Abstract

Conventional ultrasound imaging systems use array transducers for focusing and beam steering, to improve lateral resolution and permit real-time imaging. This thesis research investigates a different use of array transducers, where the acoustic field and the receiver characteristics are designed such that the energy of the output signal from targets of a specified geometry is maximized. The output signal is the sum of the received signals obtained using all the possible combinations of transducer array elements as transmitter and receiver. This work is based on annular array transducers, but is applicable for any array configuration.

The first step is the development of software for the efficient modeling of the wave interaction between transmitted field and target, and between the transducer and receiver field. Using this software, we have calculated the received signal for each combination of an array element as transmitter and the same or another array element as receiver, leading to an $N \times N$ received signal matrix for an N element array transducer. A waveform optimization algorithm is then implemented for the purpose of determining the set of delays for the individual array elements, which maximizes the energy of the sum of the received signals. In one implementation of this algorithm, the received signal with the maximum energy is considered as a reference signal, and specific delays are applied to the other signals so that any two signals produce a maximum correlation. This leads to an $N \times N$ delay matrix, which, however, is not readily implemented in a practical real-time system, which uses all the elements in an array transducer simultaneously to customize

acoustic fields. Hence, the values in this delay matrix are fed into a linear programming optimizer tool to obtain a set of delay values, which makes its implementation practical.

The optimized set of delays thus obtained is used to maximize the energy of the received signal for a given transducer and target geometry and hence to enhance the reflectivity of that target. It is also important to check the robustness of the optimized set of delays obtained above, for a given target geometry. Robustness refers to the sensitivity of the optimization to variation in target geometry. This aspect is also evaluated as a part of this thesis work.

Acknowledgement

This thesis most definitely wouldn't have been completed without the encouragement, motivation and best wishes that I have received in the past few years from several people. I would like to take this opportunity to express my gratitude to all these people. Above all, I would like to say a big big thank you to my advisor Prof. Peder.C.Pedersen. Working as a part of the ultrasound lab has given me the opportunity to learn about some new trends in the Medical imaging industry, thanks to Prof. Pedersen. His primary objective to produce novel and good quality work taught me a lot of things in addition to the research oriented matter, which will definitely help me in the long run. I am especially grateful for the cooperation he has offered in the last two years and the time he has spent in refining my thesis write-up. I would also like to express my gratitude to Prof. Reinhold Ludwig and Prof. Sergey Makarov for readily accepting to be on my thesis committee and reviewing my work.

I would like to thank my lab mates: Dalys Sebastian, Deepti Sukhwani, Ruben Lara Montalvo and Carsten Poulsen for all their help, great memories, and a wonderful and fun work atmosphere. I have to sincerely acknowledge my dear friends: Mili, Siddhesh, Kamal-Renu and Rahul-Shivani; my roomies: Vishal, Dharmesh, Vinay and Ritesh for all the encouragement that I have received through the ups and downs I encountered while completing this thesis. Thanks to all my other friends and colleagues at EMC for the positive advice and support.

Last but not at all the least, this really wouldn't have been possible without the blessings and best wishes from my parents, my dear brother Akshay and my family back home. They are my source of motivation and I owe this experience to them.

iii

Table of Contents

Chapter 1. Introduction	1
1.1 Introduction to Medical Ultrasound	1
1.2 Introduction to an Ultrasound pulse-echo system	1
1.3 Modeling pulse-echo ultrasound systems	6
1.3.1 Analytical approaches	6
1.3.2 The Finite Element Method (FEM)	7
1.3.3 The Angular Spectrum Method (ASM)	8
1.3.4 The Spatial Impulse Response Method (SIRM)	8
1.4 Current advances in ultrasound technology	9
1.5 Outline of the thesis	11
Chapter 2. Modeling Technique for a pulse-echo based Ultrasound System	16
2.1 Formulation of Diffraction Response	17
2.2 Huygen's Method	23
2.3 DREAM Method	24
2.3.1 Segmentation	28
2.3.2 Delay Filtering	29
Chapter 3. Evaluation of a Method for Tessellating Reflector Surfaces for DREAM	32
3.1 Introduction to Tessellations	33
3.2 The R-DREAM and T-DREAM Methods	34

3.3 Delaunay triangulation	37
3.4 Desirable properties of Mesh and Mesh Generation Tools	41
3.5 Relation between system properties and tessellations	44
3.6 Specifications for our system	45
3.7 Tessellation algorithm for our system	49
3.8 Conclusion	61
Chapter 4. Modeling Technique for Annular Array Transducer	62
4.1 Annular array transducer	62
4.2 Analytic derivation for obtaining received signal from an annular array transducer	63
4.2.1 Concept of echo signal matrix	63
4.2.2 Concept of delay matrix	66
4.2.3 Concept of received signal	70
4.2.4 Steps involved in obtaining the echo signal from a tile on the reflector surface	71
4.3 Comparison of echo signals obtained using DREAM and Huygens method	od 79
Chapter 5. The Energy Optimization Method	89
5.1 Introduction	89
5.2 General overview of the thesis approach	90
5.2.1 Energy Optimization Method	92
5.3 Relation between energy optimization and object recognition	97

Chapter 6.	The Non-Implementable Energy Optimization Method	103
6.1 Formul Method	ation of delay matrices for the non-implementable optimization	103
6.2 The Gl	obal Search Method	114
6.3 Wavefo	orm Alignment Method	116
6.4 Pulse-e	cho system simulation	122
6.5 Wavefo	orm Correlation Method	124
6.6 Adaptiv	ve Waveform Correlation Method	139
6.7 Observ	ation	147
6.8 Inferen	ce	147
Chapter 7.	The Implementable Energy Optimization Method	149
7.1 Formul Method	ation of delay matrices for the implementable optimization	149
7.2 Implem	nentable methods	154
7.2.1	Method 1: Simple Waveform Correlation Method	154
7.2.2	Method 2: Adaptive Waveform Correlation Method	158
7.2.3	Method 3: Inverse Fourier Transform Method	162
7.2.4	Method 4: Top-Row-Left-Column Method	165
7.2.5	Method 5: CPLEX Method	167
7.3 Results		169

Chapter 8.	Robustness of the Energy Optimization Algorithm	176
8.1 Robi	istness test scenarios	176

8.2 Results	180
8.3 Observations and inference	188
Chapter 9. Conclusion	191
9.1 Future Work	195
References	197
Appendix A	199

List of Figures

1.1	An ultrasound pulse-echo system	2
1.2	Phased array beamforming concept (a) Pulses delayed by some values τ are transmitted from an array of piezoelectric elements to achieve steering and focusing at the point of interest. However, only focusing delays are shown here. (b) The echoes returning are likewise delayed by τ , before they are summed together to form a strong echo signal from the region of interest	4
2.1	Illustration of the simplest pulse-echo system with point scatterer as reflector	18
2.2	(a) Excitation signal when transducer is used as transmitter(b) Received signal obtained when transducer acts as receiver	20
2.3	Delay filter function $F(t)$ for a triangular tile	30
3.1	Different types of tessellations	33
3.2	Each edge on the convex hull is Delaunay, because it is always possible to find an empty circle that passes through its endpoints	39
3.3	Every triangle of a Delaunay triangulation has an empty circumcircle	40
3.4	A staggered set of vertices	51
3.5	Staggered set of vertices with dimensions	52
3.6	An M x M reflector surface covered with a staggered set of vertices	52
3.7	A tessellated reflector surface	53
3.8	(a) Tilted flat reflector surface(b) Curved reflector surface(c) Sinusoidal reflector surface	55
3.9	Step 1 of the Delaunay tessellation algorithm for arbitrary non-planar geometry	57

58
59
60
63
72
73
75
76
79
84
87
92
97

6.1	Transmitting with element 1 and receiving with elements $1 - 4$.	109
6.2	Elements in the received signal matrix involved in determining the received signal component when transmitting with element 1.	109
7.1	Graphical depiction of transmit and receive delays for a four element array transducer	151
7.2	(a) Optimal delay matrices for Reflector A; (b) Optimal delay matrices for Reflector B; (c) Optimal delay matrices for Reflector C	170
8.1	A transducer-reflector system	177
8.2	(a) Top View of the transducer-reflector system (shown in Fig 8.1) with a 6 degrees tilted flat reflector. (b) Top View of the transducer-reflector system (shown in Fig 8.1) with curved reflector surface with radius of curvature = 86 mm (c) Top View of the above transducer-reflector system (shown in Fig 8.1) with a sinusoidal reflector surface with its center on transducer axis	178
8.3	Optimal delay matrices for different types of reflector geometries	182
8.4	Energy plots obtained using the non-implementable delay matrices	186
8.5	Energy plots obtained using the implementable delay matrices	188

List of Tables

3.1	Summary of optimal tile size for R-DREAM when the reflector is small and tilted around 6° with respect to the transducer surface	47
3.2	Summary of optimal tile size for R-DREAM when the reflector is large and tilted around 6° with respect to the transducer surface	48
5.1	Format of a standard energy optimization table	99
6.1	Energy Table obtained using the Waveform Alignment Algorithm	123
6.2	Energy table calculated using the Waveform Correlation Method	138
6.3	Energy table obtained using the Adaptive Waveform Correlation algorithm	146
6.4	Energy bar graphs to compare the energy values calculated using the non-implementable energy algorithms	148
7.1	Energy table using the Simple Waveform Correlation Method	157
7.2	Energy table obtained using the Adaptive Waveform Correlation Method	160
7.3	Energy table obtained using the Inverse Fourier Transform Method	165
7.4	Energy table obtained using the Top-row-left-column method	167
7.5	Energy table obtained using the CPLEX method	171
8.1	Modifications in the geometry and physical positioning of the reflectors	179
8.2	Energy values obtained using the non-implementable delay matrices obtained for <i>Reflector A</i> , <i>B</i> and <i>C</i> , on varying the tilt angle from the standard 6 degrees for <i>Reflector A</i>	182
8.3	Energy values obtained using the non-implementable delay matrices obtained for <i>Reflector A, B</i> and <i>C</i> , on varying the radius of curvature from the standard 86mm for <i>Reflector B</i>	183
8.4	Energy values obtained using the non-implementable delay matrices obtained for <i>Reflector A</i> , <i>B</i> and <i>C</i> , on shifting the centre point of <i>Reflector C</i> , which lies on the transducer axis, at specific distances in the horizontal plane (x-coordinate)	183

8.5	Energy values obtained using the implementable delay matrices obtained for <i>Reflector A</i> , <i>B</i> and <i>C</i> , on varying the tilt angle from the standard 6 degrees for <i>Reflector A</i>	184
8.6	Energy values obtained using the implementable delay matrices obtained for <i>Reflector A</i> , <i>B</i> and <i>C</i> , on varying the radius of curvature from the standard 86mm for <i>Reflector B</i>	184
8.7	Energy values obtained using the implementable delay matrices obtained for <i>Reflector A</i> , <i>B</i> and <i>C</i> , on shifting the centre point of <i>Reflector C</i> , which lies on the transducer axis, at specific distances in the horizontal plane (x-coordinate)	185