
P a g e | 1

Major Qualifying Project

Michael French
Adam Ansel

Tom Hunt

Advisors: Britt Snyder, Keith Zizza

Worcester Polytechnic Institute

P a g e | 2

Table of Contents

Contents
Abstract ... 4

Introduction .. 5

Inspiration ... 5

Implications of Melee-Centric Combat In Flying Games... 8

Design .. 10

Controls ... 10

Weapons, Abilities, and Pickups ... 12

Map ... 13

Player Heads-Up Display ... 14

Art ... 15

Inspiration ... 15

Decisions ... 18

Asset Production and Implementation ... 19

City Buildings ... 19

Skybox ... 19

Dome ... 20

User Interface ... 21

Music ... 21

Development... 23

Game Engine ... 23

Player Object ... 24

Multiplayer .. 27

The Network Manager .. 28

Spawning ... 29

nGUI .. 30

Art Pipeline .. 31

GUI and Menus ... 32

Main Menu .. 32

Server Panel .. 33

Character Selection and Spawn Panel .. 34

Pause Panel ... 35

P a g e | 3

Player Heads-Up Display ... 36

Playing Aeroknights: Deathmatch... 37

Testing ... 41

Results ... 43

Final Product ... 43

Scrapped Features .. 44

Unrealized Ambitions .. 44

Possible Extensions ... 46

Conclusion ... 47

Works Cited ... 48

Images ... 48

Websites ... 49

Games and Films ... 50

P a g e | 4

Abstract
 As 3-dimensional graphics for videogames became popular, a genre of games was born

called “flying games.” Flying games typically had players control an airplane or spaceship and

often involved combat with projectile weapons. Meanwhile, many fantasy works contain

characters who ride a flying mount, such as a pegasus, yet fight with a melee weapon, such as

a sword. While many videogames include such characters, few explore what combat between

them looks like. In order to explore this combat, we created Aeroknights: Deathmatch, a video

game in which players ride flying bikes and attack each other using mainly melee combat

instead of projectile combat. The game played like a very up-close and personal version of the

flying games seen before, and create a unique and exciting way for players to interact.

P a g e | 5

Introduction

Inspiration
 In the 1990s, as 3-dimensional graphics gained popularity, the flight-sim videogame

genre also gained popularity. These games generally had players controlling a space-ship or

airplane, and mostly involved dogfighting other similar crafts. In popular flight-sims such as Star

Wars X-wing1, Freespace 22, and Wing Commander3, players would utilize weapons such as

lasers and missiles to combat opponents and had full control of their ship’s pitch, yaw, and roll

axis. The appeal of these games was largely considered to be the immersion they provided as

they allowed players to take on the role of a pilot seen in movies such as Star Wars4 and

Independance Day5. Flight-sim battles were often about maneuvering as players wrestled to put

their opponent in their sights and fire.

1 Star Wars: X-Wing: LucasArts. LucasArts. 1993. Video Game
2 Freespace 2: Volition, Inc.. Interplay Entertainment. 1999. Video Game
3 Wing Commander: Origin Systems, Inc.. Origin Systems, Inc. 1990. Video Game
4 Star Wars Episode IV: A New Hope. Dir. Lucas, George. Twentieth Century Fox, 1977. Film.
5 Independence Day. Dir. Roland Emmerich. 20th Century Fox, 1996. Film.

A player engages a Star-Destroyer in Star Wars: X-Wing

P a g e | 6

 Meanwhile, fantasy works such as World of Warcraft6 and Fire Emblem7 contained

characters that would ride on a mount which could fly. Following the fantasy genre, these

characters would often be seen wielding weapons such as swords, spears, and axes. While

these characters and concepts exist, combat between them is scarcely found in written works,

films, and videogame cutscenes. As such, few videogames have attempted to tackle the idea of

flying characters with primarily melee weapons as a central game mechanic.

 One game that did attempt to have melee combat while flying was called The Last

Phoenix8, which was released on indiedb.com by Barbossal on January 25th, 2013. In this

game, players assumed the role of a phoenix who fought against crows and other aerial and

ground-based enemies. Players could utilize two kinds of attacks: a ramming attack which

would give a short speed burst and damage all enemies in the player’s way, and a grappling

attack which would grab enemies, allowing the player to peck them to death. The game used

keyboard-and-mouse controls, with the mouse used to aim attacks and steer the character, and

the keyboard used to control speed and other miscellaneous functions. While The Last Phoenix

6 World of Warcraft: Blizzard Entertainment. Blizzard Entertainment. 2004. Video Game
7 Fire Emblem: Shadow Dragon and the Blade of Light: Intelligent Systems. Nintendo. 1990. Video Game
8 The Last Phoenix: BearInMind games. BearInMind games. 2013. Video Game

A Pegasus Rider from Fire Emblem wielding a spear

P a g e | 7

was a great take on flying melee combat, the main character was a single entity instead of a

mount and rider, as seen on the examples above.

The goal of Aeroknights: Deathmatch is to create a compelling combat system which

primarily involves player riding a flying mount (or vehicle) and attacking with melee weapons.

Unlike The Last Phoenix, our game will feature characters who are mounted on flying vehicles,

and will thus have combat that reflects the disconnect between weapon and vehicle. As

explained above, there is a general lack of games that involve this concept and most flying

games use projectile weapon combat. In this project, we endeavor to explore the implications of

limiting players to melee weapons when combating each other off-ground. It is hoped that

Aeroknights: Deathmatch can fill the niche for a flying melee combat and serve as a possible

example for future games to learn from.

A player attacks a target in melee in The Last Phoenix

P a g e | 8

Implications of Melee-Centric Combat In Flying Games

 In a videogame, a melee weapon is typically identified as a weapon used by players to

fight at close range without projectiles, such as baseball bats, swords, or pikes. Projectile

weapons are weapons that use a projectile as their primary form of attack, such as a gun, bow-

and-arrow, or slingshot. Typically, projectile weapons can attack from a much greater range

than melee weapons. Most existing flying video games use projectile weapon combat, usually

with machine-gun type weapons and homing missiles. We feel that, in many cases, projectile

weapons allow players to shoot down opponents without the opponent being able to react. We

thus theorize that using melee combat in a flying game will force players to interact with each

other more than they would with projectile combat.

A player shoots down an enemy from afar in Pacific Fighters

 In a versus game, we hypothesize that players make the most game decisions when

they are in range of their opponent and will tend to make more drastic movement decisions the

closer they are to their opponent. In a flying game with melee weapons, players must fly close to

their opponents in order to attack. This means that, compared to ranged flying games, players

P a g e | 9

would need to fly much more acrobatically when combatting their opponent. Specifically, when

an opponent gets too close to a player, that player could do several things to evade: dive down,

pull up, turn sideways, fly in a spiral, or even fly in a loop-de-loop.

 With so many decisions to make while actively fighting their opponent, players would

also need to strategize how they are going to initiate their attack. Assuming both players fly at

the same speed and maneuverability, attacking from behind may not be as beneficial as it would

with projectile combat. Doing so would require the player to catch up to his opponent in order to

actually deal damage, which could be cumbersome when compared to attacking from the front

or flank. Instead, a better strategy may be to attack the opponent from the flank in order to limit

their evasive options.

P a g e | 10

Design

Controls
When deciding our control scheme, there were three major controls to consider: the

player must be able to steer their ship, manage their speed, and control their weapon. The

optimal combination of these controls would have as few inputs as possible in order to keep the

game intuitive and allow for more functionalities. At the same time, we also needed to make

sure players would be able to execute as many evasive and aggressive maneuvers as possible.

The three major axes of a flying vehicle

Since this is a flying game, steering the ship would mean control over pitch and yaw at

the very least, with the possibility of roll. We came up with three control schemes. The first

scheme involved direct control over the ships pitch and yaw with the ship always oriented right-

side-up to remove the need for roll control, as seen with the Banshees in Halo: Combat

Evolved9. We decided this implementation would have meant that the ships were most

maneuverable when their pitch was at 0 degrees, which would limit evasive options. In an

9 Halo: Combat Evolved: Bungie. Microsoft. 2001. Video Game

P a g e | 11

attempt to fix this, we tried making the pitch fixed as well, making it so the ship was always

parallel with the ground, then replacing the pitch controls with “altitude” controls, as seen in

StarFox 6410. This, however, created a very arcade-like experience that seemed to limit the

excitement of flight. We ultimately decided to give players direct control over pitch, yaw, and roll;

using the mouse for pitch and yaw, and the keyboard for roll. This control scheme would provide

the highest level of control needed to make the game engaging.

 For speed management, there were two possibilities: either speed was fixed with

dedicated “go fast” and “go slow” buttons, or speed was variable with dedicated “speed up” and

“slow down” buttons. The former option would offer quicker movements, while the latter option

would allow for more controlled flight. We decided to use variable speed.

We boiled the issue of weapon control down to two possibilities. We could A) have the

weapon’s area of attack in a fixed area relative to the player, or B) have the player aim the

weapon with the mouse input. Option A would require the player to be oriented to their opponent

at a specific angle in order to hit, while option B would provide a wider range of attack options.

Option B would also make the weapon’s aim consistent with the player’s steering. Considering

the proximity players must be in in order to attack, we decided to use option B to allow for more

attack variety.

When considering the view perspective, there were two possibilities to consider: first-

person and third-person view11. A game using first-person view has the player viewing the world

through the eyes of their character. First-person games will often have the player-character’s

arms animated to convey certain actions, like attacking and switching weapons. A game using

third-person view, however, has the player viewing the world through an invisible camera facing

towards the player-character, usually from behind. First-person games tend to be more

10 Starfox 64: Nintendo EAD. Nintendo. 1997. Video Game
11 "What Are the Differences Between First-Person Shooter and Third-Person Shooter Games?" EBay.
N.p., n.d. Web. 05 Mar. 2015. <http://www.ebay.com/gds/What-Are-the-Differences-Between-First-
Person-Shooter-and-Third-Person-Shooter-Games-/10000000177589743/g.html>.

P a g e | 12

immersive than third-person games, as the game’s gestures and actions are addressed directly

to the player’s point of view. Third-person games tend to allow more spatial awareness than

first-person games, since the view allows the player to see areas adjacent to and behind their

character. For Aeroknights: Deathmatch, we wanted players to feel completely aware of their

surroundings as they navigated obstacles and evaded enemy players. We thus decided to use a

third-person perspective

Weapons, Abilities, and Pickups
When considering the main weapon, we boiled the weapon types down to two distinct

options: lance-like and sword-like. A lance-like weapon would extend in front of the player and

require players face their opponent in order to hit them. A sword-like weapon would attack from

the player’s flanks and require players to be side-by-side in order to hit each other. When

considering these options, we had to think about how the flight controls would influence players’

attack strategies. We figured the forward facing camera would encourage players to fly straight

for their targets, which is best done with the lance-like option. Lance-like weapons would also

create a vulnerability behind players, where the sword-like option would only put both players in

danger when one attacks the other. Based on these hypotheses, it was obvious the lance-like

option was more suitable.

During early play-testing, we observed a tendency for players to get locked in a chase

where one is trying to catch up and do damage, while the other is trying to evade their

aggressor. This chase proved to be difficult to break, so we added a few mechanics to help both

the aggressor and the defender. We added a speed boost that players can use at the cost of

maneuverability and a resource called Fuel. With this mechanic, aggressors can lead their

target and speed into their opponent’s path and hit. We also added mines that evaders can use

to dissuade chasers from following them. If a player ran into one of these mines, it would

explode and damage them. The number of mines available would be limited.

P a g e | 13

Map
When designing our map, we needed to strike a balance between density and

openness. If the map were open (devoid of features), every player would be able to see every

other player at all times and there would be no obstacles to fly around. This would not only

make sneak attacks and strategic positioning difficult, but also make it more difficult for players

to lose pursuing opponents. If the map had too many obstacles in it, however, then navigation

would become difficult. In order to have the right amount of obstacles, we decided to make the

map in a city-like location with skyscrapers. These skyscrapers could be strategically placed to

create interesting paths to fly through.

Left: a player attempts to navigate a very dense map, Right: a player has nowhere to go while being attacked in
highly sparse map.

We wanted to encourage players to take risks when flying in order to boost excitement.

We figured that, while not fighting, players would have little reason to attempt to fly through

obstacles. We thus decided to add pickups to the game. A pickup is a floating object that, when

touched, gives the player some sort of bonus. We came up with four bonuses a pickup could

yield: health replenishment, fuel replenishment, mine replenishment, and an energy projectile.

Placing these pickups in certain areas, obstacles or not, would encourage players to go to said

areas and increase variation in combat encounters.

P a g e | 14

Player Heads-Up Display

The HUD in StarFox takes up little screen space, allowing the player to see more of his surroundings

We decided that, in order to keep track of things like health and pickup resources, the

player would need to have a heads-up display (HUD). The most important piece of information

the HUD would need to convey is the player’s health, so the heathbar would be the biggest part.

Additionally, the HUD should also show the player how many resources, such as fuel and

number of mines, he has left. The HUD would need to display this information in a compact

manner so as to not reduce the player’s spatial awareness.

P a g e | 15

Art

Inspiration
 The overall aesthetic of Aeroknights: Deathmatch traces its inspiration to a variety of

sources, both founded in reality and science fiction. One could consider the art style of our

game to be “dieselpunk,” in that it combines “the aesthetics of diesel-based technology

influenced by the interwar period to the 1950s with futurist postmodern technology.”12 The

decision to take the art style in this direction came about with the creation of the Aerobike

vehicle. The remaining elements of the game are designed to be consistent with the theme set

forth with the Aerobike. The setting of Aeroknight: Deathmatch’s game environment is inspired

by the sci-fi bio domes prevalent in science fiction movies and literature. One of the initial

inspirational elements for our environment is Cloud City from Star Wars. The tall, sculpted

buildings provide an unmistakably futuristic look.

The design of the Aerobike vehicle itself is partially inspired by mid-21-century jets, such

as the F-86 Sabre. Originally, it had been our plan to situate a single intake right at the nose of

the vehicle, but later consideration led us to replace it with a grille and situate the intakes on

each side instead. The silver coloration was also inspired by the F-86. Certain aspects of the

Aerobike can be traced to motorcycle design, such as the handlebars with brake handles.

12 "Dieselpunk." Wikipedia. Wikimedia Foundation, n.d. Web. 06 Mar. 2015.

P a g e | 16

The Aerobike (right) and its inspiration (left)

The development of the second vehicle began late in the project. Since our overall art

style had already been established, it was both easier and more difficult to imagine how the new

vehicle would look physically – easier in that we already knew what sort of look to aim for, and

more difficult in that there was less creative freedom for appearance. With these constraints in

place, the new vehicle turned out as sort of a cross between the original Aerobike and the

Naboo Starfighter. In order to differentiate the design from the preexisting Aerobike, we

referenced the steering setup of a snowmobile (handlebars on a central rotating pivot) rather

than rigid handlebar setup (as on the original Aerobike) to more clearly distinguish between the

two.

The Turbobike (right) and its inspiration (left)

P a g e | 17

A secondary influence for the Turbobike was the design of the P-38 Lightning. The

influence of the P-38 is apparent in the twin-tail of the Turbobike. Additionally, the commonly

silver color scheme of the Lightning factored into our decision to give the Turbobike a reflective

silver finish as well.

A P-38J, which also influenced the Turbobike

 The process of envisioning, designing, and constructing characters for Aeroknights:

Deathmatch took several steps and resulted in the complete re-working of the characters from

the initial design concept. Originally, we had planned on producing several biker-style human

characters with leather jackets and associated paraphernalia, but this concept devolved into

something more in-line with the absurd overall premise of the game: robots vs. robots.

 An advantage of using a robot as a character model is the straightforward rigging in

comparison to an organic humanoid model. To rig the character, each segment of the body

needs to be parented to its corresponding bone.

P a g e | 18

The Robot which rides the bikes

Decisions
One of the decisions we made during our design process was to switch the semi-realistic

appearance of our game with a cartoony appearance instead. The use of a toon shader is also

beneficial to the overall game aesthetic, as it provides a consistency between the more

fantastical elements of the game (robots riding jet bikes, for instance) and the aspects of the

game that would not look too out of place in real-life modern urban architecture. In games that

use a visually realistic art style, the player may expect a gameplay experience more founded in

the real world. In our case, we did not want to promote this possible association.

This stylistic transformation took some manipulation of the existing toon shaders and

extensive online searching to preserve certain aspects of the game’s appearance, but the result

is to our satisfaction.

P a g e | 19

Asset Production and Implementation

City Buildings
 In order to produce the buildings for our virtual city, we modelled each building

separately and used a particle system within Blender 3D to arrange the buildings somewhat

randomly. However, this did not lead to a layout that was compatible with the central “Rings” in

our game environment, so we ended up modifying the arrangement of the buildings to

accommodate the central garden rings. The entire city layout was imported into Unity as an

FBX, allowing us to keep everything grouped together as a prefab. Sub-objects can still be

rearranged by selecting them within the city prefab - this allows us to reposition individual

buildings.

The City in which the game takes place

Skybox
 The space skybox for Aeroknights: Deathmatch was painted by hand on the interior of a

sphere in Blender, then projected onto the outside faces of a cube. These faces formed the

P a g e | 20

base layers of the skybox. The next step in the skybox construction was to generate random

stars in Spacescape and overlay these onto the painted nebulae within Photoshop.

A piece of the skybox texture

Dome
 The dome around our game environment is composed of two sections. The inner part of

the dome is made up of the support structure and a transparent layer for the window panes.

Directly outside this inner dome is an outer dome with a grunge texture applied. The reason we

had to set up the dome this way was to compensate for the lack of a shader that supports

transparency, reflectivity, and a diffuse texture. The outcome of this process provided the

results we were looking for.

P a g e | 21

The composite dome material

User Interface
 The user interface or Aeroknights: Deathmatch is designed with a grungy industrial

aesthetic in mind. Stained metal and frequent use of bolts on the menu panels reinforce this

motif. Rolling over the buttons produces both a highlight effect and a sound to let the user know

that the button has received their input. In order to create the various faux-metal panels for the

game UI, we located stained or otherwise dirty metal textures online and modified them in

Photoshop, such as through the addition of edge bevels. Bolt images are overlaid on corners to

finish the look.

Music
We chose the soundtrack for our game to encourage fast-paced action. To this end, we

have made use of two tracks from the user ScorcherEdits on YouTube - each in the same key

but with a different tempo. Circumstances within the game environment trigger transitions

between the two tracks. Specifically, the slower-paced track plays continuously until the player

passes within a certain distance from an enemy player, at which point the first track fades into

the second faster paced “combat” loop. This second track continues to loop as long as the

player remains under the set distance from an enemy. Upon exiting this range, the music

P a g e | 22

crossfades back to the first track. In this way, Aeroknights: Deathmatch takes into account the

action on screen for each character to dynamically change the game soundtrack.

P a g e | 23

Development

Game Engine
At the start of development, we were had to figure out how we going to develop

Aeroknights: Deathmatch. Our team had two high level options: develop the game from scratch

or utilize a game engine. Since our ultimate goal was to explore a certain mechanic in depth, we

decided that developing the game from scratch was unnecessary. We thus chose to use a

familiar and well supported game engine called Unity13. Unity offers a robust set of core features

including built-in rendering, collision detection, and physics. Unity also allows for all types of art

assets to be used including 3D models, textures, materials, and particle effects. This ultimately

gave our artist free range within his capabilities to make and implement anything he wanted.

Unity also features built-in networking capabilities for online multiplayer games, which proved

useful when we decided to make AeroKnights: Deathmatch multiplayer. The decision to use

Unity ultimately allowed us to develop core game functions early, giving us time to play-test and

tweak the game throughout development.

One feature of Unity we commonly used was the prefab14. Prefabs are objects which

hold components and scripts, and are a way building objects that can be loaded into the game.

The components of a prefab can include collision boundaries, mesh renderers, scripts, and

even particle effects. Prefabs can also have child prefabs, which will share collision detection

and move with the parent prefab. Finally, variables made public in scripts can be altered in

Unity’s GUI, making playtesting and variable tweaking much more streamlined and efficient. We

13 Unity. Unity. N.p., n.d. Web. 01 Mar. 2015. <http://unity3d.com/>.
14 "Prefabs." Unity. N.p., n.d. Web. 05 Mar. 2015. <http://docs.unity3d.com/Manual/Prefabs.html>.

P a g e | 24

used prefabs to build every major object in the game, including the player character, network

manager, pickups, and spawn-points.

Player Object
 The first object we needed to create was the player character, which would serve as the

object which the player controls as the game is played. The player character would need to take

in keyboard and mouse input, and produce movement and control of game mechanics. We

decided early that different mechanics would be handled by different scripts, which would all be

loaded on the same prefab. For instance, the PlayerInput script would read keyboard and

mouse input, which the FlightBehaviour script would use to handle flight mechanics like speed

and turning.

In order to allow these scripts to gather input from a single source, we created the

PlayerInput script to manage all keyboard and mouse input. For most inputs, we simply check if

a key was pressed, but some inputs are more complicated. In order to manage mouse input for

steering, we utilized the mouse cursor position relative to the middle of the screen to report an

analog value between -1 and 1 for pitch and yaw. When the mouse cursor is in the bottom-left

corner of the screen, the script reports the steering inputs to be -1 for pitch, and -1 for yaw.

When the mouse is in the top-right corner of the screen, the script reports the steering inputs to

be 1 for pitch and 1 for yaw. These inputs would be used to steer the player and aim the

player’s weapon.

P a g e | 25

For the player’s flight behavior, we we

created the FlightBehaviour script, which manages

the player’s speed, acceleration, roll, pitch, and yaw.

We made each of these variables, as well as the

variables affecting them, public in order to be able to

tweak them from Unity’s GUI. This allowed us to use

the same script for both the Aerobike and the

Turbobike. To make each bike handle differently, we

simply modified the bikes’ speed and turning

variables in the Unity GUI. In order to allow player

control, the FlightBehaviour script gets input values

from the PlayerInput script. The throttle, for instance,

gives the player precise control over their speed,

and is increased or decreased depending on

PlayerInput’s getThrottleInput function.

In addition to speed and turn control,

FlightBehaviour also has an afterburner, which

provides a steady speed boost, and a dash attack, which quickly launches the player forward.

The afterburner is activated when the afterburner button, mapped as the ‘shift’ button by the

PlayerInput script, is held down by the player. The dash attack is activated when the the player

clicks the left mouse button a dash attack happens when the player presses the attack button,

which is mapped as the left mouse button. The dash attack increases the speed of the bike for a

split second, allowing the player a burst of speed needed to attack his opponent.

The variables for FlightBehaviour were editable in
Unity’s GUI

P a g e | 26

The main variables of the PlayerHealthManager

AeroKnights is a fighting game at heart, so each player needs to have a certain amount

of health. If the player’s health reaches zero, the player dies and must respawn. The

PlayerHealthManager script handles and processes the current health of the player. If the player

gets hit, health is lost and on-screen effects are played to represent the damage. A variable set

in the HealthManager script determines the bike’s max health, and functions within the script to

determine what to do to that variable. For example, within the script there is a function called

loseHealth, and if loseHealth is called we can determine how much of the bike’s health is lost

anywhere else in the game. This allows us to decide what damages the player, be it a lance

attack or environmental hazards.

The main variables for the Mine Launcher and Projectile Launcher

We decided to have a form of attack in addition to the player’s dash attack. In

AeroKnights: Deathmatch, the main attack is a dash attack with the lance the character is

holding, which is handled in the FlightBehaviour script. For a secondary attack, we added

mines, which are stationary objects that damage opponents when touched. The purpose of

P a g e | 27

mines is to give players who are being chased a way to deter their aggressors. In order to

enable the launching of mines, we created the MineLauncher script. MineLauncher handles the

number of mines the player has, and the method of launching them. To launch a mine,

MineLauncher will place a mine object, which is a prefab, behind the player. The mine can only

damage opponents, and will not harm the player who launches it.

In order to convey these mechanics to the player, we implemented a heads-up display

(HUD) that would be visible while the player was in-game. At the top of the HUD, we created a

health-bar, which would display the player’s health as both a progress bar and a number. We

also created a small panel that would display information about the player’s current pickups,

such as mines for the mine launcher and fuel for the afterburner. Finally, as an aesthetic

addition, we put a light in the HUD which would glow bright red when the player’s health was

below a certain threshold.

Multiplayer
 Early in development, we faced a difficult issue: how could we create an opponent that

would adequately test the idea of melee combat in a flying game? In order to fully explore the

concept, the players’ opponents would need to adapt to the environment around them. If players

adapted a new strategy, the players’ opponent would also need to adapt to prevent the game

from becoming stale. We considered two high-level options for the opponent: creating

autonomous bots or making the game multiplayer. Doing both options was out of scope for the

project, so we had to choose one.

Creating a bot would require a complex AI that would account for a large amount of

minute details including its environment, positioning, speed, and position relative to other

players or bots. It would also need a contingency for each possible situation, such as when it is

in front of the player, behind the player, or above the player. As strategies for the game got

fleshed out, the bot’s programming would become more complex. Implementing multiplayer, on

P a g e | 28

the other hand, would merely require network programming that would allow multiple computers

to play within the same space. We ultimately decided that, in order to adequately explore melee

combat in a flying game, implementing multiplayer would be a far more efficient solution.

The Network Manager
 In order to make our game multiplayer, we needed to create network manager that

would handle both server and client data. To do this, we used Unity’s Network class. For server

creation, we used the function Network.InitializeServer, which does as the name implies. This

function can be configured to use or ignore network address translation (NAT), making it

possible to use it for creating both local area network servers (LAN) and online servers. Once

created, if the server is not LAN, it is registered to Unity’s master server, which allows clients to

see a list of all servers currently available for our game. This allows players to host servers that

others can to browse to and play on.

The Network Manager

In order to transfer information over the network, we used Unity’s built in network view

component. Network views are attached to prefabs that need to be synced on each player’s

computer. Each computer will have its own copy of any object with a network view that is

P a g e | 29

updated from said object’s primary computer. We attached a network view to the player prefab

and configured it to send only information from the FlightBehaviour script. In FlightBehaviour,

we also wrote a check to see if the prefab belongs to the computer displaying it. If it does,

FlightBehaviour would be controlled by that computer, otherwise, FlightBehaviour would update

itself based on the information given by the source computer. Similar techniques were

implemented with the pickups, mines, and projectiles.

 By default, network views only send the object’s position over the network. This would

cause networked players to move in a very jittery pattern as the vehicle forward on every

update. This is because of the server latency. In order to mitigate the jittery movement, we

wrote our FlightBehaviour script to send the velocity of the vehicle along with its position. This

made it so networked players seem to interpolate between positions as they are updated, and

makes their movement much smoother.

 Network views do not track player statistics such as health and pickup resources. This

meant that, when one player damages another, we needed a way to tell all of the clients that a

player has taken a certain amount of damage. To do this, we created a PlayerHealthManager

script, which would track the player’s health and communicate it through the network. In this

script, made two functions which cause the player to take damage; takeDamage and

takeDamageRPC. The takeDamage function modifies the local player’s health, then does a

Remote Procedure Call (RPC) on takeDamageRPC. This tells all of the other clients to call

takeDamage on their version of the player who's supposed to take damage.

Spawning
 Managing how players would spawn into the game was important. If a player spawns too

close to a building, he could crash before being able to react. Additionally, if a player spawns

too close to another player, one of them could gain an unexpected and random advantage. To

avoid these situations, we created spawn-point prefabs and strategically placed them

P a g e | 30

throughout the map. Each spawn point was placed at an edge of the map away from other

spawn points, above the buildings, and roughly facing the center of the map. This placement

would give newly-spawned players space to orient themselves before jumping into battle, and

the orientation would encourage players to fly to the center of the map where they are likely to

find other players.

 We developed an algorithm to determine the best spawn point for players to spawn at.

When a player spawns, the network manager queries each spawn point for a priority. Each

spawn point determines their priority by adding the distances from that spawn point to each

player in the game. The network manager then chooses the spawn point with the highest priority

score and instantiates the player prefab at the object’s position and orientation. As a result,

players will always spawn as far away from the action as possible.

nGUI
 During development when discussing the user interface and how it should be

implemented, the topic of nGUI15 was brought to our attention. nGUI is a plugin for Unity that

allows for powerful control over the user interface and HUD. Unity’s default Graphic User

Interface (GUI) functions are done pixel-by-pixel, which makes it difficult to create a GUI that

looks consistent on different screen resolutions. NGUI allowed us to create UI elements such as

buttons and progress bars within the scene that would resize properly depending on the

resolution. This means we can edit exactly how the HUD and menus will look like without having

mathematically define positions in code, making our GUI design process much more efficient.

NGUI also allowed us to utilize our art assets in a way that can easily convey information to the

player. By communicating with other scripts such as the PlayerHealthManager and

15 "NGUI: Next-Gen UI Kit." Tasharen Entertainment. N.p., n.d. Web. 05 Mar. 2015.
<http://www.tasharen.com/?page_id=140>.

P a g e | 31

FlightBehaviour scripts, nGUI can access information such as health and fuel. Accessing these

variables can then be applied to nGUI elements to display current game information.

Art Pipeline
For our art pipeline, we had our artist create the assets using Maya, Blender, After

Effects, and Photoshop. Maya and Blender were used to create the game’s 3D models.

Additionally, Texture Packer was used to compile image sequences for animated sprites into

one texture atlas. A script within Unity was used to scroll through the images in the atlas to give

the effect of continuous motion. After Effects was used to create the animated 2D assets, such

as the title-screen background. Photoshop was used to create materials for the 3D models as

well as the panels and buttons for the menus and player heads-up display.

Once the art assets were created, they were imported into our Unity project. Integration

was mostly seamless as Unity supports a wide variety of file types for art assets. Many of the

models used unique materials for different components - this allowed us to adjust the materials

in Unity with distinct properties, such as reflectivity, self-illumination, etc. Some of the models

also needed to be scaled once imported into Unity, as the scaling conversion between the 3D

software we used and Unity are not 1:1. Once imported, the art assets were attached to their

relative Unity prefabs. Since creating art assets takes time, our programmers utilized simple

programmer art that would function as a placeholder for the art assets. That way, once the art

assets were finished, the programmers could simply replace the temporary art assets with the

real ones.

P a g e | 32

GUI and Menus

Main Menu

The Main Menu

 The design of the main menu is a simple one following the theme of our game. The

buttons are skewed to the left of the screen leaving the right side open to display an image of

our game title. What the player sees when they start the game is the main menu, and from the

main menu the player can navigate it to play the game, quit the game, or even view the credits.

P a g e | 33

Server Panel

The server-selection and creation menu

 The server panel lets players browse for and create game servers. From the server

panel, players can host a multiplayer game, start a Local Area Network (LAN) server, and

connect to servers via browsing or IP address entry.

P a g e | 34

Character Selection and Spawn Panel

The character selection menu

 After joining a server the player is presented with the character select panel. This panel

also serves another function allowing players to choose when to spawn in the game. Players

are given the option to select from two bikes, each with its own set of stats allowing players to

see the differences between each bike not only visually but technically as well. With a bike

selected, players can spawn into the game and begin playing.

P a g e | 35

Pause Panel

The pause menu

 During gameplay, we wanted a way for the player to be able to leave the game or

respawn when they please. We implemented a pause panel, which would display when the

player presses the pause button (mapped to the “escape” key) in game. Since our game is

multiplayer, pausing the game would disrupt play for other players, so we decided that our

‘pause’ panel would simply replace the players HUD with options to respawn or disconnect from

the server, without halting game functions. Players can also view the IP address of the server

they’re connected to, which can be used to invite friends to the game.

P a g e | 36

Player Heads-Up Display

The Player HUD

 For the player’s heads-up display (HUD), we created a small panel for all of the essential

pieces of information a player needs. The health is displayed both as an integer value and

progress bar at the very top, and is clearly visible. A panel at the top-right of the screen displays

the player’s current pickup resources, such as the amount of fuel they have for the afterburner.

As a cosmetic addition, we added a dummy panel at the top-left of the screen, which contains a

red light that glows when the player has low health.

P a g e | 37

Playing Aeroknights: Deathmatch
 While not in-game, players can choose between two bikes: the Aerobike or the

Turbobike. The Aerobike is a highly maneuverable, albeit slow vehicle. The Turbobike is a high-

speed but low-maneuverability vehicle. Once a bike is chosen, players can spawn into the

game, where they will be placed on their chosen bike in a spawn point away from other players.

When players spawn into the game, they immediately have control of their character.

Players can both both aim their weapon (the lance) and steer their ship with the mouse, and

control the speed and roll of the ship with the keyboard. Every spawn point faces the center of

the stage, encouraging players to fly to the middle where they are likely to find other players.

Every bike has a bright-blue trail, making it easy to spot other players.

The player “jousts” his opponent in a head-on attack

 When players spot each other, they can either immediately charge in and attack or duck

away and find pickups to given them an advantage. Often, when both players choose the

former, a sort of jousting match ensues where both player fly straight for each other, aiming to

get the hit.

P a g e | 38

Top: The attacking player chases his opponent,

Bottom: the evading player sees his opponent through the rear-view camera

 If a player spots an opponent before the opponent spots them, that player can tail the

opponent and score a hit from behind. To increase spatial awareness, players can toggle a rear-

view camera to see if anyone is behind them. Players being chased have two general strategies

to shake their aggressor: They can attempt to fly evasively, pulling aerobatic maneuvers and

weaving between buildings, and they can collect pickups, like afterburner fuel or mines, to deter

their opponent. Mines are a useful way of aggressively deterring opponents, as they will directly

deal damage. Afterburner fuel, on the other hand, provides the player with a speed boost which

can be used to outrun their aggressor.

P a g e | 39

A player shoots at his opponent with the energy burst

 Chasing players, meanwhile, can catch up to their opponents by outmaneuvering them

and utilizing the energy-burst pickup. The energy burst is a projectile that slows down every

player it hits, but does not damage them. Hitting the evading player with the energy burst can

make it much easier for the chasing player to score a hit.

Every time a player is hit, they lose health and a “broken glass” screen effect is played. If

their health drops below 0, they are destroyed and must spawn back into the game.

A player is struck and takes damage

P a g e | 40

A player is killed, leaving behind an explosion as his opponent zips past

 More than two players can be playing at a time, so if a third player enters the game, they

can intervene on a fight and score an opportunistic hit. Players must thus consider opportunistic

opponents when singling out a target. If an opponent interferes with a player’s attack or

defense, the player would have to change their strategy to avoid being taken advantage of.

P a g e | 41

Testing

 After the core mechanics were created, we conducted a play-test session. Play-test

subjects were chosen randomly via mass-email and were asked to play our game for 30 mins.

During play, we observed several things: the subjects’ ability to control the bike, attack other

players, and avoid getting hit by players. The three metrics were measured subjectively. We

also noted subjects’ comments while playing.

 Our game’s mouse steering and keyboard throttle seemed to be intuitive enough for the

subjects to control the bike without confusion. Subjects were also able to consistently avoid

obstacles. When it came to combating enemies, however, the subjects had a difficult time

landing a hit on their opponent. During combat, the subjects’ most common strategy was to

simply fly straight for their opponent. This would often lead to two scenarios; either the subjects

would fly straight at each other in a sort of joust, or one would flee while the other one chased.

The former scenario would often result in both subjects hitting each other simultaneously, while

the latter scenario would result in a long chase where neither subject made any significant

progress.

 When asked about their experience, the subjects expressed frustration in how difficult it

was to hit their opponents. One subject suggested that the difficulty came from the

maneuverability the bikes had at high speeds. One of the suggestions was to lower the turning

radius of the bike as the throttle got higher in order to reduce the opponent’s ability to evade.

The subjects also suggested increasing the size of the target area on players to make them

easier to hit, adding a rear-view camera to know if they are being chased, and adding some sort

of projectile to use while chasing.

We followed up on the first suggestion by linearly reducing the bike’s pitch and yaw

controls as the throttle increased. At top speed, the bike would still be able to turn, but at

P a g e | 42

reduced magnitude. We additionally made the bike’s pitch magnitude greater than the yaw

magnitude. This would mean that, in order to get the tightest turn radius, players would have to

roll so that the direction they’re turning is relatively up. This would make it easier to predict what

direction evading players would turn towards while trying to shake their opponent.

Another suggestion we followed up on was adding a rear-view camera. In order to let

players know if they are being chased, we decided to completely follow the subject’s

suggestion. We added a rear facing camera to the player prefabs and wrote a script that would

toggle this camera when the ‘z’ or ‘c’ keys are held down.

The final suggestion, however, seemed to go against the original intent of Aeroknights

Deathmatch. Our goal was to create a flying game where melee weapons were the primary form

of attack. We decided, however, that so long as the projectile was significantly less effective

than the melee weapon, the core elements of our game would be upheld. We thus added a

projectile weapon as a pickup that would reduce a player’s speed on contact, but not damage

him2. Like the mines, this projectile would be limited by a number of shots, which could be

replenished by running into the projectile pickup. The projectile would be aimed by the mouse

input, similar to the lance.

P a g e | 43

Results

Final Product
 The final build of Aeroknights: Deathmatch is an intense dogfight where players

constantly fight other players in a science-fiction dome-city. In order to beat their opponent,

players must utilize the full aerobatic capabilities of their vehicle, of which there are two options.

The first vehicle, the Turbobike, is a high-speed but low-handling vehicle that excels at making

quick hit-and-run attacks. The second vehicle, the Aerobike, is a much slower, yet much more

maneuverable vehicle that is great for making quick dodges and out maneuvering opponents.

The balance between these vehicles creates asymmetric gameplay, with both vehicles having

distinct advantages and disadvantages.

 Players have many offensive and defensive options. While attacking, players can utilize

pickups like Energy Bursts and Afterburner Fuel to catch up to and mess with their opponent.

While evading, players can utilize pickups like mines to deter chasers, and heath to replenish

their health bar. Evading players can also utilize the terrain of the map to lead their aggressors

through dangerous obstacles, as well as fly unpredictably. All of this creates a balanced game

where it is just as easy to deal damage as it is to avoid it.

 Aeroknights: Deathmatch can be played in multiplayer either over the internet, or a Local

Area Network. The menu systems implemented allow for seamless transitions between the

main menu, setting up a game, choosing a vehicle, and play, and quitting.

 Overall, the use of melee combat while flying creates a very up-close-and-personal style

of gameplay not often seen in other flying games.

P a g e | 44

Scrapped Features
 After creating the initial weapon, the lance, we experimented with other weapon types.

During our initial brainstorming we came up with the idea of a short-range grappling hook that

could yank enemies off their bike. We decided early that the extra animation and physics

required to make this idea work was out of scope, so we reduced the idea to a whip, which

would have a longer range than the lance. Unlike the lance, which is constantly pointed outward

and can deal damage at any time, the whip would need to be “swung” in order to be able to hit

opponents. After developing a prototype of the whip, we found that using a weapon which was

not constantly brandished was extremely difficult to time with our flying mechanics. When we

matched one of us with the whip against one of us with the lance, the lance would win every

time. We thus decided to scrap the whip.

Unrealized Ambitions
 Over the course of the development of Aeroknights: Deathmatch, several elements we

had considered including in the game were conceptualized, however they did not appear in the

final game build.

The foremost of these was creating additional environments for the players to explore

and fight within -- the dome-enclosed city is the only map currently available for play. This

resulted primarily from the number of custom assets required for the city that would not

necessarily be reusable outside of that specific environment. Creation of fresh assets for an

entirely new game environment was not something feasible in the amount of time we had for our

project.

Aside from introducing additional game environments, we originally planned for

additional detail within our default city dome environment, such as sky tunnels. Due to time

constraints the addition of these tunnels did not come to fruition. Additionally, adding in “roads”

P a g e | 45

for the fictional city was another concept that we had floated. Roads did not materialize in our

game for the same reason as the sky tunnels.

Early on in our project our team had considered multiple characters for the game and

allowing the player to choose between each in a selection menu. This would have necessitated

the construction, texturing, rigging, and animating of each of these characters. Instead, our

team decided on differentiating the characters through color scheme - a red robot is associated

with the Aerobike and a blue-robot is mounted atop the Turbobike.

Additional weaponry had been in the works earlier on in development of Aeroknights:

Deathmatch. An example was the conceptual grappling hook launcher. Initially, we had

considered an arm-mounted grappling hook launcher that would enable a player to pull an

opponent off their vehicle or slow down the vehicle directly. This did not feature in the final

version of Aeroknights: Deathmatch due to considerable technical challenges associated with

implementing the weapon.

The scrapped grappling hook

P a g e | 46

Possible Extensions

 Since Aeroknights: Deathmatch is, at its core, a versus-multiplayer game, there are

many potential extensions that can be made in the future. Games like Quake have many game

modes including deathmatch, where players constantly fight so see who can acquire the most

kills; capture the flag, where players must team up to steal the opposing flag while protecting

their own; and last-man-standing, which is similar to deathmatch, but once a player is killed,

they do not respawn until the next round. Any one of these game modes would add variety to

ours.

 Deathmatch type games also benefit from having many different types of levels to

choose to play on. The City Dome level included in Aeroknights is full of different types of

buildings that can be navigated to avoid opponents. Other levels, such as a forest or cave, can

be implemented to provide a unique experience that allows for replayability. For example, forest

level will provide foliage and greenery that can hide opponents in plain sight. Whereas a cave

level will provide a restricted play style with obstacles such as stalagmites and stalactites

impeding movement.

P a g e | 47

Conclusion
 The ultimate question we were trying to answer with Aeroknights: Deathmatch was “can

melee combat work in a flying video game?” After six months of development, we have created

a complete, standalone multiplayer game that is both fun and challenging. The flow of play is

such that 1 on 1 battles last a decent amount of time, but do not drag on to the point of losing

appeal. Given our efforts, we conclude melee combat in flying games is viable for a multiplayer

setting, and can provide challenging content for single-player games.

P a g e | 48

Works Cited

Images
Air Conflicts: Secret Wars IGN Review. Digital image. N.p., n.d. Web.

<http://xbox360media.ign.com/xbox360/image/article/121/1212525/shot01_13

21391918.jpg>.

Pacific FIghters. Digital image. N.p., n.d. Web.

<http://mediaserver.boonty.com/gamesimages/502_fr_sc1.jpg>.

Pegasus Knight. Digital image. N.p., n.d. Web.

<http://vignette3.wikia.nocookie.net/fireemblem/images/6/62/FE9_Pegasus_K

night_%28Marcia%29.png/revision/latest/scale-to-

width/640?cb=20121019124951>.

Pitch, Yaw, and Roll Diagram. Digital image. N.p., n.d. Web.

<http://www.toymaker.info/Games/assets/images/yawpitchroll.jpg>.

Rogue Leader. Digital image. N.p., n.d. Web. <http://www.stealthybox.com/wp-

content/uploads/2014/05/Star-Wars-Rogue-Leader-Death-Star_D5.jpg>.

Star Fox 64. Digital image. N.p., n.d. Web.

<http://resource.mmgn.com/Gallery/full/Lylat-Wars-Star-Fox-64-DM.jpg>.

http://xbox360media.ign.com/xbox360/image/article/121/1212525/shot01_1321391918.jpg
http://xbox360media.ign.com/xbox360/image/article/121/1212525/shot01_1321391918.jpg
http://mediaserver.boonty.com/gamesimages/502_fr_sc1.jpg
http://vignette3.wikia.nocookie.net/fireemblem/images/6/62/FE9_Pegasus_Knight_%28Marcia%29.png/revision/latest/scale-to-width/640?cb=20121019124951
http://vignette3.wikia.nocookie.net/fireemblem/images/6/62/FE9_Pegasus_Knight_%28Marcia%29.png/revision/latest/scale-to-width/640?cb=20121019124951
http://vignette3.wikia.nocookie.net/fireemblem/images/6/62/FE9_Pegasus_Knight_%28Marcia%29.png/revision/latest/scale-to-width/640?cb=20121019124951
http://www.toymaker.info/Games/assets/images/yawpitchroll.jpg
http://www.stealthybox.com/wp-content/uploads/2014/05/Star-Wars-Rogue-Leader-Death-Star_D5.jpg
http://www.stealthybox.com/wp-content/uploads/2014/05/Star-Wars-Rogue-Leader-Death-Star_D5.jpg
http://resource.mmgn.com/Gallery/full/Lylat-Wars-Star-Fox-64-DM.jpg

P a g e | 49

Star Wars: X-Wing. Digital image. N.p., n.d. Web.

<http://static.gog.com/upload/images/2014/10/b262918263290b76bdaaa35a4

511684abe962dd2.jpg>.

P-38. Digital image. N.p., n.d. Web.

<http://upload.wikimedia.org/wikipedia/commons/b/bd/Lockheed_P-

38_Lightning_USAF.JPG>.

Websites
"The Last Phoenix - The Plains Gameplay [Indie Game Prototype]." YouTube.

YouTube, n.d. Web. 05 Mar. 2015.

<https://www.youtube.com/watch?v=4e1Qj-e3rhc>.

"NGUI: Next-Gen UI Kit." Tasharen Entertainment. N.p., n.d. Web. 05 Mar.

2015. <http://www.tasharen.com/?page_id=140>.

Unity. Unity. N.p., n.d. Web. 01 Mar. 2015. <http://unity3d.com/>.

"Prefabs." Unity. N.p., n.d. Web. 05 Mar. 2015.

<http://docs.unity3d.com/Manual/Prefabs.html>.

http://static.gog.com/upload/images/2014/10/b262918263290b76bdaaa35a4511684abe962dd2.jpg
http://static.gog.com/upload/images/2014/10/b262918263290b76bdaaa35a4511684abe962dd2.jpg
http://upload.wikimedia.org/wikipedia/commons/b/bd/Lockheed_P-38_Lightning_USAF.JPG
http://upload.wikimedia.org/wikipedia/commons/b/bd/Lockheed_P-38_Lightning_USAF.JPG
https://www.youtube.com/watch?v=4e1Qj-e3rhc
http://www.tasharen.com/?page_id=140
http://unity3d.com/
http://docs.unity3d.com/Manual/Prefabs.html

P a g e | 50

"What Are the Differences Between First-Person Shooter and Third-Person

Shooter Games?" EBay. N.p., n.d. Web. 05 Mar. 2015.

<http://www.ebay.com/gds/What-Are-the-Differences-Between-First-Person-

Shooter-and-Third-Person-Shooter-Games-/10000000177589743/g.html>.

"Dieselpunk." Wikipedia. Wikimedia Foundation, n.d. Web. 06 Mar. 2015.

<http://en.wikipedia.org/wiki/Dieselpunk>

Games and Films
Star Wars: X-Wing: LucasArts. LucasArts. 1993. Video Game

Freespace 2: Volition, Inc.. Interplay Entertainment. 1999. Video Game

Wing Commander: Origin Systems, Inc.. Origin Systems, Inc. 1990. Video Game

 Star Wars Episode IV: A New Hope. Dir. Lucas, George. Twentieth Century Fox, 1977.

Film.

Independence Day. Dir. Roland Emmerich. 20th Century Fox, 1996. Film.

World of Warcraft: Blizzard Entertainment. Blizzard Entertainment. 2004. Video Game

Fire Emblem: Shadow Dragon and the Blade of Light: Intelligent Systems. Nintendo. 1990.

Video Game

The Last Phoenix: BearInMind games. BearInMind games. 2013. Video Game

Halo: Combat Evolved: Bungie. Microsoft. 2001. Video Game

 Starfox 64: Nintendo EAD. Nintendo. 1997. Video Game

http://www.ebay.com/gds/What-Are-the-Differences-Between-First-Person-Shooter-and-Third-Person-Shooter-Games-/10000000177589743/g.html
http://www.ebay.com/gds/What-Are-the-Differences-Between-First-Person-Shooter-and-Third-Person-Shooter-Games-/10000000177589743/g.html
http://en.wikipedia.org/wiki/Dieselpunk

P a g e | 51

	Abstract
	Introduction
	Inspiration

	Implications of Melee-Centric Combat In Flying Games
	Design
	Controls
	Weapons, Abilities, and Pickups
	Map
	Player Heads-Up Display

	Art
	Inspiration
	Decisions
	Asset Production and Implementation
	City Buildings
	Skybox
	Dome
	User Interface

	Music

	Development
	Game Engine
	Player Object
	Multiplayer
	The Network Manager
	Spawning
	nGUI
	Art Pipeline
	GUI and Menus
	Main Menu
	Server Panel
	Character Selection and Spawn Panel
	Pause Panel
	Player Heads-Up Display

	Playing Aeroknights: Deathmatch
	Testing
	Results
	Final Product
	Scrapped Features
	Unrealized Ambitions
	Possible Extensions

	Conclusion
	Works Cited
	Images
	Websites
	Games and Films

