Final Presentation

Exploring Strategies and Locations for RapidDecarbonization of Urban Areas

Hannah Edlund, Ryan Fischer, Zarrin Rahman, Nolan Warner

Acknowledgement

Meet the Team

Hannah Edlund
B.S. Biology and
Biotechnology and B.A.
Environmental and
Sustainability Studies '25

Zarrin Rahman

B.S. Environmental

Engineering '25

Nolan Warner
B.S. Biology and
Biotechnology '25

Ryan Fischer

B.S. Biochemistry

'25

01. Background

Australia is a leader internationally in fossil fuel consumption.

Internationally, there is a need for rapid decarbonization.

In Australian urban areas, energy use for buildings and transport combine for a substantial percentage of emissions.

BUILDINGS

20%

TRANSPORT

19%

Underrepresented communities are brushed aside involving policies regarding urban decarbonization.

Project Goal

To identify promising strategies and locations to decarbonize urban areas rapidly and equitably in Australia.

02. Objectives and Methods

Objectives

01

Understanding Promising Rapid Decarbonization Strategies'

02

Analyze Relevant
Case Studies
that Target
Urban Areas

03

Suitable LGAs for Urban Scale Decarbonization

Understanding Promising Rapid Decarbonization Methods

Internal BZE
Experts

Conduct
Archival
Research &
Interviews

External Local Experts

O1Research and Expert Interviews

02

03

Meeting with Experts

Dominique HesChair of Greenfleet

Peter Hansford
Director, Deakin Energy
Networks

Alan Pears
Senior Industry Fellow at
RMIT University

Gill ArmstrongBuildings Project Impact
Manager, Climateworks

Elizabeth Eacott Office Manager, Allume

William Anstee
Housing Partnerships
Manager, Allume

Matthew Charles-Jones
President, TRY

Meeting with Experts: Integrated Points

- Indigenous Perspective & Community Driven Sustainability
- Emerging Clean Technologies & Importance of Microgrids
- Need for Environmental Policy Change
- Importance of Addressing Renters and Non-Owners About Decarbonization
- Intricacies of Stakeholder Mapping and Planning Renewable Solutions

Identify Relevant Case Studies that Target Urban Areas

Case Study Honorable Mentions

Mytown Microgrid

UK's EPC (Energy Rating)

Portugal Transportation Program

Case Study Research Methods

1) Analyzed Building and Transport Case Studies

2) Performed Stakeholder Mapping

Multi-Criteria Analysis (MCA) via ArcGIS

03
Identifying Suitable LGAs

03. Findings

Energiesprong

The Netherlands

Policy | Technology

Community | Regional | National

RESIDENTIAL I COMMERCIAL I TRANSPORT

Energiesprong

How?

- Retrofitting of buildings
 - Prefabricated Facades
 - Insulation
 - Solar Panels
 - Smart Heating
 - UpdatedCooling/Ventilation

Where?

Buildings in Housing Associations

Future: Target Apartments

Energiesprong

Why?

- Increase amount of Net Zero Energy Buildings (NZE)
- Increase rapid growth of NZE housing market.

Who?

Environmental Justice

"Energy Service Plan" used where occupants pay the equivalent of their previous energy bill for the new energy and price of the upgrades.

STAKEHOLDERS

Indicators

Variables

- Extreme temperatures
- High Residential Emissions

- Average high temperatures
- Average low temperatures
- Residential emissions per capita

Suggested Variables for Future Research

Temperature Range Data

SolShare (Allume)

Australia

Policy | Technology

Community | Regional | National

RESIDENTIAL I COMMERCIAL I TRANSPORT

SolShare

How?

- Sharing of solar energy
- Behind the meter
- Distribution of power to each unit
- Compensation for excess energy

Where?

Apartments

Retail Centers

SolShare

Why?

- Bridging the gap
 - Power to renters
- Affordable and useful clean technology

Who?

Environmental Justice

Helping renters and people in social housing have access to solar power can help to reduce energy bills.

STAKEHOLDERS

Indicators

Variables

- High Residential Electricity/Gas
 Emissions
- High Renter population
- Sustainability engagement

- Residential
 Electricity/Gas
 Emissions
- Renters % data
- LGAs w/ Active
 Sustainability Teams

Suggested Variables for Future Research

Local Law 97

New York City, USA

Policy | Technology

Community | Regional | National

RESIDENTIAL I COMMERCIAL I TRANSPORT

How?

- Increasingly
 stringent carbon
 emission limits
- Penalties in place
- Various ways to comply

Local Law 97

Where?

 Affects all buildings in New York City over
 25,000 sq ft

Local Law 97

Figure 1 **Citywide Carbon Emissions Sources** Building upgrades would transform the carbon landscape since buildings are responsible for two-thirds of NYC's annual emissions. Waste 2.2 Transportation 15.6 Buildings 37.3 *Millions of metric tons of CO₂e by source Source: NYC Greenhouse Gas Inventory 2019

Why?

- Reduce Building
 Emissions in NYC
- Reduced 40% by 2030
- Net Zero Emissions by 2050

Who?

City government implements policy that affects:

Environmental Justice

Buildings with more than 35 percent rent-regulated units, houses of worship and some subsidized housing can implement prescriptive energy-saving measures.

STAKEHOLDERS

Indicators

Variables

- High Commercial Electricity/Gas
 Emissions
- High Residential Electricity/Gas Emissions
- High Population Density

- Commercial
 Electricity/Gas
 Emissions
- Residential
 Electricity/Gas
 Emissions
- Population Density

Suggested Variables for Future Research

CBD Proximity & Building Dimensions

Plug in BC British Columbia, Canada

Policy | Technology

Community | Regional | National

RESIDENTIAL I COMMERCIAL I TRANSPORT

Plug in BC

How?

- Rebates on Electric
 Vehicle (EV) Chargers
- Up to 50-75% off

Where?

Shared Buildings:

Plug in BC

Why?

- Low amount of EV chargers per EV
 - o 129,500 EVs
 - 3,800 EV chargers
- More Chargers =
 Promotion for more EV's

Who?

Policy of Province of British Colombia

Health Organizations

Environmental & Social Justice

Indigenous communities and businesses can get up to 100% off from their rebates.

STAKEHOLDERS

Indicators

Variables

- High proportion of indigenous populations
- Low access to public transport
- High Car Emissions

- Indigenous Renter %
- Transport Emissions
- Automotive
- Bus
- Rail
- Tram

Suggested Variables for Future Research

Transportation grid lines

Totally Renewable Yackandandah (TRY)

Yackandandah, Australia

Policy | Technology

Community | Regional | National

RESIDENTIAL I COMMERCIAL I TRANSPORT

How?

TRY

Where?

- Town of Yackandandah
- Supplying local properties
- Electricity facilities
 - Within feeder area

TRY

Why?

- 100% renewable power
 - Cost effective
- Reduction of carbon emissions
- Greater resilience
 - Extreme weather
 - Natural Disasters

Who?

- TRY
- Mach 2
- Ausnet
 - Mondo
- Residents of Yackandandah

Environmental Justice

Yackandandah being a 100% renewable energy community will both lead as an example and be a big step in the reduction of emissions across Australia.

STAKEHOLDERS

Indicators

Variables

- Far from Electric grid (>23 km)
- Small Areas
- Small populations

- Distance from Electric Grid
- LGA Population
- Area (Square kilometers)

Suggested Variables for Future Research

Volunteer Hours

04.
Conclusions and Recommendations

Conclusions & Recommendations

Based on our research and findings, our team recommends Beyond Zero Emissions to further explore rapid decarbonization for the building and transportation sectors.

Local Law 97

Lowered Size limit

Could Target Capitals such as Melbourne and Sydney

NABERS Program

EV Charger Rebates

Low Percentage

Far From Public Transport

Indigenous

Conclusions & Recommendations

Further datasets that should be explored are:

Community
Agency

Volunteer Hours

Voting Behavior

Spatial Data

Building Dimensions

CBD Proximity

Temperature Range Data Grid and Transport

Data

Electric Grid Stability

Electric Vehicle Demand

Acknowledgement

We would like to thank our sponsor, Beyond Zero Emissions (BZE), and their representative for this project: Anna Boin. This project would not have been possible without Anna's help and the resources BZE was able to provide.

Additionally, we want to thank our advisors, Professors Stephen McCauley and Sara Saberi, for their aid and dedication in this project.

Thanks!

