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Abstract 
 

In the field of Artificial Intelligence in Education, many contributions have been made 

toward estimating student proficiency in Intelligent Tutoring Systems (cf. Corbett & Anderson, 

1995). Although the community is increasingly capable of estimating how much a student 

knows, this does not shed much light on when the knowledge was acquired. In recent research 

(Baker, Goldstein, & Heffernan, 2010), we created a model that attempts to answer that exact 

question. We call the model P(J), for the probability that a student just learned from the last 

problem they answered. We demonstrated an analysis of changes in P(J) that we call “spikiness”, 

defined as the maximum value of P(J) for a student/knowledge component (KC) pair, divided by 

the average value of P(J) for that same student/KC pair. Spikiness is directly correlated with 

final student knowledge, meaning that spikes can be an early predictor of success. It has been 

shown that both over-practice and under-practice can be detrimental to student learning, so using 

this model can potentially help bias tutors toward ideal practice schedules. 

 After demonstrating the validity of the P(J) model in both CMU’s Cognitive Tutor and 

WPI’s ASSISTments Tutoring System, we conducted a pilot study to test the utility of our 

model. The experiment included a balanced pre/post-test and three conditions for proficiency 

assessment tested across 6 knowledge components. In the first condition, students are considered 

to have mastered a KC after correctly answering 3 questions in a row. The second condition uses 

Bayesian Knowledge Tracing and accepts a student as proficient once they earn a current 

knowledge probability (Ln) of 0.95 or higher. Finally, we test P(J), which accepts mastery if a 

student’s P(J) value spikes from one problem and the next first response is correct. In this work, 

we will discuss the details of deriving P(J), our experiment and its results, as well as potential 

ways this model could be utilized to improve the effectiveness of cognitive mastery learning. 
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1 Introduction 
 

 

 

 

 

In recent years, educational data mining and knowledge engineering methods have led to 

increasingly precise models of students’ knowledge as they use intelligent tutoring systems 

(ITS). Student modeling has a rich history within the fields of ITS and artificial intelligence in 

education more broadly (cf. Goldstein, 1979; Burton, 1982; Sleeman, 1982). Educational data 

mining/machine learning methods began to play a role in student modeling fairly early, including 

work to automate the process of discovering models of students’ procedures (e.g. Sleeman, 

Langley, & Mitchell, 1982; Langley & Ohlsson, 1984) and work to understand the roots of 

student errors (e.g. VanLehn, 1990). By the mid-1990s, model-fitting procedures based on 

student performance data had become a standard part of the student models used in intelligent 

tutoring systems (cf. Corbett & Anderson, 1995; Martin & VanLehn, 1995; Shute, 1995). These 

models were reasonably accurate at inferring the probability that a student knew a specific skill 

or concept (constructs recently referred to as knowledge components, abbreviated KC – cf. 

Koedinger & Corbett, 2006) and whether a student possessed or lacked specific incorrect “bug 

rules.” Student knowledge was inferred by these models using the student’s pattern of correct 

responses and non-correct responses (e.g. errors and hint requests) up until the current time, 

typically through a procedure where an estimate of the student’s knowledge is updated after each 

response. 

In recent years, researchers have attempted to extend student knowledge modeling to predict 

student knowledge more precisely based on information beyond just correctness. For instance, 

Beck et al. (2008) developed a model that assessed the probability of learning at a given moment 



differently if a student requested help than if they made an error. While this approach provided 

useful information about help’s utility, the resultant model did not have significantly improved 

predictive power. Johns and Woolf (2006) studied the possibility that knowledge modeling could 

be made more accurate by modeling gaming the system at the same time, leading to slight 

improvements in cross-validated prediction of future performance. Baker, Corbett, & Aleven 

(2008) extended Bayesian Knowledge Tracing with contextualized estimation of the probability 

that the student guessed or slipped, leading to better prediction of future correctness. More recent 

work has suggested that the exact framework from Baker et al.’s research in 2008 leads to poorer 

prediction of post-test scores, but that information on contextual slip can be used in other 

fashions to predict post-test scores more precisely than existing methods (Baker et al., 2010). 

Pardos and Heffernan (2010) extended Bayesian Knowledge Tracing with improved estimation 

of student knowledge priors based on initial performance, showing statistically significantly 

better prediction of within-tutor performance. Other knowledge tracing frameworks have 

attempted to model performance on problems or problem steps that involve multiple skills at the 

same time (cf. Pavlik & Anderson, 2009; Pardos, Beck, Ruiz, & Heffernan, 2008), and have 

focused on predicting a student’s speed of response in addition to just correctness (cf. Pavlik & 

Anderson, 2008). 

Creating more precise models of student learning has several benefits. First of all, to the 

extent that student practice is assigned based on knowledge assessments (cf. Corbett & 

Anderson, 1995), more precise knowledge models will result in better tailoring of practice to 

individual student needs (cf. Cen, Koedinger, & Junker, 2007). Second, models of student 

knowledge have become an essential component in the development of models of student 

behavior within intelligent tutoring systems. Knowledge models have been employed as key 



components of models of many constructs, including models of appropriate help usage (Aleven, 

McLaren, Roll, & Koedinger, 2006), gaming the system (Baker, Corbett, Roll, & Koedinger, 

2008; Walonoski & Heffernan, 2006), and off-task behavior (Baker, 2007; Cetintas, Si, Xin, 

Hord, & Zhang, 2009). More precise knowledge models can form a more reliable component in 

these analyses, and as such increase the fidelity of models of behavior.  

However, while these recent extensions to models of student knowledge have created the 

potential for more precise assessment of student knowledge at a specific time, these models do 

not tell us when the knowledge was acquired. In this paper, we will introduce a model that can 

infer the probability that a student learned a knowledge component (KC) at a specific step during 

the problem-solving process. Note that this probability is not the same thing as P(T) in standard 

Bayesian Knowledge Tracing (a full explanation will be given later in this paper). Creating a 

model that can infer this probability will create the potential for new types of analyses of student 

learning, as well as making existing types of analyses easier to conduct. For example, this type of 

approach may allow us to study the differences between gradual learning, such as the 

strengthening of a memory association, governed by power/exponential improvements in 

accuracy and performance (Newell & Rosenbloom, 1981; Heathcote, Brown, & Mewhort, 2000) 

and  “eureka” moments within learning, where a skill or concept is suddenly understood (cf. 

Lindstrom & Gulz, 2008). Both types of learning are known to occur (Anderson & Lebiere, 

2006), but the conditions leading to sudden “eureka” moments in learning – for example, the 

moment of insight in an insight problem (Duncker, 1945; Metcalfe & Wiebe, 1987) – are still 

incompletely known (Bowden et al., 2005). It has been argued that the traditional paradigm for 

studying insight, focused on laboratory experiments using highly difficult problems thought to 

require a single insight for success, is insufficient to fully understand insight (Bowden et al., 



2005). This has led to finer-grained research on insight using EEG and FMRIs (Bowden et al., 

2005; Kounios et al., 2008). With the extremely large data sets now available for intelligent 

tutors (Koedinger et al., 2010), and a metric that can assess whether learning is steady or sudden, 

it may be possible to expand insight research further, to learn about the conditions that are 

associated with “eureka” moments during in-vivo learning of complex academic skills and 

concepts over long periods of time.   

In addition, studying the relationship between behavior and immediate learning will be 

facilitated by having a concrete numerical measure of immediate learning. Prior methods for 

studying these relationships have required either looking only at the single next performance 

opportunity (cf. Cocea, Hershkovitz, & Baker, 2009), a fairly coarse learning measure, or have 

required interpreting the difference between model parameters in Bayesian Knowledge Tracing 

(cf. Beck et al., 2008), a non-trivial statistical task. For the same reasons, studying which items 

are most effective (and in which order they are most effective) (cf. Beck & Mostow, 2008; 

Pardos & Heffernan, 2009; Pardos, Dailey, & Heffernan, 2010) will be facilitated with the 

addition of a concrete numerical measure of immediate learning. Creating models of a student’s 

learning, moment-by-moment, may even enable distinctions between behaviors associated with 

immediate learning and behaviors associated with learning later on, and enable identification of 

the antecedents of later learning.  For example, perhaps some types of help lead to immediate 

better learning but others aid by preparing the student for future learning (cf. Bransford & 

Schwartz, 1999) so that differences in performance can only be seen after additional practice has 

occurred. 

In the following sections, we will present an approach for labeling data in terms of student 

immediate learning, a machine-learned model of student immediate learning (and indicators of 



goodness of fit), and two examples of the type of “discovery with models” analysis that this type 

of model enables. In that analysis, we will investigate whether learning is differentially “spiky” 

between different KCs, with learning occurring abruptly for some KCs and more gradually for 

other KCs, as well as how different “spike patterns” can potentially correlate to external learning 

metrics. It is worth noting that “spikiness” is defined as the maximum value of P(J) for a 

student/knowledge component (KC) pair, divided by the average value of P(J) for that same 

student/KC pair. This will be revisited in depth later in the paper. We will also discuss attempts 

to improve our model and explore the model’s potential utility with a pilot study comparing it to 

other models of cognitive mastery learning. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 Data 
 

 

 

 

 

Before discussing the procedure used to model learning moment-by-moment, we will 

discuss the data used for its derivation. We worked with additional data sets in the analyses 

covered in sections 5 and 6, but they will be described later. For the derivation of our model, data 

was obtained from two Intelligent Tutoring Systems: The Middle School Cognitive Tutor 

(Koedinger, 2002) from Carnegie Mellon University and the ASSISTment Tutoring System 

(Razzaq et al., 2005) from the Worcester Polytechnic Institute (We refer to the Middle School 

Tutor by its original name, since this was the version studied in this paper; An updated version of 

this tutor is now distributed commercially by Carnegie Learning, Inc. as Bridge to Algebra). 

Within each environment, each student works independently, completing Mathematics 

problems online. Both systems teach and then assess students’ proficiency with a variety of 

knowledge components. The Cognitive Tutor’s content is motivated by state-mandated 

Mathematics curricular standards within the United States, organized into lessons by curricular 

themes. The ASSISTment system provides a centralized certification system where content is 

vetted by domain experts at WPI and promoted to teachers within the system. The inspiration for 

the themes of those problem sets began out of questions found in a state Mathematics exam, the 

Massachusetts Comprehensive Assessment System (Razzaq et al., 2005).  Today, ASSISTments 

focuses primarily on allowing teachers to selectively assign daily content to build knowledge 

component proficiency. 

To encourage learning, both tutors have multiple means of supporting learners encountering 

difficulties with specific knowledge components, such as choosing the X axis variable for a 



graph, or computing the volume of a cube. Both environments include buggy messages, which 

are tailored feedback for when a common misconception can be detected within student 

behavior. Each system supports multi-level on-demand hints to students. One difference is that 

problem-solving steps are always reified within the Middle School Cognitive Tutor, whereas 

these steps are only reified with ASSISTments if the student makes an error or requests help. In 

the following sections, we will discuss these systems in greater detail, along with the population 

that used each of these systems within the data sets obtained for the research in this paper. 

 

2.1  The Cognitive Tutor 
 

 

Cognitive Tutors (Koedinger & Corbett, 2006) break down each mathematics problem into 

the steps used to solve it in order to reify student thinking and provide feedback on each step of 

the problem-solving process. Within Cognitive Tutors, each mathematics problem typically is 

composed of a set of problem steps, and each problem step is typically mapped to a single 

knowledge component. Cognitive Tutors assess student knowledge using Bayesian Knowledge 

Tracing (Corbett & Anderson, 1995), which uses the student’s performance history within the 

system to calculate a running estimate of the probability that the student is proficient at particular 

knowledge components. Given these probabilities, the system implements cognitive mastery 

learning (Corbett, 2001), which is a tutor style that gives students practice on a knowledge 

component until the student has demonstrated mastery of that skill or concept. Cognitive Tutors 

give tailored feedback when a student’s answer is indicative of a known misconception, and 

offer multi-level on-demand hints to students, which start at a conceptual level and become 

increasingly specific until the student is given the answer (as in Figure 2.1).   



The analyses presented in this paper to derive our model are conducted on data from 232 

students’ use of a Cognitive Tutor curriculum for middle school mathematics (Koedinger, 2002), 

during the 2002-2003 school year. All of the students were enrolled in mathematics classes in 

one middle school in the Pittsburgh suburbs that used Cognitive Tutors two days a week as part 

of its regular mathematics curriculum, year round. None of the classes were composed 

predominantly of gifted or special needs students. The students were in the 6
th

, 7
th

, and 8
th

 grades 

(approximately 12-14 years old), but all used the same curriculum (it was an advanced 

curriculum for 6
th

 graders, and a remedial curriculum for 8
th

 graders). 

Each of these students worked through a subset of 35 different lessons within the Cognitive 

Tutor curriculum, covering a diverse selection of material from the middle school mathematics 

curriculum. Middle school mathematics, in the United States, generally consists of a diverse 

collection of topics, and these students’ work was representative of that diversity, including 

lessons on combinatorics, decimals, diagrams, 3D geometry, fraction division, function 

generation and solving, graph interpretation, probability, and proportional reasoning. These 

students made 581,785 transactions (either entering an answer or requesting a hint) on 171,987 

problem steps covering 253 knowledge components. 

 

 
Fig 2.1. A student reads a bottom-out hint within the Middle School Cognitive Tutor.  

 

 



290,698 additional transactions were not included in either these totals or in our analyses, 

because they were not labelled with KCs, information needed to apply Bayesian Knowledge 

Tracing. 

 

 

 

2.2  ASSISTments 
 

 

The other ITS studied in this paper is the ASSISTment tutoring system (Razzaq et al., 2005). 

ASSISTment is used to assess student proficiency, for homework assignments (Mendicino, 

Razzaq, & Heffernan, 2009), and for preparation for standardized exams (Koedinger, 

McLaughlin, & Heffernan, in press). Within this paper, we analyze data drawn from students 

using the Mastery Learning feature of ASSISTments, where a student repeatedly receives 

problems focusing on a specific knowledge component until the student demonstrates mastery. 

Within ASSISTments’ mastery learning, proficiency is assessed in a very different manner than 

in Cognitive Tutors. ASSISTments allows teachers to set a threshold for the number of problems 

a student must correctly answer in a row in order to be considered proficient at that knowledge 

component. That threshold is termed the Mastery Limit. Though this approach is very likely to 

assess mastery less accurately than Bayesian Knowledge Tracing, it is preferred by some 

teachers as being easier to understand and control. Within this particular study, 

 



 
Figure 2.2. A student reading a hint for the first level of scaffolding in the ASSISTment tutoring system. 

 

 

problem sets had a Mastery Limit of either 3 or 5. In order to prevent exhaustion and wasted 

time, students were allowed to attempt no more than 10 problems pertaining to a specific 

knowledge component each day. When that number was exceeded, the student was locked out of 

the problem set until the next day. 

As with Cognitive Tutors, ASSISTments provides feedback on incorrect answers and multi-

level hints that terminate with bottom-out hints. The ASSISTments system also offers 

scaffolding, which breaks down the current problem into simpler steps, in order to reify the 

thinking needed to solve the problem. The intention is to make visible the specific part of the 

student’s thought process that is incorrect. Each step of the scaffolding is a problem unto itself, 



capable of containing multi-level hints, and each requiring a new answer. The last step of 

scaffolding always requires the student to again attempt the original question. Within 

ASSISTments for mathematics, each mathematics problem typically maps to a single knowledge 

component, with a scaffold step in some cases (but not at all) involving a different knowledge 

component.  

The analyses presented in this paper to derive our model are conducted on data from 4187 

students’ use of mathematics ASSISTments between December 2008 and March 2010. This 

sample was primarily composed of students in Massachusetts, but included substantial 

proportions of students from other parts of the USA, including Virginia and South Carolina. The 

sample was primarily composed of high school students, although some middle school students 

were also included. These students completed Mastery Learning problem sets involving 53 

knowledge components, across a range of areas of mathematics, including algebra, probability, 

number sense with fractions and decimals, geometry, and graph interpretation. The patterns of 

usage varied considerably between the many schools involved in this data set. These students 

made 413,428 transactions (either entering an answer or requesting a hint) on 179,144 problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



3 Detecting Learning, Moment-By-Moment 
 
 

 

 

 

Within this section, we present a model that predicts the probability that a student has 

learned a specific knowledge component at a specific problem step. We refer to this probability 

as P(J), short for “Just Learned”. This model is developed using a procedure structurally similar 

to Baker, Corbett, & Aleven’s (2008) contextualization of the guess and slip parameters of 

Bayesian Knowledge Tracing, using a two-step process. Considerably greater detail on this 

procedure will be given in the following sections, but we give a brief summary here.  

First, training labels of the probability that a student learned a KC at a specific problem step 

are generated. The development of these labels is based on the overall idea that learning is 

indicated when a student does not know a skill at one point and then starts performing correctly 

afterwards. These training labels are generated using a combination of predictions of current 

student knowledge from standard Bayesian Knowledge Tracing and data on future correctness, 

integrated using Bayes’ Theorem. This process generates training labels of the probability that a 

student learned a KC at a specific problem step. In essence, we use evidence from both the past 

and future to assess the probability that learning occurred at a specific time.  

Using these labels, a model is trained. This model uses a broad feature set, but includes 

absolutely no data from the future. The result is a model that can be used either at run-time or 

retrospectively, to assess the probability that a KC is learned at each practice opportunity. We 

present results for this process on two distinct data sets, from a Cognitive Tutor and Math 

ASSISTments.  

 

 



 

 

3.1  Labeling Process 
 

 

The first step of our process is to label each problem step N in the data set (i.e. the Nth 

opportunity for the given student to use the given KC) with the probability that the student 

learned the KC at that time, to serve as inputs for machine learning. Determining exactly when a 

student is thinking about a specific problem step is a non-trivial task, as students often continue 

thinking about a step even after entering a correct answer (e.g. Shih, Koedinger, & Scheines, 

2008). Our specific working definition of “learning at step N” is learning the KC between the 

instant after the student enters their first answer for step N, and the instant that the student enters 

their first answer for step N+1. In doing so, we likely include some amount of time when the 

student is thinking about the next step and omit some amount of time when the student is 

thinking about the current step (specifically, time before the first answer on the current step). It is 

impossible under current methods to avoid some bias; we choose to bias in this direction because 

we believe that learning processes such as self-explanation are more likely to occur after an 

answer (whether correct or incorrect) or help request, than before the student answers a step for 

the first time (at which point the student usually does not know for certain if their answer and 

process is correct).  

We label step N using information about the probability the student knew the KC before 

answering on step N (from Bayesian Knowledge Tracing) and information on performance on 

the two following steps (N+1, N+2). Using data from future actions gives information about the 

true probability that the student learned the KC during the actions at step N. For instance, if the 

student probably did not know the KC at step N (according to Bayesian Knowledge Tracing), but 

the first attempts at steps N+1 and N+2 are correct, it is relatively likely that the student learned 



the KC at step N. Correspondingly, if the first attempts to answer steps N+1 and N+2 are 

incorrect, it is relatively unlikely that the student learned the KC at step N. 

We assess the probability that the student learned the KC at step N, given information about 

the actions at steps N+1 and N+2 (which we term A+1+2), as: 

 
P(J) = P(~Ln ^ T | A+1+2 ) 

 

 

Note that this probability is assessed as P(~Ln ^ T), the probability that the student did not 

know the KC and learned it, rather than P(T). Within Bayesian Knowledge Tracing, the semantic 

meaning of P(T) is actually P(T | ~Ln): P(T) is the probability that the KC will be learned, if it 

has not yet been learned. P(T)’s semantics, while highly relevant for some research questions (cf. 

Beck et al., 2008; Koedinger, 2002), are not an indicator of the probability that a KC was learned 

at a specific moment. This is because the probability that a student learned a KC at a specific 

step can be no higher than the probability that they do not currently know it. P(T), however, can 

have any value between 0 and 1 at any time (though recall that P(T)’s value is constant for each 

skill, both within our P(J) model and within classic Bayesian Knowledge Tracing). For low 

values of P(Ln), P(T) will approximate the probability that the student just learned the KC. 

However, for high values of P(Ln), P(T) can take on extremely high values even though the 

probability that the KC was learned at that moment is very low.   

We can find P(J)’s value with a function using Bayes’ Rule: 
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The base probability P(~Ln ^ T) can be computed fairly simply, using the student’s current 

value for P(~Ln) from Bayesian Knowledge Tracing, and the Bayesian Knowledge Tracing 

model’s value of P(T) for the current KC: 

 
�(~��^�) = �(~��)�(�) 

 

 

The probability of the actions at time N+1 and N+2, P(A+1+2), is computed as a function of 

the probability of the actions given each possible case (the KC was already known, P(Ln), the 

KC was unknown but was just learned, P(~Ln ^ T), or the KC was unknown and was not 

learned, P(~Ln ^ ~T)), and the contingent probabilities of each of these cases. 
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The probability of the actions at time N+1 and N+2, in each of these three cases, is a 

function of the Bayesian Knowledge Tracing model’s probabilities for guessing (G), slipping (S), 

and learning the KC (T). In order to calculate the probability of each possible case of estimated 

student knowledge, we must consider all four potential scenarios of performance at actions N+1 

and N+2. In the formulas below, correct answers are written C and non-correct answers (e.g. 

errors or help requests) are written ~C. The possible scenarios are: correct/correct (C, C); 

correct/wrong (C, ~C); wrong/correct (~C, C); and wrong/wrong (~C, ~C): 
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Once each action is labelled with estimates of the probability P(J) that the student learned 

the KC at that time, we use these labels to create machine-learned models that can accurately 

predict P(J) at run time. The original labels of P(J) were developed using future knowledge, but 

the machine-learned models predict P(J) using only data about the action itself (no future data). 

 

3.2  Features 
 

 

In order to predict the training labels of P(J) created in the previous step, we distil a set of 

features that can be used as predictors. These features are quantitative (or binary) descriptors of 

key aspects of each problem step that have a reasonable potential to be statistically associated 

with the construct of interest, whether learning occurred at a specific moment. These features are 

then used within machine learning (discussed in the next section). 

For each problem step, we used a set of features describing the first action on problem step 

N. In the case of the Cognitive Tutor, the list consisted of 23 features previously distilled to use 

in the development of contextual models of guessing and slipping (cf. Baker, Corbett, & Aleven, 

2008). These features had in turn been used in prior work to develop automated detectors of off-

task behavior (Baker, 2007) and gaming the system (Baker et al., 2008). In the case of 

ASSISTments, a similar but non-identical list of 22 features was distilled (differing primarily due 

to the different features and organization of problems in Math ASSISTments). The actual 

features selected for incorporation into the final models is given in Tables 3.1 and 3.2. The list of 

features inputted into the machine learning algorithm was: 

 

• Assessments of correctness: 

o Percent of all past problems that were wrong on this KC. 

o Total number of past problems that were wrong on this KC. 

o Number of last 5 problems that were wrong. 

o Number of last 8 problems that were wrong. 



• Measurements of time: 

o Time taken (SD faster/slower than average across all students). 

o Time taken in last 3 actions (SD off average). 

o Time taken in last 5 actions (SD off average). 

o Total time spent on this KC across all problems. 

o Time since the current KC was last seen. 

• Data on hint usage: 

o First response is a help request. 

o Bottom-out hint is used. 

o Number of last 8 problems that used the bottom-out hint. 

o Second to last hint is used (ASSISTments only) – indicates a hint that gives 

considerable detail but is not quite bottom-out. 

o Number of last 5 problems that included a help request. 

o Number of last 8 problems that included a help request. 

• Data on scaffolding usage (ASSISTments only): 

o Problem ends with scaffolding. 

o Problem ends with automatic scaffolding. 

o The problem is scaffolding of a prior problem. 

o Total scaffolding opportunities for this KC in the past. 

• Other measurements: 

o Total problems attempted in the tutor so far. 

o Total practice opportunities on this KC so far. 

o Response is chosen from a list of answers (Multiple choice, etc). 

o Response is filled in (No list of answers available). 

o Working during school hours (between 7:00 am and 3:00 pm) (ASSISTments 

only). 

 

 

It may seem counter-intuitive to use a feature set that was designed originally to capture off-

task behavior and gaming for detecting learning moment-by-moment, but this approach has 

advantages; in particular, if it leads to a model with reasonable goodness of fit, then this suggests 

that developing a successful detector of learning moment-by-moment does not require an 

extensive new process of feature engineering. Feature engineering and extraction can often be 

one of the most time-consuming aspects of educational data mining and data mining in general 

(for instance, devising what the features should be, and selecting the cut-offs used in features 

such as ‘the number of the last 5 problems that included a help request’). Bypassing this time-

consuming step increases the feasibility of creating models of this nature. Discussion of potential 



additional features, and further feature engineering we have conducted for this model, is 

described in detail in the discussion section. In addition to these features, we also included two 

additional features that were used in prior models of gaming the system and off-task behavior. 

These features are the probability that the student knew the KC before the first attempt on action 

N, P(Ln-1), and the probability that the student knew the KC after the first attempt on action N, 

P(Ln). There are some arguments against including these features, as P(~Ln) is part of the 

construct being predicted, P(~Ln ^ T). However, the goal of this model is to determine the 

probability of learning, moment-by-moment, and the students’ current and previous knowledge 

levels, as assessed by Bayesian Knowledge Tracing, are useful information towards this goal. In 

addition, other parameters in the model will be more interpretable if these features are included.  

Without these terms, it would be difficult to determine if a parameter was predicting T or ~Ln. 

With these terms, we can have greater confidence that parameters are predictive of learning (not 

just whether the KC was previously unknown) because Ln is already accounted for in the model. 

However, in accordance with potential validity concerns stemming from including P(Ln-1) and 

P(Ln) in the model, we will also present goodness-of-fit statistics from models not including 

these features. 

 

3.3  Machine Learning 
 

 

Given the labels and the model features for each student action within the tutor, we 

conducted linear regression within RapidMiner (Mierswa et al., 2006) to develop models that 

predict P(J). This resulted in a set of numerical predictions of P(J), one for each problem step 

that a student completed. In each case, M5’ feature selection (Hall, 2000) was used to determine 

which features were incorporated into the models. Linear regression with M5’ feature selection 



creates regression trees, a tree of linear regression models, and then conducts linear regression on 

the set of features used in the tree. Although this approach might seem somewhat non-

straightforward, compared to simpler approaches such as stepwise regression, it has been shown 

to lead to better model performance than several other feature selection algorithms (Hall, 2000) 

and is now the default setting for linear regression in several data mining packages, including 

both RapidMiner (Mierswa et al., 2006) and Weka (Witten & Frank, 2005).  The machine 

learned models generated for each system (including all features in the final models) are listed 

below in Table 3.1 and Table 3.2. 

To validate the generalizability of our models, we checked our results with 6-fold cross-

validation, at the student level (e.g. detectors are trained on five groups of students and tested on 

a sixth group of students). By cross-validating at this level, we increase confidence that detectors 

will be accurate for new groups of students.  

The goodness of the models was validated using the Pearson correlation coefficient between 

the training labels of P(J) for each step, and the values predicted for P(J) for the same step by the 

machine-learned models. As both set of values are quantitative, and there is a one-to-one 

mapping between training labels and predicted values, linear correlation is a reasonable metric.   

 

3.4  Results 
 

 

Overall, the models produced through machine learning were successful at predicting P(J). 

The full model, trained on the full set of features, achieved good correlation between the training 

labels and model predictions, for each tutoring system. For the Cognitive Tutor data, the model 

achieved a correlation of 0.446 to the training labels previously generated for each problem step, 

within 6-fold student-level cross-validation. Similarly, the model for ASSISTments data 



achieved a correlation coefficient of 0.397 to the training labels previously generated for each 

problem step.  

The two models are shown below in Tables 3.1 and 3.2. As with any multiple-parameter 

linear regression model (and most other model frameworks as well), interpretability of the 

meaning of any individual parameter is not entirely straightforward. This is because every 

parameter must be considered in the context of all of the other parameters – often a feature’s sign 

can flip based on the other parameters in the model. Hence, significant caution should be taken 

before attempting to interpret specific parameters as-is. It is worth noting that approaches that 

attempt to isolate specific single features (cf. Beck et al., 2008) are significantly more 

interpretable than the internal aspects of a multiple parameter regression model such as this one. 

It is also worth remembering that these features apply to the first action of problem step N 

whereas the labels pertain to the student’s learning between the first action of problem step N 

and the first action of problem step N+1. Hence, the features of this model can be interpreted 

more as representing the immediate antecedents of the moment of learning than as representing 

the moment of learning itself – though they do accurately predict learning, moment-by-moment. 

Although the degree of correlation was acceptable, one curious aspect of this model is that it 

tended to underestimate values of P(J), particularly those that were relatively high in the original 

labels (e.g. >0.02). The difference between the model values of P(J) and the original label is 

highly correlated to the original label, with a correlation of 0.95 in the Cognitive Tutor and 0.87 

in ASSISTments. Hence, the predicted values of P(J) for training labels with high values 

remained higher than the predicted values of P(J) for training labels with lower values (hence the 

model’s reasonable correlation to the labels). However, the predicted values of P(J) for training 

labels with high values were lower, in absolute terms, than the original training labels for those 



data points. This problem could be addressed by weighting the (rarer) high values more heavily 

during model-fitting, although this approach would likely reduce overall correlation. Another 

possible solution would be to fit the data using a logarithmic (or other) function that scales 

upwards more effectively than a linear function; as will be seen later, the differences between 

maximum and minimum spikiness are large enough that non-linear regression may be more 

appropriate than our current approach. Nevertheless, within the current model it is likely to be 

more straightforward to interpret differences in P(J) than absolute values.  

As discussed earlier, one potential concern with these models is that they incorporate Ln-1 

and Ln while ~Ln is used in the training labels. As discussed above, we do not consider this a 

primary concern, as our main goal is to fit the learning part of the equation (rather than the 

“already-learned” part); but to validate that our models are not simply predicting ~Ln, we re-fit 

the models without Ln-1 and Ln.  When models were fit for the Cognitive Tutor and 

ASSISTments that excluded Ln and Ln-1, these models achieved lower cross-validated 

correlations than the full models. For Cognitive Tutors, a correlation of 0.438 was achieved, as 

compared to the correlation of 0.446 obtained for the full model. For ASSISTments, a correlation 

of 0.301 was achieved, as compared to the correlation of 0.397 obtained for the full model. We 

can compute the statistical significance of the difference in correlation (between the full and 

restricted models) in a way that accounts for the non-independence between students, by 

computing a test of the significance of the difference between two correlation coefficients for 

correlated samples (cf. Ferguson, 1971) for each student, and then aggregating across students 

using Stouffer’s Z (Rosenthal & Rosnow, 1991).  According to this test, the difference between 

the two models is highly statistically significant, both for the Cognitive Tutor data, Z=116.51, 

p<0.0001, and for the ASSISTments data, Z = 66.34, p<0.001. 

 



Table 3.1. The machine learned model of the probability of learning at a specific moment for the Cognitive Tutor. In 

the unusual case where output values fall outside the range {0,1}, they are bounded to 0 or 1. The model is 

expressed as a regression equation, with each feature’s non-unitized parameter coefficient (weight) given. 

Computing the value of the equation gives the predicted value of P(J). 

Feature P(J) = 

Answer is correct - 0.0023 

Answer is incorrect + 0.0023 

Action is a help request - 0.00391 

Response is a string + 0.01213 

Response is a number + 0.01139 

Time taken (SD faster (-) / slower (+) than avg. across all students) + 0.00018 

Time taken in last 3 actions (SD off avg. across all students) + 0.000077 

Total number of times student has gotten this KC wrong total - 0.000073 

Number of times student requested help on this KC, divided by number of problems - 0.00711 

Number of times student made errors on this KC, divided by number of problems + 0.0013 

Total time taken on this KC so far (across all problems), in seconds + 0.0000047 

Number of last 5 actions which involved same interface element - 0.00081 

Number of last 8 actions that involved a help request + 0.00137 

Number of last 5 actions that were wrong + 0.00080 

At least 3 of last 5 actions involved same interface element & were wrong - 0.037 

Number of opportunities student has already had to use current KC - 0.0000075 

The probability the student knew the KC, after the current action (Ln)  - 0.053 

The probability the student knew the KC, before the current action (Ln-1) + 0.00424 

Constant Term + 0.039 

 

Table 3.2. The machine learned model of the probability of learning at a specific moment for the ASSISTments 

system. In the unusual case where output values fall outside the range {0,1}, they are bounded to 0 or 1. The model 

is expressed as a regression equation, with each feature’s non-unitized parameter coefficient (weight) given. 

Computing the value of the equation gives the predicted value of P(J). 

Feature P(J) = 

Answer is correct - 0.0429 

Action is a hint request - 0.0216 

Current problem is original (Not scaffolding of another) + 0.0078 

Response is input by the user (Not just selected from a list of multiple choice) + 0.0058 

Time taken to complete the current problem + 0.0215 

Time taken in last 3 actions (SD off avg. across all students) + 0.1866 

Total number of times student has gotten this KC wrong total - 0.0798 

Total time taken on this KC so far (across all problems), in seconds - 0.0346 

Number of last 5 actions that involved a help request - 0.0953 

Number of last 8 actions that were wrong - 0.0401 

Percentage of past problems that the student has gotten wrong + 0.0184 

Amount of time that has passed since this KC was last seen - 0.0399 

Whether or not the problem was completed during school hours (M-F 8:00-3:00) - 0.0038 

Total number of problems the student has attempted altogether in the system + 0.0078 

The probability the student knew the KC, before the current action (Ln-1) - 0.0605 

Constant term + 0.0957 

 

 

One interesting aspect of this model (and the original labels) is that the overall chance of 

learning a KC on any single step is relatively low within the two tutors. However, there are 



specific circumstances where learning is higher. Within both systems, many of these 

circumstances correlate to time spent, and the student’s degree of persistence in attempting to 

respond. In addition, in both systems, there is a positive correlation associated with an incorrect 

answer, potentially suggesting that students learn by making errors and then considering why the 

answer was incorrect. In particular, within the Cognitive Tutor, larger numbers of past errors 

appear to predict more current learning than larger numbers of past help requests. This result 

appears at a surface level to be in contrast to the findings from (Beck, Chang, Mostow, & 

Corbett, 2008), but is potentially explained by the difference between learning from requesting 

help once – the grain-size studied in (Beck, Chang, Mostow, & Corbett, 2008) – and learning 

from requesting the same help sequence many times across problems. It may be that learning 

from errors (cf. VanLehn, Siler, & Murray, et al., 2003) is facilitated by making more errors, but 

that learning from help does not benefit from reading the same help multiple times. Another 

possible explanation for this difference is that the help studied in (Beck et al., 2008) was much 

briefer than the multi-step problem-solving hints used in the Cognitive Tutor and ASSISTments 

studied here. 

 

 

 

 

 

 

 

 

 

 
 

 



4 Improvements to the Model 
 
 

 
 

 

Though the model proposed in this paper has been successful at predicting its training labels, 

and in turn at producing a distilled measure that can predict students’ final knowledge, there are 

several ways that this model can be improved and refined. 

First, it may be possible to improve the quality of the model’s training labels. The approach 

proposed in this paper is only one way to infer learning, moment-by-moment. To give a very 

simple example, data from only two future actions was utilized in generating the training labels. 

It is possible that using data from a greater number of future actions may result in more accurate 

labels; correspondingly, it is possible that the probability of guess or slip for many problems may 

be sufficiently low that only one future action is needed, and incorporating a second future action 

will increase the noise.  

Additionally, the equations used in this paper are currently based off an unmodified form of 

Bayesian Knowledge Tracing – however, recent work in our group has shown benefits from 

using contextual models of guess and slip (e.g. Baker, Corbett, & Aleven, 2008), including 

improved prediction of post-test scores (Baker, Corbett, et al., 2010). It is possible that using 

contextual estimations of guess and slip when generating training labels may lead to higher 

precision – although there is correspondingly some risk that models of P(J) generated in this 

fashion may end up over-fitting to the errors in the contextual guess and slip models.  

Other approaches to generating training labels are also possible. For instance, it may be 

reasonable to compute the derivative of each student’s learning curve. This would be impractical 

to do for correctness (which is binary, resulting in a curve that is not smooth), but could very 



well be feasible for a more quantitative measure of student performance, such as time, or 

assistance score (cf. Feng, Heffernan, & Koedinger, 2006).  

Even when using the exact same formal approach to generating training labels, it may also 

be possible to improve P(J) accuracy by investigating other methods for calculating values of 

P(Ln) and P(Ln-1) as components for P(J) models. Currently these features are generated based 

on models created via brute force/grid search. However, other researchers have found evidence 

suggesting benefits for Expectation Maximization (cf. Gong, Beck, & Heffernan, 2010) and for 

contextualized estimation of student initial knowledge and learning rates (cf. Pardos & 

Heffernan, 2010). Rather than replacing the estimates of P(Ln) and P(Ln-1) in the existing model 

with estimates generated in another fashion, it is possible to use all of these estimates in a 

combined model, and determine if the different estimates of learning so far have unique and 

separate variance for predicting learning at each moment.  

One issue to consider in attempting to improve the training labels used in this model is how 

to validate that one set of training labels is better than another. One method may be to compare 

the models obtained from different training labels. For example, the approach used here led to an 

accurate prediction of a widely-used measure of final knowledge in the tutor, final P(Ln) from 

Bayesian Knowledge Tracing; therefore, two sets of training labels could be compared in terms 

of how well the resultant models predict this measure. There are other potential comparisons of 

the resultant models that can be conducted as well – for instance, measures of learning on a post-

test would provide an assessment of whether the spikes of learning assessed by this method are 

associated with the transfer of knowledge out of the tutoring environment, and could be used to 

assess how well different training labels capture this measure of the generalizability of student 

learning. 



Regardless of what the training labels are, it may also be possible to improve a model of 

P(J) by broadening and improving the feature set. Within this paper, we used a set of features 

that have been used for several previous problems, and were successful at fitting P(J). It seems 

likely that a set of features expressly engineered for this problem would perform even more 

successfully. Similarly, it may be possible to use estimates of other constructs, such as contextual 

guessing, slipping (Baker, Corbett, & Aleven, 2008), and gaming the system (Baker, Corbett, 

Roll, & Koedinger, 2008), within models of learning moment-by-moment. 

 

4.1  After the First Response 
 
 

After our original model, one approach that we did implement in an attempt to capture 

additional variance with the P(J) model was incorporating additional features that covered 

subsequent actions, i.e. tracking student behaviour in the tutor following a first response that is 

wrong or is a help request. We hypothesized that while many current models in the field 

primarily consider first responses, it is possible that student learning occurs in between those 

main responses where students have an opportunity to assess their second guess or continue to 

seek additional help. As noted earlier, our model seems to indicate that it is following an 

incorrect response that a student is more likely to acquire knowledge, and so it logically follows 

that data about what occurs after that wrong answer but before the next problem is where the 

learning actually happens. With that in mind, we devised an expanded feature set for P(J) that 

included 51 features, specifically focusing on actions after the first response. They are listed 

here: 

 

• Data on Hint Usage: 

o Action is a help request and a first response. 



o Problem ended with a hint immediately followed by a correct response. 

o Bottom out hint was used. 

o Second to last hint was used. Doesn’t count if there were <= 2 hints total. 

o Number of hints taken after the first response. 

o Percent of non-first response actions from the past where the student has 

requested help on this KC. 

o Number of last 5 first responses that involved help request. 

o Number of last 8 first responses involved help request. 

o Number of last 8 problems that ended in using a bottom out hint. 

• Assessments of Correctness: 

o Percent of past opportunities where student has made errors on this KC. 

o Percent of past first response opportunities where student has made errors on this 

KC. 

o Total number of times student has gotten this KC wrong on the first attempt. 

o Number wrong actions so far on the same problem. Help actions don’t count, 

these must be pure answer attempts that are incorrect. 

o Number of last 5 first responses which were wrong. 

o Number of last 8 first responses which were wrong. 

• Measurements of Time (Pruned more than 300 seconds taken): 

o Time taken on first response (SD faster (-) or slower (+) than average across all 

students). 

o Time taken on last 3 first responses (calculated in SD off average across students). 

o Time taken on last 5 first responses (calculated in SD off average across students). 

o Total time taken on this KC so far on all actions. 

o Total time taken on first responses for this skill so far (across all problems). 

o Time taken so far on this problem (adding up all the actions so far). 

o Time divided by number of hints in this problem. 

o Time divided by number of incorrect responses on this problem. 

o Time since the KC was last seen in a first response. 

o Shortest amount of time taken before a hint in this problem. 

o Shortest amount of time taken after a hint in this problem. 

o Shortest amount of time taken before a wrong response in this problem. 

o Shortest amount of time taken after a wrong response in this problem. 

o Longest amount of time taken before a hint in this problem. 

o Longest amount of time taken after a hint in this problem. 

o Longest amount of time taken before a wrong response in this problem. 

o Longest amount of time taken after a wrong response in this problem. 

• Data on scaffolding usage (ASSISTments only): 

o Problem ends by user choosing to scaffold. 

o Problem ended by automatically invoked scaffolding by the system. 

o Current problem is scaffolding of a prior problem. 

o Time taken on a first response that is scaffolding. 

o Time taken total on a problem that is scaffolding. 

o Total time on scaffolding ever for this skill. 

o Total number of scaffolding problems on this KC so far. 

o Number of problems on this KC that were scaffolding/problems. 



o Time taken on first response that is scaffolding (SD faster (-) or slower (+) than 

average across all students). 

o This is a first response, scaffolding, and a help request. 

o The total hint requests made after first responses on scaffolding problems. 

• Other measurements: 

o Number of questions attempted ever in the system. 

o Number of first opportunities student has already had to use current KC. 

o Number of non-first actions student has spent on current KC. 

o Total number of incorrect non-first response actions on a KC. 

o Response is filled-in (Not selected from a list). 

o Response is multiple choice or chosen from some sort of list. 

o Action is during school hours (Considered between 8:00am – 3:00pm). 

o Total number of non-first attempt actions made on this problem. 

 
 

Based on this feature set, we re-ran the same Linear Regression in Rapid Miner with 6 fold 

student-level cross validation as we did with the original models for ASSISTments and the 

Cognitive Tutor. This resulted in the model shown below in table 4.1. 

Table 4.1. The machine learned model of the probability of learning at a specific moment for the ASSISTments 

system, including subsequent actions. In the unusual case where output values fall outside the range {0,1}, they are 

bounded to 0 or 1. The model is expressed as a regression equation, with each feature’s non-unitized parameter 

coefficient (weight) given. Computing the value of the equation gives the predicted value of P(J). 

Feature P(J) = 

Problem is not a scaffold of another problem + 0.0006526 

Problem ends by using the bottom out hint - 0.0030143 

Total hints used in subsequent actions - 0.0223965 

Correct subsequent action made after a non-bottom out hint taken + 0.0022031 

Percent of subsequent actions made so far that were wrong - 0.006608 

Second to last hint was used - 0.002062 

Number of past 8 problems that ended by using the bottom out hint + 0.0079025 

Percent of subsequent actions made so far that were wrong - 0.0018803 

Number of wrong subsequent actions made on the current problem - 0.01174506 

Sum time taken on all subsequent actions for this problem + 0.0442851 

Sum time taken for subsequent actions in last 3 problems (SD faster /slower than avg.) + 0.0071275 

Sum time taken for subsequent actions in last 5 problems (SD faster/slower than avg.) + 0.0016349 

Time taken on subsequent actions divided by incorrect actions + 0.0070249 

Total amount of time spent on subsequent actions for this KC + 0.00035206 

Shortest amount of time taken before a hint in this problem’s subsequent actions - 0.0279119 

Longest amount of time taken before a hint in this problem’s subsequent actions + 0.0034354 

Longest amount of time taken before an action following a hint in this problem + 0.0071563 

Longest amount of time taken before making an incorrect action in this problem + 0.00646102 

Total subsequent actions ever taken for this KC + 0.001885819 

Problem ends with system forcing student into scaffolding - 0.00276552 

Time taken to make a first response on a scaffolding problem - 0.00719845 

Time taken on subsequent actions for this problem, which is scaffolding - 0.01870045 

Sum time taken for subsequent actions in last 3 problems that were scaffolding + 0.1166828 

Total time spent on subsequent actions on this KC in scaffolding + 0.00049546 

Number of hints taken in subsequent actions on this scaffolding problem - 0.04347385 



 

In contrast to our expectations, we did not find that subsequent action features captured a 

significant amount of additional variance. Although this new 25 feature model did achieve a 

higher correlation coefficient of 0.429, the overhead involved in distilling these new features is 

intensive for implementation in a real world ITS. This would seem to indicate that a model to 

predict P(J) can be achieved without the effort of distilling subsequent action features, which is 

the approach that we took in the pilot study described in section 6. However, this result is not 

necessarily conclusive on the subject, and it may be possible that there are other highly relevant 

features that we did not test, or that in a different ITS with a different sample group a significant 

improvement can be seen. As described earlier, there are several ways to improve the accuracy 

of a P(J) model, and an expanded feature set it only one that we have explored so far. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 The Spikiness of Student Learning 
 

 

 

 

 

 

A key way that the model presented here can be scientifically useful is through its 

predictions, as components in other analyses. Machine-learned models of gaming the system, 

off-task behavior, and contextual slip have proven useful as components in many other analyses 

(cf. Baker, 2007; Cocea et al., 2009; Walonoski & Heffernan, 2006). Models of the moment of 

student learning may turn out to be equally useful.  

One research area that models of the moment of student learning may shed light on is the 

differences between gradual learning (such as strengthening of a memory association) and 

learning given to “eureka” moments, where a KC is understood suddenly (cf. Lindstrom, 2008). 

Predictions of momentary learning for a specific student and KC can be plotted, and graphs 

which are “spiky” (e.g. which have sudden peaks of learning) can be distinguished from flatter  

 

 
Fig. 5.1. An example of a single student’s performance on a specific KC. “Entering a common multiple” (left) 

results in a “spiky” graph, indicating eureka learning. “Identifying the converted value in the problem statement of a 

scaling problem” (right) results in a relatively smooth graph, indicating more gradual learning. The X axis shows 

how many problem steps have involved the current KC, and the Y axis shows values of P(J). 

 

graphs, which indicate more gradual learning. Examples of students’ experiencing gradual 

learning and eureka learning are shown in Figure 5.1.  The degree to which learning involves a 



eureka moment can be quantified through a measure of “spikiness”, defined as the maximum 

value of P(J) for a student/KC pair, divided by the average value of P(J) for that same 

student/KC pair. This measure of spikiness is bounded between 1 (minimum spikiness) and 

positive infinity (maximum spikiness). Below we will detail the analysis of spikiness in the data 

from both the Cognitive Tutor and ASSISTments, first at the KC level and then at the student 

level. 

As a quick note, it is worth mentioning that the graph on the left in Figure 5.1 shows two 

spikes, rather than just one spike. This pattern was fairly common in both data sets. Investigating 

this phenomenon is out of the scope of the current paper, but understanding why some spiky 

graphs have two spikes, and others have just one, will be an interesting and potentially fruitful 

area for future investigation.  

 

5.1  Spikiness by Knowledge Component 
 

 

Spikiness may be influenced by the number of opportunities to practice a KC, as more 

opportunities may (by random variation) increase the potential maximum value of P(J). 

Therefore, to compare spikiness between KCs, we only consider KCs practiced at least 6 times, 

and only consider the first 20 opportunities to use that KC. 

Within our data from the Cognitive Tutor, spikiness values range for KCs between {1.12, 

113.52}, M=8.55, SD=14.62. For ASSISTments, we found a range of {1.62, 12.45}, M=3.65, 

SD=1.79. As can be seen in figure 5.2, the most frequently occurring spikiness values in the 

Cognitive Tutor range from 1.25-1.75, somewhat lower than the modal range in ASSISTments, 

2.75-4.75. It appears that the Cognitive Tutor spikiness values have a longer tail than the 

ASSISTments data, perhaps even with a second mode. This may imply that there are two groups 



of knowledge components in the Cognitive Tutor, a low-spikiness group and a high-spikiness 

group. There is some evidence for this possibility. The Cognitive Tutor tracks a larger number of 

knowledge components than ASSISTments, potentially including trivially easy tasks. The 

knowledge component with maximum spikiness of 113.52 is “ENTER-CORRECT-ANSWER-

INTO-BOX”. However, this KC’s high maximum spikiness appears to be due to rare outlier 

performance. This KC was attempted 1488 times, with 1485 occurrences being correct responses 

(99.997%); essentially perfect performance for almost every student. Hence learning was almost 

zero for this skill in the tutor, making it possible for rare blips – specifically, initial slips 

followed by perfect performance – to lead to artifactually high estimates of P(J) in rare cases. 

Metrics such as the maximum are vulnerable to rare blips of this nature. By contrast, the KC with 

maximum spikiness in ASSISTments was “ordering integers”, a genuine cognitive KC, which 

was attempted 2648 times with 2403 occurrences being correct (90.74%). Hence, it appears that 

some of the high spikiness seen in Cognitive Tutors comes from very easy KCs.  

It will be a valuable area of future work to analyze the factors leading some knowledge 

components to have high spikiness, while others have low spikiness. We leave a complete 

analysis of the factors leading to differences in spikiness for future work, as this is likely to be a 

substantial question for future inquiry. However, as a preliminary statement, it appears that 

compound KCs, KCs that may actually be composed of multiple KCs, are less prone to spikes. 

For instance, the spikiest KC in ASSISTments is the straightforward skill of ordering integers, 

whereas the least spiky skill is algebraic solving. Algebraic solving may involve operations with 

both integers and real numbers or various algebraic properties. The second spikiest KC in 

ASSISTments is computing the perimeter of a polygon. Polygons come in many shapes and 

sizes, measured in different ways. The gradual learning that a non-spiky graph represents is 



potentially showing continual gains in cognitive understanding of the many sub-KCs that the 

current problem includes. On the other hand, ordering integers is a much finer-grained KC, and 

we can frequently see “eureka” style learning for students. This pattern is seen in both of the two 

tutors. Thus, we hypothesize that P(J) can be especially useful for finer-grain KC models. 

Another factor worth noting is that algebraic solving, as well as perimeter of a polygon, have the 

shared characteristic of having many prerequisite KCs. If prerequisites are clear, then tutors 

could potentially be biased by using P(J) to induce spikes for each sub-KC to eventually obtain 

mastery of the primary KC. As noted, it will be a valuable area of future study to see whether 

these two factors are generally predictive of differences in KC spikiness and what other factors 

predict spikiness. 

 

 

 
Fig. 5.2. Frequency of KC spikiness levels in the two tutors (Cognitive Tutor on the left, ASSISTments on the right). 

The x-axis is the range of spikiness (displayed with logarithmic scale) and the y-axis is the percent frequency of 

each bin. 

 

 

5.2  Spikiness by Student 
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Within our data from the cognitive tutor, spikiness values range for students between {2.22, 

21.81}, M=6.81, SD=3.09, considerably less spikiness (on the whole) than the differences in 

spikiness seen between KCs. For ASSISTments, we found that spikiness values range between 

{1.12, 15.423}, M=3.09, SD=1.49, which is a slightly larger range than was seen for skills in 

ASSISTments. Interestingly, the student spikiness ranges are much more similar between the 

Cognitive Tutor data and the ASSISTments data than the KC spikiness ranges are, suggesting 

 
Fig 5.3. One student’s performance on a single KC in the ASSISTment System. The x-axis denotes the number of 

opportunities to practice the KC. 

 

 

that the tutors may have been more different from each other than the students who used them.  

Interestingly, however, a student’s spikiness is a good predictor of their final knowledge; the 

correlation between a student’s average final P(Ln) and their average spikiness is a very high 

0.71 in the Cognitive Tutor data, which is statistically significantly different than chance, 

F(1,228)=230.19, p<0.0001. In ASSISTments, the correlation is 0.50, which is also statistically 

significantly different than chance, F(1,4187)=1397.71, p<0.0001. These results suggest that 

learning spikes may be an early predictor of whether a student is going to achieve successful 

learning of the material in a tutor, as can be seen in figure 5.3. As can be seen, there is a spike for 
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both the P(J) training labels and P(J) model at the second action, before the sequence of correct 

actions (3
rd

 action, 4
th

 action, 5
th

 action) that lead to the higher P(Ln) values seen afterwards. It is 

worth noting that this spike is seen in both the P(J) training labels and P(J) model, although the 

model has lower peak values than the training labels (as discussed earlier) – point 2 for the 

model is still approximately double in magnitude as point 1 and point 3. 

Besides potentially being an early predictor of eventually learning material, spikiness 

analysis can help to reveal possible ways an ITS can improve on its methodology of assessing 

mastery. From figure 5.3, we can see that the student continues to receive practice even after 

reaching mastery, according to Bayesian Knowledge Tracing. This limitation can be addressed 

by adding Bayesian Knowledge-Tracing into ASSISTments. However, while Bayesian 

Knowledge Tracing with well-fit parameter values can reduce over-practice (Cen, Koedinger, & 

Junker, 2007), current implementations of Bayesian Knowledge Tracing still often need a 

significant amount of data to conclude that a student has achieved mastery. For instance, note 

that the spike in P(J) in figure 5.3 occurred several actions before Ln reached a mastery level 

(and is seen in both the training set and the model, though in a more visually obvious fashion in 

the training set). Our hypothesis is that P(J) can be used to refine Bayesian Knowledge Tracing, 

so that the estimate of mastery goes up more, when spikes occur, than simply what would be 

indicated by the model’s skill-level estimate of P(T). In doing so, it will be important to avoid 

using P(J) overly aggressively, creating a risk of under-practice. For one thing, though spikes 

predict eventual learning, this does not imply for certain that the learning is complete at the time 

of the spike (for instance, the student may have learned the knowledge component but need more 

practice in order to maintain long-term memory). In addition, even immediately after a spike, 

P(J) does not drop down to 0 (as can be seen in figure 5.3). Therefore, more work will be needed 



to figure out how much additional practice is needed, after a spike, for student learning to be 

maintained. 

 

5.3  Graph Replays 
 

While studying P(J) spikiness, we discovered several repeated graph shapes that intuitively 

seemed to model various kinds of learning, e.g. acquiring deep vs shallow knowledge. We also 

received feedback from other groups hypothesizing about the nature of what can be termed the 

“double spike”, as seen in figure 5.1. One hypothesis was that the troughs between spikes 

representing time when a student is exhibiting off-task behavior; after achieving mastery, it is 

possible that the student still has not proven proficiency to Bayesian Knowledge Tracing and 

thus gets bored. Another possibility is that multiple spikes are seen for multi-faceted knowledge 

components (e.g. Pythagorean Theorem) and each spike represents an opportunity to learn these 

sub-KCs. Although at least one spike was shown to correlate to final knowledge, we did not have 

a method for analysing the difference between single and double spikes. 

Past work has shown that text replays, a method for generating labels (Baker, Corbett, & 

Wagner, 2006) that can be used to train classifiers of student behaviour (Baker & Carvalho, 

2008; Sao Pedro et. al., 2010), are a convenient method for rapidly labeling logged data. Since 

the double-spikiness is perhaps easier to visualize graphically, we invented a similar labeling 

method called graph replays that charts students’ P(J) values for each skill. After marking each 

graph with defined features (e.g. single spike, double spike, wave) we can attempt to find 

correlations between shape and various forms of learning. In order to expedite the labeling 

process, we wrote a program called the GraphReplayer. The GraphReplayer is written in Java 

and accepts several input files that define labels that will be used as well as entire data sets 



marked with identifiers to notify the program what delimits between replays. The program 

presents the user with the target value, e.g. P(J), graphed over some interval, e.g. problems for a 

given assignment or knowledge component. The user selects from the label list the option that 

matches the graph that they see, and the GraphReplayer will store the result as well as a copy of 

the graph. 

 
Fig. 5.4. Image of the GraphReplayer displaying a P(J) replay in tag mode. 

 

For our purposes, we used a 2009 Genetics data set from Carnegie Learning that included 72 

students working on 9 knowledge components (cf. Baker, Corbett, et. al., 2010). Associated with 

this data were various learning metrics, including both conceptual and problem solving pre-

test/post-test scores, a transfer test, preparation for future learning test, and a problem solving 

retention test. The hypothesis behind this work was that we could first correlate between graph 



shape and learning metrics and also that this data set would allow us to create detectors of the 

important P(J) shapes. 

 

5.3.1 Replays with labels 
 

 

Our first attempt with graph replays was essentially identical to the text replay process; there 

are given labels and all graphs must fit one or another (or be marked as undefined or “not enough 

data”). The labels that we chose were decided on by our team simply by shared encounters with 

certain graph shapes during analyses from research described earlier in this paper. They are listed 

below with example graphs from the replayer in figure 5.5 and are mapped to label names given 

in table 5.1 below. 

 

  
 

  



  
Fig. 5.5. Examples of P(J) graph replays matched to label names in table 5.1. 

 
Table 5.2. Names of P(J) graph replays matched to example numbers in figure 5.6. 

Replay Example Number Replay Label 

221 Single spike 

238 Double spike 

6 1/x 

29 Constant 

186 Plateau 

144 Wave 
 

 

The labeling process was completed by two members of our team. In order to verify that we 

were in sync, we took a sample file of the first 1000 rows from our data set, which was 

approximately 100 replays, each coded the sample, and calculated Cohen’s kappa (1960). Our 

inter-rater agreement was 0.87, which is considered acceptable, so we split the entire file into 

two halves and labeled the rest of the replays. We checked to see if there was a correlation 

between the kinds of graphs a student produced from their work and the various metrics of 

learning described above, but unfortunately there were no statistically significant results. The 

highest value was that the “wave” label was inversely correlated (-0.327) with problem solving 

retention test scores. It is possible to theorize about the possible correlations we saw, but since 

they were so weak, it is not valid to do so. 

 

 

 



5.3.2 Replays with tags 
 

 

After finding no statistically significant correlations from the labeling method, we 

reconsidered our approach. Although we recorded a high inter-rater reliability, we did notice that 

some graphs shared attributes between several of the established labels that we had discussed. 

For instance, some graphs may have three or more separated spikes, which is somewhat of an 

ambiguous case between double spike and wave, and the situation only gets more convoluted the 

longer the replay. With that in mind, we adapted our method so that the GraphReplayer could 

generate a “tagging” mode where rather than users assigning labels to graphs, they would mark 

all relevant characteristics. Some labels translated directly into tags, such as the single spike, but 

other values were removed and new ones were added. The adapted list for this attempt is shown 

below in figure 5.6, mapped to the information given in table 5.2. 

  

  
 

 



  
 

                                          
Fig. 5.6. Examples of P(J) graph replays matched to tagging names in table 5.2. 

 
Table 5.2. Names of P(J) graph replays matched to example numbers in figure 5.6. 

Replay Example Number Replay Tag 

1 1/x drop 

108 1/x spike 

5 Close multi-spike 

222 Separated multi-spike 

20 Constant 

71 Plateau 

91 Single spike 

 

 

In this iteration, we achieved a kappa value of 0.71 averaged across tags, but again did not 

find particularly strong correlations between any tag and any metric of learning. For the process 

of checking correlations, we tried both concatenating all tags to graphs and counting all tags as 

individuals, i.e. any graph that involved tag t is multi-counted for all relevant tags. The former 

approach yielded 29 unique tagging groups, with the most significant value being that “plateau” 

is inversely correlated (-0.409) with preparation for future learning. The latter showed that “1/x 

spike” is correlated (0.338) to problem solving retention test scores. It is possible to speculate 



that a plateau represents repeated missed learning opportunities and that a 1/x spike is indicative 

of a student who enters the problem set already proficient, but because these correlations were 

again not statistically significant, we will not hypothesize further about these results. It is 

possible these results were due to a small sample size, so working with a larger data set is 

planned for future work. 

Although we ultimately did not find statistically significant correlations between graph 

shape and learning metrics for the data set that we chose, there is a substantial amount of future 

work to be done. As discussed earlier, only some knowledge components seem to systematically 

produce spiky behaviour, whereas others tend to have gradual learning rates; our Genetics data 

set only involved 9 knowledge components and it is conceivable that this sample is simply not 

conducive to spikiness replays. We found that the “1/x drop” tag and “1/x” label accounted for 

more than 50% of all graphs, which suggests that both our tags and labels are not at fine enough 

of a grain, or we have some sort of biased data set. The 1/x shape could represent several 

phenomena, possibly indicating that students are either immediately mastering the given 

knowledge component or entering the problem set already proficient. Applying the graph replay 

process to additional data sets, as well as attempting different labeling and tagging patterns, is a 

plan for future research. 

 

 

 

 

 

 

 



6 Piloting P(J) 
 

 

 

 

 

After demonstrating the validity of our model across multiple Intelligent Tutoring Systems, 

our next goal is to explore the utility of P(J). If P(J) can be used as an early detector of eventual 

success or conceptual understanding, then it is possible that tutors can provide students with a 

better optimized amount of time and problems on any given knowledge component. The goal is 

to present enough practice that students learn to the best of their ability, but no more than is 

necessary so that they maximize the use of their time. Although we do not expect to see P(J) 

result in higher learning gains as compared to any other method of cognitive mastery learning, 

we are curious to see if the moment-to-moment detection of learning can result in more efficient 

use of student time. 

As described in section 2, both ASSISTments and the Cognitive Tutor employ different 

methods of determining proficiency for a given student on a given knowledge component. While 

the Cognitive Tutor awards the label of mastery for achieving an Ln of 0.95 or greater, 

ASSISTments asks the student to get 3 questions in a row correct without an incorrect response 

or help request in between. There has not yet been a study conducted to compare 3-in-a-row to 

Bayesian Knowledge Tracing (BKT) and so it is our intention to analyze all three methods 

together as we explore how P(J) can be utilized. 

In order to involve P(J) in a study that actually affects students at runtime rather than doing 

a post-hoc analysis on data, we needed to add the ability to an ITS to use the P(J) value to 

intervene and recognize students as having mastered a given KC. We programmed new problem 

set types into ASSISTments so that we can present the same kind of content to the same 



audience across our three styles of mastery learning. The 3-in-a-row style behaves as usual, and 

Bayesian Knowledge Tracing functions identically to the Cognitive Tutor. For the new P(J) 

condition, mastery is awarded if the system sees the student spike from one question and then 

answer the next problem correct on the first attempt. Due to the nature of P(J), it is possible that 

a spike occurs from an incorrect response or help request. This allows for a “wrong-correct” 

sequence to result in mastery, which is rare in Bayesian Knowledge Tracing and impossible with 

3-in-a-row. For each knowledge component in the ASSISTments system, we calculated the 

average of maximum P(J) values seen for students in our prior post-hoc analyses. Whenever a 

student’s P(J) value hits that average at runtime, they are considered to have spiked and that 

student will potentially trigger the test out condition. Because this setup is prone to only 

intervening on the upper half of spiky students, we took the distribution of maximum P(J) values 

and altered the threshold for spikes to allow for roughly an additional 25% more students  to be 

considered spiking. This is not a proven method for how our model can be used in real time, but 

our first step here was to run a small pilot to assess the tractability of P(J) mastery, so we will 

detail that experiment and its preliminary results in the following subsections. 

 

6.1  Experiment Design 
 

 

Our pilot study was conducted with 54 students from 3 middle schools close to the 

Worcester Polytechnic Institute. All participants were administered a balanced pre-test and post-

test, where half were given Assessment 1 (See Appendix A1) as a pre-test and Assessment 2 

(See Appendix A2) as a post-test, while the other half were presented with the opposite setup. 

The contents covered six different knowledge components: Order of Operations, Division of 

Positive Decimals, Square Roots, Percent Of, Proportions, and Probability Compound, which 



map to M.8.8-applying-properties-of-operators, N/A, N.2.8-using-common-irrational-numbers, 

N.10.8-estimating-and-computing-various-numbers, N.3.8-ratios-and-proportions, and D.4.8-

understanding-concept-of-probabilities from MCAS strands, respectively. The pre-tests and post-

tests were all 18 questions long with 3 questions for each KC. 

Students were then assigned six problem sets, one per KC from the pre-test and post-test. 

The condition problem sets were based off of variabilized templates, which is a common practice 

in ASSISTments for mastery learning. Essentially, only a handful of types of problems are 

written and then the system generates questions that are structurally identical but use different 

numbers. An example of questions given to students derived from templates is available in 

Appendix A3. 

All students were exposed to all interventions, so two of the six KCs were 3-in-a-row, two 

were Bayesian Knowledge Tracing, and two were P(J). Students were organized into columns 

based on their overall performance in ASSISTments from approximately a year’s worth of usage 

as part of their regular curriculum. The condition assignments were evenly given in a Latin 

Squared format, as shown in table 6.1. 

Table 6.1. An example of pre-test, condition, and post-test distribution from the pilot study. 

Student ID Pre-test Skill 1-2 Skill 3-4 Skill 5-6 Post-test 

92704 Assessment 1 3-in-a-row BKT P(J) Assessment 2 

86456 Assessment 2 P(J) 3-in-a-row BKT Assessment 1 

83099 Assessment 1 BKT P(J) 3-in-a-row Assessment 2 

92788 Assessment 2 3-in-a-row BKT P(J) Assessment 1 

83104 Assessment 1 P(J) 3-in-a-row BKT Assessment 2 

82555 Assessment 2 BKT P(J) 3-in-a-row Assessment 1 

 

Students were given their work as homework assignments and were thus allowed to work at their 

own pace. ASSISTments for homework is a common part of the routine for all participants 

involved, so this was not unusual. 



 

6.2  Results 
 

 

Given that the pilot study was conducted on such a small sample size, we did not expect to 

have sufficient statistical power. There appeared to be a very slight gain from total pre-test score 

to total post-test score, M=0.047, SD=0.171. On a condition by KC basis, there seemed to be an 

equally slight gain, with M=0.00058, SD=0.323 for 3-in-a-row, M=0.046, SD=0.37 for BKT, 

and M=0.061, SD=0.36 for P(J). There appeared to be a slight difference between conditions for 

the number of problems seen per KC, with M=4.16, SD=2.23 for 3-in-a-row, M=5.17, SD=3.91 

for BKT, and M=3.79, SD=3.31 for P(J). Similarly for the amount of time spent for KCs 

between conditions there seemed to be a slight difference, with M=154.34 seconds, SD=192.29 

seconds for 3-in-a-row, M=307.63 seconds, SD=562.48 seconds for BKT, and M=195.76 

seconds, SD=250.75 seconds for P(J). 

Although we cannot yet make confident assertions about the utility of P(J) or the way it 

compares to 3-in-a-row or Bayesian Knowledge Tracing, the pilot study provided an important 

opportunity to learn lessons in preparation for a full study, which will be conducted in the near 

future. For that experiment, we will properly run statistical analyses so that we can confidently 

observe and analyze differences that occur between conditions, but that was not the goal of this 

target study. This first step did help us with some simple but important tasks such as finding bugs 

in the new implementations within ASSISTments and better understanding the kind of 

instructions that will ensure students properly complete all experiment work in the proper order. 

We know now that our method of detecting P(J) spikes is tractable. Additionally, and perhaps 

most importantly, we’ve learned that our future experiment should contain knowledge 

components that are less well known to the students. We chose KCs that we found to be spiky 



from prior research, but even spiky skills do not have much room for knowledge gains if students 

are already at a mastery level for the KCs. The average pre-test score was a 72% and the average 

post-test score was a 77%, so it would be beneficial to the study to use knowledge components 

that are less familiar to our sample group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 Discussion and Conclusions 
 

 

 

 

 

In this paper, we have presented models of P(J), the probability that a student learned a 

specific KC on a specific opportunity to practice and learn that KC. This paper does so in the 

context of two intelligent tutoring systems, the Cognitive Tutor and ASSISTments. Though this 

model builds off of past attempts to contextualize student modeling (e.g. Baker, Corbett, & 

Aleven, 2008) and to study the impact of different events on learning (e.g. Beck et al., 2008; 

Pardos & Heffernan, 2009), this model is distinct from prior models of student learning, focusing 

on assessing the likelihood of learning on individual problem steps. We show that the model 

achieves correlation in the range of 0.4-0.45 to the labels of this construct. In addition, we also 

find that the model’s assessments of P(J) can be used to distill a secondary measure, the 

“spikiness” of learning, defined as the maximum momentary learning, divided by the average 

momentary learning. We find that a student’s spikiness is a good predictor of their final 

knowledge in both Cognitive Tutors and ASSISTments. This finding suggests that P(J) 

represents a genuine measure of learning which can be studied further to shed light on the 

process of learning within intelligent tutoring systems.   

 

7.1  Potential Futures Uses of the Model 
 

 

The P(J) model can be used in at least two ways going forward. First, it can be used as an 

analytical tool and as part of other models, much as models predicting how much a student has 

learned have been used (e.g. Aleven et al., 2006; Baker, 2007; Baker, Corbett, Roll, & 

Koedinger, 2008; Muldner et al., 2010). Within this paper, we present an analysis using P(J) to 



infer that KCs have greater variance in spikiness than students. Studying which aspects of KCs 

predicts spikiness may be a valuable tool for further research into what types of KCs are learned 

gradually or through “eureka” experiences. In addition, given the correlation between spikiness 

and final knowledge, models of P(J) are likely to prove useful for student knowledge modeling, 

as contextual guess and slip have been (e.g. Baker, Corbett, & Aleven, 2008), and in the long 

term may lead to more effective adaptation by Intelligent Tutoring Systems. We have frequently 

observed multiple spikes within one student’s performance, which are currently an unexplained 

phenomenon and a topic of future research. It is possible that a single spike is a learning 

moment, and following questions are potentially over-practice, which has been shown to lead to 

gaming the system (Baker et al., 2008). If that is the case, the valley following the first spike 

could be explained by gaming, and the second (or third, fourth, etc.) spike is an indication that 

the student has become engaged again. In general, exploring the relationship between the 

dynamics of learning over time, as expressed by P(J) models, and other constructs in learning 

and engagement, has the potential to be a fruitful area of future work. 

Given that we can potentially identify moments in which students learn, it may be possible 

to improve the adaptivity – and in particular the speed of adaptivity – of intelligent tutoring 

systems using these models. In particular P(J) models may be able to support work to use 

reinforcement learning to induce tutorial strategies (cf. Chi, VanLehn, & Litman, 2010). Work 

along these lines will be supported still further, if it becomes possible to not just identify learning 

spikes, but to identify their antecedents. It also may be possible to improve adaptivity just 

through the step of improving Bayesian Knowledge Tracing models themselves, using P(J). 

Recent work has suggested that contextualization of model parameters such as guess, slip, and 

initial knowledge can improve prediction within a tutoring system (Baker, Corbett, & Aleven, 



2008; Pardos & Heffernan, 2010), although there is also evidence that contextual guess and slip 

models may over-fit to within-tutor performance (Baker et al., 2010). Studying ways to integrate 

multiple forms of contextualization, including P(J), to improve knowledge prediction both 

within the tutor and on later tests of knowledge may therefore be an important area of future 

work. 

 In conclusion, this paper has introduced models of the learning that occurs moment-by-

moment, and one way to utilize these models to study student learning. There appears to be 

potential for improving these models’ precision and using them in a variety of ways to study 

learning and improve adaptation by learning software. We have shown that the P(J) model is 

implementable for use at runtime in an ITS and that a study to compare that utilization of P(J) as 

an intervention to other methods of cognitive mastery learning will make for a tractable 

experiment. Exploring the amount of success that method may have, as well as studying exactly 

which potential uses of P(J) are the most productive, are topics for research in the very near 

future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix A 
 

 

Assessment Tests 
 

 

 

A. 1 Assessment Test 1 
 

 

 

A. 2 Assessment Test 2 
 

 

 

A. 3 Example Questions 
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