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Abstract

Embedded devices have limited resources but are required to perform multifaceted work, so it is
crucial to minimize the number of resources needed for machine learning applications. In order to address
this, we propose to create a versatile audio embedding that can perform both human and non-human speech
tasks. We evaluate the performance of three potential pre-existing pre-trained audio embeddings: Wav2Vec,
Wav2Vec2, and AST. Based on our results, Wav2Vec2 and Wav2Vec are suitable candidates. We further
observe these models by fine-tuning on their non-specialized tasks. Through fine-tuning, we achieve 66.0%
F1-score with Wav2Vec2 and 51.86% F1-Score with Wav2Vec for environmental sound classification.
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Executive Summary

Machine learning has undoubtedly transformed the consumer technology industry and become
ubiquitous in people’s daily lives, especially when it comes to home-hub devices capable of human speech
tasks, such as automatic speech recognition (ASR), speech diarisation, speaker recognition, and stutter
detection. More than 64 million homes in the United States use smart home devices, equating to nearly 45%
of all homes in the U.S. Of these devices, consumer electronics powered by voice-controlled virtual assistants
are the most common devices in these homes [15]. To support the growth of the consumer technology
industry and the demand for more services in these smart home devices, adding more features involving
machine learning will aid in the predicted growth or even exceed it. However, adding more features will
require storing more models for each specific task on the already resource-constrained devices. As home-
hub devices have limited hardware resources, but are required to perform multifaceted works, it’s crucial to
minimize the number of resources required for machine learning applications. Therefore, there is a need to
create a versatile audio embedding that can perform both human speech tasks and non-human speech tasks,
simplifying the development process and minimizing memory usage.

When developing a single audio embedding for human and nonhuman speech classification tasks,
we focus on three main objectives:

1. First, we determine pre-existing models that are likely to deliver positive outcomes for both classifica-
tion tasks. We evaluate the performance of non-human acoustic audio tasks in environmental sound
classification with Wav2Vec [3], Wav2Vec2 [3] and AST [4] using ESC-50 [9], Urbansound8k [7], Au-
dioSet [10], and CHiME [21] datasets. We also evaluate the performance of human speech tasks using
the LibriSpeech [12] dataset on the same models.

2. Next, to develop the best-performing model for both types of tasks, we fine-tune the optimal model
using 3 different techniques to increase performance on non-specialized tasks while maintaining the
performance of the specialized task. These techniques are direct fine-tuning on ESC-50, direct fine-
tuning on AudioSet, and fine-tuning using Jialu et al.’s [16] pre-training methodology.

3. Finally, we briefly explore each model’s performance on alternative human speech tasks such as speaker
detection, speaker diarisation, child speech vocalization, and stutter detection. This is vital to exploring
the potential of AST as a combined embedding for human speech and non-speech acoustic audio tasks.
Due to time restrictions, this objective is not fully explored by our study, and will be explored further
in future works.

AST Wav2Vec Wav2Vec2
CHiME 93% 53% 40%
UrbanSound8k 89% 57% 21%
ESC-50 95% 35% 6.9%
AudioSet 11% 10% 1.0%

Table 1: F1-scores for classification inference on non-speech audio

AST Wav2Vec Wav2Vec2
Librispeech (100hr) 73% 17.5% 5%

Table 2: WER for automated speech recognition (ASR) inference on human speech audio

While exploring our first objective, our observations are shown in tables 1 and 2. For reference, a
higher F1-score indicates better performance in 1, and a lower WER indicates better performance in 2. Based
on these results, we judge that Wav2Vec is the model most suitable for creating an embedding capable of both
human speech and non-speech acoustic tasks. Wav2Vec’s base model performs well on the ASR inference
whilst achieving middle-of-the-line results on the classification of non-speech audio. While Wav2Vec is our
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primary choice for further fine-tuning and observation, we also judge that Wav2Vec2 may be suitable for some
fine-tuning. This is given Wav2Vec2‘s better performance on ASR inference and Wav2Vec2‘s performance
on the classification of non-speech audio, which is worse but still within an acceptable margin.

After we determine that Wav2Vec is an optimal middle ground for performing speech and non-
speech tasks, we move on to our second objective, fine-tuning the model for non-speech task optimization.
We utilize fine-tuning techniques on the Wav2Vec audio embedding to improve performance for non-speech
tasks, specifically ESC-50 and Audioset. We explore different non-dynamic and dynamic learning rates,
the number of epochs, and the number of frozen layers for ESC-50 fine-tuning. For the AudioSet fine-
tuning, we have explored different classifier architectures, along with techniques to prevent overfitting like
regularizations and dropout layers. Ultimately, we achieve a 51.86% F1-score with fine-tuning Wav2Vec
on ESC-50. Fine-tuning the Wav2Vec2 model on ESC-50 using Jialu et al.’s pre-training methodology [16]
yields similar performance, achieving at best 66.0% accuracy on the second layer, 62.0% accuracy on the
output layer, and showing comparable results for the rest of the model. However, both fine-tuning results
involve training on the full embedding, leading to greater degradation of human speech task effectiveness.
Thus, we provide results of Wav2Vec’s performance with different numbers of frozen layers, retaining some
of the crucial weights for its specialized tasks.

Our team encountered several limiting factors throughout this study. One such limitation, limited
access to sufficient compute resources, hindered our team while performing inference on AST. This was
resolved by the project’s Ph.D. student, who had access to resources on the WPI Turing Cluster. A more
significant limitation we encountered is the suitability of the AST model when performing ASR inference.
The AST model is designed to intake audio clips of fixed length, thus making it unsuitable for processing
the Librispeech dataset [4]. We were unaware of this until later phases of our study, and while it does not
invalidate our fine-tuning results, it does prompt further exploration into the potential of the AST model as a
combined embedding for speech and non-speech tasks. Hence, our third objective of performing inference for
alternate human speech tasks, such as speaker detection, speaker diarisation, child speech vocalization, and
stutter detection. Our team also encountered limitations when using Jialu et al.’s methodology to train the
Wav2vec model, as the encoder layers and feature aggregators of Wav2vec have different purposes and output
different meaningful representations than Wav2Vec2, which can either be useful or useless for Jialu et al.’s
method. Therefore, Jialu et al.’s practicality in future works with audio embedding other than Wav2Vec2 is
limited for further exploration.

Our team encountered two additional limitations due to a lack of time in the later phases of our
study. The first of these limitations was that we were unable to explore layer freezing for Wav2Vec2 using
Jialu et al.’s pre-training methodology. Just as with the Wav2vec model, a study in this direction is important
for maintaining Wav2Vec2’s human speech task performance when fine-tuning for non-speech acoustic tasks
using Jialu et al.’s algorithm. This is essential for creating an effective dual-embedding for both speech and
non-speech tasks. In the future, we hope to add an algorithm to freeze some of the layers in the Wav2Vec2
model with Jialu et al.’s method. The other major limitation we encountered due to lack of time was that
our team did not have the bandwidth to set up an adjusted pipeline for ASR inference on the fine-tuned
embeddings. Because of this, we do not have results for how severe the degradation of human speech tasks is
in the fine-tuned Wav2vec and Wav2Vec2 models. As a result, the observations borne of our results can not
be established as success or not, without the evaluation of the speech-related tasks. In the future, we hope
to have the performances of our fine-tuned models with speech-related tasks to determine the degradation
of our models as well as their practicalities.
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1 Introduction

Machine learning is an increasingly popular subject in today’s world of technology and has become

unknowingly ubiquitous in people’s daily lives. A Pegasystems Global study reveals that 77% of consumer

electronics such as smartphones, smart speakers, smart TVs, wearable devices, and automobiles utilize

some form of machine learning, compared to the 33% that consumers believe [13]. Machine learning has

undoubtedly transformed the consumer technology industry, especially when it comes to home-hub devices

capable of human speech tasks, such as automatic speech recognition (ASR), speech diarisation, speaker

recognition, and stutter detection. According to a report from Research and Markets, the smart home

market size is valued at 101.7 billion dollars in 2023 and is forecasted to reach 163.7 billion dollars by 2028

[14]. This growth can strongly be attributed to the implementation of applicable machine-learning (ML)

models in these smart devices. In fact, more than 64 million homes in the United States use smart home

devices, equating to nearly 45% of all homes in the U.S. In addition, the same blog shows that consumer

electronics powered by voice-controlled virtual assistants are the most common devices in these homes [15].

Overall, this emphasizes the significant impact that human speech-based machine learning has on many

people’s lives.

Not only do ML algorithms created for human speech tasks revolutionize the consumer technology

industry, but non-human speech models play a significant role. Some smart-home devices use these ML

algorithms to trigger home automation services. For example, a door opening can trigger the smart home

device to turn the lights on in a room [17]. Specifically, sound classification models can apply for safety

and security, as statistics show that 26% of all smart home devices are being used for safety and security

purposes, second to consumer technologies. This can involve the noises of windows shattering or doorbell

ringing to ensure better the safety of a person’s home[15]. Recent reports show that the global home security

market is expected to grow from 29.67 billion dollars in 2023 to 78.92 billion dollars by 2023[18]. The smart

home device’s ability to classify these environmental sounds can be an attractive feature for a consumer and

can strongly impact a person’s daily tasks and way of living.

Machine learning’s strong presence in these practical applications is due to their great strides in

progress for better accuracy and performance, making them more reliable. In particular, a major achieve-

ment is Google’s Word2Vec model embedding, a first of its kind in the machine learning industry. Word2Vec

is a neural network that learns contextual information of words, which is represented as dense vector em-

beddings of words capable of capturing semantic and syntactic information [19]. This breakthrough has

paved the way for more complex model embeddings that can perform recognition or classification tasks
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for different acoustic tasks. However, these embeddings are developed with a single type of task in mind.

To illustrate, breakthroughs like OpenAI’s latest release of Whisper [1], and Facebook’s Wav2Vec2 [2] are

pushing the boundaries of accuracy and performance in audio tasks targeting human speech, e.g., automatic

speech recognition (ASR), speech diarisation, child vocalization, speaker recognition, and stutter detection.

Simultaneously, advancements in audio classification tasks, exemplified by models like AST [4], further refine

our ability to categorize and understand environmental audio data.

To support the growth of the consumer technology industry and the demand for more services

in these smart home devices, adding more features involving machine learning will aid in the predicted

growth or even exceed it. However, adding more features will require storing more models for each specific

task on the already resource-constrained devices. Though a study was conducted to create a system for

environmental sound recognition for home automation, which involved a model for environmental sounds

and an additional model for human speech tasks [17], it fails to consider resource-constrained smart home

devices or other embedded systems. These devices cannot even support some popular and complex models,

let alone multiple simple ones, since they are developed on expensive and powerful computers. To put it in

perspective, the smallest version of audio to speech recognition (ASR) model Whisper [1] has 74M parameters

and requires 139 MB of storage to store the mode. However, typical embedded systems made for home hub

devices have 256KB to 4GB of storage, including the data, code, and model parameter memory, which is

barely enough to hold a single deep learning model, let alone store and execute multiple models.

To support the multifaceted applications of these acoustic home-hub devices despite their limited

resources, there is a need to create a versatile audio embedding that can perform both human speech tasks

and non-human speech tasks, simplifying the development process and minimizing memory usage. Doing so

will enable other productive features that enhance the device’s value for consumers, making it more useful

and ubiquitous. Furthermore, this encourages further research towards single model embedding specialized

for multiple tasks beyond audio.

1.1 Challenges

Developing a single audio embedding for both human speech and non-speech acoustic tasks comes

with challenges. In our project, we address three challenges:

1. Models for human speech and non-speech acoustic classifications are substantially different, as they

have different structures. To illustrate, speech signals reside in a specific frequency zone and have

more structures like phonemes, words, and phrases. On the other hand, non-human speech lacks such
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structures and frequency ranges. For instance, Wav2Vec2, an audio embedding meant for speech-

related tasks, uses contextualized representations following its feature extractor [2]. This part of the

model allows it to understand how sounds are sequenced in language but is a structure less suitable

for classifying non-human acoustic audio in the environment. Phonetics, the study of how humans

produce and perceive speech sounds, is a crucial characteristic of speech that Wav2Vec2 uses. An

example of phonetics is the word ‘fish’, which is made up of four letters but is sounded out to have

three: ‘f’, ‘i’, and ‘sh’ sounds. Wav2Vec2’s architecture enables the model to recognize these phonetic

cues in speech, making it highly effective for human speech tasks, but leading to problematic phonetic

features irrelevant for non-speech tasks.

2. Multiple datasets often use different fine-tuning techniques due to the distinct nuances of each dataset,

which ultimately change a parameter from optimal to sub-optimal. It makes developing a fine-tuned

model that is suitable for multiple datasets challenging and unpredictable. Additionally, fine-tuning

models can be easily influenced by many factors, including the hyperparameters, size of datasets, and

quality of the training data. In general, exact results are not reproducible but instead show a trend,

which can make fine-tuning difficult, especially in knowing if a certain parameter is showing positive

results or not.

3. The outputs of non-speech models are non-dynamic, which means the number of outputs of a specific

task remains constant. In comparison, some human speech tasks, such as multiple speaker recognition

and stutter detection tasks, are also non-dynamic, while other human speech tasks, such as ASR, are

dynamic. For example, the output size of the multiple speaker recognition task we aim to explore

later in this study has a constant output space, outputting 0 if there is one speaker or 1 if there are

multiple speakers. Meanwhile, ASR applications require flexibility in their outputs. This eliminates

the candidacy of any audio embedding specialized for ASR tasks, such as AST. We do not originally

consider this challenge in our study, but in the later stages of our study, we begin to explore this.

1.2 Objectives

When developing a single audio embedding suitable for both human and nonhuman speech tasks,

we focus on three main objectives:

1. Our first objective is to evaluate the performance of pre-existing models on both speech and non-speech

tasks. To achieve this, we study three popular pre-trained models – Wav2Vec, Wav2Vec2 and AST

– that are specifically developed for either of these types of tasks. We evaluate the performance of
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non-human acoustic audio tasks in environmental sound classification using ESC-50, Urbansound8k,

AudioSet, and CHiME datasets. We also evaluate the performance of human speech tasks using the

LibriSpeech dataset on the same models. Our study shows that Wav2Vec is an optimal middle ground

for performing speech and non-speech tasks.

2. Next, we fine-tune the Wav2Vec’s pre-trained model on the ESC-50 dataset to develop a fine-tuned

Wav2Vec version that performs well on non-speech tasks while maintaining the performance of the

speech task. We then fine-tune this model using three different fine-tuning techniques to increase

performance on non-specialized tasks while maintaining the performance of the specialized task. Our

results show that we achieve 16.86% performance gain compared to the original embedding by fine-

tuning Wav2Vec’s hyperparameters on ESC-50. Fine-tuning the Wav2Vec2 model on ESC-50 using

Jialu et al.’s pre-training methodology [16] yields similar performance, achieving at best 66.0% accuracy

on the second layer, 62.0% accuracy on the output layer, and showing comparable results for the rest of

the model. However, both fine-tuning results involve training on the full embedding, leading to greater

degradation of human speech task effectiveness. Thus, we provide results of Wav2Vec’s performance

with different numbers of frozen layers, retaining some of the crucial weights for its specialized tasks.

3. Finally, we analyze the performance of alternative human speech tasks such as speaker detection,

speaker diarisation, child speech vocalization, and stutter detection. This is vital to exploring the

potential of AST as a combined embedding for human speech and non-speech acoustic audio tasks.

Due to time restrictions, this objective is not fully explored by our study, and will be explored further

in future works.

1.3 Paper Structure

Section 2 outlines the background and related works of the proposed work, including the models

and datasets we study throughout this project. Section 3 elaborates our methodology in two parts, one for

each objective explained in section 1.2. We provide a detailed explanation of our process of achieving these

objectives and present an in-depth explanation of the results we produce. Section 4 discusses our observations

and limitations based on the results along with the future plans for the project. Finally, Section 5 concludes

this paper with our brief summary of our findings and final thoughts.
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2 Literature Review and Background Study

This section describes existing work on developing and characterizing efficient networks for multi-

faceted audio classification tasks. We begin by discussing the current state-of-the-art pre-trained acoustic

models we explore in section 2.1. Next, we present the several acoustic tasks we perform with these pre-

trained models in section 2.2, encompassing human speech tasks in section 2.2.1, non-speech acoustic tasks

in section 2.2.2, and the combination of speech and non-speech tasks introduced by the Whisper-AT model

in section 2.2.3. Finally, we introduce the datasets that we explore for inference and fine-tuning on these

audio tasks in section 2.3.

2.1 Pre-trained Acoustic Models

AST Wav2Vec Wav2Vec2 Whisper
Model Size 87 M 40 M 317 M 74 M
Memory Size 336 MB 152 MB MB 900 MB 282 MB

Table 3: Model size by number of parameters

Wav2Vec [3]. Wav2Vec is one of the unsupervised acoustic embeddings developed by Facebook for speech

recognition to address the common challenge of having a limited training dataset. Wav2Vec consists of an

encoder network that would transform audio signals into latent representations using a five-layer convo-

lutional network. Following the encoder, a context network contextualizes the representations using nine

fully connected layers. Since Wav2Vec relies on unsupervised pre-training, the model incorporates affine

transformations and a contrastive loss function to distinguish between a positive and negative example.

This approach is the catalyst for efficiently using unlabeled data, providing valuable representations for

downstream tasks in speech recognition[3].

Wav2Vec2 [2]. Wav2Vec2 is the improved model of the Wav2vec specialized for human speech tasks

that exploit the phonemes of human speech. Wav2Vec2 has a multi-layered convolutional neural network

responsible for encoding speech audio, followed by a Transformer network that learns the contextual repre-

sentations, capturing the dependencies of an entire speech data. Next, the model uses the Gumbel softmax to

represent the latent speech features during the self-supervised learning process and shows promising results

compared to nonquantized units. The training process involves masking the latent feature representations

and employing them in a contrastive task that distinguishes between the significant and insignificant latent

representations. The contrastive task relies on a codebook to pick out the positive and negative examples,

and to ensure codebook entries are used uniformly, diversity loss is utilized [2]. Wav2Vec2 revolutionized
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speech recognition technology, allowing more possibilities for the model to excel in a range of tasks, including

language translations, dialect recognition, and even the classification of emotions.

AST [4]. Audio Spectrogram Transformer (AST) is an audio classification model that provides an embed-

ding leveraging a simple attention-based architecture instead of a conventional convolutional neural network

(CNN). It converts the input audio waveform into a sequence of Mel filterbank features, creating a spec-

trogram, which is then split into a sequence of patches that are flattened using a linear projection layer.

The sequence is then augmented with a [CLS] token, a special type of classification token used in tasks such

as text and sequence classification. After this, the augmented sequence is fed into a Transformer encoder.

The Transformer’s output serves as the audio spectrogram representation and is subsequently used for clas-

sification via a linear layer with sigmoid activation. AST’s simple architecture requires fewer parameters

than convolution-based audio classification models, facilitating quicker convergence during training. AST is

a groundbreaking approach to audio classification and maintains state-of-the-art results on benchmarks such

as AudioSet, ESC-50, and Speech Commands V2 despite its unorthodox architecture [4].

Whisper [1]. Whisper is a model embedding designed by OpenAI for diverse human speech tasks, including

the commonly encountered automated speech recognition (ASR) tasks. The embedding is trained on 680,000

hours of real-world speech data from different tasks and languages. The model is based on common sequence-

to-sequence architecture featuring a Transformer-based encoder and decoder. The encoder processes input

audio features into a fixed-size context vector, which the decoder takes as input to generate the corresponding

text transcription. Whisper’s architecture supports multitask learning, allowing the model to simultaneously

learn multiple tasks or languages by training on a diverse range of datasets. To this effect, the model is pre-

trained on such a collection of large and diverse datasets, conferring robustness in the model’s capabilities.

To handle these differing datasets, strategies such as text normalization are employed to improve recognition

accuracy, and reliable long-form transcription techniques such as beam search, temperature adjustment, and

voice activity detection are implemented to improve transcription accuracy by the model. The complex

set-up of the Whisper architecture, focused on multitasking and multilingual learning, allows the model

inherent flexibility for human speech tasks, enabling the architecture for speech tasks separate from common

ASR, which is further detailed in Section 2.1. While we will not perform inference on the Whisper model in

this study, the model’s comprehensive approach to speech recognition, leveraging scaling, multitask learning,

text normalization, and decoding heuristics to achieve robust performance across various speech tasks and

languages are insightful to the goal of creating a single robust embedding capable of both human speech and

non-speech acoustic tasks.
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2.2 Acoustic Tasks with Pre-trained Model

As mentioned in Section 1, the first objective of our study focuses on determining the capabilities

of pre-trained acoustic models for different acoustic tasks. This includes human speech tasks, non-speech

acoustic tasks, and the capability of a model to perform both. This subsection will introduce instances and

applications of these audio tasks relevant to our study in-depth, starting with speech tasks in section 2.2.1,

followed by non-speech tasks in section 2.2.2, before finally concluding with a discussion of the convergence

of human speech and non-speech acoustic tasks observed in the whisper-AT model in section 2.2.3.

2.2.1 Speech Acoustic Tasks

Automated Speech Recognition. Automated speech recognition (ASR) is a common human speech

task focused on converting spoken language directly into written text. This task has applications in voice-

controlled devices, speech-to-text programs, customer service automation, devices for human accessibility,

and more. To find a real-world implementation of ASR, look no further than Apple’s Siri, Google Voice, or

Microsoft Cortana. Models with ASR capabilities are already widespread in day-to-day life, and hardware-

and software-based noise reduction techniques make ASR in noisier real-world settings possible. The dataset

we explore throughout this study, LibriSpeech, is an online corpus of paired speech and corresponding text

sourced from online, publicly available audiobooks. The outputs of ASR models are often dynamic since the

output of speech-to-text changes length based on the length of the spoken segment [12].

Speaker Recognition. Speaker recognition, also called speaker identification, is a human speech task aimed

at identifying whether a speaker in an audio slice is a certain individual or not. This task has applications

in forensics, security, voice authentication, searches for individuals via large collections of audio clips, and

more. Oftentimes, these applications are restricted by noisy and uncontrolled environments of audio slices

used, compounding the challenge of making speaker recognition viable in real-world situations. The dataset

we explore in the later stages of this study, Vox Celeb1, is a speaker recognition dataset with many audio

clips from over a thousand individuals compiled from YouTube. The outputs of speaker recognition models

are often non-dynamic since the output of the network is often a yes-no classification of whether the speaker’s

identity matches the target [11].

Stutter Detection. Stutter detection is a human speech task that focuses on the detection of speech

disfluency in audio slices. It is an area of research very important to the accessibility of speech-controlled

technology, as such technology is and continues to become more prominent in everyday life on both personal

and public devices. The largest bottleneck to the current research and development of stutter detection tasks
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is the lack of labeled data in circulation. Stutter data is challenging to label due to the diversity of speech

disfluency manifestations in individuals, and data for speech disfluency is often kept private [6]. While we

do not explore stutter detection tasks directly in this study, future work on this project will observe the

inference scores of the Wav2vec2, Wav2vec, and AST models for stutter detection tasks. These observations

will help to inform decisions on the viability of AST for human speech tasks of non-dynamic output.

Speaker Diarisation. Speaker diarisation involves tagging of audio interactions between family members

in a home environment. This task has applications that are prevalent in observing infant mental health

and development, monitoring relationships between family members, and infant cry detection, among other

things. Audio for speaker diarisation tasks is often recorded in household environments from local families.

Jialu et al. [?, ?] then explore utilizing this mass of collected data to perform large-scale unsupervised

pretraining on the Wav2Vec2 model by first extracting the features of the unlabeled audio data by passing it

to the Wav2Vec2 embeddings. Finally, Jialu et al. train the embeddings based on the average cross-entropy

of 3 classifiers: one for each of mother-infant, father-infant, and sibling-infant interactions. While we do not

explore speaker diarisation tasks in this study, this specific unsupervised pre-training approach for Wav2Vec2

is of great interest. We use this pre-training approach on Wav2Vec2 with non-speech data from the ESC-50

data set in order to observe whether it confers robustness to the Wav2Vec2 embedding for achieving both

human speech and non-speech acoustic tasks. Because model outputs can vary, whether speaker diarisation

tasks are dynamic or non-dynamic depends on the specific task a model is built to achieve.

2.2.2 Non-speech Tasks

Environmental Sound Classification. Environmental sound classification is a common non-speech acous-

tic task that pertains to classifying sounds to specific pre-determined classes. This flexible acoustic task has a

variety of real-world applications, ranging from contextualizing noise environments to enhancing automated

surveillance systems with acoustic sensors [20]. Datasets designed for environmental sound classification are

a main focus of our study. UrbanSound8k is a dataset focusing on ten sound labels commonly encountered in

urban environments, including car horns, sirens, and jackhammers [7]. The ESC-50 dataset similarly has five

different sets of ten sound labels, encompassing animals, natural soundscapes and water sounds, non-speech

human sounds, interior domestic sounds, and exterior urban noises [9]. CHiME is a series of challenges and

corresponding datasets released with the goal of advancing speech and non-speech task technology. CHiME-5

track one, which we use in our paper, contains recordings of twenty dinner parties held in different rooms,

sporting six labels for child speech, adult speech, TV, percussion, broad, and silence [21] Google’s AudioSet

is a massive dataset sourced from YouTube videos, which includes 527 diverse audio labels from a more ro-
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bust environmental sound classification network [10]. We utilize these datasets for inference and fine-tuning

purposes throughout the majority of this study, and we discuss the individual datasets in more depth in

section 2.3. Because the labels for environmental sound classification tasks are often pre-determined, the

output space of a corresponding model is constant, making this task non-dynamic.

Household Sound Classification. Household sound classification is a form of environmental sound classi-

fication focusing on household environments. Applications of household sound classification are similarly fo-

cused on in-household applications, such as acoustic sensors for automatic security systems [20], environment

monitoring for infant sounds on baby monitors, and conversational speech recognition and contextualization

[21]. Household sound classification datasets we explore in this study include ESC-50, which includes a set

of ten labels for interior domestic sounds [9], and CHiME-5 track one, which aims to contextualize the source

of speech within different rooms of a household [21]. Google AudioSet also contains labels that can be used

for household sound classification, although the dataset also contains labels outside the scope of this more

specified task [10]. Just as with environmental sound classification, household sound classification tasks often

use labels that are pre-determined, and the output space of corresponding models is thus constant, making

this task non-dynamic.

2.2.3 Speech & Non-speech Tasks

Whisper-AT [5]. Whisper-AT is a model created by modifying Whisper and is one of the first works

that explores non-speech task performance on a speech embedding model. Whisper, a model embedding

we discuss in section 2.1, is trained using a diverse dataset consisting of 680,000 hours of real-world speech

data, which confers robustness in the face of various background noises commonly encountered in real-life

scenarios. Upon scrutinizing the Whisper model, researchers observe that its audio representation, while

not entirely noise invariant, correlates significantly with non-speech sounds. With this discovery, they are

able to conclude that the Whisper model is an exceptional backbone for not only speech recognition tasks

but audio classification tasks as well. By preserving Whisper’s parameters by freezing the layers, they retain

the model’s correlation to non-speech sounds. They connect it to a supplementary network that includes

meaning pooling, linear projection, and a temporal Transformer at each Whisper layer, which is further

classified using a multilayer perceptron. This new model, Whisper-AT, is capable of both the human speech

tasks of the original model and non-speech acoustic tasks. Whisper-AT produces competitive results for audio

classification tasks, particularly in terms of efficiency, compared to models catered for audio classification,

showing that it is possible for a single acoustic model to perform well on both types of tasks. However, while

Whisper-AT achieves state-of-the-art results for ASR tasks, its performance on other human speech tasks,
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such as stutter detection and speaker detection, are unknown. These alternative tasks are important for

assessing the capability of Whisper-AT as a dual-purpose model.

2.3 Datasets

ESC-50 [9]. The ESC-50 dataset is a widely used collection of audio recordings that are extracted from

public field recordings by the FreeSound.org project. This dataset consists of 2000 audio clips formatted

in WAV files, each of five seconds in duration, labeled for environmental sound classifications. ESC-50

comprises fifty different classes that are organized into five primary ones: animals, soundscapes and water

sounds, human noises, interior/domestic sounds, and urban sounds. ESC-50 has five folds, where every data

sample is ensured to be in one fold only. However, for the purposes of this project, we combine all ESC-50

folds into one and perform a train-test-validation split instead of a 5-fold-cross-validation.

AudioSet [10]. Google’s AudioSet is a multilabel dataset for acoustic event recognition research. The

collection consists of over 2 million 10-second audio recording clips sourced from YouTube videos, with each

clip labeled as one or multiple of 527 possible sound event classes. This includes both speech and non-speech

audio data, and the distribution of labels across the entire dataset is not balanced. AudioSet is compiled

by the Sound Understanding group in the Machine Perception Research organization at Google. We utilize

a more balanced distribution of labels across 19,645 of the compiled audio clips and process them using a

sampling rate of 1600 Hz over the 10 seconds in each clip. For both finetuning and inference, we populate

our models via cross-validation over five folds.

CHiME [21]. CHiME is a series of challenges aimed at further developing speech and non-speech task

technology and provides datasets for contestants to use to compete with each other. We specifically utilize

CHiME-5 track one, containing twenty dinner parties’ recordings. Each dinner party has four people and

must take place in the kitchen, dining room, and living room for at least two hours. The dataset has 50

hours of audio clips that can be used for various tasks, but we use six different labels classifying a child,

adult, TV, percussion, broad, and silence. Similar to ESC-50, we perform a train-test-validation split for

our tests.

UrbanSound8k [7]. UrbanSound8k is a dataset consisting of 8732 labeled four-second-or-less audio clips of

urban sounds from 10 different classes formatted in WAV files. As provided by the UrbanSound8k website,

the dataset is organized into ten folders, each containing a random amount of audio clips from different

classes. The website recommends using 10-fold cross-validation and advises against reshuffling the data. We

perform the 10-fold cross-validation to these predefined splits and average the evaluation metrics so we do
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not inflate scores that don’t represent the model’s performance. This approach involves training the model

on nine folds and testing the remaining fold, repeating the process ten times using different folds as tests in

each iteration.

Librispeech ASR [12]. LibriSpeech ASR is a widely used dataset for training and evaluating automatic

speech recognition (ASR) systems, a common human speech task. The dataset comprises approximately 1000

hours of English speech data sourced from publicly available audiobooks and is segmented into categories

comprising clean speech and speech with various levels of simulated noise. LibriSpeech was compiled by a

team at the Center for Language and Speech Processing & Human Language Technology Center of Excellence

at The John Hopkins University. We utilize an 80:20 train-test split when performing inference on our models

using the LibriSpeech dataset.

Vox Celeb1 [11]. Vox Celeb1 is a dataset tailored for speaker recognition research. It consists of over

100,000 total speech clips extracted from YouTube videos, with multiple clips collected for each unique

speaker. The dataset is compiled by the Visual Geometry Group from the Department of Engineering Science

at the University of Oxford, UK, and is presented in INTERSPEECH 2017. For each of the dataset’s 1251

speakers, we sample 12 audio clips, matching six together for each speaker and pairing the other six off

randomly. This results in a balanced split between same-speaker and different-speaker data in our inference

pipeline. When performing inference with this dataset, we use Equal Error Rate (EER) as our success metric

rather than F1-score, unlike all other datasets discussed thus far.

3 Methodology and Results

This section discusses our study’s methodology in depth. We first consider determining the opti-

mal embedding for creating a combined embedding for speech and non-speech data in Section 3.1 using the

Wav2vec, Wav2Vec2, and AST models. Next, we provide an analysis of our inference results and subse-

quent decisions, moving into the fine-tuning section of our study. Section 3.2 describes the three fine-tuning

approaches on Wav2vec and Wav2vec2 models and provides insights on the results of fine-tuning and observa-

tions regarding hyperparameters and the overall success of these models. Finally, we introduce the beginning

of this study’s efforts to gauge inference on all three models’ performance for several human speech tasks,

e.g., stutter detection and speaker recognition in Section 3.3.
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3.1 Determining the Optimal Model Embedding

We investigate three potential pre-existing model embeddings for fine-tuning, aiming to create a

model embedding capable of doing both ambient sound classification and speech recognition tasks. The three

models under consideration are AST, Wav2Vec2, and Wav2vec. We evaluate these models based on their

strengths in specific domains: AST excels in audio classifications, while Wav2Vec and WavVec2 are designed

for speech recognition tasks. We are testing four different audio classification datasets: UrbanSound8K, ESC-

50, AudioSet, and Chime. Simultaneously, we are utilizing the LibriSpeech dataset for speech recognition as

well. Since we anticipate that Wav2Vec will serve as the optimal middle ground, the choices of our dataset

reflect our emphasis on audio classification, as Wav2Vec is tailored explicitly toward speech recognition tasks.

The following outlines the procedures we employ to evaluate these models using the selected datasets and

the challenges we encounter.

3.1.1 Dataset Preparation and Model Description

3.1.1.1 Wav2Vec2: UrbanSound8k

Data Preparation. To evaluate Wav2Vec2 on UrbanSound8K, we first prepare the data by developing a

function to format the UrbanSound8K dataset while preserving its 10-fold structure. The initial step involves

retrieving the WAV files one fold at a time and converting the WAV files of audio clips into floating-point

time series arrays sampled at 16 kHz. For each fold, we store the resulting audio arrays in a data frame and

encode their associated labels using one-hot encoding. The data frames are then stored in an array that will

save the 10 data frames associated with each fold in the dataset.

Model Architecture. Subsequently, we construct a classification model for Wav2Vec2 that will be placed

after the Wav2Vec2 pre-trained embedding. This model consists of Wav2Vec2’s feature extractor connected

to a fully connected network, incorporating a dropout layer with a 0.1 drop rate and a dense layer consistent

with 768 nodes to the number of labels (10). A sigmoid function is applied to the final results to facilitate

feature classification.

Training Method. The data frames are organized into nine for training and one for testing. We iteratively

load the data into the model, changing the test data frame each iteration for the tenfold cross-validation. The

audio arrays are then resampled to 16KHz again to ensure that all audio arrays are the same size. Since the

audio arrays are the same length, they are then vertically stacked and are fed through a DataLoader function

provided by Pytorch that prepares data for the model. The pre-trained feature extractor of Wav2Vec2 is
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loaded in from HuggingFace and is connected to the classifier model we created. The chosen hyperparameters

include a learning rate of 5e-5 with an AdamW optimizer, batch size 32, three epochs, and binary cross-

entropy loss on logits, given that the audio clips are not multi-labeled. We only train the classifier model in

the training process and freeze the Wav2Vec2 feature extractors. Once the model is trained, we evaluate it

using the average F1-score for all ten folds used as tests.

Challenges. One significant challenge we encounter is the inconsistencies in the duration of the audio

recordings in UrbanSound8K, which causes variations in the length of the audio arrays. These variations in

length prevent the audio array from being able to be placed in a 2D array/tensor, which is a requirement

for an input of any machine learning model. To address this, we resample all audio arrays to 16 kHz to

fulfill this requirement. In this experiment, any loss of information or temporal distortions resulting from

the resampling of audio arrays is disregarded.

3.1.1.2 Wav2Vec2: AudioSet

Data Preparation. To perform inference with the Wav2Vec2 model on the AudioSet dataset, we first

prepare the data. To do so, we utilize two csv files (class labels indices.csv and train.csv) containing the

class labels and .wav file names consecutively. We first create a ground-truth onehot encoding for each of

the .wav files before then preprocessing all ten second .wav files to a sampling rate of 16000 Hz using the

Python library librosa. During this process, we encounter an error caused by the existence of audio files of

non-standard length. To fix this, files of non-equivalent length are dropped from the dataset and csv’s. After

this, we define a custom dataset class inheriting from torch.Dataset, and split our preprocessed audio data

into five folds using sklearn.model selection.KFold.

Model Architecture. After preparing the data, we load the model and define a corresponding classifier

for the output embeddings. This classifier is tacked onto the end of our model and consists of a dropout

layer with a dropout rate of 10% followed by two dense linear layers.

Training Method. For the train and test data in the folds, we populate the model with the data and feed

the output embedding into the classifier. Due to memory restrictions, this is done with a batch size of eight

for three epochs. Following this, we train the classifier by comparing its output to the earlier-defined ground

truth one hot encoding. We encounter issues with the initial higher learning rate of 5e-4, which results in

NAN weights and an F1-score of 0. This is most likely due to the exploding gradient problem. To fix this,

we tune the learning rate to 5e-12, fixing the issue. The optimizer we use for training the classifier is Adam,

and the embedded model itself is not modified during this process. Finally, we observe the F1-score for the
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model by classifying the output embedding for the testing data and comparing it to the ground truth one

hot encoding.

3.1.1.3 Wav2Vec: UrbanSound8k

Data Preparation. To evaluate Wav2Vec, we follow a similar process to what we perform with Wav2Vec2.

We prepare the data exactly in Section 3.1.1.1, where we process the UrbanSound8K data. The preprocessed

data passes through the model embeddings of Wav2Vec.

Model Architecture. We download the weights of the feature extractor of Wav2Vec from a GitHub source

[6]. After the feature extractor, we develop a classification model comprising a dense layer with 50,176

parameters and 500 neurons. We apply the ReLU function to the output of this dense layer, followed by

a dropout layer of 0.2. Then, we add another dense layer with 500 neurons and 10 outputs and apply the

softmax function to the results. We resample the data to 16KHz, the same way we did for Wav2Vec2, and

use the Dataloader function to prepare the data for Wav2Vec.

Training Method. The chosen hyperparameters are a batch size of 32, epochs of 5, learning rate of 1e-

4, and use the Adam optimizer. The model is trained by putting the data through the Wav2Vec feature

extractor and into our classifier model. The loss is calculated, and backpropagation is only done to the

classifier model, as this training is only for the classifier we created. Unlike Wav2Vec2, we decide not to

iterative do the K-Fold and run nine of the datasets for training and one fold for the validation. This is to

make the process of evaluating Wav2vec performance faster rather than iterating through all the possible

combinations.

Challenges. There is a minor challenge where the feature extractor results do not match the tensor shape

of our classification model, which is resolved by printing the shape of the tensor after the feature extractor

and copying the shape of the tensor as the size for the classifier model.

3.1.1.4 Wav2Vec: AudioSet

Data Preparation. To perform inference with the Wav2Vec model on the AudioSet dataset, we prepare

the data using a modified version of the data pipeline discussed in Section 3.1.1.2. We define a custom

dataset class inheriting from torch.Dataset. For the Wav2Vec model, we do not allocate the data into folds,

and instead, we only split the data 80% train and 20% test.

Model Architecture. After preparing the data, we load the model and define a corresponding classifier

for the output embeddings. This classifier is tacked onto the end of our model and consists of a dropout
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layer with a dropout rate of 5% followed by a ReLU layer, a Sigmoid layer, and 2 dense linear layers.

Training Method. We populate the model with our train and test data and feed the output embeddings

to the classifier. This is performed with a batch size of eight for five epochs. Following this, we train

the classifier by comparing its output to the earlier defined ground truth one hot encoding, using a tuned

learning rate of 1e-4. The optimizer we use for training the classifier is Adam, and the embedded model

itself is not modified during this process. Finally, we observe the F1-score for the model by printing out

a sklearn.metrics classification report comparing the output from the classifier on test data to the ground

truth onehot encoding.

3.1.1.5 AST: UrbanSound8k

Data Preparation. When performing analysis for AST with the UrbanSound8K dataset, we utilize a

GitHub repository that contains prewritten bash scripts [4]. These scripts are designed to work as pipelines

for the AST model to assess its performance on different datasets. However, the input datasets must be in a

specific format for the scripts to work correctly. The bash scripts conveniently use K-fold validation, which

is already formatted in the UrbanSound8K dataset. Since there are ten different folds in UrbanSound8k, we

have to create twenty different JSON files for the ten-fold validation. A total of twenty JSON files are used

for the dataset. Out of these, ten files are used for evaluation data, each containing one of the ten folds of

the dataset. The remaining ten JSON files are used for training data associated with the evaluation JSON.

The training data will exclude the fold that is being used as evaluation data. Each JSON file contains a

dictionary with a ‘data’ field.’ In the ‘data’ field, there is an array of dictionaries, each of which contains

the directory of the WAV file and its label.

Challenges. These labels are formatted as “/m/” followed by an assigned integer to the label. We can not

use Bash commands on Windows, so we have to switch to Ubuntu, an open-source Linux operating system,

to run the scripts provided by the GitHub repository. However, running these scripts for AST requires more

GPU memory, which prevents us from conducting the test on our own local machines. To solve this issue,

we run the scripts on a more powerful computer, WPI’s Turing Cluster.

3.1.1.6 AST: AudioSet

Data Preparation. To perform inference with the AST model on the AudioSet dataset, we prepare the

data in accordance with a pre-existing pipeline requiring JSON input in 10 folds. This is the same K-fold

validation method we discuss in Section 3.1.1.5.

15



3.1.1.7 Chime, ESC-50, and Librispeech

Data Preparation. The pipelines for each of these tasks are similar to the pipelines we describe throughout

Section 3.1 1. For example, because Chime and AudioSet are both multilabel datasets, the data preparation

and inference pipelines for each of the three models are similar for these datasets (refer to Sections 3.1.1.2,

3.1.1.4, and 3.1.1.6). This is also the case for ESC-50 and UrbanSound8k, both of which are single-label

datasets (refer to Sections 3.1.1.1, 3.1.1.3, and 3.1.1.5). The results inference results we obtain on Wav2Vec2,

Wav2Vec, and AST for the Chime and ESC-50 datasets, paired with our results for the AudioSet and

UrbanSound8k datasets, are important in helping us determine the optimal embedding for further fine-

tuning and development in this study.

Inference is also performed on the Librispeech dataset in order to observe each model’s effective-

ness on human speech audio 2. These ASR pipelines are not comparable to the other pipelines discussed

throughout Section 3.1 and use Word Error Rate (WER) as their metric of success. When obtaining results

with this pipeline, lower WER is optimal.

3.1.2 Inference Results and Discussions

AST Wav2Vec Wav2Vec2
CHiME 93% 53% 40%
UrbanSound8k 89% 57% 21%
ESC-50 95% 35% 6.9%
AudioSet 11% 10% 1.0%

Table 4: F1-scores for classification inference on non-speech audio

AST Wav2Vec Wav2Vec2
Librispeech (100hr) 73% 17.5% 5%

Table 5: WER for automated speech recognition (ASR) inference on human speech audio

Performing inference on the models using the pipelines discussed throughout Section 3.1 yields the

results seen in tables 4 and 5. For non-speech audio inference, we observe that AST performs the best on

all datasets. Wav2Vec2 performs the worst out of the models, whilst Wav2Vec achieves scores between AST

and Wav2Vec2. For speech audio inference, the results are flipped, with Wav2Vec2 performing the best,

Wav2Vec performing in between the other models, and AST performing the worst by far.

All models perform poorly on AudioSet, with AST achieving the highest accuracy at 11%. This

1Inference on Wav2Vec2, Wav2Vec, and AST for the Chime and ESC-50 datasets is handled by a Ph.D. student working on
the project.

2Inference on the Librispeech dataset is handled by the same Ph.D. student as the Chime and ESC-50 datasets.
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is likely due to the number of class labels in AudioSet, totaling 527. In comparison, UrbanSound8k and

ESC-50, which achieve much better classification results during inference, each have a total of ten class

labels. Chime similarly possesses seven class labels and achieves much better classification results during

inference than AudioSet despite both datasets being multilabel.

Based on these results, we judge that Wav2Vec is the model most suitable for creating an embedding

capable of both human speech and non-speech acoustic tasks. Wav2Vec’s base model performs well on the

ASR inference whilst achieving middle-of-the-line results on the classification of non-speech audio. While

Wav2Vec is our primary choice for further fine-tuning and observation, we also judge that Wav2Vec2 may

be suitable for some fine-tuning. This is given Wav2Vec2’s better performance on ASR inference, and

Wav2Vec2’s performance on classification of non-speech audio, which is worse but still within an acceptable

margin.

3.2 Fine Tuning Wav2Vec and Wav2Vec2

After experimenting with Wav2Vec, Wav2Vec2, and AST, our results show that Wav2Vec is the

best candidate for good middle ground between human speech and non-speech acoustic tasks. Wav2Vec2 also

shows some potential for being another candidate, as previous studies have displayed that it can be robust

against noise, which was proven beneficial for non-human speech classifications [6]. This section breaks down

the different fine-tuning techniques we used for Wav2Vec and Wav2vec2.

3.2.1 ESC-50 for Wav2Vec Fine-tuning

In our efforts to make the process of fine-tuning Wav2Vec simpler, we decide to use ESC-50 as

our dataset for fine-tuning. ESC-50 contains 2000 data samples, which is sufficient to adjust the weights of

Wav2Vec. Furthermore, it is small enough to enable us to run multiple tests without taking too much time

to train the model. Once we complete fine-tuning with ESC-50, we plan to move to Audioset because it is

a significantly larger dataset with over 100,000 data samples. This enables us to observe significant changes

to the weights of Wav2vec and assess the impact of its performance on the ESC-50 dataset.

3.2.2 Fine-tuning Wav2Vec with ESC-50

The first hyperparameter we explore is the number of epochs used for training by doubling the

original 30 to 60 epochs to test the performance. The number of epochs is the easiest hyperparameter to

increase the performance of a model and ensure that the model has enough training time to learn the pattern
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of ESC-50. However, we keep in mind that increasing the number of epochs too much can lead to overfitting,

so we pay close attention to the training loss and validation loss.

Another fine-tuning technique we investigate is the learning rate, which is set initially as 1e-4 on

every Wav2Vec evaluation we performed. We theorize that finding the optimal learning rate will promote

a decrease in training and validation loss, thus increasing the model’s accuracy. We start by decreasing the

learning rate with the denominations of 0.5 starting from 1e-4 with the number of Wav2Vec layers frozen as

27 and 25 layers. At the same time, the rest of the parameters and classification model will remain the same

as Wav2Vec evaluations in Section ??. The frozen layers are added to investigate if learning rates and frozen

layers have an impact on each other. Frozen layers will be further explained in the next paragraph. We

also look into dynamic learning rates, which are learning rates that will decrease by a factor every certain

number of epochs during the training process. Dynamic learning rates are often used to avoid overshooting

the minimum loss function, allowing the learning rate to adapt to the training over time. Specifically,

we experiment with linear step decay and exponential decay. For the linear step decay, we observe the

performance impacts of different times the step decay will occur and the amount of decay it will do to the

learning. First, we test different amounts of epochs. Step decay with a denomination of 5 epochs occurs

while keeping the decay rate at 0.5, so we can find the best-performing number of epochs for step decay.

Then, we keep the best performing epoch number as a constant and vary the decay rate with 0.1, 0.5, and

0.9, which are the most used step decay rates. For exponential decay, we experiment with 0.5, 0.8, 0.9, and

0.95. We compare the accuracy of the two dynamic learning rate strategies to determine the most optimal

strategy.

Next, the optimal learning rate and epochs are used with layer freezing. Layer freezing involves

freezing the weights of particular layers, usually the initial ones, during model training. The purpose of this

technique is to retain the characteristics of the weights that help support the performance of its specialized

task. We want to maintain some of Wav2Vec‘s performance with human speech tasks by freezing the starting

layers. Meanwhile, we aim to improve the performance of non-human speech classification by training the

remaining layer weights of Wav2Vec and the classification model. We want to identify the optimal numbers

of layers frozen in Wav2Vec that result in the highest accuracies by experimenting with different numbers

of layers frozen. Since Wav2Vec has 30 total layers in the audio embedding, we freeze layers incrementally

from 0 to 30 in step 5, starting from the embedding’s first layer. We will observe each one’s accuracy. We

plan to test all frozen layer model embedding with the ASR task and with the Librispeech dataset; however,

due to time constraints, we are unable to achieve this step.
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3.2.3 Fine-tuning Wav2Vec with AudioSet

For fine-tuning with AudioSet, we initially start with the most optimal fine-tuning parameters,

which include the dynamic learning rate and number of epochs we discover during the fine-tuning with ESC-

50. We also freeze 15 layers, half of the model, since we can not conclude the optimal frozen layers to retain

the performance of Wav2Vec’s specialized task. We closely observe the training and validation loss during

the process and record the accuracy. Since AudioSet is a larger dataset, we focused on three parameters

in the model to improve the performance of WAv2Vec on AudioSet. First, we focused on increasing the

number of layers in the classifier architecture to have more learning parameters for the larger training data.

We add a dense layer with the parameters of 2048 to 1024 between the original dense layers used in Section

3.1.1.4 and change the output of the first layer to 2048 and the input of the last layer to 1024. Increasing

the complexity of the model also enables the classifier to learn more complex patterns but increases the risk

of overfitting the model.

Based on the observation we find from the training and validation loss and our anticipation for

overfitting, we explore a couple of techniques that will prevent overfitting. The first technique is L2 regular-

ization. L2 Regularization is a technique that takes the sum of all the weights squared to the loss function.

This reduces the magnitude of weights, preventing it from growing too large. Within our code, we add this

to the optimizer function via a weight decay parameter. We test 0.0001 as our weight decay for the L2

regularization. In addition, dropout layers are another method we investigated, where dropout layers are

placed typically after dense or convolutional layers. Dropout layers exclude a percentage of neurons in the

layer before the dropout layer during a training run. Since dropout layers are already used in the classifier

model, we want to see the effects of Wav2Vec’s performance working without it. After we observe the re-

sults of each fine-tuning step, we combine the best-performing parameters and save the model after training

with AudioSet. Since the training process with AudioSet is very time-consuming, we decide to focus our

attention on L2 regularization. L2 regularization presents itself as the best candidate for more improvement

as it shows the most promising results, so we decide to explore L2 regularization weight decays further. We

observe the effects of 0.0001, 0.001, and 0.01 weight decays on the performance of the model. We will also

save the best model for this and record the accuracy as well. With the saved Wav2Vec model trained on

AudioSet, we use transfer learning to test the saved audio embeddings with ESC-50 data and observe its

accuracy performance.

19



3.2.4 Fine-tuning with Jialu et al.’s [16] Methodology

Wav2Vec2. In order to utilize Jialu et al.’s [16] methodology, we adapt code from the paper’s GitHub

written by Yuan Gong, one of the authors. This code consists of 2 files: one file, which handles feature

extraction of the unlabeled audio data, and one file, which classifies the extracted features and trains the

embedding based on the cross-entropy of the classifications. In the feature extraction file, we load the

Wav2Vec2 model “facebook/wav2vec2-base-960h” along with its processor. Yuan‘s pipeline then splits the

data into five folds and extracts the audio features, parsing both train and evaluation data into JSON

files. Following this, in the classification file, we once again load the model and its corresponding processor.

Yuan’s pipeline then clusters the extracted features for training and evaluation data in each of the folds.

Afterward, the clustered data is fit to each of the model‘s embedding layers, the output of which is passed

to an MLPClassifier. This pipeline outputs a prediction for the evaluation data, which is used to calculate

accuracy and F1 metrics for each layer of the embedding over all the folds. The metrics for all layers of the

embedding are output to a csv file [16]. We adapt this code to find the layer with the best performance, and

then we save the trained model embedding as a .pt file.

Wav2Vec. Jialu et al [16] methodology also has potential applications to Wav2Vec by taking advantage of

Wav2Vec’s 20 layers of feature aggregators after the 10 layers of feature extractors. The data pre-processing

steps, classification steps, and sources we use are exactly the same as the procedures stated for Wav2Vec2’s

Jialu’s method. However, where it differs is in the feature extractor file. Wav2Vec is loaded through Fairseq

and is not supported by Huggingface as Wav2Vec is considered obsolete. This limits us from being able

to use Huggingface’s function to attain the outputs of every layer in the model, also known as hidden

states. Wav2Vec2’s architecture has a section where the layers will output the same size tensor for it to

be clustered. Consequently, the size of each feature extractor layer output is not consistent, so we use the

feature aggregator outputs since they are the same size tensors. This prompts us to create a function that

will record the outputs of just the feature aggregate outputs and cluster it for the classifier file. This allows

Jialu et al methods to be used on Wav2Vec, so we can observe the results and save the model.

3.2.5 Wav2Vec ESC-50 Fine-tuning Results and Discussions

In this section, we outline the results gathered from Section 3.2.2. The initial test for an increased

number of epochs to 60 shows positive results of upwards of 7% increase in accuracy. This prompts all tests

to be done with 60 epochs.

The investigation into the optimal learning rate for Wav2Vec yields interesting results, which are
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presented in the graph shown in Figure 1. The results indicate that a constant learning rate of 1e-4 performs

the best, while decreased learning rates result in a decrease in performance. This trend can be attributed to

the fact that the lower learning rate is too small and does not allow the model to reach the lowest point of

the loss function fast enough, resulting in slower convergence and sub-optimal performance. This trend is

also consistent for 27 and 25 frozen layers, showing that the number of frozen layers and the learning rate

are independent.

Figure 1: Wav2Vec Performance on Different Learning Rates Using ESC-50

Further investigation into different learning rate techniques, like the results of exponential decay,

are shown in figure 2. The results indicate that an exponential decay factor of 0.9 is the best performing,

while higher or lower decay rates yield bad performance. Lower exponential decay factors are too aggressive

in their decrease in learning rates, thus not allowing the model to converge enough. The higher exponential

decay rate makes too little of a change in the learning rate to impact performance significantly and is similar

to results found in Section 3.1.2 with ESC-50 on Wav2Vec.

Finally, 3 shows promising results with performance increasing to over 50% accuracy, using the

linear step decay technique. The results indicate that the optimal learning rate is achieved using an initial

learning rate of 1e-4, with a step size of 10 epochs and a multiplicative factor of 0.9 to the learning rate.
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Figure 2: Wav2Vec Performance on Different Exponential Decay Rates Using ESC-50

This yields a 51.86% accuracy to the model. The graph also shows a different number of epochs it goes

through before it applies the decay, that being 10 and 20 epochs. For 10 and 20 epochs, it shows the lowest

being 26.83% and 37.68% with the lowest multiplicative of 0.1 and the highest at 51.86% and 50.89% with

the highest multiplicative of 0.9, respectively. The general trend shows that the increased multiplicative

factor to the learning rate will result in better performance on the model for non-speech tasks. This is due

to lower multiplicative factors being too aggressive in decreasing the learning rate and negatively impacting

the model’s convergence. The change in step sizes of epochs shows that 20 epochs are more resilient to

change in the learning rate but is not the best performer when the optimal multiplicative factor is found.

This is because the learning rate changes less often when the step size increases. However, when observing

10 epochs, the results show higher sensitivity to the step size since the learning rate changes more often

and shows the worst performance with an unfit learning rate multiplicative but the best results for optimal

learning rate multiplicative.

Based on the graph presented in figure 4, it can be observed that the number of frozen layers

in the Wav2Vec audio embedding has an impact on the model’s performance. As the number of frozen
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Figure 3: Wav2Vec Performance on Different Linear Decay Rates Using ESC-50

layers decreases, the Wav2Vec model will perform better as there are more trainable parameters to learn

environmental sound features. The best accuracy of 51.86% is obtained when no layers are frozen, and

the worst performance is with 25 layers frozen, resulting in an accuracy of 35.88%. It is also important to

mention that some data points don’t follow the general trend, such as 15 and 30 layers frozen, due to the

unpredictable nature of training machine learning models. One idea of this phenomenon is the randomly

initialized weights in the classifier model. It is possible that the weights are coincidentally close to the

optimal weights for the ESC-50 dataset, resulting in better accuracy even with a higher number of frozen

layers. Conversely, the weights can also be coincidentally close to the worst weights for this dataset, causing

a lower accuracy with a lower number of frozen layers. These nuances make it challenging to predict the

exact performance of the model with a specific number of frozen layers.
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Figure 4: Wav2Vec Performance on Different Number of Frozen Layers Using ESC-50

3.2.6 Wav2Vec AudioSet Fine-Tuning Results and Discussions

The results of the procedures mentioned in Section 3.2.3 can be seen in both figures 5 and 6.

Figure 5 shows the different fine-tuning techniques’ impact on performance with Wav2Vec on Au-

dioSet. Regular uses all best-performing fine-tuning techniques for hyperparameters like the dynamic learning

rate and number of epochs from Section 3.2.5 but for AudioSet. These hyperparameters show a 0.4% in-

crease in performance from table 4, which can be considered very positive due to the difficulties of classifying

527 unique classes. However, we observe the validation loss increase throughout the training process after 7

epochs, which strongly indicates overfitting. This phenomenon explains the importance of the dropout layers

in the classifier model, as without the dropout layer, there is a significant loss in accuracy, which results in

0.08%. Additionally, the problem with overfitting is evident when applying L2 regularization, a method of

preventing overfitting, and it improves accuracy by 0.2% from the regular. During this training process, the

validation loss continues to decrease till 30 epochs in before increasing again. We also discovered that having

more parameters in the classifier model has also increased the accuracy by 0.1% from the regular. We believe

that an increase in parameters makes the classifier model able to learn more complex tasks, especially for

AudioSet’s immense number of data samples and classes.

From the results we gather from figure 5, we conclude that having the hyperparameters from the
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Figure 5: Wav2Vec Performance on Different Fine-Tuning Techniques Using AudioSet

regular, keeping dropout layers, introducing L2 regularization, and having more parameters in the classifier

model is the best-performing model for Wav2Vec on AudioSet. This combination of fine-tuning techniques

has resulted in 1.80%, which is a 0.2% increase from all the results from figure 5. The results produced from

different L2 regularization weight decays are shown in figure 6. The graph shows that 0.001 weight decay

is the most optimal as it causes the performance to increase to 2.20%, double the inference results from

Section 3.1.2. Anything less than 0.001 indicates that the weights of the trainable parameters are becoming

too large, thus overfitting. On the other hand, when the weight decay is higher than 0.001, it suggests that

the weight decay is penalizing the weight too harshly, making the model underfit.

We apply transfer learning techniques with the best Wav2Vec on AudioSet model embedding (2.20%

accuracy) to Wav2Vec on ESC-50. The result is underwhelming, as we discover that the model achieves

35.46% with ESC-50. This metric is similar to the inference result we gathered from Wav2Vec on ESC-50.

We believe that the AudioSet data is too large and complex for half of Wav2Vec’s trainable parameters to

learn, not to mention that AudioSet also includes speaker diarisation tasks in its dataset. Overall, using

transfer learning and fine-tuning Wav2Vec with AudioSet is not feasible.
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Figure 6: Wav2Vec Performance on Different L2 Regularization Weight Decays Using AudioSet

3.2.7 Fine-tuning Results Utilizing Jialu et al.’s[16] Methodology

Wav2Vec2. The results of the procedures mentioned in Section 3.2.4 can be seen in figure 7. This figure

represents the F1-scores achieved by each layer of the Wav2Vec2-base-960h model using this methodology.

As can be seen in the figure, the best-performing layer is layer one with an F1-score of 0.66. The worst layer

is layer 11, reaching 0.33. Lastly, the output layer, 12, achieves 0.62. Based on these results, we can gather

that fine-tuning the full Wav2Vec2 model has the most potential as a combined embedding for speech and

non-speech tasks. While layer one does outperform layer 12 by 4%, using only the second layer would lead

to too great a degradation in Wav2Vec2’s ability to perform speech tasks. Therefore, maintaining all layers

of the model is essential.

While we train on the full embedding to achieve an output F1-score of 0.62, it is unclear how this

process affects the effectiveness of the model when performing human speech tasks, such as when comparing

to the ASR scores in table 5. While we are not successful in performing ASR inference with this fine-tuned

model on the LibriSpeech dataset, future studies should observe this result as a means of qualifying the
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Figure 7: Wav2Vec2 F1-score results after fine-tuning on ESC-50

model’s speech task capability. Moreover, we do not investigate the effect of freezing individual layers when

fine-tuning using Jialu et al.’s [16] algorithm. A future study might investigate this as a way to prevent

degradation of the fine-tuned model’s speech task capability whilst increasing the capability of non-speech

task via the fine-tuned layers, as is explored in Section 3.2.2.

Wav2Vec. Wav2Vec’s results using Jialu et al.’s [16] pipeline consistently produce an average accuracy of

3% for each fold. After discussing this with our Ph.D. student, we determined the results are invalid due

to the significant difference in the Wav2Vec and Wav2Vec2 model architecture. This will be described in

further detail in Section 4.3.

3.3 Inference for Alternative Speech Tasks

Following our conclusions drawn in Section 3.1.2, we realize that the common human speech task,

ASR, is not suited to the AST model. The AST model is designed to intake audio clips of fixed length [4],

whilst ASR is performed on clips of variable length when using the LibriSpeech dataset. While this does not

invalidate our fine-tuning results in Section 3.2.5, it does warrant further study into the capabilities of AST

for alternative human speech tasks.
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In order to evaluate the effectiveness of AST for alternative human speech tasks, we aim to perform

inference for a speaker recognition task using the Vox Celeb1 dataset. We prepare the data for inference by

taking 12 audio clips from each speaker in the dataset. Of these 12 audio clips, 6 are used to form 3 pairs

of same-speaker audio clips, while the other 6 are paired off for 3 pairs of different-speaker audio clips. All

7506 pairs are placed into independent folders labeled from 1 to 7506. As pairs are formed, a csv is written

containing the ID of the speaker of each clip in the pair, the folder index of the pair, and a ”same id” label.

If the speaker for both clips in the pair is the same, this label is 1. Else, the label is 0. We encounter

an error where the names of the audio clips in the new pair folders are the same since they are numbered

independently for each speaker. In order to avoid OS errors with the file system, we fix this by tacking ” 01”

and ” 02” onto the end of the name of each audio file in a pair.

After audio clip pairs are formed, the code for data preparation is handed off to the Ph.D. student,

who will use it to train a classifier and perform inference on the Vox Celeb1 dataset with an Equal Error Rate

(EER) as the success metric. For comparison to other models, inference on the Vox Celeb1 dataset already

has state-of-the-art results on Wav2vec2 and is explored by the Ph.D. student on Wav2vec. Current work on

this project handled by the Ph.D student also explores the effectiveness of the AST, Wav2vec, and Wav2vec2

models on stutter detection datasets. Comparing the performance of these models on both stutter detection

tasks and speaker recognition tasks will allow future research on this project to determine the capability of

AST for alternative human speech tasks and thus reassess its viability as a combined embedding for human

speech and non-speech acoustic tasks.

4 Limitations and Future Works

Our team encountered several limiting factors throughout this study. This section provides an in-

depth analysis of these limitations, beginning with a brief talk about available computing resources. Following

this, we discuss the compatibility of the ASR task with the AST model and touch on the limitations of Jialu et

al.’s [16] method with the Wav2vec model’s architecture. Finally, we conclude with limitations encountered

due to limited time and period of study, which include the inability to explore layer freezing for the Wav2Vec2

model when fine-tuned using Jialu et al.’s algorithm, and similar hindrance in performing ASR inference on

our fine-tuned models.
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4.1 Limited Compute Resources

The compute resources available to our team slowed us down most significantly while performing

inference on the AST model. Processing power and memory overhead on personal devices and Google Colab

were too limited to perform any inference tasks on this model, leading us to hand prepared data off to a

Ph.D. student with access to compute resources on the WPI Turing Cluster. While this did not prevent

us from completing inference for these models, it did hinder progress for a notable period of time, as we

originally attempted to perform inference using local and cloud GPUs before performing this hand-off.

4.2 AST Model’s Compatibility with ASR Task

One of the largest limitations our team encountered is the suitability of the AST model when

performing ASR inference on the Librispeech 100-hour dataset. The AST model is designed to intake audio

clips of fixed length, thus making it unsuitable for processing the Librispeech dataset [4]. We were unaware of

this while utilizing our inference results to inform our team of which model to fine-tune and observe further.

It’s important to note that this limitation of the AST model does not invalidate any of our fine-tuning results

for the Wav2Vec and Wav2Vec2 models. It does prompt further observation of the potential of the AST

model as a dual-purpose embedding, however, given our initial write-off of the AST model when viewing

the inference results in section 3.1.2. This realization prompts our team to begin performing inference for

alternative audio tasks, which will be essential to the future exploration of AST’s suitability for human

speech acoustic tasks, which will be explored in the future of the project.

4.3 Jialu et al.’s[16] Algorithm Limitations on Wav2vec Architecture

As discussed in section 3.2.7, Jialu et al. [16] have successfully implemented a method to improve

Wav2Vec2’s performance with the ESC-50 dataset. However, as per table 3, Wav2Vec2 has the largest pa-

rameter size among the three options discussed. It requires almost 1 GB of storage, which is not feasible for

most affordable embedded devices, making it impractical for real-world applications. While Wav2Vec seems

to be the best option in terms of memory, performance, and architecture, we discovered that Wav2Vec’s

architecture [3] is different from Wav2Vec2 [2]. The features that we are clustering from Wav2Vec2 are from

its 12 encoder layers, while for Wav2Vec, we take the features from the 11 layers of the feature aggregator.

These encoder layers and feature aggregators have different purposes and output different meaningful repre-

sentations that can either be useful or useless for Jialu et al.’s method. Therefore, Jialu et al.’s practicality
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in future works with audio embedding other than Wav2Vec2 is limited for further exploration.

4.4 Layer Freezing for Wav2Vec2 Fine-tuning

In section 3.2.2, we discuss layer freezing as a means of preventing degradation of human speech

acoustic task performance on the Wav2vec model when fine-tuning on the ESC-50 dataset for non-speech

acoustic tasks. However, due to limitations in time, as we neared the end of our study, we were unable to

explore the effects of layer freezing when fine-tuning the Wav2Vec2 model using Jialu et al.’s [16] methodology.

Just as with the Wav2vec model, a study in this direction is important for maintaining Wav2Vec2’s human

speech task performance when fine-tuning for non-speech acoustic tasks using Jialu et al.’s algorithm. This

is essential for creating an effective dual-embedding for both speech and non-speech tasks. In the future, we

hope to add an algorithm to freeze some of the layers in the Wav2Vec2 model with Jialu et al.’s method.

4.5 ASR Inference on Fine-tuned Models

With the combination of all the challenges we encountered with our studies, the processing times

to train and validate different fine-tuning techniques, and the limited bandwidth we had during our studies,

there is a crucial step that we did not get to explore. This is testing the performance of all the models

on speech-related tasks, explicitly evaluating the models on the LibriSpeech dataset. More specifically, the

difficulty lies in the library, fairseq, which we used to load Wav2Vec with, since Wav2Vec is not supported

by HuggingFace. Fairseq has minimal functions, and one of the critical functions we needed is the decoder

function, which exists for Wav2Vec2 on HuggingFace. This decoder function converts the outputs of Wav2Vec

to predicted words so that the word error rate can be calculated. Without the decoder, the function must be

written ourselves, which we do not have the bandwidth for. As a result, the observations made in sections

3.2.5, 3.2.3, and 3.2.7, can not be established as success or not, without the evaluation of the speech-related

tasks. In the future, we hope to have the performances of our fine-tuned models with speech-related tasks

to determine the degradation of our models as well as their practicalities.

5 Conclusion

Through this project, we show potential ideas and lay the foundations for creating a single audio embedding

capable of doing both speech and non-speech classifications for an embedded system. Specifically, our

study establishes the potential of the Wav2vec and Wav2Vec2 models as combined speech and non-speech

30



embeddings through our exploration of inference on multiple environmental sound classification datasets.

Our study then yields fine-tuning results for these potential audio embedding candidates, the best of which

were Jialu et al.’s method with Wav2Vec2 (62%) and carefully selected fine-tuning techniques with Wav2Vec

(51.86%). Although these models are far from being perfect and need further evaluation, our results are a

step in the right direction toward our goal of this project.

Future applications of this project include new opportunities for single audio embeddings for speech

and non-speech tasks, such as development for deployment on embedded systems like the smart home device.

This can be expanded into the healthcare field, such as hearing aids capable of classifying different sounds

regardless of whether they are speech or non-speech sounds. This research can also be used for combined

speech and audio tagging on autonomous home security systems. The potential applications of this project

emphasize the importance of further research and development for multifaceted single audio embeddings.
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