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Abstract  
Compared to microarray-based genotyping, next-generation whole genome-sequencing (WGS) 
studies have the strength to provide greater information for the identification of rare variants, 
which likely account for a significant portion of missing heritability of common human diseases. 
In WGS, family-based studies are important because they are likely enriched for rare disease 
variants that segregate with the disease in relatives. We propose a multilevel model to detect 
disease variants using family-based WGS data with longitudinal measures. This model 
incorporates the correlation structure from family pedigrees and that from repeated measures. The 
iterative generalized least squares (IGLS) algorithm was applied to estimation of parameters and 
test of associations. The model was applied to the data of Genetic Analysis Workshop 18 and 
compared with existing linear mixed effect (LME) models. The multilevel model shows higher 
power at practical p-value levels and a better type I error control than LME model. Both 
multilevel and LME models, which utilize the longitudinal repeated information, have higher 
power than the method that only utilize data collected at one time point.  

Background  
Whole genome sequencing (WGS) provides comprehensive collection of genetic variations, and 
thus is promising in discovering novel inheritable factors for both Mendelian and complex traits. 
Two data properties distinguish WGS from microarray-based genome-wide association study 
(GWAS). First, WGS data contain rare causal mutations that could have large allelic effect. 
However, the statistical association for such rare variants is weak at population level due to small 
allele frequency  [1], and thus population-based case-control study, which is commonly applied in 
GWAS, is less powerful for WGS. Second, family design is attractive and commonly applied in 
WGS studies. Causal rare variants are likely enriched through co-transmission in families. 
Moreover, pedigree structures allow statistical imputation of genotypes without experimental cost 
[2]. Additionally, family-based data analyses automatically control for population stratification, 
and are potentially able to incorporated helpful genetic information on phase, effects of parental 
origin, co-transmission of variants, etc. [3]  

Disease variant detection can also be facilitated by trajectory information on individual changes 
over time. Longitudinal genetic studies allow a close investigation of both genetic factors that 
lead to a disease and environmental determinants that modulate the subsequent progression of the 
disease. In WGS, it is important to develop powerful methods that accommodate both within-
family correlation structure and correlation among repeated measures. Here we extend a 
multilevel model  [4, 5] to WGS longitudinal family data, which simultaneously accounts for 
familial and time-series correlations. The implementation is based on the iterative generalized 
least squares (IGLS) algorithm [6, 7], which allows conclusions to be drawn about both genetic 
and environmental effects, while controlling the complex correlation structure. We assessed the 
multilevel model by comparing with the linear mixed-effects (LME) models using “dose” 
genotypes on chromosome 3 and the 200 simulation replicates of longitudinal response and 
covariates provide by Genetic Analysis Workshop (GAW)18  [8].  

Methods 
Method 1: LME model  
Linear mixed-effects models offer a natural approach to deal with correlation structures among 
observations. For longitudinal family data, we can define an LME model: 
(1)                                               𝑦!"# = 𝑥!"#! 𝛽 + 𝑧!"#! 𝛾! + 𝜖!"# 



where 𝑦!"# is response of the ith repeated measure of the jth individual in the kth family, 
where  𝑖 = 1,… , 𝑛!",  𝑗 = 1,… ,𝑚!, and 𝑘 = 1,… ,𝐾, with 𝑛!" being the number of measures for 
individual j in family k and 𝑚! being the number of individuals in family k. 𝑥!"# is a covariate 
vector (including genotype) for fixed effects 𝛽. 𝑧!"# is a covariate vector for random effects 𝛾!, 
where 𝛾!:= (𝛾!! …   𝛾!!!)

! ∼ 𝑁(0,𝐷!), 𝐷! the covariance matrix among individuals in family k 
(e.g., the kinship matrix). Also, 𝜖!":= (𝜖!!" …   𝜖!!"!")

! ∼ 𝑁(0, Σ!"), Σ!" is the covariance matrix 
among the repeated measures for individual j in family k. We assume 𝛾! and 𝜖!" are independent 
between each other and among themselves for all j and k. To implement the LME model, we 
applied the following R package: 

GWAF: R package GWAF was design for genome-wide analysis for family data [9]. It accounts 
for the pedigree correlation structure by kinship matrix. However, it does not handle longitudinal 
repeated measures. So this method was used to represent the cross-sectional analysis for family 
data, and was compared with other family-data analysis incorporating longitudinal information.  

Lmekin: R function lmekin in package coxme [10] was applied to account for both the family 
correlation structure and the correlation structure of the longitudinal repeated measures. 
Specifically, we set the model that includes a random intercept at individual level to account for 
the correlation of repeated measures assuming compound symmetry structure, a random intercept 
at family level to account for the clustering effect among family members. Furthermore, the 
kinship matrix was incorporated through its varlist option to account for the kinship correlation 
among family members.  

Method 2: Multi-level model 
We extend the classic multi-level model [4, 5, 11] to analyse WGS family data with longitudinal 
repeated measures. The response for the ith measure (level 1) of the jth individual (level 2) in the 
kth family (level 3) can be written as 

(2)                                                𝑦!"# = 𝑥!"#! 𝛽 + 𝑢! + 𝑔!"+  𝑣!" + 𝑒!"# ,     

where𝑥!"#!  and 𝛽 are similarly defined in (1). The rest random-effect terms on the right side of the 
equation are normal distributed with mean zero and variance characterizing the correlation 
structure among observations. Denote the response vector 𝑦 = (𝑦!"#). We have 𝑦~𝑁(𝑥𝛽,𝑉), 
where  

(3)                                              𝑉𝑎𝑟 𝑦 = 𝑉 = 𝐴𝜎!! + 𝐵𝜎!! + 𝐶𝜎!! + 𝐼𝜎!!.     

The first random term 𝑢! characterizes the clustering effects at family level and at individual 
level. Specifically,  𝐴 = ⨁!(𝐽!⨂𝐽∗), where 𝐽! is a matrix of 1’s with dimension being the size of 
kth family, 𝐽∗ is a matrix of 1’s with dimension being the number of repeated measures per 
individual. ⨁ denotes the matrix direct sum, ⨂ denotes the Kronecker product. The second 
random term 𝑔!" indicates the genetic correlation (kinship coefficients) among individuals in the 
kth family. Mathematically, 𝐵 = ⨁!(𝐷!⨂𝐽∗), where 𝐷! is the kinship matrix. The third random 
term   𝑣!" indicates the correlation among repeated measures in the jth individual: 𝐶 =
⨁!(𝐼!⨂𝑅), where 𝐼! is an identity matrix with dimension being the size of the kth family, 𝑅 is 
the correlation matrix among repeated individuals. For example, if we assume compound 
symmetry structure, for three repeated measures,  

(4)                                     𝑅 =
1 𝜌 𝜌
𝜌 1 𝜌
𝜌 𝜌 1

=
1 0 0
0 1 0
0 0 1

+
0 1 1
1 0 1
1 1 0

𝜌. 



So the term can be decomposed as 𝐶𝜎!! = 𝐶!𝜎!! + 𝐶!𝜌𝜎!!, such that the matrix are all known and 
the parameters can be estimated as described below. Certainly, more complicated correlation 
structure can be modelled by a further decomposition according to the number of covariance 
parameters to be estimated. Finally, 𝑒!"# is the independent and identically distributed error term, 
and 𝐼 is the identity matrix for all observations. 

For the inference of the multilevel model, the iterative generalized least squares (IGLS) algorithm 
[6, 7] is applied. Let 𝑦 = 𝑦 − 𝑋𝛽. Note that  

(5)                                 𝐸 𝑦𝑦! = 𝑉 =   𝐴𝜎!! + 𝐵𝜎!! + 𝐶!𝜎!! + 𝐶!𝜌𝜎!! + 𝐼𝜎!!.  

Step 1: Given 𝛽, estimate 𝑉 by the least squares estimation of variance [12]. Specifically, this is a 
procedure of fitting regression model of response vector 𝑦∗ = 𝑣𝑒𝑐 𝑦𝑦!  to the design matrix 
𝑋∗ = [𝑣𝑒𝑐 𝐴 , 𝑣𝑒𝑐 𝐵 , 𝑣𝑒𝑐 𝐶! , 𝑣𝑒𝑐 𝐶! , 𝑣𝑒𝑐(𝐼)], where 𝑣𝑒𝑐 𝐴  denotes the vectorization of the 
upper triangular part of matrix 𝐴. So,  

(6)                        𝜎!!,𝜎!!,𝜎!!, 𝜌𝜎!!,𝜎!!
!
= (𝑋∗! 𝑉!!⨂𝑉!! 𝑋∗)!!𝑋∗! 𝑉!!⨂𝑉!! 𝑦∗,     

and 𝜌 = 𝜌𝜎!!/𝜎!!. 

Step 2: Given 𝑉, estimate 𝛽 by the weighed least squares estimate: 

(7)                                                      𝛽 = (𝑥!𝑉!!𝑥)!!𝑥!𝑉!!𝑦.  

The estimation procedure starts at an arbitrary 𝛽 (e.g., obtained from a multiple regression fitting) 
and then iterates between steps 1 and 2 until convergence. Since the IGLS estimate is equivalent 
to the restricted maximal likelihood estimate [4], we can apply a Z-test to calculate p-values for 
the elements in 𝛽, which contains the fixed genetic effects. In particular, since 𝑉𝑎𝑟 𝛽 =
(𝑥!𝑉!!𝑥)!!, the Z-test statistic for 𝛽! is 𝑍! = 𝛽!/𝑉𝑎𝑟 𝛽 !!, and the two-tailed p-value is 

𝑝! = Pr  ( 𝑁 0,1 > 𝑍! ). Certainly, this multilevel model has the potential to be further 
extended to incorporate more complicated covariance structure for more sophisticated modelling. 

Results  
For evaluating the methods, we used the “dose” genotype data of the 169 true SNVs on chr3 that 
were associated with diastolic blood pressure (DBP) in 200 simulation replicates. These data 
contain 849 individuals in 20 families and the numbers of individuals in families are from 21 to 
74, with the mean 42.45 and the median 36.5.  Kinship matrices of these families were directly 
calculated based on the pedigree information. The above models were fitted with or without 
covariates: age, blood pressure medicine status, and sex. For GWAF, which does not analyse 
longitudinal data, we applied the DBP at the first time point as the response. For lmekin and 
multilevel model, we applied all three longitudinal repeated measures. The knowledge of the true 
SNVs was only used for evaluating the power of these association tests, not for the data analysis 
strategy.  

First, we evaluated the type I error rate control for these methods. Fitting the 169 DBP-related 
SNVs on chr3 to Q1, a null response provided by GAW18 “to facilitate assessment of type I 
error”, we plotted in Figure 1a the false positive rates over a variety of p-value cut-offs. It is clear 
that the type I error rate of lmekin is highly inflated, while the type I error rates of multilevel 
model and GWAF are closer to the expected level around the diagonal line. The inflation is worse 
when covariates are contained in the models (denoted “_covar”). We also studied the type I error 
rate through permutation.  Figure 1b shows the false positive rates for fitting the permuted 
genotype data of these SNVs to DBP response, which remained the relationship between 
covariates and DBP but destroyed the association between SNVs and DBP. Now both lmekin and 



our multilevel models control the type I error rate perfectly well. To explain the puzzle, we 
checked the GAW18 “answers” and found Q1 was simulated as a quantitative trait correlated 
among family members with heritability 0.68, while the total heritability for DBP is only 0.317. 
This means that Q1 values have stronger correlation than DBP values do. The inflation of the 
type I error of lmekin indicates that this LME model is less capable than our multilevel model in 
accounting for the correlation among individuals (cf. [13]).  

We studied the power of detecting the 169 DBP related SNVs on chr3. Based on the phenotype 
data in the simulation replicate 1, Figure 1c shows the true positive rate of detecting these true 
SNVs over a variety of p-value cut-offs. In general, the power of detecting true SNVs is low at 
small or moderate p-values. This phenomenon indicates that the sample size is still relatively too 
small to detect a large proportion of the weak genetic effects simulated in the data. At the same 
time, longitudinal methods (lmekin and multilevel models) are better than the one-time-point 
model (GWAF), the latter doesn’t have much power except for the strongest SNVs. The lmekin 
and the multilevel models have the similar performance overall, but the multilevel model is better 
at the region of relatively small p-values (e.g., p-value < 0.1) that are of practical interest. For 
both lmekin and multilevel model, there is no big difference between the models with and without 
covariates. We also studied the power of detecting specific SNVs by using the data of 200 
simulation replicates. For example, by the multilevel model with covariates, the strongest SNV at 
location 48040283 always got significant p-values from 1.8e-31 to 3.09e-9.   

Discussion  
In this work, our main focus is to see whether modelling longitudinal data may provide helpful 
information to increase the power of detecting true SNVs when comparing with the methods for 
analysing data at one time point. Here we directly applied the original genotype data into 
modelling, and illustrated that the longitudinal repeated observations were indeed helpful to 
detect DBP-related genetic factors. However, many true SNVs are rare variants, some of which 
could have big allelic effect for specific individuals when the disease mutation presents. Due to 
small minor allele frequency (MAF), the association between such rare variants and their 
corresponding phenotypes is still weak at the population level  [1]. This may be one of the main 
reasons why the overall power is low in detecting the majority of the causal or regulatory genetic 
factors. Various strategies of rare variant collapsing procedures  [14, 15] could be applied to 
grouping and combining genotypes of rare variants, which has potential to further increase the 
power.  

The computational speed of the multilevel model is comparable with the linear mixed effect 
model estimation by lmekin. Both models are computationally demanding (e.g., about 10 minutes 
for our implementation of multilevel model and 8 minutes for lmekin to process one SNV on a 
MacBook Pro with 2.9GHz Intel Core i7). However, we observed that the convergence speed of 
the iterative generalized least squares algorithm for the multilevel model is pretty fast: the results 
usually do not change much after two iterations. So restricting the number of iterations could 
potentially reduce computational time. Further study on improving computation efficiency will be 
carried out in the near future.  

Conclusions  
We developed a multilevel model for fitting family-based genotype data and repeated measures 
of covariates to quantitative longitudinal response, which accounts for correlations among 
individuals, nesting effects at the family and individual levels, as well as the time series 
correlations due to the repeated measures of covariates and responses. Through the simulated data 
of GAW18, this method showed more accurate type I error control than the LME model by 
lmekin, which is likely due to better account for correlations among individuals. The multilevel 



model also provided higher power at small p-value cut-offs. At the same time, both lmekin and 
multilevel model, which utilize the longitudinal information, have higher power than GWAF, the 
latter only models data at one time point.  
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Figure legends 
Figure 1 - Type I error and Power for detecting DBP related SNVs on chr3.  
Consider all 169 DBP-related SNVs on chr3, the type I error rates were estimated by the false 
positive rates when Q1 was the null response (a) and when the genotypes are permuted (b); the 
power was estimated by the true positive rate when DBP was the response (c). A model with or 
without containing covariates (age, blood pressure medicine status, and sex) is denoted by its 
name with or without “_covar”.   
 

 


