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Abstract

Modeling and forecasting the volatilities of high-frequency data observed on the prices of financial

assets are vibrant research areas in econometrics and statistics. However, most of the available

methods are not directly applicable when the number of assets involved is large, due to the lack

of accuracy in estimating high-dimensional matrices. This paper compared two methodologies of

vast volatility matrix estimation for high-frequency data. One is to estimate the Average Realized

Volatility Matrix and to regularize it by banding and thresholding. In this method, first we select

grids as pre-sampling frequencies,construct a realized volatility matrix using previous tick method

according to each pre-sampling frequency and then take the average of the constructed realized

volatility matrices as the stage one estimator, which we call the ARVM estimator. Then we reg-

ularize the ARVM estimator to yield good consistent estimators of the large integrated volatility

matrix. We consider two regularizations: thresholding and banding. The other is Dynamic Condi-

tional Correlation(DCC) which can be estimated for two stage, where in the first stage univariate

GARCH models are estimated for each residual series, and in the second stage, the residuals are

used to estimate the parameters of the dynamic correlation. Asymptotic theory for the two pro-

posed methodologies shows that the estimator are consistent. In numerical studies, the proposed

two methodologies are applied to simulated data set and real high-frequency prices from top 100

S&P 500 stocks according to the trading volume over a period of 3 months, 64 trading days in 2013.

From the perfomances of estimators, the conclusion is that TARVM estimator performs better than

DCC volatility matrix. And its largest eigenvalues are more stable than those of DCC model so

that it is more approriable in eigen-based anaylsis.
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Chapter 1

Introduction

It is increasingly important in financial economics to estimate volatilities of asset returns. For low-

frequency data, there exists extensive methods to estimate the volatility matrix by using GARCH,

discrete stochastic volatility and diffusive stochastic volatility models. With the availability of high-

frequency data, there is a surging interest on estimating volatilities using high-frequency returns

directly. High-frequency data possess some unique features such as price discreteness, unequally

spaced time intervals, non-synchronized trading, and leverage effect. Here, the non-synchronized

issue refers to the fact that transactions for different assets often occur at distinct times and the

high-frequency prices of different assets are recorded at mismatched time points. The field of

high-frequency finance has been developed rapidly in past several years. And estimation of inte-

grated volatility is one of the important issues. Realized volatility estimation process and improved

GARCH(Generalized Autoregressive Conditional Heteroskedasticity) are often applied into model

high-frequency financial data.

For realized volatility estimation process, estimation methods for the univariate case include re-

alized volatility (RV) [Andersen et al. (2003), Barndorff-Nielsen and Shephard (2002)], bi-power

realized variation (BPRV)[Barndorff-Nielsen and Shephard (2006)], two-time scale realized volatility

(TSRV)[Zhang, Mykland and Ait-Sahalia (2005)], multiple-time scale realized volatility (MSRV)

[Zhang(2006)], wavelet realized volatility (WRV)[Fan and Wang (2007)], kernel realized volatil-

ity (KRV)[Barndorff-Nielsen et al. (2008a)], pre-averaging realized volatility[Jacod et al. (2007)]
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and Fourier realized volatility (FRV)[Mancino and Sanfelici (2008)]. In multiple assets part, re-

searchers meet a non-synchronization issue and develop new methods to solving it. Hayashi and

Yoshida(2005) and Zhang(2011) proposed to estimate integrated covolatility of the two assets based

on overlap intervals and previous ticks, respectively. Barndorff-Nielsen et al. (2010) employed a

refresh time scheme to synchronize the data and then applied a realized kernel to the synchronized

data for estimating integrated covolatility. Christensen, Kinnebrock and Podolskij(2010) studied

integrated covolatility estimation by the preaveraging approach.

For improved GARCH processes, the standard practice of using variance estimates based on daily

returns has changed to accommodate the estimates of realized volatilities. The univariate GARCH

models have met with widespread empirical success, for example, IGARCH( Integrated GARCH),

EGARCH(Exponential GARCH)[Nelson(1991)], QGARCH(Quadratic GARCH)[ Sentana (1995)],

TGARCH (Threshold GARCH)[ Zakoian (1994)],etc. The problems associated with the estimation

of multivariate GARCH models also develop very fast. In multivariate part, three nonmutually

exclusive approaches are as follows: (i) direct generalizations of the univariate GARCH model of

Bollerslev(1986), for example, VEC(Vector Error-Correlation), BEKK[Baba, Engle, Kraft and Kro-

ner] and factor models; (ii) linear combinations of univariate GARCH models, orthogonal models

and latent factor models are included in this category; (iii) nonlinear combinations of univari-

ate GARCH models, this category contains constant and dynamic conditional correlation mod-

els(DCC), the general dynamic covariance model and copula-GARCH models.

Most of these works focus on volatility estimation using high-frequency data for a single or small

number of assets where volatility is either scalar or a small matrix. However, in reality, a large

number of assets are usually involved in asset pricing, portfolio allocation and risk management.

Due to the large number of elements in the volatility matrix, most existing methods estimator often

behaves poorly. As dimension goes to infinity, the estimators such as sample covariance matrix and

usual realized covolatility estimators are inconsistent because the eigenvalues and eigenvectors of

the matrix estimators are far from the true targets[Johnstone(2001), Johnstone and Lu(2009), El

Karoui(2007,2008),Bickel and Levina(2008a,2008b)]. Therefore, it is important to estimate inte-

grated volatility of large size for the assets.
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This paper compared two methodologies to estimate large volatility matrices considered on high-

frequency prices. The first method is based on the realized volatility estimation process. The

estimation procedure in the first method consists of two steps. First I select grids as pre-sampling

frequencies, construct a realized volatility matrix and then take the average as the step one es-

timator, which is the ARVM(average realized volatility matrix) estimator. In next step, I apply

two regularizations: banding and thresholding[Bickel and Levina(2008a,2008b)] to the covariance

matrix estimation. As the number of assets goes larger, the volatility matrix becomes more de-

caying or sparser. The regularized ARVM estimators can provide better volatility estimation that

will greatly enhance portfolio allocation and risk management. The second method focus on DCC(

Dynamic Conditional Correlation) Multivariate GARCH model, which is first introduced in En-

gle(2001). The DCC model has two stage estimation, where in the first stage univariate GARCH

models are estimated for each residual series, and in the second stage, residuals, transformed by

their standard deviation estimated during the first stage, are used to estimate the parameters of

the dynamic correlation. Then I combine estimations in two stages to get the volatility matrix.

Also, the asymptotic theory for both methods are stated to show the consistency under different

conditions. The proposed methods are fitted into both the simulation data and high-frequency

data on 100 stocks from the top 100 according to trading volume S&P 500 trading assets .

The rest of the paper is organized as follows. The basic model for high-frequency data and the

two proposed methods are presented in Chapter 2. Chapter 3 shows their asymptotic theories.

Numerical studies are reported in Chapter 4. Chapter 5 makes conclusions.
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Chapter 2

Methodology

Suppose there are p assets and their observed log price at time til in one day of the ith asset is

Yi(til), i = 1, · · ·p, l = 1, · · ·, ni. Due to the nonsynchronized problem, typically til 6= tjl for any

i 6= j. Let ni be the sample size for asset i, then
∑p

i=1 ni/p, is the average sample size of the p

assets. Next I will illustrate two models and their estimation methodologies by reference to papers

of Wang and Zou(2010) and Engle and Sheppard(2001).

2.1 Realized Volatility Process

2.1.1 Price Model

In Diffusion processes, the true log prices at time t of p assets X(t) = (X1(t), ..., Xp(t))
T obeys an

Itô process,

dX(t) = µtdt+ σTt dBt, t ∈ [0, 1] (2.1.1)

where µt = (µ1(t), ..., µp(t))
T is a drift taking values in Rp,σt is a p by p matrix, and Bt =

(B1t, ..., Bpt)
T is a p-dimensional standard Brownian motion.Both µt and σt are continuous in t.

Xt has volatility matrix γ(t) = (γij(t))1≤i,j≤p = σTt σt, the integrated volatility matrix for one day

based on noisy and nonsynchronized observations Yi(til), i = 1, ..., p, l = 1, ..., ni is defined as

Γ = (Γij)1≤i,j≤p =

∫ 1

0
γ(t)dt = (

∫ 1

0
γij(t)dt)1≤i,j≤p
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The high-frequency prices are usually mixed with micro-structure noise so that the observed log

price Yi(til) is a noisy version of the corresponding true log price Xi(til). It is common to assume

Yi(til) = Xi(til) + εi(til), i = 1, ..., p, l = 1, ..., ni (2.1.2)

where εi(til), i = 1, ..., p, l = 1, ..., ni are iid noise with mean zero and variance ηi, and εi(·) and

Xi(·) are independent with each other. The estimation of large volatility matrix for high-frequency

prices by diffusion process has two stage. The first stage is to estimate the ARVM (Averaging

Realized Volatility Matrix). The second stage is to regularize ARVM estimator by banding and

thresholding.

2.1.2 ARVM Estimator

To understand the basic idea of realized volatility matrix estimation better, we first consider es-

timating one day integrated volatility matrix by averaging realized volatility matrix(ARVM) es-

tiamtor[Wang and Zou(2010)]. Given a fixed integer m, suppose that τ = {τs, s = 1, ...,m} is a

pre-determined sampling frequency. For asset i, define previous-tick times

τi,s = max {til ≤ τs, l = 1, .., ni}

Based on τ we define realized co-volatility between assets i and j by

Γ̂ij(τ ) =

m∑
s=1

[Yi(τi,s)− Yi(τi,s−1)][Yj(τj,s)− Yj(τj,s−1)] (2.1.3)

and realized volatility matrix by

Γ̂(τ ) = (Γ̂ij(τ )) (2.1.4)

Next, in this paper, the pre-determined sampling frequency τ is usually selected as regular grids.

For a fixed m, there are K = [n/m] classes of nonoverlap regular grids given by

τ k = {(s− 1)/m, s = 1, · · ·,m}+ (k − 1)/n = {(s− 1)/m+ (k − 1)/n, s = 1, · · ·,m} (2.1.5)
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where k = 1, ...,K and n is the average sample size for p assets. Then for each specific τk, we define

realized co-volatility matrix Γ̂ij(τ
k) between assets i and j and realized volatility matrix Γ̂(τ k)

according to (2.1.3) and (2.1.4):

Γ̂ij =
1

K

K∑
k=1

Γ̂ij(τ
k), Γ̂ = (Γ̂ij) =

1

K

K∑
k=1

Γ̂(τ k) (2.1.6)

Then the averaging realized volatility matrix(ARVM) estimator denoted by Γ̃ is given by

Γ̃ = (Γ̃ij) = Γ̂− 2mη̂, (2.1.7)

where

η̂i =
1

2ni

ni∑
i=1

[Yi(ti,l)− Yi(ti,l−1)]2. (2.1.8)

are estimators of noise variance ηil, and η̂ = diag(η̂1, ..., η̂p) is the estimator of η = diag(η1, ..., ηp),

Here τ k is used to subsample data and then we can take the average. The subsampling and

averaging is to reduce the impact of microstructure noise and get a better ARVM estimator.

2.1.3 Regularization of ARVM Estimator

When p is small, Γ̃ provides a good estimator for Γ. But Γ̃ is not consistent for large p. The

previous papers[Bickel and Levina(2008a,2008b), Johnstone(2001) and Johnstone and Lu(2009)]

have already shown that the eigenvalues and the eigenvectors of Γ̃ are far from those corresponding

to Γ. Also the paper of Bickel and Levina(2008a,2008b) mentioned two assumptions of Γ: decay

conditions and sparsity conditions. According to these two assumptions, we can regularize Γ̃

with banding or thresholding. Next I will illustrate two assumptions and their corresponding

regularization methods.

Decay condition: Assume that the elements of Γ decay when moving away from its diagonal,

|Γij | ≤
M

1 + |i− j|α+1
, 1 ≤ i, j ≤ p, E[M ] ≤ C (2.1.9)
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where M is a positive random variable, and C and α are positive generic constants.

For Γ satisfying decay condition(2.1.9), its important terms are elements within a band along the

diagonal, and the elements outside the band are negligible. Therefore, we regularize Γ̃ by banding

a matrix, to keep only the elements in a band along its diagonal and replace others by zero. Define

the Banding Averaging Realized Volatility Matrix(BARVM) estimator Bb[Γ̃] as folllowing:

Bb[Γ̃] = (Γ̃ij1(|i− j| ≤ b)) (2.1.10)

where b is a banding parameter, 1(|i− j| ≤ b) is the indicator of {(i, j), |i− j| ≤ b}: So (2.1.10) can

also be written as:

Bb[Γ̃ij ] =


Γ̃ij |i− j| ≤ b

0 o.w

(2.1.11)

Sparsity condition: Assume that Γ satisfies

p∑
j=1

|Γij |δ ≤Mπ(p), i = 1, ..., p, E[M ] ≤ C, (2.1.12)

where M is a positive random variable,0 ≤ δ < 1, and π(p) is a deterministic function of p that

grows very slowly in p.

For Γ satisfying sparse condition(2.1.12), the small number of elements with large values are im-

portant.We need to locate those elements and estimate their values.. Therefore, we regularize Γ̃ by

thresholding a matrix, to retain only the elements whose absolute values exceed a given threshold-

ing value and to replace the others by zero. Define the Thresholding Averaging Realized Volatility

Matrix(TARVM) estimator T$[Γ̃] as folllowing:

T$[Γ̃] = (Γ̃ij1(|Γ̃ij | ≥ $)), (2.1.13)
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where $ is thresholding parameter. $is the quantile of Γ̃.So (2.1.13) can also be written as:

T$[Γ̃ij ] =


Γ̃ij |Γ̃ij | ≥ $

0 o.w

(2.1.14)

REMARK Decay condition(2.1.9) is a special case of sparstity condition(2.1.12) with δ = 1/(α+1)

and π(p) = log p or 1/(α + 1) < δ < 1 and π(p) = 1. In (2.1.12), π(p) can be 1, log p and a small

power of p. δ = 0 is the case that each row of Γ has at most Mπ(p) number of non-zero elements.

In financial applications, sparsity is much more realistic than the decay assumption because stocks

prices have no natural ordering character. Thus, in Chapter 5 real data part, TARVM estimator is

designed to estimate Γ.

2.2 DCC Process

2.2.1 DCC Model

Consider the log returns r(tl), l = 1, ..., ni from p assets in multivariate GARCH model[Engle

and Sheppard(2001)]. We condition on the sigma field, denoted by Ftl−1
, generated by the past

information until time (tl−1). Let θ be a finite vecotr of parameters and write:

rtl |Ftl−1
= (log(Ytl)− log(Ytl−1

))|Ftl−1
= (µtl(θ) + εtl)|Ftl−1

, (2.2.1)

where µtl(θ) is the conditional mean vector and εtl = H
1/2
tl

(θ)ztl , where H
1/2
tl

(θ) is a p×p postitive

definite matrix. Assume that p× 1 random vector ztl has E(ztl) = 0 and V ar(ztl) = Ip, Ip is the

identity matrix of order p. The conditional variance matrix of rtl :

V ar(rtl)|Ftl−1
= V artl−1

(εtl) = H
1/2
tl
V artl−1

(ztl)(H
1/2
tl

)′ = Htl , (2.2.2)

Htl ≡ DtlRtlDtl (2.2.3)
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where Dtl is the p by p diagonal matrix of time varying standard deviations from univariate GARCH

models with
√
hiitl on the ith diagonal, i.e, Dtl = diag(

√
h11tl , ...,

√
hpptl), here

√
hiitl is defined as

any univariate GARCH(p′, q′) model, so that

hiitl = ωi +

P ′i∑
p′=1

αip′ε
2
ii,tl−p′

+

Q′i∑
q′=1

βiq′hii,tl−q′ , i = 1, ..., p. (2.2.4)

(2.2.3) is imposed by the usual GARCH restrictions for non-negativity and stationarity, such as

non-negativity of variances and
∑P ′i

p′=1 αip′ +
∑Q′i

q′=1 βiq′ < 1.

Rtl = (ρij,tl) is the time varying correlation matrix. The proposed dynamic correlation structure

is:

Rtl = diag(q
−1/2
11,tl

, ..., q
−1/2
pp,tl

)Qtldiag(q
−1/2
11,tl

, ..., q
−1/2
pp,tl

) (2.2.5)

where the N ×N symmetric positive definite matrix Qtl = (qij,tl) is given by:

Qtl = (1−
M∑
m=1

αm −
N∑
n=1

βn)Q̄+

M∑
m=1

αmztl−m
z′tl−m

+

N∑
n=1

βnQtl−n
, (2.2.6)

where ztl = D−1tl εtl , Q̄ is the p by p unconditional covariance of the standardized residuals result-

ing from the first stage estimation. And αm and βn are non-negative scalar parameters satisfying∑M
m=1 αm+

∑N
n=1 βn < 1. Here, the assumption of normality in (2.2.1) gives rise to a likelihood func-

tion. Without this assumption, the estimator will still have the Quasi-Maximum Likelihood(QML)

interpretation. Therefore, the corresponding volatility matrix Γ =
∑n

l=1Htl/n.

2.2.2 Estimation

The proposed DCC model can be estiamted for two stage, where in the first stage univariate

GARCH models are estimated for each residual series, and in the second stage, the residuals which

are transformed by their standard deviation estimated during the first stage are used to estimate

the parameters of the dynamic correlation. Although the normality of the innovations is rejected

in most applications, the Guassian Quasi-maximum likelihood estimator will still be a consistent

estimator of θ by maximizing the log likelihood of multivariate normal distribution. QMLE is
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consistent provided the conditional mean and the conditional variance, which has been proved by

Jeantheau(1998). The log likelihood for the estimator can be expressed as:

L = −1

2

n∑
l=1

(p log(2π) + log |Htl |+ ε′tlH
−1
tl
εtl)

= −1

2

n∑
l=1

(p log(2π) + log |DtlRtlDtl |+ ε′tlD
−1
tl
R−1tl D

−1
tl
εtl)

= −1

2

n∑
l=1

(p log(2π) + 2 log |Dtl |+ log |Rtl |+ z′tlR
−1
tl
ztl)

= −1

2

n∑
l=1

(p log(2π) + 2 log |Dtl |+ ε′tlD
−1
tl
D−1tl εtl − z

′
tl
ztl + log |Rtl |+ z′tlR

−1
tl
ztl)

(2.2.7)

Let the parameters of the model, θ, be written in two groups(φ,ϕ) = (φ1, φ2, ..., φp, ψ), where the

elements of φi correspond to the parameters of the univariate GARCH model for the ith assets

series, φi = (ω, α1i, β1i). The log-likelihood can be written as the sum of a volatility part and a

correlation part:

L(θ) = L(φ) + L(ψ|φ) (2.2.8)

The volatility term is

LV (φ|rtl) = −1

2

n∑
l=1

(p log(2π) + 2 log |Dtl |+ ε′tlD
−1
tl
D−1tl εtl)

= −1

2

n∑
l=1

(p log(2π) + 2 log |Dtl |+ ε′tlD
−2
tl
εtl)

= −1

2

n∑
l=1

(p log(2π) +

p∑
i=1

(log(hii,tl) +
(ri,tl − µi,tl)2

hii,tl
)

= −1

2

p∑
l=1

(n log(2π) +

n∑
l=1

(log(hii,tl) +
(ri,tl − µi,tl)2

hii,tl
)

(2.2.9)

which is simply the sum of the log-likelihoods of the individual GARCH models for each of the

assets. Once the first stage has been estimated, the second stage is estimated using the correctly
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specified likelihood, conditioning on the parameters estimated in the first stage likelihood:

LC(ψ|φ, rtl) = −1

2

n∑
l=1

(−z′tlztl + log |Rtl |+ z′tlR
−1
tl
ztl). (2.2.10)

The two-step approach to maximizing the likelihood is to find

φ̂ = argmaxLV (φ), (2.2.11)

and then take this value as given in the second stage:

max
φ
{LC(ψ|φ̂)}. (2.2.12)

Under reasonable regularity conditions, consistency of the first step will ensure consistency of the

second step. The maximum of the second step will be a function of the first step parameter

estimates, so if the first step is consistent, then the second step will be consistent as long as the

function is continuous in a neighborhood of the true parameters.
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Chapter 3

Aysmptotic Theory

3.1 Realized Volatility Process

The asymptotic theory for realized volatility process is referring to the paper of Wang and Zou(2010).First

we fix some notations for the theretical analysis. Given a p-dimensional vector x = (x1, ..., xp)
T

and p by p matrix V = (Vij), define matrix norms as follows,

||V ||2 = sup{||V x||2, ||x||2 = 1}, ||x||2 = (

p∑
i=1

|xi|2)
1
2 .

Then ||V ||2 is equal to the square root of the largest eigenvalue of V TV , where V T is the transpose

of V , and for symmetric V , ||V ||2 is equal to its largest absolute eigenvalue.

Next I will state the assumptions for the asymptotic analysis[Wang and Zou(2010)].

A1: Assuming the following moment conditions on diffusion drift µt = (µ1(t), ..., µp(t))
T and

diffusion variance σt = (σij(t))1≤i,j≤p in price model (2.1.1) and microstructure noise εi(tij) in

observed data model (2.1.2): for some β ≥ 4,

max
1≤i≤p

max
0≤t≤1

E[|γii(t)|β] <∞,

max
1≤i≤p

max
0≤t≤1

E[|µi(t)|2β] <∞,

max
1≤i≤p

max
0≤t≤1

E[|εi(t)|2β] <∞.
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A2: Each of p assets has at least one observaion between τkr and τkr+1. In the construction of ARVM

estimator, I assume m = o(n), where n = (n1 + · · ·+ np)/p and

C1 ≤ min
1≤i≤p

ni
n
≤ max

1≤i≤p

ni
n
≤ C2,

max
1≤i≤p

max
1≤l≤ni

|til − ti,l−1| = O(n−1).

Assumption A1 is the minimal moment requirements for the price and microstructure noise. As-

sumption A2 is a technical condition that ensures adequate number of observations between grids

and establishes the asymptotic theory for the proposed methodology.

THEOREM 1.(Consistency) Suppose models (2.1.1) and (2.1.2) satisfy assumptions A1 and A2,

then for all 1 ≤ i, j ≤ p,

E(|Γ̃ij − Γij |β) ≤ Ceβn, (3.1.1)

where C is a generic constant that is not related to n and p, and the convergence rate eβn given

below is equal to the sum of terms with powers of n and K = [n/m] which depend on whether the

observed data in the model specication have micro-structure noise or not.

(1) If there is micro-structure noise in model (2.1.2),

eβn = (Kn−1/2)−β +K−β/2 + (n/K)−β/2 +K−β + n−β/2.

Thus with K ∼ n2/3 we have en ∼ n−1/6.

(2) If there is no micro-structure noise, i.e. εi(til) = 0 and Yi(til) = Xi(til) in model (2.1.2),

eβn = (n/K)−β/2 +K−β + n−β/2.

Thus with K ∼ n1/3 we have en ∼ n−1/3.

REMARK 1. Noise, nonsynchronization and discrete observations for continuous process X(t)

are three main factor that affect the convergence rate en. The true log-price X(t) is not directly
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observable due to micro-structure noise in high-frequency financial data. And as a continuous pro-

cess, X(t) is only observed with noise at discrete time points. Therefore the convergence rate en

is slower than n−1/2. In fact, the optimal convergence rate for the univariate noise case is n−1/4

the nonsychronization for multiple assets also make the problem complicated. In Theorem 1, the

convergence rates eβn is separated into three parts. The first part (Kn−1/2)−β + K−β/2 in eβn is

due to noise. Because X(t) is observed at discrete time points, we need to discretize X(t) and use

its discretization to approximate integrated volatility matrix. The second part (n/K)−β/2 in eβn

is contributed to the approximation error because of the discretizaion of X(t). The third part is

K−β + n−β/2 which is associated with nonsychronization. All the proof of Theorem 1 is in paper

of Wang and Zou(2010).

THEOREM 2.(Constistency of BARVM) Assume that Γ satisfies decay condition(2.1.9). Then

with the assumption A1 and A2 and models (2.1.1) and (2.1.2),

||B[Γ̃]− Γ||2 ≤ ||B[Γ̃]− Γ||∞ = OP ([enp
1/β]α/(α+1+1/β)),

where banding parameter b of order (enp
1/β)−1/(α+1+1/β) is selected.

THEOREM 3.(Consistency of TARVM) Assume that Γ satisfies sparsity condition(2.1.13). Then

with the assumption A1 and A2 and models (2.1.1) and (2.1.2),

||T [Γ̃]− Γ||2 ≤ ||T [Γ̃]− Γ||∞ = OP (π(p)[enp
2/βhn,p]

1−δ),

where en is given in Theorem 1, $ = enp
2/βhn,p, and hn,p is any sequence converging to infinity

arbitrarily slow with one exaple hn,p = log log(n ∧ p).

REMARK 2. For Γ satisfying decay condition(2.1.9), the sparsity condition is held with δ =

1/(α+ 1) and π(p) = log p. The convergence rate in Theorem 2 corresponding to Theorem 3 under

the sparsity condition has a leading factor of order [enp
2/β]α/(α+1). Also, the convergence rate in

Theorem 3 is nearly equal to π(p)[enp
2/β]1−δ. Because under the noise condition en ∼ n−1/6 and

under the noiseless condition en ∼ n−1/3, our goal is to make enp
2/β converge to zero, then under

the noise condition, p should grow more slowly than nβ/12, and under the noiseless case condition,
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p should grow more slowly than nβ/6. Comparing two convergence rate in Theorem 2 and Theorem

3, we could find that as β goes reasonably large, the two convergence rates are quite close to each

other.

3.2 DCC Process

The proofs for consistency and asymptotic normality of the DCC estimators have already been

provided by White(1994). In order to establish the consistency of the parameters estimated using

the two stage procedure and guarantee the completeness of the probability space and measurability

of the quasi-likelihood functions, I will state the following assumptions[Engle and Sheppard(2001)]

close to those of White’s paper.

A3:(i) For each φ in Φ, E(log f1(rtl, φ)) exists and is finite, l = 1, 2, ..., n, log f1(rtl, φ) obeys the

strong uniform law of large numbers.

(ii) For each θ = (φ, ψ) in θ = φ×Ψ, E(log f2(rtl , θ)) exists and is finite, l = 1, 2, ..., n, log f2(rtl , θ)

obeys the strong ULLN.

A4:(i) θ0 = (φ0, ψ0) is identifiably unique, interior in Θ = Φ ×Ψ uniformly in n, Θ is compact,

and θ0 satisfies the conditions of positive denitess of DCC.

(ii)L̄1n(φ) = E(n−1
∑n

l=1 log f1(rtl , φ)) is O(1) uniformly on Φ, L̄2n(φ) = E(n−1
∑n

l=1 log f2(rtl , φ))

is O(1) uniformly on Θ.

A5: For all φ in Φ,∇L̄1n(φ) = E(∇L1n(rn, φ)) <∞ where rn = (rt1 , rt2 , ..., rtn), the n- dimensional

vector of observations. For all θ in Θ,∇L̄2tl(φ) = E(∇L2n(rn, φ)) <∞

A6:(i) For all φ in Φ,∇2L̄1n(φ) = E(∇2L1n(rn, φ)) < ∞, E(∇2L1n(rn, φ)) is continuous on Φ

uniformly in l = 1, 2, ..., n and ∇2 log f1(r
n, φ) obeys the strong ULLN.

(ii) For all θ in Θ,∇2L̄2n(θ) = E(∇2L2n(rn, θ)) <∞, E(∇2L2n(rn, ·)) is continuous on Θ uniformly

in l = 1, 2, ..., n and ∇2 log f2(r
tl , φ) obeys the strong ULLN.

A7: A11.n = ∇φφL̄1n(φ0) is O(1) and uniformly negative definite. A22.n = ∇ψψL̄2n(φ0) is O(1) and

uniformly negative definite.

A8:{n−1/2∇′φlnf1(rtl , φ0), n−1/2∇′φlnf1(rtl , φ0)} obeys the central limit condition with covariance

matrix B0n, and B0n is O(1) and uniformly positive definite
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THEOREM 4 (Consistency) Under assumptions A3-A7, φ̂n
p→φ0 and θ̂n = (φ̂n, ψ̂n)

p→θ0.

THEOREM 5 (Asymptotic Normality) Under assumptions A3-A8, for f1 and f2,

√
n(θ̂n − θ̂0)

A∼ N(0, A−10 B0A
′−1
0 )

where A0 =

∇φφlnf1(φ0) 0

∇φψlnf2(φ0) ∇ψψlnf2(φ0)

 =

A11 0

A21 A22

 and

B0 = var[

n∑
l=1

{n−1/2∇′φ ln f1(rtl , φ0), n
−1/2∇′ψ ln f2(rtl , φ0, ψ0)}] =

 B11 B12

B21 B22


REMARK 3 The conditions for consistency given in Theorem 4 are very weak and will be satisfied

by numerous data generating processes. In Theorem 5, the asymptotic variance of θ̂n is given by

A−10 B0A
−1
0 . For the first stage, by applying the partitioned inverse theorems for square matrices,

the asymptotic variances of the GARCH parameters for each assets, φ̂n are the standard robust

covariance matrix estimators given by A−111 B11A
−1
11 , where A−111 B11A

−1
11 is a block diagonal matrix

with the covariance matrix for the ith univariate GARCH model on the ith diagonal block. However,

the asymptotic variance of the second stage DCC parameters is much more complicated.
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Chapter 4

Numerical Studies

4.1 The Simulation Model

First, I will construct a simulation data set of n values for p assets’ synchronized prices and volatility

process for one day at tl = l/n, l = 1, ..., n according to section 2.1.1 and 2.1.2. Define Yt be

observed data, from (2.1.2) we know that Y (t) follows Yt = Xt + εt, where εt = (ε1t, ..., εpt), εit

are independent normal noise with mean zero and variance ηi, this part will be mentioned after

the true log prices X(t) are simulated. The true log prices X(t) in (2.1.1) of p assets follows the

following continuous time diffusion model with zero drift,

dXt = σTt dBt, X(t) = X(0) +

∫ t

0
σTs dBs, t ∈ [0, 1], (4.1.1)

where Bt = (B1t, ..., Bpt)
T is a standard p-dimensional Brownian motion. Hence, the volatility

of X(t) is γ(t) = σTt σt = (γij(t))1≤i,j≤p. Take σt as a Cholesky decomposition of γ(t). So the

first step is to simulate γ(t). Let Zc
l l be a N(0, 1) random variable, Z0

l , U1
l and U2

l be three

standard p-dimension Brownian motions whose coordinates are all i.i.d. N(0, 1) and independent

of Zc
l .Partition Z0

l ,U
1
l and U2

l equally into 4 blocks respectively

Z0
l = ([Z0

1,l]
T , [Z0

2,l]
T , [Z0

3,l]
T , [Z0

4,l]
T )T ,
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U1
l = ([U1

1,l]
T , [U1

2,l]
T , [U1

3,l]
T , [U1

4,l]
T )T ,

U2
l = ([U2

1,l]
T , [U2

2,l]
T , [U2

3,l]
T , [U2

4,l]
T )T ,

DefineZi
j,l, i = 1, 2, j = 1, 2, 3, 4 as eight p/4-dimensionall vectors byZi

l = ([Zi
1,l]

T , [Zi
2,l]

T , [Zi
3,l]

T , [Zi
4,l]

T )T ,

where

Z1
j,l = ρjZ

0
j,l +

√
1− ρ2jU

1
j,l, Z2

j,l = ρjZ
0
j,l +

√
1− ρ2jU

2
j,l. (4.1.2)

We choose the following negative values for ρj , j = 1, 2, 3, 4to re ect the leverage effect,

ρj =



−0.62, 1 ≤ j ≤ p/4

−0.50, p/4 ≤ j ≤ p/2

−0.25, p/2 ≤ j ≤ 3p/4

−0.30, 3p/4 ≤ j ≤ p

(4.1.3)

4.1.1 Simulation of γ(t)

Diagonal elements The diagonal elements of γ(t) are generated form four common stochas-

tic volatility models with leverage effect. The four volatility processes are geometric Ornstein-

Uhlenbeck process, the volatility process in Nelson GARCH diffusion limit model[Wang(2002)],

the sum of two CIR processes[Cox, Ingersoll and Ross(1985) and Barndorff-Nielson and Shep-

hard(2002)] and two-factor log-linear stochasitc volatility process[Huang and Tauhen(2005)]. With

Btl = (B1tl , . . . , Bptl)
T and Wtl = (W1tl , . . . ,Wptl)

T being simulated, by Euler method we use Witl

to simulate each of four pars of γii.

(1) For first p/4 of γii(tl), i = 1, ..., p/4. vtl = (log γ11(tl), ... log γp/4.p/4(tl))
T , vii(tl) are drawn

from the geometric Ornstein-Uhlenbeck model[Barndorff-Nielsen and Shephard(2002)],

dvii(tl) = −0.6(0.157 + vii(tl))dt+ 0.25dZ1
1,l,

vtl = vtl−1
− 0.6(0.157 + vtl−1

)
1

n
+ 0.25

1√
n
Z1

1,l,

(γ11(tl), ..., γp/4.p/4(tl))
T = exp(vtl).

(4.1.4)
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(2) For second p/4 of γii(tl), i = p/4 + 1, ..., p/2. vtl = (γp/4+1,p/4+1(tl), ..., γp/2,p/2(tl))
T ,vii(tl) are

drawn from the volatility process in Nelson’s GARCH diffusion limit model[Barndorff-Nielsen and

Shephard(2002)],

dvii(tl) = [0.1− vii(tl)]dt+ 0.2vii(tl)dZ
1
2,l,

vtl = vtl−1
+ (0.1− vtl−1

)
1

n
+

0.2√
n
vtl−1

⊗Z1
2,l,

(γp/4+1,p/4+1(tl), ..., γp/2,p/2(tl))
T = vtl .

(4.1.5)

(3)For third p/4 of γii(tl), i = p/2+1, ..., 3p/4, 0.98(v1,tl+v2,tl) = (γp/2+1,p/2+1(tl), ..., γ3p/4,3p/4(tl))
T ,

vii(tl) are drawn from the sum of two CIR processes[Barndorff-nielson and Shephard(2002)],

dv1,tl = 0.0429(0.108− v1,tl)dt+ 0.1539
√
v1,tldZ

1
3,l,

v1,tl = v1,tl + 0.0429(0.108− v1,tl)
1

n
+

0.1539√
n
v1,tl−1

⊗Z1
3,l,

(4.1.6)

dv2,tl = 3.74(0.401− v2,tl)dt+ 1.4369
√
v2,tldZ

2
3,l,

v2,tl = v2,tl−1
+ 3.74(0.401− v2,tl−1

)
1

n
+

1.4369√
n
v2,tl−1

⊗Z2
3,l,

(γp/2+1,p/2+1(tl), . . . , γ3p/4,3p/4(tl))
T = 0.98(v1,tl + v2,tl)

(4.1.7)

(4)For fourth p/4 of γii(tl), i = 3p/4 + 1, ..., p, vii(tl) are drawn from the two-factor log-linear

stochastic volatility model[Huang and Tauhen(2005)],

dv1,tl = −0.00137v1,tldt+ dZ1
4,l,

v1,tl = v1,tl−1
− 0.00137v1,tl−1

1

n
+

1√
n
Z1

4,l,
(4.1.8)

dv2,tl = −1.386v2,tldt+ (1 + 0.25v2,tl)dZ
2
4,l,

v2,tl = v2,tl−1
− 1.386v2,tl−1

1

n
+

1√
n

(1 + 0.25v2,tl−1
)⊗ dZ2

4,l,
(4.1.9)

and

s− exp(u) =


expu if u ≤ log(8.5)

8.5{1− log(8.5) + u2/log(8.5)}1/2 if u > log(8.5)

(4.1.10)

21



With γii(tl) generated from above stochastic differential quations, we still need to adjust it to match

them with those average realized volatility for top 100 S&P 500 stocks. Order the diagonal elements

of the average of 64 trading daily ARVM estimators for the high-frequency data from top 100 S&P

500 stocks from the largest to the smallest. Then select the p largest diagonal elements to form

a diagonal matrix of size p and multiply them by 1000. Denote the resulting diagonal matrix

by θ̂. Let θ̂1 be the diagonal matrix with first, second, third and fourth p/4 diagonal elements

1/7.44 1/0.98 1/2.82 1/1.83, respectively. To adjust the computed diagonal elements by multiplying

diag(γii(tl)) with θ̂ and θ̂1,i.e, (γ11(tl), . . . , γpp(tl))
T = θ̂diag(γ11(tl), . . . , γpp(tl))θ̂1.

Off-diagonal elements With the diagonal elements of γ(t), we define its off-diagonal elements by

γij(tl) = {k(tl)}|i−j|
√
γii(tl)γjj(tl), 1 ≤ i 6= j ≤ p, (4.1.11)

where process k(tl) is given by[Barndorff-Nielsen and Shephard(2002,2004)]

k(t) =
e2v(tl) − 1

e2v(tl) + 1
,

dv(t) = 0.03[0.64− v(t)]dt+ 0.118v(t)dZkl

i.e,v(tl) = v(tl−1) + 0.03[0.64− v(tl−1)]/n+ 0.118v(tl−1)⊗Zk
l /
√
n,

Zk
l =
√

0.96Zc − 0.2(1, ..., 1)Z0
l /
√
p,

(4.1.12)

Zc is a standard 1-dimensional Brownian motion.

4.1.2 Simulation of the True Log Price X(t)

After obtaining the matrix γ(tl), we compute its Cholesky decompositon to be σ(tl). Then n values

for the true log prices with leverage effect are as following:

Xtl = Xtl−1
+

1√
n

[σtl−1
]TZ0

l , tl = l/n, l = 1, ..., n.

Note that γ(tl) should be positive definite so that we can get the Cholesky decomposition of

γ(tl), but the simulated data from Euler method cannot guarantee the positive definiteness of
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γ(tl), then here I use ”nearPD” in R to find the nearest positive definite matrix of γ(tl).The basic

idea is to find a matrix X that will minimize the Frobenius norm of γ − X, which is defined as

||γ −X||F =
√∑p

i,j=1 |γij −Xij |2[Higham Nick(2002)]. Therefore, X can used to take place of γ

if γ is not positive definite.

4.1.3 Simulation of Observed Data Y (t)

Finally, observed data Ytl are obtained by adding to Xtl normal noise εtl , l = 1, ..., n, i.e,

Ytl = Xtl + εtl , l = 1, ..., n,

where εtl = (ε1,tl , ..., εp,tl), εi,tl , are independent normal noise with mean zero and V ar(εi,tl) = ηi

The standard deviation
√
ηi is chosen to reflect the empirical fact that relative noise level found

in high frequency data. In our simulation study, we select three noise standard deviations which

are translated into 0.002%, 0.004% and 0.065% of the average volatility or relative noise level,

respectively. Thus, the three standard deviation are chosen as: 0.002
√
θi,0.005

√
θi,0.012

√
θi which

corresponding to low, medium and high noise level. θi is the diagonal element of the average of

64 trading daily ARVM estimators for high-frequency data from top 100 S&P 500 stocks from the

largest to the smallest.

4.1.4 Simulation of Nonsynchronized Data

For nonsychronized data, the simulation procedure is quite similar to the above procedure. In-

stead of generating observations for the processes at n time points, γ(tl),Xi(tl) and Yi(tl) are

simulated at 3n time points tl = l/(3n), l = 1, · · ·, 3n. Next divide the 3n time point tl into n

groups {t3g−2, t3g−1, t3g}, g = 1, ..., n by grouping together three consecutive time points. From the

simulated 3n values of Yi(tl) we randomly select one time point from each group, then use the n

selected values to form noisy observations for asset i. The selection procedure is applied to p assets.

The obtained data are nonsychronized due to random selection.
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4.2 Two Methods in Simulation Data

4.2.1 Realized Volatility Process

In the synchronized case, after the simulation of γ(tl), X(tl), Y (tl), we numerically define inte-

grated volatility matrix Γ as
∑n

l=1 γ(tl)/n, compute ARVM estimator Γ̃ according to (2.1.7) and

calculate its banding Bb[Γ̃] and thresholding T$[Γ̃] as described in Section 2.1.3. Repeat the whole

simulation procedure 500 times. The mean square error(MSE) of a matrix estimator is computed

by averaging l2-norms of the differences between the estimator and Γ over 500 iterations,i.e,

MSE(Γ̃) =
1

500

500∑
i=1

‖ Γ̃− Γ ‖
2

2,

MSE(Bb[Γ̃]) =
1

500

500∑
i=1

‖ Bb[Γ̃]− Γ ‖
2

2,

MSET$[Γ̃]) =
1

500

500∑
i=1

‖ T$[Γ̃]− Γ ‖
2

2,

MSEs of Γ̃, Bb[Γ̃] and T$[Γ̃] are used to evaluate the performance of these estimators.

In the nonsynchronized case, the true Γ is computed by
∑n

g=1 γ(t3g)/n. But we use the nonsynchro-

nized data to evaluate Γ̃,Bb[Γ̃] and T$[Γ̃], where the values of b and $ are selected by minimizing

their respective MSEs. Again, we repeat the whole simulation procedure 500 times and evaluate

MSEs of Γ̃,Bb[Γ̃] and T$[Γ̃] based on the 500 repetitions.

Note that R is used to simulate the whole procedure, it is very time consuming when we compute

the 500 times MSE. There is a helpful package called ”parallel” in R which builds on the work of

package ”multicore”[Urbanek] and ”snow”[Tierney] and provides dropin replacements for most of

the functionality of those packages, with integrated handling of random number generation. Paral-

lelism means running several computations at the same time and taking advantage of multiple cores

or CPUs on a single system, or CPU on other system. This package handles running much larger

chunks of computations in parallel. In this package, ”parLapply” is parallel versions of ”lapply”,

which can run several computions of given function at the same time. Therefore, it helps me to
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save a lot of time by applying this package into programming.

4.2.2 DCC Method

DCC Model is applied in nonsynchronized data set. So there are 3n = 1200 time points in one

day. In stage one, the conditional variances for each of the univariate GARCH models need to be

estimated at time point tl, l = 1, .., 3n and p = 100 assets. If we select every univariate GARCH

model by criteria for example AIC or BIC, the computation work is so large. For simplicity, I

select P = 1 and Q = 1 to be the univariate GARCH model’s parameters. So first, by fitting

the real data set into GARCH(1,1) model, we can find the initial values for stage one. Here,

we set all the univariate GARCH(1,1) models with the same initial value for simplicity. In stage

two, because the statistical software R cannot allocate large vector space in the middle procedure,

I use the pairwise volatility matrix between two different assets, the ith asset and the jth asset

i 6= j, i, j = 1, ..., p, to approximate the 100 × 100 volatility matrix between p = 100 assets. Then

there are p × (p + 1)/2 = 5050 pairs of two assets combination. In every pairs, DCC(1,1) with

intial values of [0.09, 0.90], DCC(2,1) with intial values of [0.045, 0.045, 0.90], DCC(2,2) with initial

values of [0.045, 0.045, 0.45, 0.45] and DCC(3,2) with initial values of [0.03, 0.03, 0.03, 0.45, 0.45] are

estimated with simulation data. Although DCC(3,2) has the smallest MSE, at the same time only

in stage two, the number of parameters that need to be estimated increase from 2 to 5. And this

procedure will run 5050 times. And there are not very large difference among these MSEs of DCC

models. Therefore, in order to make the computation faster, I select DCC(1,1) as the DCC model.

In R, ”ccgarch” package can implement the DCC model directly and the output gives us the matrix

of Dtl and Rtl , l = 1, ..., n in one day. Then we can apply DCC(1,1) model into simulation data.

After simple matrix computation, we will obtain the volatility matrix Htl for every tl. Average

Htl , l = 1, .., n and define this resulting matrix D[Γ̃] as the estimation of volatility matrix in given

day. Here, define

MSE(D[Γ̃]) =‖ D[Γ̃]− Γ ‖22 .

It takes a lot of time to run DCC model for large size of assets, so there is no repetition in this

method.
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4.3 Simulation Result

First, I focus on the discussion about the selection of two regularization methods under different

conditions. Next compare the MSEs of the regularization methods with that of the DCC model

for nonsynchronized high-frequency data. The simulation results and reports findings are based

on n = 400 and p = 100 with m = 400 or 80, which is quite similar to the real data with 1-min

and 5-min interval. In (4.1.13), five initial values of k(0) = 0.537, 0.762, 0.905, 0.964, 0.995 are

corresponding to five initial values of v(0) = 0.6, 1, 1.5, 2, 3.

From the previous paper[Wang and Zou(2010)], we know that k(t) is heavily influenced by its

initial value and its whole path stays within a narrow band around the initial value. For every

initial value of k(0), we can compute its corresponding integrated volatility matrix Γ. Figure 4.1

shows the images of Γ with different initial values and the volatility matrix in DCC model. The

image plots (a)-(e) indicate that decaying conditions effect the patterns of Γ a lot. The significant

elements of Γ fall into a band along its diagonal and its off-diagonal elements outside the band are

negligible. When k(t) is small, the decay is very fast and the band is very narrow. Because banding

a matrix is to keep only the elements in a band along its diagonal and replace others by zero, then

BARVM estimator will be more accurate than TARVM estimator under this condition. However,

the larger k(t) goes, the slower the decay gets and the wider the band becomes. It indicates that

BARVM and TARVM will both not perform well as k(t) increase. For example ,in Figure 1(e),

when k(0) = 0.995 is very large, Γ becomes less sparse and more diffuse along its diagonal, then it

will be more difficult to estiamte Γ.

Table 4.1 summarize the MSEs of Γ̃, Bb[Γ̃],T$[Γ̃] according to five initial values of k(0), three noise

levels and two values of K for the case of synchronized data. From Table 4.1, we can find that MSEs

of BARVM estimator are smaller than that of TARVM, and both of them are smaller than MSEs of

ARVM, especially when k(0) is small, which confirm the conclusion from Figure 4.1 that decay has

more effect on pattern than sparisy for small k(0). In Figure 4.1, as k(0) increases, both decay and

sparse pattern are so weak that it is hard to estimate Γ at this time. This is because Γ is not even

nearly sparse for very large k(0),then we select almost all elements in Γ by applying banding and

thresholding methods. This may lead to the similarity among ARVM estimator, BARVM estimator
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(a) Γ with k(0) = 0.537 (b) Γ with k(0) = 0.762

(c) Γ with k(0) = 0.905 (d) Γ with k(0) = 0.964

(e) Γ with k(0) = 0.995

Figure 4.1: Image plots of matrix Γ generated with different initial values for k(t). (a) − (e)
correspond to the images of Γ with k(0) = 0.537, 0.762, 0.905, 0.964, 0.995, respectively. The colors
is from rainbow, red, orange, yellow, green, blue, Indigo, Violet corresponding to the elements
values from small to large.
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Table 4.1: MSEs of Γ̃, Bb[Γ̃] and T$[Γ̃] for noisy synchronized data

k(0)

Noise Level Estimator K 0.537 0.762 0.905 0.964 0.995

Low Γ̃ 1 3.908 4.082 6.714 8.527 13.002

Low Γ̃ 5 8.047 11.394 14.87 16.468 29.075

Low Bb[Γ̃] 1 0.727 1.411 3.66 5.186

Low T$[Γ̃] 1 0.826 2.351 5.001 7.81

Low Bb[Γ̃] 5 1.509 2.631 5.491 9.487

Low T$[Γ̃] 5 1.758 3.452 6.998 11.57

Medium Γ̃ 1 4.12 4.377 6.921 9.269 13.551

Medium Γ̃ 5 8.312 11.624 15.04 16.883 30.746

Medium Bb[Γ̃] 1 0.784 1.568 3.955 6.233

Medium T$[Γ̃] 1 0.898 2.611 5.374 8.22

Medium Bb[Γ̃] 5 1.664 2.735 5.62 9.518

Medium T$[Γ̃] 5 1.86 3.728 7.089 11.96

High Γ̃ 1 4.26 4.577 6.989 9.564 14.26

High Γ̃ 5 8.619 12.07 15.433 17.265 32.822

High Bb[Γ̃] 1 0.81 1.754 4.142 6.771

High T$[Γ̃] 1 0.918 2.81 5.557 8.613

High Bb[Γ̃] 5 1.7 2.824 5.96 10.251

High T$[Γ̃] 5 1.972 3.38 7.266 12.548

28



and TARVM estimator. Also,the MSEs of three estimators are more sensitive in initial values for

k(0) than noise level. And for all three noise level, the estimators with K = 1 perform better than

that with K = 5. Therefore, in nonsynchronized data, I only choose the case for K = 1.

The significant decay pattern of Γ will be changed if we randomly permute the rows and columns

of Γ, the resulting matrix no longer decays along its diagonal but retains the same sparisty. This

procedure imitates the property of nonsychronization in real high-frequency prices. Figure 4.2

plots the image of matrices obtained by randomly permuting rows and columns of Γ. It shows that

the significantly large elements are scattered all over the place but the decay patterns completely

disappear. Because of the remaining sparsity pattern , TARVM estimator will perform better than

BARVM estimator.

Also in the nonsychronized data part, I apply DCC model into the data to obtain the MSEs. All the

results for MSEs of Γ̃, D[Γ̃], Bb[Γ̃] and T$[Γ̃] are presented in Table 4.2. The comparsion of Table

4.1 and Table 4.2 shows that the MSEs in Table 4.2 are much larger than the corresponding ones in

Table 4.1 for all three noise levels and five initial values of k(0) considered. From the comparison

we can conclude that nonsychronization contributes more on MSEs than noise. The MSEs of DCC

model are larger than MSEs of TARVM estimator, but they are very similar with MSEs of Γ̃ and

BARVM estimators. In DCC estimation stage two procedure, in order to make the computation

feasible, I select the pairwise estimation between two different assets and combine all the element in

100× 100 matrix. To find the difference of volatility matrix between directly applying DCC model

into p = 100 assets and that of the method I proposed, I have tried this procedure in a smaller size

of assets. I tried p = 10 or 20 and compared the volatility matrix with that of the proposed DCC

methods. The results show that the largest eigenvalue of estimated volatility matrix in proposed

methods are a little larger than that of p = 10 or 20. And when p = 20, the largest eigenvalue is

larger than that when p = 10. But if we compared the largest eigenvalue of estimated volatility

matrix from directly apply DCC model into p = 10 and 20 assets with those of BARVM estimator

and TARVM estimator, TARVM estimator still perform better than DCC methods. Thus, we may

deduce that when p = 100, the MSE, largest eigenvalue of estimated volatility matrix will be larger

than the MSE if we apply DCC directly into 100 assets. But due to the software and the space
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(a) Γ with k(0) = 0.537 (b) Γ with k(0) = 0.762

(c) Γ with k(0) = 0.905 (d) Γ with k(0) = 0.964

(e) Γ with k(0) = 0.995

Figure 4.2: Image plots of the matrix obtained by randomly permuting rows and columns of
Γ in Figure 4.1. (a) − (e) correspond to the images of randomly permuted Γ with k(0) =
0.537, 0.762, 0.905, 0.964, 0.995, respectively.The colors is from rainbow, red, orange, yellow, green,
blue, Indigo, Violet corresponding to the elements values from small to large.
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Table 4.2: MSEs of Γ̃, D[Γ̃], Bb[Γ̃] and T$[Γ̃] for noisy nonsynchronized data

k(0)

Noise Level Estimator K 0.537 0.762 0.905 0.964 0.995

Low Γ̃ 1 15.642 18.031 30.17 51.771 164.25

Low D[Γ̃] 1 14.335 17.681 29.87 51.054 166.115

Low Bb[Γ̃] 1 15.38 17.544 28.713 50.668 164.03

Low T$[Γ̃] 1 4.842 6.988 9.718 18.662 80.013

Medium Γ̃ 1 16.311 18.98 32.079 54.886 169.71

Medium D[Γ̃] 1 15.852 7.965 31.045 52.7 168.595

Medium Bb[Γ̃] 1 15.9 18.65 30.214 53.951 168.644

Medium T$[Γ̃] 1 4.998 7.24 10.03 19.108 85.375

High Γ̃ 1 17.56 20.885 35.049 57.441 174.26

High D[Γ̃] 1 17.611 19.405 33.082 56.3 170.005

High Bb[Γ̃] 1 16.341 19.773 34.528 57.05 173.42

High T$[Γ̃] 1 5.04 7.811 10.575 20.6 89.136
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in computer, it is not feasible to implement DCC directly into 100 assets. Therefore, the MSEs of

DCC may not perform as well as TARVM estimator.

4.4 Example of Real Data

The real data set for our numerical studies is high-frequency tick by tick price data on 100 stocks in

top 100 S&P 500 according to trading volume over 3 months, 64 trading days in 2013 from April 1st

to June 28th. This data set is collected from the Wharton Data Service(WRDS) Database. Apply

two proposed methods to the real data set for 64 trading days. In each day, we computed two part

of estimator: one is the ARVM estimator Γ̃ included its regularization estimator and the other one

is DCC volatility matrix estimator D[Γ̃]. Similar to the measurement of estimators in simulation,

in real data set we can use Mean Squared Prediction Error(MSPE) to evaluate the performances

of two methods. But since we don’t have the true integrated volatility for real data and the basic

model is under a stationarity assumptions on volatility in financial time series, then the realized

volatility which is one day ahead of the current one is used to replace Γ.

For ARVM estimator, the pre-determined sampling frequencies were selected to correspond with

5 minute returns. This yielded 64 matrices of size 100 by 100 as ARVM estimators of integraged

volatility matrices over the 64 trading days. Denote by Γ̃d, d = 1, ..., 64.. The average of these

64 matrices is evaluated. Because stocks have no natural ordering, the decay assumption is not

realistic for volatility matrices, then banding may not be appropriate for Γ̃. Therefore, thresholding

is applied to regularize ARVM estimator. Here the MSPE is defined as

MSPEa(T$a [Γ̃]) =
1

63

63∑
d=1

‖ Γ̃d+1 − T$d,a
[Γ̃d] ‖22, (4.4.1)

where a ∈ (0, 1), $d,a is the a-quantile of the absolute entries of Γ̃d. We selected the value of a

by minimizing MSPEa(T$a [Γ̃d]) over a ∈ (0, 1). In calculation, a equals to 0.95, then for each of

Γ̃d, we retain its top 5% entries and replace the others by zero. After calculation, the MSPE of

T$d,a
[Γ̃] is 5.89.

For DCC volatility matrix estimator, first by fitting the real data set into GARCH(1,1) model, we
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(a) Largest eigenvalues of daily volatility
matrices in DCC

(b) Largest eigenvalues of the thresholding
daily realized volatility matrices

(c) Largest eigenvalues of daily realized
volatility matrices

Figure 4.3: Plots of the largest eigenvalues of daily volatility matrices in DCC, the thresholded
daily realized volatility matrices and realized volatility matrices for the high-frequency data from
top 100 S&P 500 stocks.
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can find the initial values for stage 1. From paper of Engle and Sheppard(2001), the initial value

for stage 2 can be defined as α = 0.005 and β = 0.959, then apply the proposed method by daily

data. We can still obtain 64 trading daily volatility matrices of size 100 by 100 in DCC model. The

MSPE for D[Γ̃] is defined as

MSPE(D[Γ̃]) =
1

63

63∑
d=1

‖ Γ̃d+1 −D[Γ̃d] ‖22, (4.4.2)

After calculation, the MSPE of D[Γ̃] is 20.05. Compare two MSPEs of proposed methods, it is

obvious that TARVM estimator performs better than DCC estimator.

For each of Γ̃d, T$d,0.95
[Γ̃d] and D[Γ̃d], = 1, ..64, we computed its largest eigenvalues and collected

them asset. Figure 4.3 displays the largest eigenvalues of daily volatility matrices in DCC, thresh-

olding daily realized volatility matrices and daily realized volatility matrices. The plots shows that

the reductions of the largest eigenvalues due to DCC method are less significant than that due to

thresholding for 64 trading days. Daily realized volatility is the most unstable estimation among

three estimators. Estimated volatility of DCC method is more volatile than that of TARVM esti-

mator. In eigenbased analysis, the more unstable the largest eigenvalue, the more risk we will end

up with a very misleading conclusion. So TARVM estimators have a better performance not only

in estimation of large volatility matrix but also in the future eigenbased analysis.
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Chapter 5

Conclusion and Discussion

This paper presents two methodologies of estimating vast volatility matrix. One is under diffusion

process, first, to estimate the ARVM estimator, then to reguralize this estimator by banding and

thresholding. Banding is more suitable under the decaying condition while thresholding is more

appropriable under the sparse condition. The other method is DCC model. The estimation of DCC

model also includes two stage, where in the first stage univariate GARCH models are estimated

for each residual series, and in the second stage, the residuals are used to estimate the parameters

of the dynamic correlation. Both of these methods have asymptotic theory to guarantee the con-

sistency of estimators. In numerical studies, we apply the proposed two methods into simulation

high-frequency data and real high-frequency data set, respectively. The real data set is collected

from high-frequency tick by tick price data on 100 stocks in top 100 S&P 500 over 64 trading days

in 2013 from April 1st to June 28th. All MSEs and MSPEs of different estimators indicate that

TARVM estimator has better performance than DCC estimator.

After we get the volatility matrix for high-frequency data, eigenbased analyses like clustering anal-

ysis, principal component analysis, factor analysis and portfolio allocations will be the next job

to study the high-frequncy data. Here, I will illustrate the effect of volatility matrix on principal

component analysis. In computational terms the principal components are found by calculating the

eigenvectors and eigenvalues of the data covariance matrix. This process is equivalent to finding the

axis system in which the co-variance matrix is diagonal. The eigenvector with the largest eigenvalue
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is the direction of greatest variation which may be the first component and will have significant

influence on the future analysis, the one with the second largest eigenvalue is the (orthogonal)

direction with the next highest variation and so on. Therefore, if the largest eigenvalue is volatile,

then we may not get the real first component in PCA, and it will lead to misleading conclusions.

For example, we still use our real data set of 100 assets high-frequency trading prices of top 100

S&P 500, and our goal is to find important components that affect the prices during April 1st to

June 28th 64 trading days in 2013. If our estimated volatility matrix has unstable largest eigenvalue,

then when we apply the principal component analysis into the estimated volatility matrix, we may

get different and uncertain factors and that will lead to unreasonable decisions in practical life.

36



Bibliography

[1] Barndorff-Nielsen O.E., Shephard N. (2002), Econometric Analysis of Realised Volatility and

its Use in Estimating Stochastic Volatility Models. J.Roy. Statist. Soc. Ser.B, Vol. 64, 253-280.

[2] Barndorff-Nielsen O.E., Shephard N. (2004), Econometric Analysis of Realized Covariance:

High Frequency base Covariance, Regression and Correlation in Financial Economics. Econo-

metrica, Vol. 72, 885-925.

[3] Barndorff-Nielsen O.E., Shephard N. (2006), Econometrics of Testing for Jumps in Financial

Econometrics using Bipower Variation. Journal of Financial Econometrics, Vol. 4, 1-30.

[4] Barndorff-Nielsen O.E., Hansen P.R., Lunde A. and Shephard N. (2008a), Designing Realized

Kernels to Measure the Ex-post Variation of Equity Prices in the Presence of Noise. Economet-

rica, Vol. 76, 1481-1536.

[5] Barndorff-Nielsen O.E., Hansen P.R., Lunde A. and Shephard N. (2008b), Multivariate Realized

Kernels: Constistent Postitive Semi-define Estimators of the Covariation of Equity Prices with

Noise and Non-sychronous Trading . preprint.

[6] Bauwens L., Laurent S. (2006), Multivariate GARCH Models: a Survey. Journal of Applied

Econometrics, Vol. 21, No. 1, 79-109.

[7] Bickel P.J. and Levina E. (2008a), Regularized Estimation of Large Covariance Matrices. Ann.

Staist, Vol. 36, No. 4, 199-227.

[8] Bickel P.J. and Levina E. (2008b), Covariance Regularization by Thresholding. Ann. Staist,

Vol. 36, No. 4, 2577-2604.

37



[9] Comte F. and Lieberman O. (2000), Asymptotic Theory for Multivariate GARCH Process.

Journal of Multivariate Analysis, Vol. 84, No. 2003, 61-84.

[10] El Karoui N. (2008), Operator Norm Consistent Estimation of Large Dimensional Sparse

Covariance Matrices. Ann. Staist, Vol. 36, No. 4, 2717-2756.

[11] Engle R.F. and Sheppard K. (2001), Theoretical and Empirical Properties of Dynamic Con-

ditional Correlation Multivariate GARCH. NBER Working Paper, No. 8554.

[12] Engle R. (2002), Dynamic Conditional Correlation: A Simple Class of Multivariate Gen-

eralized Autogressive Conditional Heteroskedasticity Models. Journal of Business & Economic

Statistics, Vol. 20, No. 3, 339-350.

[13] Engle R.F and Sokalska M. (2012), Forecasting Intraday Volatility in the US Equity Market.

Multiplicative Component GARCH. Journal of Financial Econometrics, Vol. 10, No. 1, 54-83.

[14] Hayashi T. and Yoshida N. (2005), On Covariance Estimation of Non-synchronously Observed

Diffusion Process. Bernoulli, Vol. 11, 359-379.

[15] McAleer M., Hoti S. and Chan F. (2009), Structure and Asymptotic Theory for Multivariate

Asymmetric Conditional Volatility. Econometric Reviews, Vol. 28, No. 5, 422-440.

[16] Tao M., Wang Y., Yao Q. and Zou J. (2011), Large Volatility Matrix Inference via Combining

Low-Frequency and High-Frequency Approaches. Journal of the American Statistical Associa-

tion, Vol. 106, No. 495, 1025-1040.

[17] Tsui A.K. and Tse Y.K. (1998), A Multivariate GARCH Model with Time-Varing Correla-

tions. National University of Singapore.

[18] Wang Y. and Zou J. (2010), Vast Volatility Matrix Estimation For High-Frequency Financial

Data. The Annals of Statitics, Vol. 38, 943-978.

[19] Zou J. and Wang Y. (2013), Statistical methods for large portfolio risk management. Statistica

and its Interface, Vol. 6, No. 477-485.

38


