
i

Developing Automated Design and

Analysis Tools

A Major Qualifying Project

Submitted to the Faculty of Worcester

Polytechnic Institute

In partial fulfillment of the

requirements for the degree in

Bachelor of Science

in Mechanical Engineering

By

Corey Alicchio, Justin Vitiello

And

Bachelor of Science

in Robotics Engineering

By

Callum Taylor

Advisor:

Pradeep Radhakrishnan

Date: April 27th 2017

This report represents work of WPI undergraduate students submitted to the faculty as

evidence of a degree requirement. WPI routinely publishes these reports on its web site

without editorial or peer review. For more information about the projects program at WPI, see

http://www.wpi.edu/Academics/Projects

ii

Copyright Information

The work presented here is copyrighted by Corey Alicchio, Callum Taylor, Justin Vitiello and

Professor Pradeep Radhakrishnan.

iii

ABSTRACT

Design automation is complex and work is carried out in several stages. Staged development

aids in recasting the results into virtual labs that can be used to improve understanding of design

and analysis topics. In this project, during the first stage, a tool was developed to generate

SolidWorks assemblies from design graphs of gear trains consisting of gear and shaft

information. The tool was developed using SolidWorks API. In the second stage, automated

creation of bond graphs from SolidWorks assemblies was carried out. The built-in feature

recognition system in SolidWorks is used to identify the geometric relationships between

different components in the assembly and using grammar rules, a system graph is generated. This

system graph is integrated into the automated bond graph generation tool from MQP 2015-16.

The final stage involved development of grammar rules and logic to automatically extract state

equations from bond graphs. The status of these tools and their testing with students in various

courses will be discussed.

iv

TABLE OF CONTENTS

Abstract .. iii

Table of Figures .. vii

Acknowledgments... x

Executive summary .. xi

Introduction ... 1

Literature Review.. 3

A. Gear Train Synthesis .. 3

B. Bond Graph Modeling .. 4

C. Feature Recognition .. 7

Objectives ... 8

A. Create a Tool to Automatically Generate A 3D Model of a Gear Train 8

B. Create a Tool to Automatically Obtain a Bond Graph ... 8

C. Automatically Derive State Equations from a Causal Bond Graph 8

Automated Creation of SolidWorks Assemblies .. 10

A. Read Data from User Entry .. 11

B. Interpreting Graph XML Data .. 12

C. Generate Gears, Shafts and Bearings ... 15

I. Modifying Part Dimensions Automatically .. 15

II. Required Information For Creating A Part ... 15

III. Template Files ... 16

IV. Generate Shafts ... 18

V. Generate Bearings ... 18

v

D. Creating an Assembly ... 19

I. Adding mates with SolidWorks API... 20

II. Results ... 22

Extracting Bond Graphs from SolidWorks Assemblies ... 25

A. Reading Part Data ... 26

B. Creating System Graphs ... 28

C. SolidWorks Identification Results .. 31

Analyzing Bond graphs... 33

A. State equations .. 33

B. Results .. 40

C. Direction of Bond Graphs... 41

D. Bond Graph Results .. 43

Conclusions ... 44

A. Recommendations and Future Work .. 45

I. Automated Gear Generation ... 45

II. Extraction of Bond Graph ... 45

III. State Equations and System Response .. 46

References ... 47

Appendix A: Pseudo Code of Gear Generation .. 49

Appendix B: Student Generated Gear Trains ... 51

Appendix C: User Guide for Generating Gears .. 52

Appendix D: Rules to Generate System Graphs ... 56

Appendix E: Rules to generate State Equations ... 58

vi

A. Rules to Format Graph ... 58

B. State Equation Ruleset 1 ... 59

C. State Equation Ruleset 2 ... 60

D. State Equations Summation at junction .. 62

Authorship... 64

vii

TABLE OF FIGURES

Figure 1. Overview of the graph-grammar method for generating bond graphs [3] 5

Figure 2. Flow chart of gear generation process ... 10

Figure 3. Screenshot of User interface for gear generation .. 11

Figure 4. Entry field for assembly data ... 12

Figure 5: CSV Data file generated by the tool .. 12

Figure 6. Graphical Representation of Meshed Gears with attached parameters 13

Figure 7. XML representation of a node point ... 13

Figure 8: Example output of reading an XML file ... 14

Figure 9. Code segment to open a SolidWorks File, modify dimensions and save the part ... 15

Figure 10. Base sketch of gear template ... 16

Figure 11. Feature Manager of gear template ... 16

Figure 12. Planes created for gear tooth alignment .. 17

Figure 13. SolidWorks Gears Generated by the tool .. 18

Figure 14. Shaft template base sketch... 18

Figure 15. Basic shaft component fully completed. ... 18

Figure 16. Bearing template base sketch (Sketch is revolved around x-axis) 19

Figure 17. Bearing component completed .. 19

Figure 18. Process to create a SolidWorks Assembly .. 20

Figure 19. Code Segment for creating mates within SolidWorks .. 21

Figure 20. Complete Gear Assembly .. 22

Figure 21. Example of Student generated assemblies .. 24

Figure 22. Class Survey Results ... 24

https://d.docs.live.net/686541c9a33b7b8d/Documents/College/Senior/MQP/MQP%20Report%2010.12%20(Autosaved).docx#_Toc481065997
https://d.docs.live.net/686541c9a33b7b8d/Documents/College/Senior/MQP/MQP%20Report%2010.12%20(Autosaved).docx#_Toc481065998
https://d.docs.live.net/686541c9a33b7b8d/Documents/College/Senior/MQP/MQP%20Report%2010.12%20(Autosaved).docx#_Toc481065999
https://d.docs.live.net/686541c9a33b7b8d/Documents/College/Senior/MQP/MQP%20Report%2010.12%20(Autosaved).docx#_Toc481066005
https://d.docs.live.net/686541c9a33b7b8d/Documents/College/Senior/MQP/MQP%20Report%2010.12%20(Autosaved).docx#_Toc481066006
https://d.docs.live.net/686541c9a33b7b8d/Documents/College/Senior/MQP/MQP%20Report%2010.12%20(Autosaved).docx#_Toc481066007
https://d.docs.live.net/686541c9a33b7b8d/Documents/College/Senior/MQP/MQP%20Report%2010.12%20(Autosaved).docx#_Toc481066008
https://d.docs.live.net/686541c9a33b7b8d/Documents/College/Senior/MQP/MQP%20Report%2010.12%20(Autosaved).docx#_Toc481066009
https://d.docs.live.net/686541c9a33b7b8d/Documents/College/Senior/MQP/MQP%20Report%2010.12%20(Autosaved).docx#_Toc481066010
https://d.docs.live.net/686541c9a33b7b8d/Documents/College/Senior/MQP/MQP%20Report%2010.12%20(Autosaved).docx#_Toc481066011
https://d.docs.live.net/686541c9a33b7b8d/Documents/College/Senior/MQP/MQP%20Report%2010.12%20(Autosaved).docx#_Toc481066012
https://d.docs.live.net/686541c9a33b7b8d/Documents/College/Senior/MQP/MQP%20Report%2010.12%20(Autosaved).docx#_Toc481066013
https://d.docs.live.net/686541c9a33b7b8d/Documents/College/Senior/MQP/MQP%20Report%2010.12%20(Autosaved).docx#_Toc481066015

viii

Figure 23: Flow Chart to Create Bond Graphs from SolidWorks Assemblies 26

Figure 24: Code segment to define an arc connecting two nodes ... 27

Figure 25: SolidWorks Identification Graph .. 28

Figure 26: LabelGears Rule .. 29

Figure 27: SolidWorks Assembly System Graph ... 30

Figure 28: SolidWorks Assembly Bond Graph .. 32

Figure 29. Flow chart for generating state equations .. 35

Figure 30. Bond graph rule to add intermediate node .. 37

Figure 31. Identifying a source of flow in the bond graph ... 38

Figure 32.Rule to identify Derivative Causality for an I element... 38

Figure 33. Equal flows at a one junction .. 39

Figure 34. Equal Efforts at a 0 junction .. 39

Figure 35. Causality bond graph of mass spring damper system ... 40

Figure 36. Direction assignment to the nodes ... 42

Figure 37. Rule to apply start direction to system .. 42

Figure 38. Rule to propagate positive direction through the system 42

Figure 39. Rule to flip arc direction .. 43

Figure 40: LabelGears Rule .. 56

Figure 41: LabelShafts Rule ... 56

Figure 42: RemoveCoincident Rule.. 57

Figure 43: RemoveGearmate Rule .. 57

Figure 44: RemoveGear0DOF Rule ... 57

Figure 45. Rule to add intermediate nodes, configuration 1 ... 58

https://d.docs.live.net/686541c9a33b7b8d/Documents/College/Senior/MQP/MQP%20Report%2010.12%20(Autosaved).docx#_Toc481066024
https://d.docs.live.net/686541c9a33b7b8d/Documents/College/Senior/MQP/MQP%20Report%2010.12%20(Autosaved).docx#_Toc481066025
https://d.docs.live.net/686541c9a33b7b8d/Documents/College/Senior/MQP/MQP%20Report%2010.12%20(Autosaved).docx#_Toc481066027
https://d.docs.live.net/686541c9a33b7b8d/Documents/College/Senior/MQP/MQP%20Report%2010.12%20(Autosaved).docx#_Toc481066028

ix

Figure 46. Rule to add intermediate nodes, configuration 2 ... 58

Figure 47. Rule to add intermediate nodes, configuration 3 ... 58

Figure 48. Rule to add intermediate nodes, configuration 4 ... 58

Figure 49. Rule to identify integral causality.. 59

Figure 50. Rule to identify integral causality of C element .. 59

Figure 51. Rule to identify source of flow .. 59

Figure 52.Rule to identify a source of effort... 59

Figure 53. Rule to identify derivative causality of C element .. 60

Figure 54. Rule to identify derivative causality of I element ... 60

Figure 55. Rule to identify derivative causality of R element .. 60

Figure 56. Rule to identify integral causality of R element .. 60

Figure 57. Rule to identify gyrator node with known effort ... 60

Figure 58. Rule to identify gyrator node with known flow .. 61

Figure 59. Rule to identify transformer node with known effort .. 61

Figure 60. Rule to identify 0 junction with a known source of effort 61

Figure 61. Rule to identify 1 junction with a known source of flow 61

Figure 62. Rule to indicate if a node has been used in a summation equation of a 1 junction 62

Figure 63. Rule to indicate if a node has been used in a summation equation of a 0 junction 62

Figure 64. Rule to mark if node can be summed at 0 junction ... 62

Figure 65. Rule to mark if node can be summed at 0 junction ... 62

Figure 66. Rule to apply the summation equation to at node at a 0 junction.......................... 62

Figure 67. Rule to apply the summation equation to at node at a 1 junction.......................... 63

x

ACKNOWLEDGMENTS

We would like to acknowledge the students in D2017 ME4320 Advanced Engineering

Design course at Worcester Polytechnic Institute for testing and providing feedback on the gear

generation program. We would also like to thank Professor Pradeep Radhakrishnan for his

support, and guidance on this project. Finally, we would like to acknowledge Worcester

Polytechnic Institute for providing us the opportunity to pursue this project.

xi

EXECUTIVE SUMMARY

This project researched and developed solutions related to the automated design of gear-

trains. Investigations were conducted into the creation of 3D models of gear-train parts and

assemblies, generation of dynamic models and the extraction of differential equations from those

dynamic models. Automated solutions were developed from scratch to more accurately create

systems in a shorter amount of time and with less human input when compared to manual iterative

design. The project was carried out in three stages.  

The first stage involved developing a tool that automatically generated a 3D model of a gear

train. This was accomplished by using the SolidWorks API to script the creation of gears, shafts,

bearings, and the total assembly. The required input parameters for the creation of a gears in

a gear train are Gear Type, Number of Teeth, Pitch, Face Width, Bore Diameter, Pitch Cone

Angle, Helix Angle, and Material. For shafts, diameter, length, and material are required. To

create the assembly, 3D coordinates, axis of rotation of each component, meshing information,

and shaft placement are required to properly place each part. Bearings can be chosen to be

automatically created, and are placed at both ends of each shaft in the assembly. The completed

assembly accurately represents the change in rotational velocity from the input to the output of

the system. The input parameters can be entered into a GUI by the user. As the actual gear-train

design solution would exist as a graph in an XML format in the overall automation scheme, there

is also an option in the GUI to import this data from an XML file.  

Students in an Advanced Engineering Design course were asked to use this tool to complete a

gear train assignment. They were tasked with creating gear

trains given certain constraints, and then to generate the 3D model using this tool to verify its

xii

accuracy. Students provided feedback on the program as well as suggesting areas

of improvement.  

The second stage of the project involved the automatic extraction of bond graphs from a

SolidWorks assembly. A bond graph representation of the system provides a standard way of

analyzing the dynamic response of a system. Using graph grammar rules to identify parts and

mates within a SolidWorks assembly the system's identity graph is generated. The identity graph

is then saved to a GraphSynth-compatible XML file. Various geometric and material details are

also saved in the process.   

The final stage of the project involved enhancing the existing Automated Virtual Lab for

bond graphs to extract state equations from causal graphs. State equations are generated by

following standard causality and state variable procedures as defined by bond graph

methodology. The program starts with a bond graph and assigns causality to each bond. State

variables are identified, and state equations are generated by finding all the efforts and flows for

each bond. The resulting equations are then displayed to the user, who can then solve and graph

these equations to analyze the dynamic response of a system. 

Each of these stages can be used to aid students in the process of mechanical design and

analysis. By being able to generate 3D models, the accompanying bond graphs and state

equations, students can better understand the process of gear train design and bond graph

analysis. 

1

INTRODUCTION

Gear trains are used in many mechanical systems, generally comprised of multiple meshing

gears, shafts, and bearings, to transfer, increase, or reduce rotational velocity and torque. When

designing these systems, the designer must take into account the stresses and dynamic

responses of the system and each individual part. This is an iterative process, and currently has to

be done manually, which is very time consuming. 

This process is being automated through the creation of software tools to automatically

generate and analyze gear trains. These tools, being created by this team as well as others, would

allow users to quickly create and analyze gear train systems. Users would input the design

requirements of the system, and the program would find the optimal solution and then

generate the resulting static and dynamic responses. A 3D CAD model would be created to

visualize the system, a bond graph would be created from the 3D CAD model, and then bond

graph techniques would be used to find and solve for the state variables within the system. By

showing the process of gear generation from start to finish, this tool can be used as an

educational aid to easily generate and verify system designs. 

These tools are useful to students when designing systems as not every student has the

same background in gear design. A tool that assisted in the generation of gear trains would allow

those students to include useful gear systems into larger projects without having to know the

specific mechanics of the system.  

Additionally, the individual components of the tool can be extracted and used as teaching

aids. The portion which generates the gear parameters can be used to show students how to

generate gears given input and output speeds. The 3D model generation portion can be used by

2

students to verify gear designs they have created by hand, speeding up the process of iterative

gear train design. The bond graph portion can show what a proper bond graph of a gear system

would look like, as well as demonstrate how state equations are formed. All of these systems can

be used as a way to teach the process as well as a tool to verify and correct student’s own

solutions. 

This project is specifically focusing on the design activities of generating 3D models of gear

trains, generating bond graphs from the assemblies, and generating the corresponding state

equations for the bond graphs. Generating a 3D model is done by taking gear data as input and

using the SolidWorks API to create a corresponding assembly. Creating bond graphs is

done by using the SolidWorks API to generate an identification graph of the parts and mates

within a system. Graph grammar rules are then used to identify the parts within the system and

generate a system graph of the assembly. An existing program then imports this system graph to

create the bond graph of the gear train. A combination of grammar rules and a C#

program generates state equations to assign causality to each element and use bond graph

techniques to generate state equations. 

The following section will provide an overview of the related literature on this project.

Following that section, we explain the three objectives created for this project. We will then go

into detail for how each objective was achieved, explaining the development process and the

final results. Then we discuss our final conclusions and recommendations for future work for our

project.

3

LITERATURE REVIEW

This section presents articles related to the main design activities of this project. The articles

focus on various aspects of the project as well as previous work that has been done with gear

train automation.

A. Gear Train Synthesis

The design of gears and related components such as shafts bearings and housings, are tasks

that rely on very well defined design procedures [3]. These methods are in accordance to many

American Gear Manufacturers Association (AGMA) standards and many design equations can

be determined automatically. Typical design flow of a gear may involve many iterations, first

determining loading conditions and then calculating internal stresses and ultimately arriving at a

safety factor for a component. This can take a significant amount of time, depending on how

accurate the analysis is. It would be ideal if this process could be at least partially automated,

leading to the ability to find the optimal gear design much faster.

One example of automated design was the synthesis of a two-stage helical gear reducer

researched by Tudose et al [1]. Using evolutionary based algorithms, the optimal configurations

for gears shafts and bearings were achieved. These algorithms generated many possible solutions

that were then analyzed based on how well it fit within the given parameters, attempting to

minimize the mass of the overall gear system. The most successful solutions could then be

modified and reevaluated for the next iteration.

The article "A Method and Software Tool for Automated Gearbox Synthesis" by Lin et al.

[4] presents another method for computer based gearbox synthesis given certain design

specifications [4]. The program being used is an experimental add-on to RomaxDesigner, a

4

software program from Romax Technology for driveline design [5]. The gears are modeled

without teeth and having an assumed synchronizer. The paper outlines nine rules for gearbox

creation. The program can create multiple gearboxes which satisfy the prerequisite conditions, so

additional rules are applied to minimize mass and maximize gear spacing. This helps to prevent

overly complex designs. The program also identifies and prevents unwanted collisions between

gears, shafts, and the bounding box. The paper concludes that roughly half of the generated

gearboxes successfully fit all of the conditions presented. Viable designs varied in the number of

stages as well as in the placement of gears. Limitations listed in the paper are that the program

cannot create shafts of varying lengths, gear widths are chosen at random, and it is inaccurate for

large complex gearboxes. The design does not include any bearings or synchronizers which are

usually present in real gearboxes.

Another technique that is well suited for gear design is using graph grammars to design a

system. This method allows for large, high level systems to be manipulated with generic and

concise rules [1]. A seed graph was used to create an expanding tree of different component

combinations. The grammar rules then are applied to create topology and create a figure from

user input.

B. Bond Graph Modeling

Grammar based tools have also been applied to aid in the creation of functional schematics

[2]. Numerous possible design schematics for epicyclical gear trains are automatically generated

allowing the user to view many possibilities at once rather than spending excessive time

generating these concepts manually. Grammar rules provide a rigorous method for the creation

of design schematics that is consistent and capable of handling complex systems [2].

5

The design work in the studies mentioned above optimize static systems using stress

relationships and analysis. In order to obtain the full response of a system it is also necessary to

look at its dynamic response. Analysis of non-steady state motion reveals more details about the

system. Bond graph modeling is one common technique to accomplish this task. One process for

bond graph synthesis is detailed in the paper 2016 paper by Grande et al., a previous MQP at

WPI [3]. This paper presents a graph grammar based approach to creating bond graphs. Each

component of a system is represented as a graph node and nodes are connected by arcs as shown

in Figure 1. Each node is given standard labels which identify how each part relates to bond

graph notation, such as "Include_Stiffness", "Include_Friction" or "Torque_Input". This process

uses a program called GraphSynth to create bond graphs through the use of graph grammar rules.

These rules were written to interpret the labels applied to nodes, such as creating a C element for

"Included_Stiffness" or an “I” element for the label "Include_Inertia". These rule sets are able to

create the bond graph, simplify flow through junctions, and apply directions to bonds.

Figure 1. Overview of the graph-grammar method for generating bond graphs [3]

6

A second paper, "An Automated Virtual Lab for Bond Graph Based Dynamics Modeling

Using Graph Grammars and Tree Search" [4], builds off of the previous to create a program in

which bond graphs can be created. By integrating the graph-grammar based bond graph creation

into the program, students can draw a system graph which will be automatically converted to an

un-simplified and then a simplified bond graph. The user created bond graph is compared to the

automated solution and then discrepancies are displayed to the user. The motivation behind this

work was to provide immediate feedback to students learning bond graph modeling techniques.

Other software packages are available that generate bond graphs directly. 20Sim is a

commercially available package that is all inclusive in terms of modeling [5]. It allows a system

to be fully defined, with all conditions a user requires. It will then create and present the finalized

bond graph, in addition to forming the state equations. The main drawback to such a service is

the lack of transparency. This software lacks the ability to illustrate the steps taken to arrive at

the final graph. While it is possible to compare a written solution to the end result, it becomes

difficult to identify errors. The simplification rules of bond graphs make it possible to have two

systems that are fundamentally equivalent, but contain different elements. This is where error

checking becomes most difficult and software like 20Sim becomes less helpful. Automated

Virtual Lab [4] was developed to solve this problem as it would allow for more dynamic

comparisons, showing step by step solutions if required. The final step in bond graph modeling,

generating state equations, is the most difficult for both students and computers. This is due to

the complex relationships throughout the system. A way to easily solve and explain the equation

generation process is not currently available, and should be addressed.

7

C. Feature Recognition

Most engineering students are familiar with solid modeling and creating 3D parts, making it

a good starting point for modeling dynamic systems. Letting a student visualize a fully functional

3D assembly and its corresponding bond graph gives much more clarity than starting a problem

with a bond graph. With the tools mentioned above [3], [4], it is only possible to apply bond

graph techniques and analyze a system once that system has been expressed the specific format

required by each tool [6].

A modeled part may be broken into sub-features through the use of convex decomposition,

creating a seed graph of the part [7]. This process uses grammar rules to identify regions of a part

that may be machined in a single operation. This method is limited to geometrical identification

only, and does not allow for the estimation of mechanical properties such as stiffness or damping

properties, which is required for a bond graph. A higher level of recognition, which would group

parts by a generalized classification system, such as shafts, gears or bearings, may be sufficient

to derive a bond graph model of the part. In addition to faster analysis, this may avoid the need to

have a user verify the decomposition of the part which is required if analyzing each part for

geometrical features [7].

The next section introduces the objectives that we developed based on limitations we found

in previous literature.

8

OBJECTIVES

This section explains the three objectives that were determined and the requirements that the

objectives must meet to be considered successful.

A. Create a Tool to Automatically Generate A 3D Model of a Gear Train

The tool should operate significantly faster than manually creating an assembly and be easy

for a user just learning about gear design to use. It should be able to create multiple types of

gears and generate shafts and bearings. The modeling of all parts should be highly accurate and

generate fully functional assemblies.

B. Create a Tool to Automatically Obtain a Bond Graph

The tool should only require the user to select a single assembly file, then automatically

gather all information from the file. This data should include mass and material properties. It

must also be able to analyze mate configurations to determine how components are connected.

The final output of the tool must match the format of the input for the bond graph tool developed

in last year’s MQP [3], [4].

C. Automatically Derive State Equations from a Causal Bond Graph

This should build upon the program previously developed by the preceding MQP [3], [4].

The starting point for this is a causal bond graph. State variables must be identified and then the

equations for each of these are to be derived. It should also utilize graph grammar rules to aid in

solving the equations. The final output should be the completed state equations that can be

directly solved with a program such as MATLAB.

The next chapter will discuss how objective A was accomplished, describing the process and

results of our work.

9

10

AUTOMATED CREATION OF SOLIDWORKS ASSEMBLIES

A tool to automatically create gear assemblies is important in automating the overall design

process, as it will allow a user to easily generate gears with very little knowledge or experience

with gear design. Many iterations of designs can be created and visualized with minimal input

from a user. The flow chart in Figure 2 describes the process this tool follows to gather data and

turn that into a complete assembly model.

Figure 2. Flow chart of gear generation process

11

A. Read Data from User Entry

To generate gears from a user’s specifications, a graphical user interface (GUI) was

developed to allow all of the data to be entered at once, and then generate the gear assembly by

pressing a single button. Shown in Figure 3 is the main screen of the program. The data

regarding each gear is entered into a data grid and then the data for each gear is stored in a struct

type. The first tab in the GUI is used to specify part details, and the second tab (Figure 4. Entry

field for assembly data allows a user to specify assembly details, including coordinates,

orientation of parts and which gears and shafts are connected.

The side panel on the left allows the user to change several settings for gear generation. The

Output folder specifies the directory that all parts and files should be stored. Units may be

switched between imperial (Inches) and metric (millimeters). It is also possible to prevent the

generation of either parts or the assembly, which can reduce waiting times if an assembly is not

required, or the parts already exist in the directory. Once all data has been entered the user

presses “Create” to automatically open SolidWorks to create the specified parts and assembly. A

data file is created that stores the data into a comma separated value (CSV) file, which can be

loaded by the GUI program later.

 Figure 3. Screenshot of User interface for gear generation

12

Figure 5: CSV Data file generated by the tool

B. Interpreting Graph XML Data

This MQP project was done in conjunction with another project that aimed at automating the

generation of parameters for a gear train. That project optimizes the selection of gears based on

stresses, operating conditions and lifecycle analysis and the resulting parameters are saved into a

specially formatted XML file. This file contains all relevant information about the gears and how

they are connected and assembled. This project takes these XML files and interprets them to

create CAD files.

A program was developed to take a formatted XML file, read it and then generate the

SolidWorks model based on the read data. The XML file contains a special header generated by

GraphSynth, a list of arcs and a list of nodes. Each node refers to either a part or a single

characteristic of a part, and arcs connect these nodes together to form a graph. As shown below

in the graphical representation (Figure 6), Gear C is connected to 9 different nodes specifying its

characteristics, (such as safety factor, gear type, pitch diameter, etc..), one of the connecting

Figure 4. Entry field for assembly data

13

nodes is a “connection” node that is shared with Gear D to indicate that they are meshed with

each other.

Figure 6. Graphical Representation of Meshed Gears with attached parameters

Figure 7. XML representation of a node point

The program extracts and stores all the useful information in various lists for generating the

assembled. Then the characteristics of the gear train are displayed in an easily readable format to

an output window. It also displays a list of errors and or warnings present in the XML file. There

are three types of error message, a warning where the program changes nothing (ex: Detecting

that two gears are too close together), a warning where the program changes a value to a default

14

(ex: Detecting that there is no set shaft length), and a warning message that a key piece of

information is missing and the program will not be able to build a SolidWorks model correctly

(ex: Detecting that a gear does not have a specified pitch value). Figure 8 below displays an

example of the output window after reading an XML file. If desired, the user can hit enter in this

window to automatically open SolidWorks which will then generate the gear train specified by

the XML.

Figure 8: Example output of reading an XML file

Type: spur

Type: spur

15

C. Generate Gears, Shafts and Bearings

There are many steps involved in creating each part for the assembly. The process is broken

down into single one CAD part at a time, generating all gears shafts and bearings sequentially.

I. Modifying Part Dimensions Automatically

With all the gear data extracted in the previous section this data may now be sent into

SolidWorks. An application programming interface (API) built into SolidWorks is utilized via a

visual studio C# program to manipulate parts in SolidWorks. The snippet of code shown below

(Figure 9) is an example of how the API automatically opens a SolidWorks part, and sets sketch

dimensions within the part (the Bore diameter, Pitch and the number of teeth). The rebuild

command is then sent, and the part is saved with a filename given by the user.

Figure 9. Code segment to open a SolidWorks File, modify dimensions and save the part

II. Required Information For Creating A Part

There is a minimum amount of information that must be known about each gear prior to

generation. The required information includes: Pitch, Number of teeth, face width, bore

diameter, cone angle and helix angle. If the part is not a bevel or helical gear the cone and helix

angles are ignored. There are several other parameters that can be set according to gear design

standards which include the addendum, dedendum and pressure angle [8]. The pressure angle is

SwDoc = ((ModelDoc2)(swApp.OpenDoc6(FileLocation + Gear_Template, 1, 0, "", ref longstatus, ref
longwarnings)));

((Dimension)(swDoc.Parameter("Bore@HoldingSke"))).SystemValue = gear.ShaftDia;
((Dimension)(swDoc.Parameter("Pitch@HoldingSke"))).SystemValue = gear.Pd;
((Dimension)(swDoc.Parameter("Num_teeth@HoldingSke"))).SystemValue = gear.Numteeth * (3.14159 / 180);

swDoc.Rebuild(2);
Longstatus = swDoc.SaveAs3(userLocation + gear.Name + ".sldprt", 0, 2);

16

set to 20 degrees for all gears, the addendum is set equal to the reciprocal of the diametral pitch

and the dedendum is equal to 1.157 times the reciprocal of the diametral pitch. These are values

are in accordance to gear design standards [8], [9].

III. Template Files

To generate a gear, a SolidWorks part has been created to act as a template file. These files

contain predefined dimensions within the template file can be changed to update the model

according to the user’s specifications. These dimensions are held in a base sketch. All other

features inserted into the part such as revolves, cuts, extrusions and patterns are dependent on the

base sketch dimensions. This allows the creation of any gear arrangement from a single template.

Figure 10 show the base sketch for the template, and Figure 11 shows the feature manager for

each feature used to create the gear.

Features used in creating the gears:

1. Base extrusion: A cylinder the size of the outer diameter + the dedendum length

Figure 10. Base sketch of gear template
Figure 11. Feature

Manager of gear template

17

2. Single tooth cut: The first tooth cut is modeled using parametric equations for an involute

profile. This ensure that the gear mesh will be extremely accurate

3. Circular pattern: The tooth cut is then patterned in a circle equal to the number of teeth

4. Bore diameter cut: An extruded cut that is the diameter of the bore

5. Reference geometry: To assist in assembling the gears, three reference geometry features are

inserted; a central axis of the gear, a plane passing through the center of a gear tooth and a

plane passing through the space between two teeth (shown in Figure 12).

Each type of gear (spur, helical, bevel, worm, worm wheel) has a separate template file. They

are modified in the same fashion as spur gears. The difference is the additional parameters; for

bevel gears: cone angle, helical gears: helix angle, worm/worm wheel: number of threads on

worm wheel. Examples of different types of gears are shown in Figure 13.

Figure 12. Planes created for gear tooth alignment

18

IV. Generate Shafts

Simple cylindrical shafts are utilized in this program, requiring information only about its

length, diameter and material. A template file is also used in a similar fashion to the spur gear.

The template file (shown in Figure 14 and Figure 15) is opened, the length and diameter

dimensions are modified and then the part is saved as a new part.

V. Generate Bearings

 If bearings have been chosen for assembly, they are generated next. For this project, a

universal ball bearing part is used. Its dimensions, shown in Figure 16, are scaled according to

Figure 13. SolidWorks Gears Generated by the tool. (Helical, Bevel, spur, Worm, Worm wheel)

Figure 14. Shaft template base sketch Figure 15. Basic shaft component fully completed.

19

the size of the shaft it attaches to. All other dimensions (outer diameter, ball size, thickness) are

proportional to the shaft diameter it is attaches to. The template for the part is opened, then the

dimensions are set, shown in Figure 16, and the part is saved as a new part.

D. Creating an Assembly

When all parts are generated and saved, they are then added together into a new Assembly

file. To add a part into an assembly using a C# macro in SolidWorks, the part file must be open.

To minimize the processing power required, each part is opened, added to the assembly and

closed. The flow chart in Figure 18 shows the process to add each gear, shaft and bearing into the

assembly. First a point is added to locate the gear within the assembly, then the gear is added and

Figure 17. Bearing component

completed

Figure 16. Bearing template base sketch (Sketch

is revolved around x-axis)

20

fixed in the assembly. Shafts and bearings are then added afterwards mating them to the gears

they attach to.

I. Adding mates with SolidWorks API

Many mates must be created in the program while defining the assembly. Mates define how

parts will move relative to each other in the assembly, essentially limiting degrees of freedom.

To add a mate, a face, line, plane or point of two parts are selected and then the mate will limit

the motion of the selected features. This process is automated by selecting the faces to be mated

through the API and applying the proper SolidWorks mate as required by the system. The code

segment in Figure 19 demonstrates how the API creates the mates, by selecting two points

(selectByID2) then adding the mate (AddMate5). All parameters for a mate are specified within

this line, including any distances or flipped configurations.

Add 3D Point Align Meshed Gear
teeth

Add Gear into
Assembly

Gear origin coincident

to the 3D Point

Set central axis parallel

to a global axis (x, y, z)

Add gear mate to
meshed gears

Add shaft into assembly

Set axis concentric to
the gear axis

Set front plane
coincident to gear origin

All shafts
added?

Lock rotation of
gears relative to its shaft

Two bearings added for
each shaft

Bearings concentric to
shaft axis

All gears

added?

No
Yes

No Yes

Figure 18. Process to create a SolidWorks Assembly

21

Figure 19. Code Segment for creating mates within SolidWorks

a. Add all Gears into an Assembly

The positions and orientation of gears are specified in x, y, z coordinates and the orientation

is set along one global axis (x, y, z). To locate the parts within the assembly, a 3D sketch is

created with a point at the coordinate of the origin of the gear. A single gear is then added into

the assembly, then a coincident mate between its origin and the corresponding point in the 3D

sketch. Orientation is then set by aligning the gears central axis parallel to the global axis in the

assembly.

b. Add Gear Mates

Gear mates are then added between the meshed gears. An attempt to correctly align the teeth

is first made by selecting the planes running through the gear tooth of one gear and the gap

between the tooth of the mating gear and setting them Coincident. This step is important in

making the gears align properly, as SolidWorks does not automatically orient parts to avoid

collision. This coincident mate is then suppressed to allow a gear mate to be inserted. The

number of teeth of meshed gears is already known, so this value is used to set the gear ratio.

c. Add Shafts

Shafts are inserted after all of the gears are positioned and aligned properly. A concentric

mate is created between the central axis of the shaft and the central axis of the gear that is on that

shaft. For any gears that are meant to be locked to the shaft (i.e. not an idler gear) a plane of the

boolstatus = swDoc.Extension.SelectByID2("Point"+(i+23)+"@Shaft coords sketch", "EXTSKETCHPOINT",
Gear[i].x, Gear[i].y, Gear[i].z, true, 1, null, 0);

boolstatus = swDoc.Extension.SelectByID2("Point1@Origin@" + Gear[i].Name + "-1@Assembly_Template",
"EXTSKETCHPOINT", 0, 0, 0, true, 1, null, 0);

myMate = null;
swAssembly = ((AssemblyDoc)(swDoc));
myMate = ((Mate2)(swAssembly.AddMate5(0, 0, false, 0, 0, 0, 0, 0, 0, 0, 0, false, false, 0, out
longstatus)));

22

gear and a plane of the shaft are set to be coincident, coupling the motion of the gear and shaft.

The shafts are then centered on the gear.

d. Add Bearings

Two instances of each bearing are inserted into the assembly. The center of the two bearings

are made concentric to the shaft they connect to, and then set coincident to either end of the

shaft. The bearings for all other shafts are then added. Once bearings are fully defined, the

assembly is complete and the program finishes execution zooming to fit the entire assembly in

frame. An example of a completed two stage gear train can be seen below (Figure 20).

II. Results

Many configurations and types of gear trains were tested to ensure proper generation. The

program has no built-in limit to the size or number of parts that may be added into an assembly,

Figure 20. Complete Gear Assembly

23

however the limiting factor tended to be the computer running SolidWorks. Limitations in C#

scripting required the parts to be opened before adding into an assembly. The sheer number of

files being opened may occasionally cause SolidWorks to crash depending on the memory

capacity of the computer. Time to complete a full assembly ranged from around 30 seconds, for

an assembly with fewer than 4 gears, to around 3 minutes to create a system with 19 gears. These

times change depending on the computer you are using. Further optimization may be possible to

cut down loading times, but it is still many times faster than any designer could ever create

manually. The system currently only creates the assembly, and assumes the user has entered the

dimensions correctly. It does not verify if the data is correct. This is a feature that would be

helpful in the future to prevent invalid parts from being generated.

a. Testing in Advanced Engineering Design Course (ME4320)

To assess the usefulness of such a tool, it was given to students enrolled in an Advanced

Engineering Design Course (ME4320) in D-term 2017 to use for a gear-train design project. The

project stated requirements of an input and output locations as well as input and output speeds.

The students then had to come up with designs for gear trains and perform stress analysis on the

system. The students were required to use the tool to generate the gear-trains that they designed

for this project. Students were asked to provide feedback as to how the tool helped and how easy

it was to use. The survey showed 90% of students successfully generated their designs using the

tool (Figure 22 below). Initially there were some issues with sharing the source code with

students, which was the main cause for why 43% of students experienced issues (Figure 22

below). Nearly every student successfully generated a gear train with very little help outside of

an instructional document reproduced in Appendix C. When asked what they liked about the

program, by far the most common response was on the time it saved, and how much simpler it

24

made the design process compared to having to find gears online or having to design each gear

individually (Figure 22 Right). Most student also found the user interface very simple and easy

to understand.

Figure 21. Example of Student generated assemblies

Figure 22. Class Survey Results

 The next section will describe how a bond graph is formed given a solidworks assembly file,

through the use of graph grammar. This is to accomplish our second objective.

Were all of your gears generated

correctly?

Yes (47%)

Yes, with some

issues (43%)

No (5%)

Other (5%)

What Alternative Method would you use to

generate a gear train?

Templates available

online or with

SolidWorks Toolbox

(38%)

Design their own

gears (48%)

Other (14%)

25

EXTRACTING BOND GRAPHS FROM SOLIDWORKS ASSEMBLIES

This section details the process of extracting SolidWorks data from an assembly and

converting that data into a bond graph. The process is illustrated by the flow chart in Figure 23

below. First, the user opens a SolidWorks assembly of a gear train. Using the SolidWorks API,

the parts and mates within the assembly are outputted to an identification graph, including mass

and size of each part. Grammar rules are then applied this graph to identify each part as a shaft or

a gear, based on the mates between each part. After all parts are identified, this system graph can

be opened by the Automated Virtual Lab program and be converted to a bond graph. This graph

is then presented to the user.

26

Figure 23: Flow Chart to Create Bond Graphs from SolidWorks Assemblies

A. Reading Part Data

To create bond graphs from a SolidWorks Assembly, the parts within an assembly must

be identified along with the relevant part parameters. This is done using the SolidWorks API by

generating lists of the parts and mates within an assembly. With these lists, each part is examined

to determine the mass, degrees of freedom (DOF), number of edges, dimensions of the bounding

27

box, and which axis the part can translate or rotate about. This information is added to a list of

labels for each part. Each mate is then examined to determine the type of mate, the parts being

mated, and the relative degrees of freedom of the two parts. Degrees of freedom are calculated

based on how parts can move in relation to each other, i.e. a gear and shaft have 0 degrees of

freedom because a gear is fixed to a shaft, and the two cannot translate or rotate independently.

All this information is then exported as a GraphSynth compatible XML file. A node is created

for each part, with each identified property added as a local label. Each mate is added to the

XML file as an arc with the endpoints being the two parts being mated. An arc is created for the

type of mate as well as an arc for the degrees of freedom between the two parts. The code snippet

below shows an example of how an arc is defined:

Figure 24: Code segment to define an arc connecting two nodes

The name of the arc is comprised of the name of the two nodes connected by the arc. As

nodes are named in nX convention (n0, n1, …) as opposed to part names, a lookup dictionary

linking part names to node names is used to find the correct node for a given part. The start and

end node are identified the same way. An arc label is added for the degrees of freedom as well as

the name of the mate between the two parts.

The resulting graph is called the Identity Graph of the system. A sample identification

graph is shown below in Figure 25, which shows the identification of a three-stage gear train

containing six gears and three shafts. The label of ‘0DOF’ on the arc signifies that the two parts

are fixed to each other, and so have no degrees of freedom relative to each other. The

arc.Name = nameLookup[(string)swComp.Name2] + nameLookup[(string)swComp2.Name2];
arc.start = nameLookup[(string)swComp.Name2];
arc.end = nameLookup[(string)swComp2.Name2];
arc.label = DOF[2, 0] + "DOF,";
arc.label = arc.label + swMateCodes[swMate.Type];
arc.label = arc.label.TrimEnd(',');

28

‘Coincident’ label is the primary mate between the two parts, which is copied from the

SolidWorks definition. In this graph, the top node is a shaft, the next two are a gear pair, next is a

shaft, followed by another gear pair, another shaft, and then the final gear pair. These nodes can

be identified by the connecting mates as well as the number of edges on each part (shafts have

fewer edges than gears).

Figure 25: SolidWorks Identification Graph

B. Creating System Graphs

Once the data has been retrieved from SolidWorks and transformed into an identity graph, it

must be adapted into a format that is readable by the AVL program. The identity graph is opened

and a set of GraphSynth rules converts it into a system graph (Figure 27), which is the type of

29

graph needed to generate bond graphs. These rules are organized into a SolidWorks

Simplification ruleset.

 These rules operate by first finding a definitive mate. A definitive mate is a mate that

gives insight to the type of parts being mated. For example, a gear mate signifies that the two

parts being mated are each a gear. When an arc labeled ‘GearMate’ is found in the identity

graph, the two LabelGears rules (one of which is shown in Figure 26 below) add the labels

‘Gear’ and ‘Include_Inertia’ to each node at the endpoint of the arc. The ‘Gear’ label indicates to

the Bond Graph program that the part is a gear and that transformers should be added between

the two nodes. The ‘Include_Inertia’ label indicates that the part has a moment of inertia and

should have an ‘I’ element added to the 1 junction of the gear. The left portion of the rule shows

what the rule is searching for, and the right section shows the output of the rule. The

‘LabelShaft’ rules identify shafts as parts that have zero degrees of freedom relative to a gear, so

the rules look for nodes that have a 0DOF arc attached to a node with a ‘Gear’ label. When this

condition is met the labels ‘Shaft’ and ‘Include_Stiffness’ are added to the node. The

‘Include_Stiffness’ rule indicates that a C element should be added off of the 0 element of the

shaft. A complete step-by-step process of the rule application can be seen in Appendix D: Rules

to Generate System Graphs.

Figure 26: LabelGears Rule

30

After all rules have been processed and all nodes have appropriate labels applied, the

resulting graph is a system graph readable by the AVL program. An example of this graph is

shown below in Figure 27, the changes to the identity graph are noted in red. Each node, in

addition to the part properties which existed in the previous graph, has two labels added: either

‘Include_Inertia’ and ‘Gear’, or ‘Include_Stiffness’ and ‘Shaft’. Labels on the arcs have been

removed and the arcs are currently directionless.

Figure 27: SolidWorks Assembly System Graph

The existing rule sets from the AVL are used to create a bond graph from this system

graph, with some modifications. Rules were either added or modified to create the appropriate

31

gear and shaft nodes. Previously, to create a 1 junction with an I element, a node with the ‘Gear’

label was changed to a 1 junction, and a new node with the label ‘I:J_Added_Inertia’ was

created. This created a problem where the part properties would be attached to the 1 junction,

rather than the I element where they belonged. To solve this, the modified rules first change the

node with the ‘Gear’ and ‘Include_Inertia’ labels to an I element, a new node is created for the 1

junction, and all existing arcs attached to the ‘Gear’ node are moved to the new 1 junction node.

The same method is used to solve a similar issue with shafts and their stiffness: A new 0 junction

is created, and the shaft node is changed to a C element to keep the part information with its

appropriate element. It is important that these modified rules be applied after the rules which

create transformers, as the transformer rules are based on finding two connected nodes which

contain the ‘Gear’ label and adding a transformer node between them. This must happen first as

after the new 1 and J elements are created, the nodes labeled ‘Gear’ are no longer directly

connected because they have the 1 junctions between them. A completed bond graph can be seen

below in Figure 28Error! Reference source not found.. There is an I element representing a

gear’s inertia off of each 1 junction, there is a C element off of each 0 junction representing the

torsional shaft stiffness of each shaft. A ‘TF_GearMesh’ node was added to represent the change

in rotation between a gear mesh.

C. SolidWorks Identification Results

The combination of the SolidWorks Identification program and the associated rules can

properly create a system graph of a gear train from a SolidWorks assembly. The AVL program

can interpret this generated system graph and create an accompanying bond graph. This

completed bond graph can be seen below in Figure 28. Comparing this graph to the system graph

32

in Figure 27, the 0 and 1 junctions as well as the transformer elements between 1 junctions have

been added.

Figure 28: SolidWorks Assembly Bond Graph

33

ANALYZING BOND GRAPHS

This section presents a method for automatically generating state equations and then an

improved method for assigning bond directions while creating a bond graph.

A. State equations

The main goal of the bond graph is the derivation of dynamic state equations. It would be

ideal to be able to automate this process as it allows users to easily check their work, or avoid

having to do manual calculations altogether.

State equations are used to determine variation between the displacement and momentum

variables of energy storing elements in a system. Each element in a system has two variables

associated with it; a “flow” and an “effort” variable. The “flow” variable corresponds to the

element’s velocity, current, or air flow in the system. The “effort” variable corresponds to its

force, voltage or pressure exerted. In any system, a few of these variables will be assigned as

state variables, determined by assigning causality and finding the integral I and C elements. A

state variable assignment indicates that the element is in energy storing mode.

 The Automated Virtual Lab is able to take the system graph, generate causal bond graphs

and identify the state variables. From these causal graphs, grammar rules are used to generate the

state equations. However, this is not simply accomplished with just grammar rules. The main

issue is the equations are unique for each element in the system, and so cannot be handled by

rules alone. To keep track of the equations as they are formed, a C# program runs in the

background in between rule-checks and rule-applications.

The flow chart given in Figure 29 shows the overall process of deriving state equations.

Two sets of graph grammar rules are used to identify all flows and efforts in a system. Each time

34

a flow or variable equation is derived, that corresponding node is marked with the label

“knowneffort” or “knownflow” to signify that the equation has been created. An equation, or

partial equation can then be generated any time another variable is known. Once all nodes have

one of these labels, the graph is solved and the equations being stored in the background can be

formatted and displayed.

35

 Figure 29. Flow chart for generating state equations

36

Figure 29 (continued)

1. Format graph

The subsequent rules assume that the flow and effort terms are associated with nodes. As a

result, the causality graph must be altered slightly before the other rules are applied. Any arcs

connecting a 1 junction and a 0 junction must be split such that a node exists between them to

track effort and flow between the junctions. Four rules have been created to account for all

combinations of arrows, pointing from 01 or from 10 and then with a label of OPP or

SAME. The four rules follow the same pattern, but identify different labels. Figure 30 shows one

of these rules and how it results in an intermediate node.

37

2. Find integral and source elements

The state variables associated with integral I and C elements can be identified using two

rules. Once a state variable is identified in the graph, this node is recorded as a state variable in

the C# program. If an integral I node is identified, then its flow may be determined through

equation 1 below. The bond graph rule will mark this junction with a “knownflow” because the

flow variable has an equation.

Table 1. List of Equations used for rules

Element Integral Causality Equation Derivative Causality Equation

I-element 𝑓 =
1

𝐼
 ∫ 𝑒 𝑑𝑡 (1) 𝑒 = 𝐼

𝑑𝑓

𝑑𝑡
 (2)

C-element 𝑒 =
1

𝐶
 ∫ 𝑓 𝑑𝑡 (3) 𝑓 =

1

𝐶

𝑑𝑓

𝑑𝑡
 (4)

R-element 𝑓 =
1

𝑅
𝑒 (5) 𝑒 = 𝑅𝑓 (6)

Rules are also developed to search for input sources (forces or velocity sources). The

corresponding variables can be substituted for a time varying force or effort, and the source’s

node is marked as “knownflow” or “knowneffort”. Figure 31 shows the rule to identify a source

of flow. A source of effort uses the same rule with labels for Se instead of Sf.

Figure 30. Bond graph rule to add intermediate node

38

Figure 31. Identifying a source of flow in the bond graph

3. Apply derivative rules

With all state variables and sources identified, and the corresponding equations

generated, it is possible to apply derivative causality rules. The rules look for nodes with

derivative causality; an I or R node with an arc pointing away with the OPP label, or a C

node with an arc pointing toward itself. Figure 32 shows the rule to identify an I element

in derivative causality. If an “I” node has a known flow and is in derivative causality, the

expression for its effort variable can be derived using equation 2 in Table 1. List of

Equations used for rulesTable 1 above. If there are no identified nodes, then the program

moves on to step 4.

4. Apply summation and equal flow and efforts at junctions

Figure 32.Rule to identify Derivative Causality for an I element

39

If the flow at a 1 junction is known for some connected element, then all other flows

of that junction are equal to that value. The same is true if an effort is known connecting

to a 0 junction. These two conditions are tested for, and all other nodes attached to that

junction are set equal to the known value.

Figure 34. Equal Efforts at a 0 junction

If this ruleset made a change to the graph, then it will return to step 3 and check if there are

any new identified rules. If no changes have been made, then the program will continue.

5. Check if equations are solved

The program now checks for any nodes without both known flow and known effort labels. If

there are none, then all of the equations are complete and the system is solved. This will be the

case when there are more integral elements than derivative. If the graph is not fully solved then

the program will assign one element’s flow or effort to be known, even if it is not. This node is

recorded and then the program goes and checks to see if any more rules can be identified with

Figure 33. Equal flows at a one junction

40

this new known element. This effectively creates a “pseudo known” variable. This may occur

multiple times while solving for state equations, leading to multiple pseudo known variables.

The pseudo known variables still result in valid equations, but the equations generated will

now have state variables and the pseudo known variables. Each additional pseudo variable

introduced will result in one additional equation. This is one of the current limitations of the

program as it cannot solve for just the state variables in large systems with many derivative

elements. It may be possible to use some form of symbolic manipulation or algebra either with

MATLAB or in C# directly to allow the system of equations to eliminate the pseudo known

variables.

6. Format equations for output

Once all variables are known, the initial formatting of the graph, where intermediate nodes

were added, is now removed reverting the graph to its state prior to creating the state equations.

The state variables and their derived equations are then displayed in the console screen.

B. Results

To verify that the rules were properly generating, a simple mass spring damper system was

tested. The equations generated match completely with a manual solution to the system.

Solved Equations:

P'2 = R1*(1/M2*P2)+K3*x3+F4(t)

x'3 = 1/M2*P2

Figure 35. Causality bond graph of mass spring damper system

41

When using the program for systems that have a large numbers of elements, especially in

derivative causality, the program may fail to solve for all terms. This can happen when there are

too many unknowns. The same issue can arise when the graph has loops, where nodes connect

back in a circle. This situation can prevent the rules from identifying the correct configurations.

C. Direction of Bond Graphs

The majority of the bond graph generation was completed by the previous MQP [3], [4]. One

task that needed further work was assigning the directions of the bond graph arrows throughout

the graph. The program previously assigned directions randomly, dependent only on which

nodes were created first. It is important to consider the correct direction, as these arrows

determine the direction of motion or rotation of a system.

It is necessary for the program to know where the input location of a system is to identify the

correct direction of flow throughout a system. While it would be possible to detect the input by

looking for a source of flow or effort, there may be multiple of these within a single system

making it more convenient for the program to explicitly know the start location. This was

accomplished by introducing a new label to the graph, a start node. This is attached with an arc

to the starting location.

Additional direction nodes are also specified to indicate that the velocity of a node is in the

positive or negative direction. This is signified by attaching a –x or +x to inertial nodes (Figure

36).

42

Figure 36. Direction assignment to the nodes

Figure 37. Rule to apply start direction to system

Rules then modify the graph so that all direction arrows point away from the starting location

(Figure 38). This propagates throughout the system, until all direction labels have been applied.

Figure 38. Rule to propagate positive direction through the system

Now any nodes that have a negative direction associated with them should be flipped(Figure 39).

This is done with an additional rule to switch the connected arcs.

43

Figure 39. Rule to flip arc direction

The start labels and direction nodes are now removed from the graph, completing direction

assignment.

D. Bond Graph Results

The changes to the bond graph program enables all directions to be set by the user, and

ensure the direction of energy flows throughout the system is correct. In the event that there are

nodes where a + or – direction have not been assumed, then a positive direction is assumed. It

has also been designed such that the directions could eventually be applied in other dimensions

other than just x, allowing for 3D systems to have directions assigned.

44

CONCLUSIONS

During this project, solutions to three limitations in design automation have been provided.

The first solution provides the ability to automatically generate gear train parts and assemblies in

SolidWorks to provide good visualization to users of design automation tools. This speeds up the

design process by allowing many designs to be generated and analyzed in quick succession. The

tool was tested among students in a design course and favorable feedback was received. The

solution has been devised in such a way that automated gear-train designs found in XML format

can also be extracted to 3D models.

The second solution is the ability to extract dynamic models of transmission systems using

the bond graph technique. This system allows a user to apply dynamic analysis directly to a gear

train and continue with bond graph modeling. This provides a more visual demonstration of how

bond graphs relate to mechanical systems.

The final solution involved provides the ability to extract state equations directly from a bond

graph through the use of graph grammar rules. This is the final part to the automated bond graph

modeling, allowing all stages of a bond graph to now be generated. State equations were verified

for basic systems, proving that the method for solving was correct. This tool will allow large

systems to be quickly solved, preventing the need for manual calculations.

These solutions are developed for use in classrooms, providing tools to students to

understand more complex engineering systems with less tedious handwritten work. Students will

have gained an understanding of the topics in design through simple problems, and then this tool

will augment their coursework to visualize and generate complex systems.

45

A. Recommendations and Future Work

Additional work could be done to these programs to streamline the process, fix minor

bugs, expand the functionality, and make it more user friendly.

I. Automated Gear Generation

With regards to the gear generation portion of this project, the code can be further

optimized to reduce system resource usage. In the current iteration it is required that a part must

be open to be added to the assembly. Having many parts open, especially in large gear trains,

uses a significant amount of RAM on the user’s computer. Modifying the assembly process by

changing how parts are added can reduce the use of RAM. Additional gears, such as helical

bevel gears and planetary systems could be added to broaden the scope of this program. The

creation of shafts could also be automated. Currently shafts need a specified length and diameter

when using the GUI, and are placed centered within the first gear they are mated to. In the future,

the diameter of shafts could be determined automatically from the bore diameter of the mated

gears, and the length and position could be determined by the placement and distance between

gears on the shaft. The survey completed in the ME4320 class also asked for recommendations.

Common recommendations included, adding the ability to adjust shaft location, and

automatically creating and inserting shafts based on the gears’ locations. Some students also

suggested that gear locations be automatically determined by using the gears diameter.

II. Extraction of Bond Graph

Additional functionality could also be added to the SolidWorks identification portion of

the program. Currently the rule sets can only identify shafts and gears in a gear train. To broaden

the scope of this tool future versions should identify more systems, such as springs, levers,

dampers, and other common mechanisms. Given the parameters read from SolidWorks (mass,

46

material, size, and contact areas, etc.), numerical values for inertia, stiffness, or damping

coefficients could be calculated automatically.

III. State Equations and System Response

Assigning causality and state equation generation can be improved upon by building in

MATLAB functionality. Scripts can be written to solve and graph the differential state equations

that are generated. Currently equations are displayed in the console window, and then would be

copied into a MATLAB program and then solved. Removing this step would simplify the

process and demonstrate how to solve the equations while generating.

Lastly, all aspects of this activity can be compiled into a singular program. Currently the

gear generation, SolidWorks identification, and bond graph tools reside in three separate

programs. The SolidWorks identification portion can be merged into the Automated Virtual Lab,

which currently handles the bond graph generation, assigning causality, and generating state

equations. Merging these aspects would allow for a more intuitive process to take a SolidWorks

assembly into a bond graph or to create the SolidWorks Assembly.

47

REFERENCES

[1] Schmidt, L., Shetty, H., and Chase, S. "A Graph Grammar Approach to Mechanism

Synthesis." ASME J. Mech. Des. (2000): 371–376.

[2] Li, X., & Schmidt, L. "Grammar-Based Designer Assistance Tool for Epicyclic

Gear Trains." Journal of Mechanical Design (2004): 126(5), 895.

doi:10.1115/1.1767823.

[3] Mancini, F., Grande, D., & Radhakrishnan, P., "An Automated Graph Grammar

Based Tool to Automatically Generate System Bond Graphs for Dynamic Analysis,"

Volume 1B: 36th Computers and Information in Engineering Conference, 2016.

[4] Mancini, F., Grande, D., & Radhakrishnan, P, "An Automated Virtual Lab for Bond

Graph Based Dynamics Modeling Using Graph Grammars and Tree Search," Volume

5: Education and Globalization, pp. doi:10.1115/imece2016-66110, 2016.

[5] "20-Sim," [Online]. Available: http://www.20sim.com/.

[6] X. Xu, Integrating Advanced Computer-Aided Design, Manufacturing, and

Numerical Control: Principles and Implementations, IGI Publishing, 2009, pp. 90-92.

[7] W. Fu, A. Eftekharian, P. Radhakrishnan, M. Campbell and C. Fritz, "“A Graph

Grammar Based Approach to Automated Manufacturing Planning," in ASME 2012

International Design Engineering Technical Conferences, Chicago, 2012.

[8] Stock Drive Products/ Sterling Instrument, ELEMENTS OF METRIC GEAR

TECHNOLOGY.

48

[9] R. L. Norton, Machine Design: An Integrated Approach, New Jersey: Prentice Hall,

2006.

[10] Swantner, A., & Campbell, M. I, "Topological and parametric optimization of gear

trains," Engineering Optimization, pp. 44(11), 1351-1368.

doi:10.1080/0305215x.2011.646264, 2012.

[11] Tudose, L., Buiga, O., Ştefanache, C., & Sóbester, A., "Automated optimal design

of a two-stage helical gear reducer," Structural and Multidisciplinary Optimization, pp.

42(3), 429-435. doi:10.1007/s00158-010-0504-z, 2010.

[12] Kwon, H. S., Kahraman, A., Lee, H. K., & Suh, H. S., "An Automated Design

Search for Single and Double-Planet Planetary Gear Sets," Journal of Mechanical

Design, p. 136(6), 2014.

[13] Lin, Yi-Shih, Kristina Shea, Aylmer Johnson, John Coultate, and Jamie Pears."A

Method and Software Tool for Automated Gearbox Synthesis," Proceedings of the

ASME 2009 International Design Engineering Technical Conferences & Computers

and Information in Engineering Conference, 2009.

[14] Schwarz, C., Bachinger, M., Stolz, M., & Watzenig, D, "Tool-driven Design and

Automated Parameterization for Real-time Generic Drivetrain Models," MATEC Web

of Conferences, pp. 28, 03001. doi:10.1051/matecconf/20152803001, 2000.

[15] "3D CAD Design Software SolidWorks", [Online]. Available:

http://www.solidworks.com/.

[16] "Romax Technology," [Online]. Available: https://www.romaxtech.com/.

49

APPENDIX A: PSEUDO CODE OF GEAR GENERATION

GET list of all running processes on computer

IF SolidWorks is not running
 Start SolidWorks process, wait until it is loaded

IF SolidWorks should run in background

 Set SolidWorks app to be invisible
ELSE

 Make SolidWorks visible

IF data is from xml document
 GOTO reading xml

ELSE read GUI data

FOR all gears to be created

 CASE: type of gear

 spur:
 open spur template file

 set Number of teeth

 set Gear width
 set Bore diameter

 set Pitch

 set Material
 Rebuild the part

 Save part to the output directory

 bevel:
 open bevel template file

 set Number of teeth

 set Cone angle
 set Gear width

 set Bore diameter

 set Pitch
 set Material

 Rebuild the part

 Save part to the output directory
 helical:

open helical template file

 set Number of teeth
 set Gear width

 set Bore diameter

 set Pitch
 set Material

 set helix angle

 IF right hand helix angle

 Unsuppress right hand tooth cut and pattern

 ELSE left hand helix angle
 Unsuppress left hand tooth cut and pattern

 Rebuild the part
 Save part to the output directory

 worm:

open worm template file

 set Number of teeth

 set Gear width
 set Bore diameter

 set Pitch

 set Material
 set gamma angle

Rebuild the part

 Save part to the output directory
 worm wheel:

open worm wheel template file

 set Number of teeth
 set Gear width

 set Bore diameter

50

 set Pitch

 set Material
 set gamma angle

 set number of threads of meshed worm wheel

Rebuild the part
 Save part to the output directory

 END CASE

END FOR
Close all documents

FOR each shafts in the assembly

 open shaft template file

 set shaft diameter
 set shaft length

 set material

 rebuild the part
 Save shaft to the output directory

 IF bearings are being added
 open bearing template file

 set shaft diameter

 rebuild the part
 Save shaft to the output directory

END FOR

Open all gear and part files

FOR each gear to be added

 Add the gear into the assembly

 Close the gear part file
 Add a point into the 3D sketch (location of gear’s coordinate)

 Make sketch point and gear origin coincident

 Make Gear central axis parallel to its axis of rotation (x/y/z)
END FOR

FOR all gears in the assembly
 FOR each other gear in assembly

IF two gears should be meshed

 Align one gears “Gear_GAP” with other gear’s “Gear_TOOTH” plane
 Suppress this mate

 Add gear mate, use number of teeth for ratio

 END FOR
END FOR

FOR each shaft to be added
 Add shaft into the assembly

 Set shaft axis concentric to the gear it connects to

 Center the shaft on the gear (distance mate with distance=0)
END FOR

FOR all gears
 IF gear is locked to shaft (not idler)

 Make plane of gear and plane of shaft coincident

END FOR

FOR each shaft with a bearing

 Add corresponding bearing to the assembly
 Make concentric to shaft

 Align to the end of the shaft

 Add a copy of the bearing

 Make concentric to shaft

 Align to the other end of the same shaft
END FOR

Save completed assembly as assembly and as Edrawing
Zoom to fit Assembly

51

APPENDIX B: STUDENT GENERATED GEAR TRAINS

Gear Designs Courtesy of ME4320 Class Members: (From top down) Mathew Lepine, Fredrick

Burgwardt, Mackenzie Miner, Aaron Pepin, Kayleah Griffen, Alessandra Paolucci.

52

APPENDIX C: USER GUIDE FOR GENERATING GEARS

Overview:
This program was created to speed up the creation of solid model gear files and assemblies. Users specify

various design parameters for each gear, shaft and assembly and then the program uses solid works API

tools to generate the models.

System Requirements
OS: Windows 7/10

Installed Programs: SolidWorks 2016 (potential compatibility issues with other release versions)

To run the program, download all of the files and place the folder somewhere on your PC. Then Run the

SW Gear Generation shortcut located in the main folder:

It is recommended that SolidWorks already be running, with no solidworks files open when gear

generation begins.

The large number of files being generated and opened at once can tax your computer system or

SolidWorks depending on the resources available.

User Interface
Upon opening you will be presented with this screen:

You can begin entering gear information right away into the columns in the fields. You may also load

information from previously generated files by clicking “Load Gears”.

All text fields must be entered for a gear to generate properly.

53

Step 1: Enter Gears and shafts:

The first tab is where you specify the details about each gear you create.

Name: The can be any name you want, the SolidWorks part file will have this name

Type: (Spur, Bevel, Helical, Worm*, Worm Wheel*) *Work in progress, not currently functional

Bore Diameter: The size of the hole that the shaft fits through

Pitch/Module: Enter diametral pitch if working in Imperial, enter module if in metric

Cone Angle: Bevel gears only, (Set to 0 if any other gear)

Helix Angle: Helical gears only. Enter a (+) angle for right hand cut and (-) for left hand cut (set to 0 if

any other gear)

Material: Sets material from some common Materials in Solid works, can be manually changed later

Step 2: Creating an Assembly
Next switch to the Create assembly tab to enter information for the assembly.

You must specify gears and shafts in the Create parts tab before entering data here.

Origin

54

Coordinates: Coordinates are specified from the center of the gear along its axis of rotation.

Axis of rotation: Sets which axis the gear rotate about.

Idler: If checked the gear will not be lock to the shaft it is centered on

Connected Gear: Used to specify gear meshing. If two gear should mesh, set the “connected gear” to the

other gears name.

Ex: Gear A and Gear B should mesh together

Multiple gears in a row: To create a “chain” of gears the first gear is connected to the second gear. The

second gear is connected to the third. The final gear is then connected to the first

Ex: 4 gears meshed together in a row

-Gear D may be connected to another gear, or if it is only on a shaft, Select itself as the connected gear.

** The two gears aren’t guaranteed to align correctly just because they are meshed. The distance between

the gears is specified by setting the coordinates of each gear. Teeth will line up, but there are some known

issues with having the teeth align correctly. **

Connected Shaft: Specify the shaft that the gear should be attached to. Multiple gears may exist on the

same shaft. All gears should have a shaft specified

Step 3: Settings
Before creating the parts, ensure that the settings are properly set:

A B C D

Another gear

55

Specify Output Folder: The output folder is where all files will be created and saved. You may leave it

blank, the system will prompt you to select a folder when you begin creating the part.

**Any Files with the same part names in the output folder will be overwritten, including the

configuration.csv file**: make sure you don’t have any files that will be lost!

Units: All units are specified by the two buttons on the left of the program. If

metric is selected, dimensions will be in millimeters, grams, seconds. If imperial

units are; Inches pounds seconds. All angles are in degrees.

If you wish to only create the parts, uncheck the “Create Assembly”. If the parts have

already been created, and are located in the Output folder, then you may uncheck

“Create Parts”. Unchecking “Create Parts” is not recommended as the assembly

may fail if the parts have been changed or features are missing from the part.

If checked bearings will automatically be added to either end of all shafts. The bearings are

simple mock ups of bearings, and act more as place holders than properly designed bearings.

Make sure that SolidWorks is open now!

After entering all specifications and you are ready to create the gears, click create.

Step 4: Waiting

Once pressing “Create”, the system will begin to initialize SolidWorks. It starts creating all the parts, then

adds them into the assembly one at a time, creating all the necessary mates and relations to create the

files. The entire process should take less than a few minutes (system dependent), approximately 60-90

seconds for a system of 6 gears and shafts.

- Once complete, the assembly file will be opened and displayed in solid works.

- All files are now created in the output folder specified.

- A file called “Gear config.csv” is also created, which contains all the data for the system. If you

need to modify your system later you can load this into the program by clicking “Load gears”.

If you come across any bugs or need assistance, please email us:

cjalicchio@wpi.edu , jsvitiello@wpi.edu, crtaylor2@wpi.edu

mailto:cjalicchio@wpi.edu
mailto:jsvitiello@wpi.edu
mailto:crtaylor2@wpi.edu

56

APPENDIX D: RULES TO GENERATE SYSTEM GRAPHS

The following rules convert an identity graph to a system graph. The first rule, ‘LabelGears’ (Figure

40) adds the labels ‘Gear’ and ‘Include_Inertia’ to two nodes connected by a Gearmate arc, and then

removes the Gearmate arc.

Figure 40: LabelGears Rule

The next rule, LabelShafts (Figure 41), adds the labels of ‘Shaft’ and ‘Include_Stiffness’ to a node which

is connected to a ‘Gear’ node and which also does not have the ‘Gear’ label already applied.

Figure 41: LabelShafts Rule

The RemoveCoincident rule, Figure 42,removes the ‘0DOF’ and ‘Coincident’ labels from an arc

connecting a gear to a shaft, as these labels are no longer needed.

57

Figure 42: RemoveCoincident Rule

The RemoveGearmate Rule, Figure 43, confirms that there is no Gearmate arc between two gear

nodes. Without this rule there would be multiple arcs connecting two nodes, which is not

expected by the AVL program.

Figure 43: RemoveGearmate Rule

The last rule, RemoveGear0DOF (Figure 44), is similar to the previous in that it assures there are

no extraneous arcs connecting gear nodes. In this case it removes the 0DOF arc.

Figure 44: RemoveGear0DOF Rule

58

APPENDIX E: RULES TO GENERATE STATE EQUATIONS

A. Rules to Format Graph

Figure 45. Rule to add intermediate nodes, configuration 1

Figure 46. Rule to add intermediate nodes, configuration 2

Figure 47. Rule to add intermediate nodes, configuration 3

Figure 48. Rule to add intermediate nodes, configuration 4

59

B. State Equation Ruleset 1

Figure 49. Rule to identify integral causality

Figure 50. Rule to identify integral causality of C element

Figure 51. Rule to identify source of flow

Figure 52.Rule to identify a source of effort

60

C. State Equation Ruleset 2

Figure 53. Rule to identify derivative causality of C element

Figure 54. Rule to identify derivative causality of I element

Figure 55. Rule to identify derivative causality of R element

Figure 56. Rule to identify integral causality of R element

Figure 57. Rule to identify gyrator node with known effort

61

Figure 58. Rule to identify gyrator node with known flow

Figure 59. Rule to identify transformer node with known effort

Figure 60. Rule to identify 0 junction with a known source of effort

Figure 61. Rule to identify 1 junction with a known source of flow

62

D. State Equations Summation at junction

Figure 62. Rule to indicate if a node has been used in a summation equation of a 1 junction

Figure 63. Rule to indicate if a node has been used in a summation equation of a 0 junction

Figure 64. Rule to mark if node can be summed at 0 junction

Figure 65. Rule to mark if node can be summed at 0 junction

Summation can only occur if only 1 node has an unknown flow, if two or more exist, then the

summation ruleset cannot be applied, so the node is marked with “NoSum”.

Figure 66. Rule to apply the summation equation to at node at a 0 junction

63

Figure 67. Rule to apply the summation equation to at node at a 1 junction

64

AUTHORSHIP

Corey Alicchio Justin Vitiello Callum Taylor

calicchio1@yahoo.com vitiellojs@gmail.com callumtaylor@icloud.com

The table below describes which aspects of the report each team member contributed to

outlined by section. Primary editing was done by Callum Taylor, with each team member

reviewing all the sections.

Abstract ... Alicchio, Taylor, Vitiello

Executive summary ... Vitiello

Introduction ... Vitiello

Literature Review.. Alicchio, Vitiello

Objectives: ... Alicchio

Design and Implementation

A. Automated Creation of SolidWorks Assemblies

I. Read Data from User Entry .. Alicchio

II. Interpreting Graph XML Data .. Taylor

III. Generate Gears, Shafts and Bearings ... Alicchio

IV. Creating an Assembly .. Alicchio

V. Results .. Alicchio

B. Extracting Bond Graphs from SolidWorks Assemblies

I. Reading part data .. Vitiello

II. Creating System Graphs ... Vitiello

III. SolidWorks Identification Results .. Vitiello

C. Analyzing Bond graphs

I. State equations ... Alicchio

II. Results .. Alicchio

III. Direction of Bond graphs ... Alicchio

IV. Bond Graph Results ... Alicchio

Conclusions ... Vitiello, Alicchio

A. Recommendations and Future Work .. Vitiello, Alicchio

mailto:calicchio1@yahoo.com
mailto:vitiellojs@gmail.com

