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Abstract.  

To value any fixed income security one needs to evaluate the discounted expected cash 

flows according to an arbitrage free interest rate model. In the case of mortgage-backed 

securities the future cash flows are uncertain due to mortgagors exercise of their 

prepayment options. 

The present project considers prepayments which result from interest rate dependent 

complete refinancing of mortgages in a pool. The rate of refinancing is modeled as an 

arbitrary, user defined function of current and past interest rates. This enables the 

inclusion of refinancing rates that depend on not only on the current level of interest rates 

but also on the trend of the interest rates and that may also exhibit burnout effects due to 

past periods of low interest rates. The resulting cash flows depend on the entire past of 

the path that the interest rates took to get to the current level. 

The Black-Derman-Toy arbitrage free binomial tree is used to model the underlying 

interest rates. This is a single-factor market price consistent model which also allows the 

specification of the observed volatilities. 

Monte Carlo methodology is used to simulate random paths in the interest rate tree to 

evaluate the cash flows along the path.  

A computer program written in MAPLE implements the entire process. 
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CHAPTER 1 

INTRODUCTION 

1.1                           Overview of the Mortgage Market 

A mortgage is a loan secured by the guarantee of some specific real estate property and is 

a contractual agreement between the lender (mortgagee) and the borrower (mortgagor) 

that pledges the property to the lender as a security for the repayment of the loan through 

series of payments. The mortgage also entitles the lender the right of foreclosure on the 

loan if the borrower fails to make the contracted payments. 

The types of real estate property that can be used as collateral (mortgaged) are divided 

into two broad categories: residential and non-residential properties. Residential 

properties include single-family structures, such as houses that accommodate one to four 

families, and multi-family structures, like condominiums, cooperatives, and apartments 

where more than four families reside. Nonresidential properties include commercial 

structures such as office buildings, retails malls, hotels, assisted care facilities and farm 

properties.   

The mortgages can also be divided into two types of loan: conventional loans and non-

conventional loans. A non-conventional loan is one that is backed by the full faith and 

guarantee of the United States Government. Such loans are provided by federal agencies 

such as Federal housing administration (FHA), The Veterans Administration (VA) and 

the Rural Development Administration (RDA).  Conventional loans are those that do not 

carry any form of government guarantee. 



 7

The market where these funds are borrowed is called the mortgage market and it is 

divided into the primary and secondary mortgage market. 

The primary market provides actual loans to borrowers, where as the secondary market 

channels liquidity into the primary market by way of purchasing packages or pools of 

loans from lenders1. Innovations have occurred in terms of design of new mortgage 

instruments in the primary market and the development of products that use pools of 

mortgages as collateral for the issuance of securities in the secondary market. Such 

securities are called mortgage-backed securities (MBS) and may be sold to investors 

either as pass-through or in structured form, known as Collateralized Mortgage 

Obligations (CMOs), to meet specific prepayment, maturity, and volatility trenching 

requirement of the investor. 

The focus of this project is to look at the nature of MBS and the effective methods of 

valuing them in the secondary market. However before we go into the actual valuation 

methodology we will look further into the structure of the primary market and how it 

affects operations in the secondary market. The mortgage sector is the by far the largest 

of the debt market. The U.S. national homeownership rate is now at 67%2 and this has led 

to significant developments in the mortgage industry. 

 

 

 

 

                                                 
1 This project is centered on some activities of the secondary market. 
2 U.S. Department of Housing and Urban Development, April 1999. 
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1.2                          The Mortgage Industry 

The mortgage industry can be categorized into for groups: mortgage originators, 

mortgage servicers, mortgage insurers and mortgage investors, with the key players being 

commercial banks, thrift institutions, money managers, pension funds, insurance 

companies, security dealers, trust departments, corporate treasury departments, 

corporations and private investors. 

Mortgage Originator: the original lender of the mortgage loan is called the mortgage 

originator. The three largest originators for all types of residential loan in the U.S. are 

commercial banks, thrifts, and mortgage bankers, originating more than 95% of annual 

mortgage originations. Originators make their money by basically charging what they call 

origination fee, which is based on some percentage basis points of the par value of the 

loan3. 

Mortgage Services: every mortgage loan, both securitized and non-securitized must be 

serviced. Servicing a loan entails the collection of monthly payments and forwarding the 

proceeds to owners of the loan, sending payment notices to mortgagors, reminding 

mortgagors when payments are overdue, maintaining records of principal balances, 

administering an escrow balance for real estate taxes and insurance purposes, initiating 

foreclosure proceedings if necessary, and furnishing tax information for mortgagors if 

applicable. Mortgage servicers include banks and commercially related entities and 

mortgage bankers. Servicers receive their revenue from several sources. The primary 

source is called servicing fee which is some percentage of the outstanding mortgage 

balance, and declines over time as the mortgage amortizes. 

                                                 
3 For in-depth information about origination activities see Handbook Of MBS by Frank J Fabozzi-5th ed. 
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Mortgage Insurers: mortgage insurance protects the lender against loss in the event of 

default by the borrower. Hence insurance at the loan level minimizes the credit risk of the 

loan.  

The amount of mortgage insurance varies as it is dependent on the type of loan and term 

of loan but it is usually required on loans with loan-to-value ratio greater than 80%. The 

amount insured may be some percentage of the loan and may reduce as the LTV declines. 

By law, as the LTV declines below 80% the mortgage insurance must be lifted. Although 

the lender requires the insurance its cost is borne by the borrower, usually through a high 

contract rate. At the loan level there are three main types of insurance: insurance 

provided by the government agency which applies to non-conventional loans only, 

regular private mortgage insurance and lender-paid mortgage insurance.  When 

mortgages are pooled by private conduit and securities are issued, additional insurance 

for the pool is typically obtained to enhance the credit of the security (see footnote 3 for a 

complete description of mortgage insurance and the insurers.). 

Figure 1 shows a diagram for the mortgage industry. 
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1.3                          Type of Mortgage Loans 

The mortgage industry has undergone a massive evolution since the great depression in 

the 1930s. Back then the type of mortgage loans given resembled balloon loans in which 

the principal was not amortized, or only partially amortized at the maturity date.  There 

were a lot of inefficiencies in the market in that the banks that issued these loans could 

ask for repayment of the outstanding balance on demand or upon a short notice, even if 

the mortgagor was fulfilling his or her obligation. Upon establishing the FHA, new 

regulations regarding mortgage loans were enacted and led to the development of series 

of mortgage products. Since the type of mortgage loan and the cash flow it carries with it 

has a significant effect on the overall performance of a mortgage pool and for that matter 

the securities embedded with them, we will look at some very common and widely traded 

mortgage instruments and how their characteristics affect their cash flows. 

Fixed-Rate, Level-Payment, Fully Amortized Mortgage 

The basic idea behind the design of the fixed-rate, level-payment, fully amortized 

mortgage is that the borrower pays interest and principal in equal installments over the 

term of the loan. Typically payments are done monthly and by the end of the loan term 

the mortgage is fully amortized. Each monthly payment for a level payment mortgage is 

due on the first day of each month and consists of 

1. Interest of 1/12 of the fixed annual interest rate times the amount of outstanding 

mortgage balance at the beginning of the previous month. 

2. And a payment of some fraction of the principal. 

The difference between the scheduled monthly payment and the scheduled interest 

payment, gives the portion of the principal that has being repaid.  
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This product is designed so that if the last scheduled monthly payment is made, the 

outstanding mortgage balance is zero. 

To illustrate a fixed-rate, level-payment, fully amortized mortgage, we consider a 30-year 

(360months), $100,000 mortgage with a 2.32% mortgage rate. The monthly mortgage 

payment would be $18,046 (See section 1. for complete mortgage mathematics) Table 1 

shows how monthly payment is divided into interest payment and principal payments 

(design table 1). Table 1 is called the Amortization Table. The complete cash flow of 

every monthly mortgage payment consists of 

• The mortgage servicing fee which is the fee charged to provide services such as 

collecting monthly proceeds and maintaining balance records. It is the main 

source of revenue for mortgage servicers. 

• The interest payment net of the servicing fee. The servicing fee is a portion of the 

mortgage rate. For instance if the mortgage rate is 6.125% and the servicing fee is 

50 basis points, then the investor or the originator receives interest of 5.625%. 

This is called the net coupon on the loan. 

• The scheduled principal payment. Borrowers can make payments in excess of the 

scheduled principal payments. This is called prepayment. We shall look more 

closely at prepayments later. The effect of prepayment is that the amount and 

timing of the mortgage cash flow is not known with certainty. 
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Table 1.Amortization Table for a Fixed-rate Level Payment Mortgage 

Term 

Beginning 
Mortgage  
Balance 

Monthly 
Mortgage
Payment 

Interest 
 For 

Month 
Principal 

Repayment 
Remaining 
Balance 

          $100,000.000 
1 $100,000.000 $840.854 $791.667 $49.188 99950.8125 
2 99950.812 840.854 791.277 49.577 99901.2355 
3 99901.236 840.854 790.885 49.969 99851.2661 
4 99851.266 840.854 790.489 50.365 99800.9011 
5 99800.901 840.854 790.090 50.764 99750.1374 
6 99750.137 840.854 789.689 51.166 99698.9718 
7 99698.972 840.854 789.284 51.571 99647.4011 
8 99647.401 840.854 788.875 51.979 99595.4222 
9 99595.422 840.854 788.464 52.390 99543.0317 
10 99543.032 840.854 788.049 52.805 99,543.030 
… … … … …   
... … … … …   

100 92542.947 840.854 732.632 108.223 92434.7243 
101 92434.724 840.854 731.775 109.079 92325.6450 
102 92325.645 840.854 730.911 109.943 92215.7021 
103 92215.702 840.854 730.041 110.813 92104.8889 
104 92104.889 840.854 729.164 111.690 92,050.320 
… … … … …   
… … … … …   

200 76372.161 840.854 604.613 236.241 76135.9194 
201 76135.919 840.854 602.743 238.112 75897.8079 
202 75897.808 840.854 600.858 239.997 75657.8114 
203 75657.811 840.854 598.958 241.897 75415.9149 
204 75415.915 840.854 597.043 243.812 75172.1033 
205 75172.103 840.854 595.112 245.742 74926.3616 
206 74926.362 840.854 593.167 247.687 74678.6744 
207 74678.674 840.854 591.206 249.648 74429.0264 
208 74429.026 840.854 589.230 251.624 74177.4020 
209 74177.402 840.854 587.238 253.616  
… … … … …   
… … … … …   
… … … … …   

352 7276.639 840.854 57.607 783.247 6493.3914 
353 6493.391 840.854 51.406 789.448 5703.9432 
354 5703.943 840.854 45.156 795.698 4908.2452 
355 4908.245 840.854 38.857 801.997 4106.2480 
356 4106.248 840.854 32.508 808.346 3297.9016 
357 3297.902 840.854 26.108 814.746 2483.1558 
358 2483.156 840.854 19.658 821.196 1661.9599 
359 1661.960 840.854 13.157 827.697 834.2629 
360 834.263 840.854 6.605 834.250 0.0000 
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Adjustable-Rate Mortgages 

An adjustable rate mortgage (ARM) is a loan in which the mortgage rate is retuned 

periodically in accordance with some appropriate chosen reference rate. This instrument 

was specifically developed to deal with mismatch between mortgage durations and other 

liabilities in a high interest rate environment. ARMs usually start with lower interest rates 

and are reset in accordance with some index rate, such as the U.S. Treasury securities, 

London Interbank Offered Rate (LIBOR), the Eleventh (11th) District Cost of Funds 

(COFI or ECOFI), or the prevailing prime rate. To encourage borrowers to accept ARM 

rather than fixed rate mortgages, originators generally offer an initial contract rate that is 

less than prevailing market mortgage rate. A one-year ARM typically offers 100 basis 

points spread over the index rate. For example suppose the index rate is 5.625%, then the 

initial contract rate for the ARM is 6.625%.  However, the originator might set the initial 

contract rate at 6.125, a rate 50bps below the current value of the reference rate plus the 

spread.  This kind of rate is called the teaser rate. The monthly mortgage payment and 

for the matter the investors cash flow are affected by: periodic rate caps and floors, which 

is the limit amount that the contract rate may increase or decrease at the reset date. The 

most common rate cap on annual reset loans is 200bps or 2%. There is another form of 

ARM, which is gaining a considerable amount of popularity, and it is called the Fixed/ 

Adjustable-rate mortgage. This is a hybrid of a fixed-rate mortgage and an adjustable rate 

mortgage. The loan is fixed for a specified period (usually 3,5,7 or 10 years) and then 

resets annually afterwards.  Thus the fixed/ARM hybrid turns into a one-year index 

(Treasury) ARM after its fixed period. 
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 The cash flow for ARMs is more complicated than that of fixed-rate, level-payment 

mortgages4.  For more information on computing cash flows for ARMs see the reference 

in footnote  

Balloon Mortgages 

In a balloon mortgage the borrower is given long-term financing by the lender but at 

specific future dates the mortgage rate is renegotiated.  Many single-family balloon 

originated today carry fixed rate and a 30-year amortization schedule. They typically 

require a balloon payment of the principal outstanding on the loan at the end of 5 or more 

years. Balloon mortgages are attractive to borrowers because they offer mortgages rates 

that are significantly lower than generic 30-year mortgages. Nowadays many balloon 

mortgages contract are actually hybrids that contain provisions allowing the borrower to 

take out a new loan from the current lender to finance the balloon payment with 

minimum requalification requirements. For instance for a new loan to qualify for a 

Fannie Mae pool, the borrower receiving the new loan to finance a balloon payment must 

not have been delinquent on payments at any time the 12 preceding months, must still be 

using be using the property as primary residence, and must have incurred no new liens on 

the property. The interest rate on the new loan must be no more than 500bps greater than 

the rate on the balloon loan. 

As has being pointed out earlier, the growing complexity of lending and borrowing has 

led to the development of more complicated mortgage products to basically cater for 

specific individual needs and requirements. Most of these products are however prevalent 

in the secondary mortgage market. These include but not limited to “Two Step” Mortgage 

                                                 
4 See Hand Book on ARMs by the Federal Reserve Board Office of Thrift Supervision for a complete 
discussion of ARMs. 
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Loans, Rate Reduction Mortgages (RRMs), Reverse Mortgages- designed basically for 

senior homeowners who want to convert home equity into cash, and the Growth 

“Alternative” Mortgages.  

 

 

 

1.4                          Mortgage Mathematics 

 

General Mortgage Cash flow Calculations: 

Monthly Payment   For a Fixed-Rate Level payment mortgages the monthly payment is  
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Where   iX = monthly payment for month i 

            0L = Original Balance or Loan amount. 

               r = mortgage (coupon) rate (%) 

               N = original loan term in months (say 180months) 
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Remaining Balance The remaining balance after i months is 
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Where iL = the remaining balance at the end of the ith month. 

 

 

Principal Payment The amount of principal paid in month i is given by 
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Where  iP = principal paid in month i   

Interest Payment The amount of interest paid in month i can be represented as 
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Where   iI   = interest paid in month i    
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It should be noted that  

                                                     r = S+ C 

Where S = service fee (%) 

            C = net coupon (%) as was described in section 1.3  

Thus the servicing amount would be computed as  
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and the cash flow for the security holder for month I is given by 
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CHAPTER 2  

2.1 Mortgage- Backed securities 

Mortgage-backed securities (MBS) are securities backed by a pool (collection) of 

mortgage loans. In chapter one we looked at an overview of mortgage loans and the 

mortgage market, which is the raw material for mortgage-backed securities. While any 

type of mortgage loans, residential or commercial, can be used as a collateral for a 

mortgage-backed security, most are backed by residential mortgages. Just as the value of 

any other type of security depends on the cash flow of the underlining asset, the value of 

mortgage-backed securities depends on the cash flow of the underlining mortgage loans. 

It suffice to say therefore that different types of mortgage loans comes with different cash 

flows and hence affect the value of the MBS differently. This chapter is intended to give 

an overview of the variety of mortgage-backed securities and the type of mortgage loan 

that characterizes them. Mortgage-backed securities include the following 
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2.2                 Types Of Securities Backed by a Mortgage 

Mortgage Passthrough securities:  Passthrough securities are created when mortgages 

are pooled together and participation certificates in the pool are sold. Typically the 

mortgages backing a Passthrough security have the same loan type (fixed-rate, level 

payment, ARM, etc) and are similar enough with respect to maturity and loan interest rate 

to permit cash flow to be projected as if the pool was a single mortgage loan. 

 A pool may consist of several thousands of mortgages or only a few mortgages. The cash 

flow consists of monthly mortgage payments representing interest, scheduled principal 

repayment, and any prepayment. The monthly cash flows for a pass-through are less than 

the monthly cash flow of the underlying mortgage cash flow by an amount equal to the 

servicing and other fees. The other fees are fees charged by issuer or guarantor of the 

pass-through for guaranteeing the issue. The coupon rate of the pass-through, called the 

Passthrough coupon rate, is less than the mortgage rate on the underlying pool of 

mortgages by an amount equal to the servicing fee and guarantee fees.  Not all the 

mortgages that are included in a pool that are securitized have the same mortgage rate 

and the same maturity. Consequently when describing a pass-through security, a 

weighted average coupon rate (WAC) obtained by weighting the mortgage rate of each 

mortgage loan on the pool by the amount of mortgage balance outstanding, a weighted 

average maturity found by weighting the remaining number of months to maturity for 

each mortgage loan in the pool by the amount of mortgage balance outstanding. 

  Mortgage originators actively pool mortgages and issue pass-throughs. The vast 

majority of regularly traded pass-throughs are issued and/or guaranteed by federally 

sponsored agencies: the Government National Mortgage Association (GNMA) or - 
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“Ginnie Mae”; the Federal National Mortgage Association (FNMA) or  “Fannie Mae”; 

and the Federal Home Loan Mortgage Corporation (FHLMC), or “Freddie Mac”. A 

significant volume of mortgages is directly purchased, pooled, securitized by Fannie Mae 

and Freddie Mac. 

The price of a pass-through MBS is the present value of the projected cash flows 

discounted at the current yield required by the market, given the specific interest rate and 

prepayment risk of the security in question. 

 

Collateralized Mortgage Obligations: In 1983, a dramatic fall in mortgage rates and 

surging housing market caused mortgage originators to double5. Much of this production 

was sold in the capital markets; pass-through issuance increased by 58% in 1982. To 

accommodate this out pour in supply, financial investors designed a security that will 

broaden the existing MBS investor base. By the middle of 1993, the Federal Home Loan 

Mortgage Corporation (Freddie Mac) has issued the first CMO, a $1 billion, three class 

structure that offered short, intermediate, and long term securities produced from the cash 

flow of pool of mortgages. This instrument allowed more investors to become active in 

the MBS market. For instance, banks could participate in the market more efficiently by 

buying short-term mortgage securities to march their short-term liabilities (deposits). An 

investor in a mortgage pass-through security is exposed to prepayment risk. By 

redirecting how the cash flows of pass-through securities are paid to different bond 

classes CMOs provide a different exposure to prepayment risk.  

The basic principle is that redirecting cash flows (interest and principal) to different bond 

classes, called trenches, alleviates different forms of prepayment risk.  
                                                 
5 See Handbook on MBS-chapter 9 by the Mortgage Research Group, Lehman Brothers Inc. 
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It is never possible to eliminate prepayment risk. In order to develop realistic expectation 

about the performance of CMO bond, an investor must first evaluate the underlying 

collateral, since its performance will determine the timing and size of the cash flows 

reallocated by the CMO structure. 

Agency and whole-loan CMOs have distinct collateral (mostly individual home 

mortgages, which are already pooled and securitized in a pass-through form, but whole-

loan CMOs issuers create a structure directly based on the cash flow-  

of a group of mortgages), credit- GNMA (Ginnie Mae). Freddie Mac and Fannie Mae are 

three U.S. government sponsored agencies, which guarantee the full and timely payment 

of all principal and interest due from pass-throughs issued under their names. GNMA 

securities, like U.S. Treasury securities, are backed by the full faith and credit of the U.S. 

government. 

 

Striped Mortgage-Backed Security: altering the distribution of principal and interest 

from a pro rata distribution of pass-through security to an unequal distribution creates a 

striped mortgage-backed security.  The most common type of striped mortgage-backed 

security is one in which all the interest is allocated to one class (called the interest only or 

IO class) and the entire principal to the other class (called the principal only or PO class). 

The IO receives no principal payment and the PO receives no interest payment. The IO 

gets all the interest payment made by the borrower and the PO gets all the principal 

payment made by the borrower. To illustrate how strips work in general, let us consider a 

$100 face value of a newly issued or current mortgage pool carrying an interest rate of 

9%. This security can be divided into the following derivatives.  
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The first, the discount strip, receives claim to $50 of the $100 face value and to $2 of 

every $9 in interest payments. This effectively creates a security with an interest rate of 

$2/$50 = 4%. Since this rate is well below the current mortgage rate, this derivative is 

appositely named discount strip. 

 The second strip, the premium strip receives $7 of every 9$ in interest payments and has 

a claim of $50 of principal, for an effective rate of 14%.  Since the cash flow of $50 of 

each strip add up to the cash flow of the underlying mortgage, any term structure model 

will predict the sum of the prices of $50 of each strip will equal the price of the 

underlying mortgage. 
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CHAPTER 3 

 

3.1 Using BDT-model to model the evolution of the short 

rate 

The term structure of interest rates is defined as the relationship between 

interest rates and the maturities of the underlining securities. It is the 

theoretical spot rate (zero coupon) curve implied by today’s Treasury 

securities. There are many term structures dealing with the different types of 

fixed-income instruments.  The term structure describes the behavior of the 

market and the interest rate in a simple tree. Term structure consistent 

models is the term given to models that take into account the entire evolution 

of interest rates and their volatility in a way that is automatically consistent 

with some observed market data. In order to successfully analyze interest 

rate derivatives such as mortgage-backed securities, one needs a model that 

has a high degree of analytical tractability and can easily be calibrated. 

There are many such models in practice but for the purpose of this project 

we consider the Black, Derman, and Toy (BDT for short) model for the 

following reasons and assumptions: 
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• It is a single –factor short-rate model that matches the observed term 

structure of spot interest rate volatilities, as well as the term structure 

of interest rates. 

• The model is developed algorithmically, describing the evolution of 

entire term structure in a discrete-time binomial lattice framework. A 

binomial tree is constructed for the short rate in such a way that the 

tree automatically returns the observed yield function and the 

volatility of different yields. 

• The model assumes that the source of uncertainty in a term structure is 

randomness of the short rate. 

• It also assumes that changes in the short rates are log-normally 

distributed, the resulting advantage being that interest rates cannot 

become negative. 

• The BDT model approximates a continuous process by using a 

recombining tree. 
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The BDT model stipulates that the instantaneous short rate at  

time t is given by:                              

                             = ( )r t ( )M t e
( )( )σ t ( )z t

……………………….(1) 

Where M (t) is the median of the (lognormal) distribution for r at time t )(tσ  

is the level of short rate volatility and (t)Ζ  is the level of Brownian motion. 

Thus (t)(t)Ζσ is a normal random variable with an expected value of zero and 

a variance of 2(t) * tσ ∆ .  

Therefore r (t) follows a lognormal distribution, while M (t) is a 

deterministic function with a degree of freedom that allows the fitting of 

evolution of the term structure to the observed prices of bonds. M (t) could 

be solved by designing a binomial tree that approximates the distribution 

of lnr(t) , which is a normal distribution. To begin the approximation we 

utilize Ito’s Lemma to uncover the stochastic instantaneous increments of 

lnr(t) . The stochastic differential equation stipulating the stochastic 

increments of In(r) is thus: 

( )dlnr ln ( ) ln ( ) ln ( ) ln ( )
t

M t t M t r dt t dz
t

σ σ∂ ∂ = − − + ∂ ∂   ………………..2 
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A few implications are deduced from the equation above. If sigma is 

constant, then  

0)( =
∂
∂ t
t
σ , And the process of dInr is a Brownian motion but with a drift that 

is function of M (t) only. If, on the other hand (t)σ is a decreasing function of 

time, then – )(t
t
σ

∂
∂  is positive, which induces a reversion of In(r) to lnM (t).  

The BDT model is actually a discreet model that approximates a continuous 

process described in equation (2). It does so by a recombining binomial tree. 

It starts by specifying the length of a period dt of each one-period binomial 

trees composing of the total period.   Inr(t)-dt)Inr(t + is a random variable that 

takes on two values, U in state UP and V in state DOWN, each with a 

probability 0.5 

                                   dt*(t) dt *(t) U σµ +=   …………………………….   (3) 

And                              dt *(t) -dt*(t)V σµ=   ……………………………. (4) 

Where                          (t)  (lnM(t))- ln (t)(lnM(t)-lnr)
t t

µ σ∂ ∂
=

∂ ∂
. ..…………(5) 

Since (t)σ  is positive, the UP state is a state where lnr(t dt)  lnr(t)+ >  

And a DOWN state is a state where lnr(t dt)  lnr(t)+ < . 
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The function (t)σ  specifies the volatility of short interest rate at time t, 

referred to as term structure of volatility and its assumed to be known. The 

value of (t)µ  is constrained by the requirement that the tree will be 

recombining, that the no-arbitrage conditions will be satisfied, and that the 

observed prices will be consistent with the evolution of the term structure. 

Using the notation i to replace t for the discreet time and j for the number of 

up movement since time zero we can obtain r (i, j), the short interest rate 

prevailing in the market at time i if there were j up movements since time 

zero. Assume that at time i-1 the realization of the state of nature was j, at 

time i the short interest rate will be r (i, j+1) if an up movement is realized or 

r (i, j) if down movement is realized i.e. 

                    

ln ( , 1) ln ( 1, ) ( ) ( )r i j r i j i t i tµ σ+ = − + ∆ + ∆ ……………(6) 

Or 

  ln ( , ) ln ( 1, ) ( ) ( )r i j r i j i t i tµ σ= − + ∆ − ∆    ………………..(7) 

Which implies that: 

   tijirjir
∆=

++ )(
2

),(ln)1,(ln σ
………………………(8) 
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The structure adopted by the binomial approximation imposes a relation on 

the different realization of the short rate at time i and thereby, on (t)µ . 

Specifically, the rate r (i, 0) is related to r (i, 1) via the eqn (9) i.e.   

                   
tteirir ∆= )(2)0,()1,( σ

      ………………….(9)      

Since the binomial tree is required to be recombining, an up movement from 

(i, 0) and a down movement from (i, 1) end up at the same state namely 

(i+1,1).  Following the same logic, the general relation 

                       
tijeirjir ∆= )(2)0,(),( σ

 ………………………..(10) 

 For every i and j=0…i, is obtained. Consequently when the function (t)σ  is 

specified, the realization of the short interest rate at time i   is a function only 

of r (i, 0). Given the term structure of interest rates, we can solve for 

numerical value of r (i, 0), while ensuring the satisfaction of the no-arbitrage 

condition and the consistency with the observed bond prices.  At time i=1 

there are two possible realization of the short rate  

r (1 ,0)  and r (1,1) that are related to each other by         

   
)1(2)0,1()1,1( σerr =

……………………….…………(11) 
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Assuming a zero-coupon bond with a face value of $1, the bond maturing at 

time i=2 pays a dollar at that time regardless of the state of nature. Hence, if 

at time i=1 state one is realized, i.e., the process is at node (1,1), the price of 

this bond will be e
r ,1 1

 . If  at time 1 state 0 is realized, i.e., the process is 

at node (1,0), the bond maturing at time 1 will have a price of  e
r ,1 0

.  At 

time 0 the observed price of bond 1 is d(1) and that of bond 2 is d(2). To 

avoid arbitrage, the price of bond  at time 0 should be the discounted 

expected value of its price at time 1. Hence for bond 1 and 2 we do obtain   

                           

1 ,1 1 , 01 1( 2 ) (1 )
2 2

r rd d e e− − = + 
  …………..(12) 

Substituting for r(1,1) in terms of r(1,0), based on  equation (9), yields 

equation 

( )






 += −− 0,1

)2(
0,1

2
1

2
1)1()2( rer eedd

ijσ

 ………….(13) 

where the only unknown is r(1,0). Solving equation (13)  for r(1,0), we can 

recover r(1,1) in a way that the evolution of the  short rate complies with the 

no-arbitrage conditions and consistent with the observed bond prices. 

Knowing r(0,1) and r(1,0) allows us to solve for u(1) and M(1). 
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However knowing the values of u(1) and M(1) is not needed in order to 

value derivatives securities based on the generated binomial tree. Once the 

evolution of the tem structure is determined, the tree can be used to value 

mortgage backed securities.  

At node (2,j) the price of the bond will   

                                                      
)( ,2 jre −

……………………………………(14) 

Hence, the price of it at time zero can be calculated discounting by d(i) the 

expected value of the price as of time i . The probability of arriving to node j 

at time 2 is  

                                        

2 21( ) ( )
2j

………………….(15) 

Thus, the discounted expected value of the bond is       

                                        

2
2 2 ( ( , )

0

1( )( )
2

r i j
j

j
e −

=
∑

   ….  …………(16) 

and must satisfy  

         
∑

=

−=
2

0

),2((22
23 )

2
1)((

j

jr
j edd

…………………….(17)
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If we substitute for e
( )− r ,2 j

   in terms r (1,0) we obtain equation 

2 2
2

2 2 ( (2,0)
3 2

0

1( )( )
2

jr e
j

j
d d e

σ−

=

= ∑
……………(18)

 

 

Which can be solved to recover the value of r (1,0).  So what we are saying 

so far is that in general, given the current term discount factor function d (.), 

the evolution of the of the term structure from time i to time i+1 is given by  

 

                                             

22 ( ( ,0)
1

0

1( )( )
2

j i
i

i r i e
i i j

j
d d e

σ−
+

=

= ∑
…………………….(19)

 

For i=1…N-1, where the length of a time period is dt and the number of 

periods in the model is N. Equation (19) stipulates the value of r (i, 0) since 

it is the only unknown variable in the equation. The value of r (i, j) for 

j=1…i, was given by equation 3 and is repeated below as 

                                      

tj
iji

ierr ∆= σ2(
0,, …………………………(20) 
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It must be emphasized that many practitioners when using the BDT model, 

set the short-rate volatility to a constant and so only fit the model to the yield 

curve. In this case the stochastic differential equation and the level of short 

rate of equations 1 and 2 are respectively: 

                               Ζ+=
= Ζ

ddttrd
etM t

σσ

σ

)(ln
)(r(t) ))((

 

The process for this case follows the same as the one described above for 

time dependent ( ) σ t . 

We will now illustrate the process discussed above with a numerical 

example utilizing an equivalent market of a flat term structure of 5 per and 

with annual time increments for an evolution of the short rate. We also fit a 

declining volatility structure, which declines from 10 per cent after one year 

to 1 per cent after eight years. The initial yield curve is given in a list labeled 

ini_yld_curve. 

 ini_yld_curve: = [0.05, 0.05, 0.05, 0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05]. 

The volatilities are also given in a list Vol, where voli is the volatility of the 

short rate at time i. 

 Vol: = [0.1, 0.09, 0.08, 0.07,0.06,0.05,0.04,0.03,0.02,0.00].  
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 We will use a table (a form of an array in MAPLE) to store the values of 

the short rate and displayed in a spreadsheet also in MAPLE. Table 1 

shows the spreadsheet representation of the short rate tree. Each column 

starting from 0 represent a time step and for each time step i there are 0 to 

time i up movements of interest rates. The lowermost value in each 

column indicates the rate at state zero and increases up the column to 

state i.  The rate r[0,0] at time zero is given by the yield or interest rate 

spanning time interval [0,1]. 

   r [0,0]: = 0.05 

To proceed and solve for the short rate r [1,0] (at time 1) we need to solve 

the equation (13). 

Below we ask Maple to solve the equation numerically. 

                    

( (2 )) / (1) ('(1 / 2 ) ^ 1 * exp( [1, 0 ] * \
exp( * 2 * [1])) ', ' ' 0 ..1), [1, 0 ], 0 ..1);

.044

fso lve d d sum r
j sigm a j r

> = −
> =

 

The obtained solution is assigned   r 1,0        and used to recover r 1,1 using 

equation (11) 

                   
1,1

[1,1] : [1,0]* exp(2 *1* [1]);
: .053

r r sigma
r
> =

=  

In a similar fashion equation (17) is evaluated numerically for r 2,0 used to 

uncover r2, j 
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Where j = 1 to 2 using equation (20). Equation (19) and (20) would be used 

to generate the short rate at each time step state zero, and state j=1 to i 

respectively, and the result displayed as in table 1. 

Table 2                       

Time 0 1 2 3 4 5 6 7 8 9 10 
Yield 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 
Vol   0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0 
Price 1 0.95 0.91 0.86 0.82 0.78 0.75 0.71 0.68 0.65 0.61
                        
 ShortrateTree                 
                      4.9%
                    5.9%   
                  6.2%   4.9%
                6.4%   5.6%   

              6.6%   5.8%   4.9%
            6.5%   5.9%   5.4%   

          6.3%   5.9%   5.5%   4.9%
        6.2%   5.8%   5.4%   5.2%   

      5.9%   5.5%   5.4%   5.2%   4.9%
    5.3%   5.2%   5.1%   5.0%   5.0%   

  5.0%   4.9%   4.8%   4.9%   4.9%   4.9%
    4.4%   4.5%   4.6%   4.6%   4.8%   

      4.1%   4.2%   4.4%   4.6%   4.8%
        3.8%   4.0%   4.3%   4.6%   

          3.6%   4.0%   4.3%   4.8%
            3.6%   4.0%   4.4%   

              3.6%   4.1%   4.8%
                3.7%   4.2%   

                  3.8%   4.8%
                    4.1%   

                      4.8%
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3.2          Pricing of options on pure discount bonds within  

                            the constructed binomial tree. 

Once the short-rate has been constructed and we know that rate at every time 

step and every state of nature is consistent with some observed market data, 

we can use the binomial tree to derive prices for a wide range of interest rate 

derivatives basically using a backward induction6 process. 

In general if C i j is the value of a contingent claim at node (i, j), then the 

value at this node is related to the two connecting nodes at time step i+1 

according to discounted expectations adjusted for the state index j: 

                          ][
2
1

1,11,1,, −+++ += jijijiji CCdC    …………….……………..(21) 

We will now use the tree to price discount bond options to illustrate the 

procedure described. 

We will describe in steps how to price a T maturity put option on a s-

maturity discount bond (T<=s) with a strike price K. Let  N and M represent 

the number of time steps until the maturity of the bond and the option 

respectively (T=Mdt, s=Ndt).  We assume that the short rate tree has being 

constructed as far as time step N. 

 

                                                 
6 Backward substitution ensures that every interest rate at time step i is related to the two connecting nodes 
at time step i+1 
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Step1 

Let Ps [i, j] represent the value of the s-maturity bond at node (i, j). To price 

the derivative we set the maturity condition for the bond underlying the 

option. At time step N the price of the bond maturing at N is the face value 

of the bond. For simplicity we use a bond, which pays $1 at maturity. Thus 

Ps [N, j]=1 for all state j at time step N. 

Step 2 

 We then calculate the value of the bond at every time step and every state of 

the world in the tree using backward induction as follows: 

i step at time j nodes    ][
2
1

1,11,1,, ∀+= −+++ jijijiji PsPsdPs …(22) 

For European discount bond option this second step only has to be 

completed as far back as time step M when the maturity condition for the 

bond is implemented. For American discount bond option, in order to be 

able to evaluate the early exercise condition when we perform backwards 

induction for option price, we continue applying equation (22) back to the 

root of the tree at 

 node (0, 0). 
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Step 3 

Next we evaluate maturity condition for the options at all the nodes for time 

step M: 

         Mat  j  },0max{C ,jM, ∀−= kPs jM         ……….…………(23) 

For European options the call price can be obtained by repeatedly applying 

equation (21) back through to the origin of the tree. 

 For American option we need to allow for the possibility of early exercise 

in the normal way, by taking the maximum of the discounted expectation 

and the intrinsic value of the option at each node. The American option is 

given at node (i, j) is given by 

iat  j  ]}[
2
1,max{C 1,11,1,,jM, ∀+−= −+++ jijijijM CCdkPs      ………..(24) 

Numerical Example: 

We use the short rate tree constructed in the last section to price a six-year 

European call option on a pure discount bond with maturity 10 years and a 

strike price of  $0.80. The results are summarized in table 3. 

In order to price the option we first construct a tree for the 10-year pure 

discount bond price by setting- 
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Ps 10,j = 1 for j = 0 to 10 and then apply equation (22) to obtain the tree 

labeled zerocouponprice in table 3. The price at the origin of the tree is $ 

0.621 and it is today’s 10-year pure discount bond price. 

Secondly we construct the tree for the option price resulting in the lower tree  

of table 3. We begin by evaluating the maturity condition for the option. For 

example at node (6,6) we obtain 

                                               C 6,6= max {Ps 5,5 -K, 0} 

                                                        = MAX {0.09030-0.800,0} 

                                                        = 0.0103 

The other nodes are worked the same way. The European option price is 

obtained by applying equation (21), discounting backwards from maturity to 

the origin.  For example the option price at node (2,3) is 

 C2, 3 = .5*09533*{0.0530 + 0.0269} = 0.0383 

And the European option price today is $0.0248. 
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Table 3                       
Time 0 1 2 3 4 5 6 7 8 9 10
Yields 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0%
Vol   0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Price 1 0.9524 0.9074 0.8636 0.8224 0.7837 0.7463 0.7107 0.677 0.6447 0.6139
                        
Shortrate_Tree                     
  0.05 0.0532 0.0599 0.0651 0.0706 0.0787 0.0866 0.0946 0.1048 0.1154 0.1259
    0.0436 0.049 0.0533 0.0578 0.0645 0.0709 0.0775 0.0858 0.0945 0.1031
      0.0401 0.0436 0.0473 0.0528 0.058 0.0634 0.0702 0.0773 0.0844
        0.0357 0.0387 0.0432 0.0475 0.052 0.0575 0.0633 0.0691
          0.0317 0.0354 0.0389 0.0425 0.0471 0.0518 0.0566
            0.029 0.0318 0.0348 0.0385 0.0425 0.0463
              0.0261 0.0285 0.0316 0.0348 0.0379
                0.0233 0.0258 0.0285 0.0311
                  0.0212 0.0233 0.0254
                    0.0191 0.0208
                      0.017
Zerocouponprice                     
  0.622 0.68 0.7335 0.783 0.8275 0.868 0.903 0.9335 0.9595 0.9815 1.0000
    0.6265 0.686 0.7425 0.794 0.8405 0.8825 0.9195 0.9505 0.9775 1.0000
      0.633 0.6965 0.7555 0.809 0.858 0.9015 0.9395 0.973 1.0000
        0.645 0.7115 0.773 0.83 0.8815 0.927 0.966 1.0000
          0.6625 0.733 0.7985 0.8585 0.912 0.9595 1.0000
            0.686 0.7615 0.8315 0.8945 0.9505 1.0000
              0.718 0.7995 0.8735 0.9405 1.0000
                0.7615 0.848 0.9285 1.0000
                  0.8195 0.914 1.0000
                    0.897 1.0000
                        
                        
                        
Europeanoptionvalue                   
  0.0248 0.0356 0.0485 0.0626 0.0766 0.0902 0.103         
    0.0166 0.0259 0.0383 0.053 0.0679 0.0825         
      0.009 0.016 0.0269 0.0422 0.058         
        0.0032 0.0067 0.0142 0.03         
          0 0 0         
            0 0         
              0         
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American type option could be priced in a similar manner using equation 

(24) taking into consideration early exercise conditions. 

Thus far we have used our knowledge of the term structure of interest rates 

today to model future interest rates using the equal probability specification 

of Black, Derman and Toy in a binomial lattice framework. We have also 

used the generated tree to value options on bonds. The process can be used 

to value several other interest rate derivatives such as Swap ions, Barrier 

options and Captions. 

In the next section we will look at a more a different, more flexible way of 

valuing interest rate derivatives with the BDT-binomial tree framework 

using Monte Carlo Simulation processes. 
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3.3 Using Monte Carlo simulation to price pure discount bonds 

options. 

The idea of any simulation is to estimate one or more expectation of the 

form Eφ(X). (This may not be obvious at first sight, but even a cumulative 

distribution function is a collection of expectations7). Thus we will regard 

the problem of this section as evaluating a frequently complex and high 

dimensional integral.  

A more unswerving way to price interest rate derivatives are by modeling 

the underlying asset’s source of uncertainty, in our case interest rates, 

directly.  One way of constructing a no-arbitrage model for interest rates is 

in terms of the process followed by the instantaneous short rate, r. It has 

been shown from previous sections that the process for the short rate in a 

risk-neutral world assumption can be used to resolve the current term 

structure of interest rates and vice versa.  For example, arbitrage pricing tells 

us that the s-maturity bond prices are given by 




















−= ∫ ττ drEstPs

s

t
t )(expˆ),( ……………………(25) 

                                                 
7 See Stochastic Simulation by B Ripley 
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Where   ˆ
tE  denotes the expectations (with information set at t) in a risk-

neutral world, - 

 With )(τr  denoting the path of short interest rate from time t to s. Time t 

interest rate derivative prices, C (t) are determined in the same way as: 

       



















−= ∫ )()(expˆ)( TCdrEtC

s

t
t ττ ………………………………..(26) 

Where C (T) is the pay-off from a derivative when it is exercised at time T. 

For example, for the European discount bond put option described in section 

2 we have   

                                                  












−








−= ∫ )0,),(max()(expˆ)( KsTPsdrEtC

s

t
t ττ …………………….……(27) 

Both equation (26) and (27) are expectations and we calculate them by 

simulating many paths )(τr  in the interest rate tree and taken average of the 

resulting values 

The price of a European call option on a pure discount bond (equation (27)) 

can be rewriting as 

( )[ ]),(),(),(),(maxˆ)( TTYTtKPssTYsTPsEtC t −= …………(28) 
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Where      

            









−= ∫

T

t

drsTY ττ )(exp),( ………………………………….(29) 

 

We can implement this equation using Monte Carlo simulations with 

j = 1,…,M simulations 

                                                  

( )[ ]∑
=

−=
M

j
jj TtYTtKPssTYsTPs

M
tC

1
),(),(),(),(max1)( …………….(30) 

Where                                               

    ( ) 







=

+
= ∏

=

N

i
jj kirdt

twY
0

i  to0k  
,(*1

1)( ………………....(31) 

Where w (t j) is a function that describes the path 8 that interest rate take to 

reach state j at time t from time zero.  W (t j) can be modeled in different 

ways but for simplicity we model it with the generation of uniform random 

numbers between 0 and 1. At every node in the binomial tree if rates go up 

                                                 
8 Random walk-a process that will ensure that all possible path that interest rate can thread is taken care of.  



 45

we assign w (t j) a value of 1 and 0 otherwise. The simulation works by 

generating many different future interest rate paths.  

The simulation is normalized so that the average simulated price of the pure 

discount bond equals today’s actual price.  

To illustrate this we use bond specification in section 3.2 where we priced a 

six-year European call option on a pure discount bond with maturity 10 

years and a strike price of  $0.80 using analytical methods. 

What we do here is to generate random numbers, which takes values 0 or 1 

with equal probability of 0.5. we assume 1 if interest rates go up,  and down 

if it is 0. Table 4 shows how this is done. The zeros and ones in blue print 

denote the upward and downward movement of interest rates and a 

simulation represent a unique path that rates can thread to get to the 

expiration of the option. Every path leads to a particular pay-off at expiration 

equation (29) is solved basically by finding the product of all the discount 

factors along a particular path. The set of numbers labeled pathwise discount 

rates represents the discount factors corresponding to the rates on a 

particular path. The product of these discount factor is multiplied by the pay-

off of the option at expiration corresponding to the node on that path to 

determine the price of the option on that for that path.   
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The simulation is done for many times and the corresponding option price is 

obtained for all paths under consideration. The arithmetic average of all the 

option prices for all the paths represent the overall price of the option with is 

$0.0233 in this case. 

Table 4                               

  1 2 3 4 5 6 0 1 2 3 4 5 6 Payoff Price/si Price
Simulations          Discount Factor along path     0.0233

1 0 0 0 0 1 1 0.9524 0.9579 0.9615 0.9652 0.9690 0.9662 0.9625 0.0000 0.0000  
2 1 1 1 1 0 0 0.9524 0.9497 0.9434 0.9390 0.9337 0.9398 0.9452 0.0015 0.0010  
3 0 1 0 0 1 0 0.9524 0.9579 0.9533 0.9579 0.9625 0.9588 0.9625 0.0000 0.0000  
4 1 0 0 1 0 1 0.9524 0.9497 0.9533 0.9579 0.9551 0.9588 0.9542 0.0000 0.0000  
5 0 1 1 0 1 1 0.9524 0.9579 0.9533 0.9497 0.9551 0.9497 0.9452 0.0015 0.0011  
6 1 1 0 1 0 0 0.9524 0.9497 0.9434 0.9497 0.9452 0.9497 0.9542 0.0000 0.0000  
7 1 0 0 0 1 0 0.9524 0.9497 0.9533 0.9579 0.9625 0.9588 0.9625 0.0000 0.0000  
8 0 1 1 1 0 1 0.9524 0.9579 0.9533 0.9497 0.9452 0.9497 0.9452 0.0015 0.0011  
9 1 1 0 0 0 1 0.9524 0.9497 0.9434 0.9497 0.9551 0.9588 0.9542 0.0000 0.0000  

10 0 0 0 1 1 0 0.9524 0.9579 0.9615 0.9652 0.9625 0.9588 0.9625 0.0000 0.0000  
11 1 1 1 0 0 0 0.9524 0.9497 0.9434 0.9390 0.9452 0.9497 0.9542 0.0000 0.0000  
12 0 1 0 1 1 1 0.9524 0.9579 0.9533 0.9579 0.9551 0.9497 0.9452 0.0015 0.0011  
13 1 0 0 0 0 1 0.9524 0.9497 0.9533 0.9579 0.9625 0.9662 0.9625 0.0000 0.0000  
14 1 0 1 1 1 0 0.9524 0.9497 0.9533 0.9497 0.9452 0.9398 0.9452 0.0015 0.0010  
15 0 1 0 0 0 0 0.9524 0.9579 0.9533 0.9579 0.9625 0.9662 0.9690 0.0000 0.0000  
16 1 0 0 1 1 1 0.9524 0.9497 0.9533 0.9579 0.9551 0.9497 0.9452 0.0015 0.0011  
17 0 0 1 0 0 1 0.9524 0.9579 0.9615 0.9579 0.9625 0.9662 0.9625 0.0000 0.0000  
18 1 1 0 1 0 0 0.9524 0.9497 0.9434 0.9497 0.9452 0.9497 0.9542 0.0000 0.0000  
19 0 0 1 0 1 0 0.9524 0.9579 0.9615 0.9579 0.9625 0.9588 0.9625 0.0000 0.0000  
20 1 0 1 0 0 1 0.9524 0.9497 0.9533 0.9497 0.9551 0.9588 0.9542 0.0000 0.0000  
21 1 1 0 1 1 1 0.9524 0.9497 0.9434 0.9497 0.9452 0.9398 0.9337 0.0385 0.0259  
22 0 0 1 0 0 0 0.9524 0.9579 0.9615 0.9579 0.9625 0.9662 0.9690 0.0000 0.0000  
23 1 0 1 1 1 0 0.9524 0.9497 0.9533 0.9497 0.9452 0.9398 0.9452 0.0015 0.0010  
24 0 1 0 0 0 1 0.9524 0.9579 0.9533 0.9579 0.9625 0.9662 0.9625 0.0000 0.0000  
25 1 0 1 1 1 1 0.9524 0.9497 0.9533 0.9497 0.9452 0.9398 0.9337 0.0385 0.0261  
26 0 0 1 0 1 0 0.9524 0.9579 0.9615 0.9579 0.9625 0.9588 0.9625 0.0000 0.0000  
27 1 1 0 1 0 0 0.9524 0.9497 0.9434 0.9497 0.9452 0.9497 0.9542 0.0000 0.0000  
28 1 1 1 0 1 1 0.9524 0.9497 0.9434 0.9390 0.9452 0.9398 0.9337 0.0385 0.0256  
29 0 0 1 1 0 1 0.9524 0.9579 0.9615 0.9579 0.9551 0.9588 0.9542 0.0000 0.0000  
30 1 1 0 0 1 0 0.9524 0.9497 0.9434 0.9497 0.9551 0.9497 0.9542 0.0000 0.0000  
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Figure 2 shows path 1 and 28 in the simulation. 

  Figure2                
0 1 2 3 4 5 6    
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    0.9615  0.9625  0.9625 0.0000 Path1 
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CHAPTER 4 

4.1             Valuing Mortgage-Backed Securities 

In order to value a mortgage-backed security, it is necessary to project its cash flows. The 

difficult is that the cash flows are unknown because of prepayment. The only way to 

project cash flows is to make some assumption about the prepayment rate over the life of 

the underlying mortgage pool. The prepayment rate is sometimes referred to as the speed 

(that is how fast a pool can be prepaid). Two conventions have been used as a benchmark 

for prepayment rates-conditional prepayment rate and the public securities association 

benchmark. 

Conditional Prepayment Rate (CPR): One convention for projecting prepayments and the 

cash flows of a MBS assumes that some fraction of the remaining principal in a pool of 

mortgages is prepaid each month for the remaining term of the mortgage. CPR is based 

on the characteristic of the underlying mortgage pool. 

The Public Securities Association (PSA) prepayment benchmark is expressed as a 

monthly series of CPR’s. The PSA benchmark assumes that prepayment rates are low for 

newly originated mortgages and then will speed up as the mortgages become seasoned. 
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4.2                Modeling Prepayments due to refinancing 

A prepayment model is a statistical model that is used to forecast prepayments. It begins 

by modeling the statistical relationship among the factors that are expected to affect 

prepayment. The factors that affect prepayment behavior are: (1) prevailing mortgage 

rate, (2) characteristics of the underlying mortgage pool, (3) seasonal factors and (4) 

General economic factors. 

In section 3.1 three we looked at how to model interest rates that apply in a short time 

period and in sections 3.2 and 3.3 we saw how to price an interest rate derivative based 

on the constructed binomial tree of short interest rates. Particularly in section 3.3 we saw 

how to value a bond option using Monte Carlo simulation. In this section we will use the 

idea of generating interest rate paths to model a very important factor affecting 

prepayments, which is the at which people refinance in a pool of mortgages. 

The single most important factor affecting prepayment because of refinancing is the 

current level of mortgage rates relative to the borrowers contract rate. The more the 

contract rate exceeds the prevailing mortgage rate the greater the incentive to refinance 

the mortgage loan. For refinance to make economic sense the interest saving must be 

greater than the cost associated with refinancing the mortgage. These cost include legal 

expenses, origination fees, title insurance and the value of the time associated with 

obtaining the mortgage loan. 

Historical patterns of prepayment and economic theories suggest that, it is not only the 

level of mortgage rates that affects prepayment behavior, but also the path that mortgage 

rates take to get to the current level.   
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If the mortgage rate follows a particular path, those who can benefit from refinancing will 

more than likely take advantage of this opportunity when the mortgage rate. Anytime 

interest rates drop people who can refinance will likely do it. When interest rates keep on 

dropping, then those who can benefit by taken advantage of the refinancing opportunity 

will have done so already when rates declined in previous periods. This prepayment 

behavior is referred to as refinancing burnout.  The expected prepayment behavior when 

mortgage rates follow two unique paths is different. Burnout is related to the path of 

mortgage rates. This is the primary reason why the binomial tree model (which uses 

backward) is not used. In order words prepayment or refinancing behavior is path 

dependent.  

In this project we considered how to model refinancing rates based on the path that 

interest rates take to reach a particular level. Refinancing rate represents the fraction 

of the mortgages in a pool that will be completely repaid in the current period. 

The factors that go into modeling refinancing are: 

• Current interest rates 

• Trend of interest rates 

• Interest rates in previous periods (burnout effect) 

• (Other economic factors). 

Since different firms and commercial vendors model prepayments due to 

refinancing based on their historic experience with refinancing, we will provide a 

very simple prototype refinancing function that could be altered to suit the 

situation a specific firm. 
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What this means is that, we are considering refinancing behavior of mortgagors parallel 

to the movements of interest rates.  If the prevailing interest rate in the first year is higher 

than contract mortgage rate minus some basis points of it, which is basically to account 

for the cost involved in refinancing, then it does not make any economic sense to 

refinance, and so the refinance rate will be zero. If by the second year interest rates drop 

then, those who can benefit from refinancing will do so.  

( ) interest rate in period i (from interest rate tree)
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In this case the fraction of the pool that will be refinanced will be some percentage of the 

difference between the mortgage rate and the prevailing interest rate. Also if rates 

continue to drop for a second conservative time then, a large portion of the pool is being 

completely repaid. Eventually refinancing activities will lease for a particular pool, which 

has experienced prepayments in earlier stages. 

 

4.3                        Valuation methodology 

The cash flow of a mortgage-backed security is interest rate path dependent. This means 

that the cash flow received in one period is determined not only by the current interest 

rate level, but also by the path interest rates took to get to the current level. Each of the 

various mortgage instruments listed in section 1.3 has is own cash flow pattern and 

prepayment behavior. Conceptually, valuation of the securities using Monte Carlo 

simulation is simple. It involves generating a set of cash flows based on simulated future 

mortgage refinancing rates, which in turn imply simulated prepayment rates. The 

simulation works by generating many scenarios of future interest rate paths. In each 

month of the scenario a monthly interest rate and a mortgage refinancing rates are 

generated. The monthly interest rates are used to discount the projected cash flows for 

each scenario. The mortgage refinancing rates is needed in order to determine the cash 

flows because it represents the opportunity cost the mortgagor is facing at that time.  If 

the refinancing rates are higher relative to the mortgagors original coupon rate (contract 

rate), the mortgagor will have less incentive to refinance or it could even be a 

disincentive. On the other had if the refinancing rate is lower than the mortgagors original 

coupon then the mortgagor can decide to refinance if it makes economic sense. To make 
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this point more concrete let us consider a newly issued MBS with a maturity of 360 

months. Table 5 shows three simulated interest rate path scenarios. Each scenario consists 

of 360 1-month future interest rates (we showed only 6 terms out of it). For comparison 

purpose we have also showed in table5 the cash flow in a case where there is no 

prepayment. It should be noted that, when no prepayment is assumed for the entire 

mortgage life the cash flow would be different for a particular month when there is 

prepayment but a zero rate of refinancing. For instance on the fourth month in simulation 

three there was an O% refinancing rate and the cash flow is entirely different from the 

cash flow without prepayment. This can be explained by the fact that there were some 

refinancing activities in the first three months so the outstanding principal amount has 

reduced by the fraction, which has already being refinanced. The value of the MBS is the 

average of all the cash flows for the total number of simulations done. 
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Table 5               

                                                      SIMULATION ONE           
Without Prepayment 1 2 3 4 5 6 
Interest Rate 4.00% 5.22% 6.44% 7.48% 8.53% 6.40%
Discount Factor 0.9615 0.9506 0.9398 0.9302 0.9217 0.9398
Discounted Cash Flow 989.0110 929.4725 864.5954 796.8975 748.9243 700.6187
                
                
With Prepayment             
Refinancing Rate 0.2308% 0.1763% 0.1223% 0.0743% 0.0318% 0.1223%
Total Cash Flow 1051.0542 994.2779 938.7996 889.9849 847.1800 936.7301
Discounted Cash flow 1010.5886 898.4471 789.1035 689.4984 616.8248 638.0348
                
                
                
                                                      SIMULATION TWO           
Without Prepayment             
Interest Rate 4.00% 6.37% 9.23% 12.09% 14.94% 9.17%
Discount Factor 0.9615 0.9398 0.9158 0.8921 0.8703 0.9158
Discounted Cash Flow 989.0110 905.7363 808.0073 703.2088 643.9986 593.5735
                
                
                
With Prepayment             
Refinancing Rate 0.2308% 0.1223% 0.0023% 0.0000% 0.0000% 0.0023%
Total Cash Flow 1051.0542 940.4335 819.8346 817.5453 817.6065 819.9969
Discounted Cash flow 1010.5886 828.0910 644.0057 558.9131 511.8909 473.1893
                
                
                
                                                      SIMULATION THREE           
Without Prepayment             
Interest Rate 4.00% 5.22% 7.71% 8.78% 9.81% 7.21%
Discount Factor 0.9615 0.9506 0.9285 0.9191 0.9107 0.9328
Discounted Cash Flow 989.0110 918.2967 844.0065 768.6367 716.9843 670.7389
                
                
               
With Prepayment             
Refinancing Rate 0.2308% 0.1763% 0.0658% 0.0188% 0.0000% 0.0873%
Total Cash Flow 1051.0542 994.2779 882.5782 835.3146 816.4917 903.3125
Discounted Cash flow 1010.5886 887.6443 724.1810 624.1937 569.1276 589.0330
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Implementation 

 

The valuation methodology outlined in the previous sections is implemented 

as a computer program written in MAPLE. 

The inputs of the program are the spot interest rates and their volatilities 

covering the entire time until the maturity of the MBS and the specification 

of the mortgages in the underlying pool. 

The program first builds the Black-Derman-Toy interest rate tree. Then it 

generates random paths in the tree and evaluates both refinancing rates and 

the resulting cash flows along each simulated path. The security is valued by 

averaging the discounted cash flows along a user specified number of 

interest rate paths. 

The refinancing rate is a function of current and past interest rates along the 

path. The user can change this function as it is implemented as a subroutine. 

This makes it possible to experiment with various functional dependences 

between refinancing and the interest rates. 

The MAPLE program communicates with the user through a spreadsheet 

interface 
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