)

c1,2 =
∂

∂x
A1,2, (4.23)

d1,2 =
1

2

∂2

∂x2
A1,2− A1A2, (4.24)

and

A1 =
(
V + 2N |φ|2 +Nφ2 − µ

)
, (4.25)

A2 =
(
V + 2N |φ|2 −Nφ2 − µ

)
. (4.26)

The growth rate of the perturbation that we seek is γ, which can be solved by

discretizing and solving either eigenvalue problem Eq. (4.19) or Eq. (4.20). Figure

(4.19) shows the results of computing the growth rate of the instability using a fourth

order discretization. However, discussion of the results will be postponed until the

end of this section in order to first introduce a more immediate and simpler approach

to computing γ for weak nonlinearities. The approach comes from solving the modal

equations derived previously, Eq. (4.10) and (4.11), in the limit of interest (i.e. a

weak symmetric mode).

In order to solve these equation we introduce new variables y1 = 2Re(A1A
∗
2),

y2 = 2Im(A1A
∗
2), and y3 = |A1|2 − |A2|2 which with Eq. (4.10) and (4.11) yield

ẏ1 = −∆(1− 2N2y3)y2,

ẏ2 = ∆(1− 2N1y3)y1, (4.27)

ẏ3 = −2∆(N2 −N1)y1y2
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where ∆ = ∆ω + IN
2

∆κ, ∆ω = ω2 − ω1, ∆κ = κ2222− κ1111, and I is an integration

constant defined below. Clearly, since we have gone from a system of two complex

equations, Eq. (4.10) and (4.11), to a system three real equations, Eq. (4.27), we

have abandoned some information. From the definition of the new variables we can

see that y3 has no phase information while y1 and y2 are functions of the product of

A1 and the conjugate of A2 so only their relative phase can be determined. Therefore,

the absolute phase of the system is being ignored. However, since an overall phase

factor of the eigenmodes can be ignored this does not present a problem. Equation

(4.27) contains two integral constants which can be exploited to solve the system.

The integrals are obtained from algebraic combinations of Eq. (4.27) and are given

by

y2
1 + y2

2 + y2
3 = I, (4.28)

y3 +N1y
2
1 +N2y

2
2 = C, (4.29)

where I and C are constants to be determined from initial conditions and

N1 =
N

2∆
(
κ1111 + κ2222

2
− 3κ1122),

N2 =
N

2∆
(
κ1111 + κ2222

2
− κ1122).

Now, we give an approximate solution of Eq. (4.27) in the limit of interest,

where the amplitude of the first anti-symmetric, A2, is much larger than the first

symmetric mode, A1 (i.e. y3 ≈ 1, y1, y2 � 1). This yields approximate exponential
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solutions for y1 and y2,

y1(t) = y1(0)e
γt,

y2(t) = y2(0)e
γt,

where

γ =
√
−∆2(1 + 2N1)(1 + 2N2) (4.30)

and an instability region is where the solutions diverge, that is, where the real part

of γ is greater than 0. Imaginary solutions correspond to oscillatory stable solutions.

Equation (4.30) is the weak nonlinear approximation to the eigenvalues of Eq. (4.10)

and (4.11) that we seek. A plot of γ is shown in Fig. (4.18). The plot shows

that there is a critical minimum value, βmin(N) above which the recombination

is unstable and there exists no critical maximum value after which the system is

again stable. However, as β is increased the instability reaches a maximum and

then falls off rapidly. So even though the system is always unstable above βmin, the

instability past the maximum quickly becomes small. Therefore, for a condensate

to be separated and then recombined β would initially be at zero (single well) then

increased until a maximum value is reached, corresponding to the point of greatest

separation of the two wells, then β is decreased again until recombination (β = 0).

Consequently, β has to pass through this instability region. A simple remedy is

to design the interferometer, through the control parameter β, so as to spend a

minimum amount of time in the instability region as possible. However, since the

model for the interferometer used here required the splitting and recombination to

be adiabatic, these are two competing goals. In other words, the interferometer

needs to be adiabatic, but not too adiabatic, in order to avoid the instability region.
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Also, the above conclusions were drawn using the growth rate as computed from

Eq. (4.30). However, Eq. (4.30) is only valid for weak nonlinearities, since letting

N become large would make γ greater than zero for all values of β, leading to the

conclusion that the system is unstable everywhere, even for a single well. However,

using the more rigorus method which consists of solving either eigenvalue problem

Eq. (4.19) or Eq. (4.20) and which is applicable to strong nonlinearities yields

results, shown in Figure (4.19), which show similar behaviour to Fig. (4.18). The

results show that even for strong nonlinearities, the system has a stable region, and

above a critical well separation, the system becomes unstable. Again, the instability

grows to a maximum and then tapers off. However, the rate at which the γ tapers

off lessens for higher nonlinearities. Finally, many of the properties seen thus far

concerning the behaviour and the instability of the wave function of the condensate

have been drawn from numerical solutions of the 1D GPE, Eq. (4.4), and it’s weakly

nonlinear modal equivalent, Eq. (4.10) and (4.11). However, the wave function’s

instability can also be understood from the analytical solutions of Eq. (4.10) and

(4.11), which are computed in the next section.

4.4 Analytical Solutions

This section provides some clarification for some of the behaviour seen in the nu-

merics computed so far by finding exact solutions to the set of rewritten modal

equations Eq. (4.27). Since two integral constants have been computed, Eq. (4.28)

and (4.28), we only need to solve one of the equations from Eq. (4.27) to obtain

the complete solution. For simplicity, we choose the third equation. Squaring the

equation gives ẏ3
2 = 4κ2

1122y
2
1y

2
2. We can solve Eq. (4.28) and Eq. (4.29) for y1 and
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Figure 4.18: Growth rate, γ, modal decomposition.
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Figure 4.19: Growth rate, γ, rigorous perturbation.
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y2. These give

ẏ1
2 =

1

(N1 −N2)
[(N1I

2 − C) + y3 −N1y
2
3],

ẏ2
2 =

1

(N1 −N2)
[(C −N2I

2)− y3 +N2y
2
3],

ẏ3
2 =

4κ2
1122

(N1 −N2)2
[(N1I

2 − C) + y3 −N1y
2
3 ][(C −N2I

2)− y3 +N2y
2
3] (4.31)

which for ẏ3 gives a square root of a quartic polynomial in y3. The solution of which

in general is an elliptic function. The specific nature of the solution being given by

the roots of the polynomial. Since y3 determines the intensity of A1 and A2

|A1,2|2 =
1

2
(I ± y3) (4.32)

where I = |A1|2 + |A2|2 = const, then the case being considered, where the conden-

sate is initially in the lowest nonlinear mode of the single well potential, reduces to

the initial conditions y3(0) ' ±1 and y1(0), y2(0) ' 0, which imply C = I and can

be set to one. These reduce Eq. (4.31) to

ẏ3
2 =

4κ2
1122

(N1 −N2)2
N1N2[(y3 − a)(y3 − b)][(y3− c)(y3 − d)] (4.33)

where

a, b =
1±√

1 + 4N1(N1 − 1)

2N1
,

c, d =
1±√

1 + 4N2(N2 − 1)

2N2
.

The type of elliptic function depends on the relation of y3(0) to the roots; a, b, c, and
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d. There are clearly several solutions depending on the values of N1 and N2. For our

present case, y3(0) ' ±1, we have N1 < 0 and N2 > 0. This yields a, c > 0 > b, d;

and even though there are four permutations of the possible positions of these roots

the solution corresponding to each is of the same form. The general solution for any

case α, β > y3 > γ, δ is given by

y3 =
γ − δC1sn

2(A1 +B1t, k)

1−C1sn2(A1 +B1t, k)
, (4.34)

where

A1 = sn−1(

√
(β − δ)(y3(0) − γ)

(β − γ)(y3(0)− δ)
, k),

B1 =
κ1122

N2 −N1

√
−N1N2

√
(α− γ)(β − δ),

C1 =
β − γ

β − δ
,

k =

√
(β − γ)(α − δ)

(α − γ)(β − δ)
.

The modulus, k, is a key parameter for elliptic functions as it determines it’s

generic behaviour. As k → 0 an elliptic function behaves like a trigonometric

function (e.g. sn(x, 0) = sin(x)) and as k → 1 it behaves like a hyper-trigonometric

function (e.g. sn(x, 1) = sinh(x)). Consequently, the instability region can also be

understood from the general solutions of Eq. (4.27). For the same initial conditions

as before (i.e. weak symmetric mode) the general solution for y3, Eq. (4.34), is

a ratio of elliptic sn(t, k) functions. In Fig (4.20) the modulus of these functions

is plotted as a function of the control parameter, β, for various nonlinearities. On

comparing these results with Fig. (4.18), clearly, the regions of instability correspond

to a drastic change in the modulus of the solutions. The modulus shifts from being

very close to zero (trigonometric-like) to very close to one (hyper-trigonometric like)
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Figure 4.20: Modulus of elliptic function solutions.

and then back to zero. The instability region corresponds to the solutions behaving

like hyper-trigonometric functions, which is evident in Fig. (4.13) through (4.17),

where for β ≥ 2 the solutions show exponential like growth. Also, as discussed

previously, the exponential growth continues for larger β, but the effect on the

instability is minimized because of the frequency and amplitude of the solutions.

The frequency and amplitude are shown in Fig. (4.21) and (4.22). These clarify

the trends shown previously in Figs. (4.10) through (4.17) where solutions for small

values of β showed high frequency and small amplitudes, while as β was increased

the frequency decreased and the amplitude increased.
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Figure 4.21: Frequency of elliptic function solutions.

41



0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

β

am
pl

itu
de

N = 1.0
N = 0.5
N = 0.1

Figure 4.22: amplitude of elliptic function solutions.
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Chapter 5

Conclusions

We have analyzed the performance of a cold atom interferometer. The analysis

presented in Chpt. 4 shows that the interferometry of a Bose-Einstein Condensate

can be potentially unstable. As the BEC matter wave is split and recombined by

a guiding potential, there are unstable regions in the interferometer characterized

by the distance between the split condensate. Below a critical separation the inter-

ferometer is stable, while above a certain separation it is unstable. The instability

is caused by the exponential amplification of the initially weak ground state of the

guiding potential. The amplification is caused by the nonlinear coupling of the

initially strong first excited state to the ground state. The interferometry is done

adiabatically (i.e. slow enough) so that the splitting and recombination process itself

is not the cause of exciting unwanted modes. However, allowing the recombination

to be done to slowly causes the condensate to spend too much time in the unstable

region. Therefore, the remedy to eliminating this potential instability is to not make

the interferometer too adiabatic, so as to spend the least amount of time possible

in this unstable region.
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Appendix A

Appendix: Numerical Methods

In this section we give a brief description of the numerical methods used to solve the

various computational problems encountered in the subsequent analysis. The split-

step Fourier method is discussed in regards to solving the 1D time-dependent GPE.

Then the shooting method is briefly presented in relation to solving an eigenvalue

problem of the time-independent 1D GPE.

A.1 Split-Step Fourier Method

Solving the one-dimensional version of Eq. (2.9) is made difficult because of the

|ψ|2 nonlinearity. As a result, in general the GPE has no analytical answer and

must be solved numerically. One method is known as the Split-Step Fourier (SSF)

Method. Eventhough the Hamiltonian in Eq. (2.9) is time dependent due to either

V or |ψ|2 being potentially time dependent, the SSF method assumes that those

time variations are small enough, given a sufficiently small time interval, that we

can treat H as constant over the time interval and directly integrate Eq. (2.9) to

yield,

ψn+1(x, t+ ∆t) = exp(−i∆tH)ψn(x, t), (A.1)

where n is the time step index. Now, the Hamiltonian can been broken up, H =
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T + V , into a kinetic part, T , and a potential part, V , which includes the nonlinear

self interaction term. The SSF method will solve the kinetic and potential parts

separately. The benefit of the split-step method is that, since the potential energy

operator is diagonal in position space and the kinetic energy operator is diagonal

in momentum space, it is advantageous to solve the kinetic and potential problems

separately. The basic algorithm of SSF is to propagate the wave function over a

time step, ∆t, first by propagating ψn(x, t) using the potential operator over half

a time step, then propagate using the kinetic operator over a full time step, and

finally using the potential operator again over half a time step. In other words,

exp(−iH∆t) = exp(−iV∆t/2)exp(−iT∆t)exp(−iV∆t/2) + o(∆t3). (A.2)

Since the potential energy operator is merely a multiplicative operator in position

space, it amounts to just a phase-shift of the wave function. Therefore, applying

the first potential operator half-step yields an intermediary function,

gn = exp(−i(Vext + g|ψn|2)∆t/2)ψn. (A.3)

In order to apply the kinetic operator to this intermediary function, we first trans-

form gn into momentum space with a Fast Fourier Transform, yielding g̃n. Then

propagate g̃n using the free particle propagator, which amounts to another addition

of a phase factor,

˜gn+1 = exp(−iπ2k2∆t/2L2)g̃n, (A.4)

where k is the momentum step, and 2L is the size of the spatial grid. Finally, g̃n+1

is transformed back to position space and the second potential half-step is applied
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to yield

ψn+1 = exp(−i(Vext + g|ψn|2)∆t/2)gn+1. (A.5)

As seen in Eq. (A.2), this method is third order accurate in time. Note that there

are other methods, such as the Crank-Nicholson method, which can be used to solve

Eq. (2.9), both of which have their advantages. For instance, the SSF method treats

derivatives exactly, it is convergent for large space steps, and can automatically

include periodic boundary conditions. However, it can be slow, requiring two FFTs

per time step, and it is sensitive to sharp changes in the potential. Crank-Nicholson,

on the other hand, is stable and fast, but requires a larger spatial grid and periodic

boundary conditions need to be enforced. The choice of one versus the other is

clearly application dependent.

A.2 Shooting Method

The shooting method is used to compute the eigenvalues and eigenfunctions of Eq.

(A.6),

µψ = − ~
2

2m
∇2ψ + V ψ + g|ψ|2ψ. (A.6)

The basic idea is to solve Eq. (A.6) as a two-point boundary value problem (BVP)

where the eigenvalue, µ, is also an unknown to be computed. First, Eq. (A.6) is

written as a first order system by introducing the variables,

y1 = ψ,

y2 = ψx,

y3 = µ,
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which yield,

∂

∂x
y1 = y2,

∂

∂x
y2 = 2y1(−y3 + V +Ny2

1),

∂

∂x
y3 = 0.

The shooting method then solves the above system by starting from some initial

guess for the solution, here we use the solution to the corresponding linear problem,

µlψl = − ~
2

2m

∂2

∂x2
ψl + V ψl, (A.7)

as the initial guess. The shooting method then makes iterative guesses on one

boundary condition until the second boundary condition is satisfied.

For example, to solve Eq. (A.6) for the first anti-symmetric eigenstate with a

nonlinearity of 0.5, the BVP to be solved is,

µψ = − ~
2

2m

∂2

∂x2
ψ + V ψ + 0.5|ψ|2ψ, (A.8)

ψ(0) = 0, (A.9)

ψ(∞) = 0. (A.10)

So, the function should be zero at x = 0 and decay to zero as x →∞. Finally, the

shooting method would then vary the first derivative of the function, ψ′(0), at 0,

and integrate (”shoot”) the solution to some value x = x0 � 0 until the numerical

solution approximately matches the second boundary condition, |ψ(∞)−ψ(x0)| = ε

where ε is the error tolerance allowed. As an example of the method at work, Figure

47



−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x − coordinate

|ψ
|2

Nonlinear mode
Linear Mode

Figure A.1: The first anti-symmetric linear and nonlinear mode.

(A.1) shows the computation of the the first anti-symmetric mode. The computed

linear and nonlinear eigenvalues are µl = 2.0532 and µ = 2.1919. Clearly, for weak

nonlinearities the nonlinear mode does not differ greatly from the linear mode.
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