
This dissertation/thesis/report entitled:

written by:

2 - Department Chair or Committee Member Name

3 - Committee Member Name

4- Committee Member Name

5 - Committee Member Name

has been approved for the degree of:

in

1 - Advisor Name

6 - Committee Member Name

Month YEAR

by

The Learning and Communication Complexity of Subsequence Containment

Mason T. DiCicco

Master of Science

Computer Science

Prof. Daniel Reichman, Advisor

Prof. Gabor Sarkozy, Reader

December 2022

The Learning and Communication Complexity of Subsequence

Containment

Mason DiCicco∗ Daniel Reichman∗

November 21, 2022

Abstract

We consider the learning and communication complexity of subsequence containment. In the
learning problem, we seek to learn a classifier that positively labels a binary string x if it contains
a fixed binary string y as a subsequence. In the communication problem, x and y are partitioned
between two players, Alice and Bob, who wish to determine if x contains y as a subsequence
using a minimal amount of communication. We devise asymptotically tight bounds for the
sample complexity (VC dimension) of the learning problem and the communication complexity
of the communication problem. Our results illustrate that the sample complexity of our learning
problem can be considerably larger when the subsequence occurs in non-contiguous locations.

1 Introduction

Given a string x of length n and a string y of length k ≤ n, we say y is a subsequence of x if
all of the characters of y appear consecutively (but not necessarily contiguously) within x. The
subsequence detection problem is to determine, given x and y, whether y is a subsequence of x.
We study the communication complexity of this problem: the minimal communication required to
compute whether y is a subsequence of x when the characters of x and y are partitioned between
two parties, Alice and Bob. We primarily focus on binary sequences, but some of our results extend
to arbitrary alphabets.

Subsequence detection has been described as “one of the most interesting and least studied
problems in pattern matching” by [JS21]. From the learning perspective, non-contiguity seems
to arise in certain applications; important features input data could be rather fragmented. In
particular, time series (e.g., [KC17]), linguistic (e.g., [SCC+05]) and genetic (e.g., [TMAM20])
features are often non-contiguous. For example, subsequence anomaly detection for time series
data (as defined by [KLLVH07]) is a widely studied problem in computer science with a variety of
applications. It has been used to detect irregular heartbeats by [HNAK16], machine degradation
in manufacturing by [MMP+13], hardware and software faults in data-centers by [PFT+15], noise
within sensors by [BNR+18], and spoofed biometric data by [FAAK19]. Detecting subsequences is
also useful in computational biology and has led to deep theoretical questions such as the study of
the expected size of the longest common subsequence between two uniformly random strings [CS75].

In many applications, the strings that are considered with respect to subsequence detection
have lengths in the millions. This can lead to a significant slowdown when attempting to find
subsequences in a long data stream. End users with limited computational capacity may share their
stream with a party with more computational resources, motivating the question of communication

∗Computer Science Department, WPI. [mtdicicco@wpi.edu, dreichman@wpi.edu]

1

complexity. That is, how many bits of communication need to be exchanged in order to allow
the party with more computational resources to solve the problem. Additionally, the existence or
nonexistence of a subsequence can be useful in classification, and it is of practical and theoretical
interest to understand how the sample complexity of subsequence-dependent classifiers depends on
n and k, the lengths of the string and subsequence respectively.

We provide nearly tight bounds for the communication complexity of subsequence detection
under a variety of settings (randomized vs. deterministic communication, different partitions of
x, y between the two parties, and whether or not the length of y is fixed). We show that, up to log
factors, the communication complexity of this problem scales like O(k). This is somewhat surprising
as our bounds hold for arbitrary partitions of x and y (not just the natural partition where Alice
holds x and Bob holds y). We complement these upper bounds by providing a nearly matching
lower bound of Ω(k). We note that the communication complexity of detecting a substring in
contiguous locations under arbitrary bi-partitions is Ω(n) for k = 2, as shown by [GGRS19].

Next, we consider the VC dimension of a family of subsequence classifiers defined by containing
a fixed subsequence. That is, every classifier is parameterized by y ∈ {0, 1}k such that x ∈ {0, 1}n is
classified as 1 if and only if x contains y as a subsequence (for a precise definition, see Definition 9).
We prove that the VC dimension of this family of (length k) subsequence classifiers is Θ(k). [SVL14]
show that in some cases it is beneficial not to assume any upper bound on the length n of the string
being classified. Our bounds on the VC dimension easily extend to this case as well. In either
case, we are not aware of previous bounds on the VC dimension of this family. Our methods
can also be used to bound the VC dimension of classification based on supersequences, where a
sequence of length k evaluates to 1 if and only if it occurs in a fixed sequence of length n ≥ k as a
subsequence. This classification problem resembles trace reconstruction as in [BKKM04] and may
be of independent interest.

Our methods are straightforward. Lower bounds are proved using reductions from set-disjointness,
and upper bounds are proved using simple protocols. Our reduction between subsequence con-
tainment and the disjointness problem is useful also in lower bounding the VC-dimension of the
subsequence classifiers we study. This expands on the work of [KNR99] in that it serves as another
illustration of the connection between lower bounds from communication complexity and learning
theory.

While elementary, our proofs and reductions differ from those appearing in previous stud-
ies of the communication complexity of string related problems (e.g., [SW07, LNVZ06, GGRS19,
BYJKK04]). Furthermore, our results uncover a qualitative difference between learning complexity
of the contiguous versus the arbitrary. When the classifying subsequence is required to occur in con-
secutive locations within the string, the VC dimension of the classification problem was shown by
[GGRS19] to be uniformly upper bounded by O(log n) (regardless of the length of the subsequence
k). In contrast, when the contiguity requirement is dropped, the VC dimension of subsequence
classifiers turns out to be Ω(k) – which can be exponentially larger than log n (for k = Ω(n)).
Furthermore, this lower bound holds even if we restrict the occurrence of the classifying substring
to have gaps not larger than one; every two characters of the subsequence either appear next to one
another or are separated by at most one character. We should remark that we make no attempt
to optimize constant factors: we are primarily concerned with the asymptotic complexity in the
learning setting.

1.1 Definitions

Definition 1 (Alphabets). Let an alphabet Σ be any set of symbols (for instance, the binary
alphabet {0, 1}). Then, we denote Σn the set of length-n strings over Σ. Sometimes we consider

2

strings of arbitrary length by Σ∗.

Definition 2 (Subsequence Detection). For n ≥ 1 and alphabet Σ, define the Boolean function
SSDn(x, y) whose inputs are strings x ∈ Σn and y ∈ Σ∗ and whose output is 1 if and only if y is a
subsequence of x.

We also define SSDn
k (for a positive integer k ≤ n) where y is guaranteed to belong Σk.

Assumption 1. When considering strings of arbitrary length, we assume that the length of y does
not exceed the length of x. Clearly, if the length of y exceeds the length of x, then y cannot be a
subsequence of x.

Assumption 2. We will always assume that the alphabet size does not exceed the lengths of the
strings (i.e. |Σ| ≤ n) as a string of length n can contain at most n unique symbols. However, we
will generally assume a binary alphabet unless otherwise specified.

Example 1.
SSD3(010, 00) = 1,

SSD6(101010, 111) = 1,
SSD6

3(120021, 211) = 0.

Remark 1. A natural question to ask is whether SSDn
k belongs to AC0. Namely, whether it can be

computed by a Boolean circuit with ∧,∨ and ¬ gates of polynomial size in n and constant depth.
The answer is negative:

Proposition 1. For all k ≥ 1, SSD2k
k+1 is not in AC0.

Proof. Set y to equal 1k+1 simplifies SSD2k
k+1 to the MAJORITY Boolean function which is known

not to belong to AC0 (as stated by [Juk12]).

1.1.1 Communication Complexity

We are mainly interested in the communication required to compute SSDn. We now review the
relevant definitions from Communication Complexity by [KN96].

Definition 3 (Communication Protocol). Let f : X × Y → {0, 1}. Suppose Alice and Bob are
two players holding inputs x ∈ X and y ∈ Y respectively, with the goal of computing f(x, y). A
communication protocol is a 1-bit message-passing protocol between Alice and Bob. The cost of a
protocol is the maximum number of messages used to compute f over all inputs (x, y).

Definition 4 (Communication Complexity). Let f : X ×Y → {0, 1}. The deterministic communi-
cation complexity of f , D(f), is the minimal cost of a deterministic protocol that computes f . The
randomized communication complexity of f , R(f), is the minimal cost of a randomized protocol
that computes f with error probability at most 1/3.

Of primary interest in this paper is the function f whose inputs are sets A,B ⊆ [n] and whose
value is equal to 1 if and only if A and B are disjoint.

Definition 5 (Disjointness). Define DISJn as the set-disjointness problem. Given subsets A,B ⊆
[n] respectively, Alice and Bob must determine whether A and B are disjoint. We encode subsets
of [n] as their characteristic vectors in {0, 1}n. Then, DISJn(a, b) is defined as the Boolean function
whose inputs are characteristic vectors a, b ∈ {0, 1}n and whose output is 1 if and only if the
corresponding subsets are disjoint.

3

As in the definition of SSD, we also consider a restricted variation. Define DISJnk as the problem
of set disjointness when |A| = |B| = k. Namely, it is the same as DISJn, with the restriction that
both a and b have Hamming weight k. We always assume Alice gets a and Bob gets b.

Theorem 1 ([Raz90] [HW07]). For all n ≥ k ≥ 0,

1. R(DISJn) = Θ(n).

2. R(DISJnk) = Θ(k) for every k ≤ n/2.

3. D(DISJnk) = Θ

(
log

(
n

k

))
for every k ≤ n/2.

Several results in this work rely on reductions. A reduction is a high-level way to relate two
different problems by transforming one into the other. For our purposes, we define a reduction as
follows.

Definition 6 (Reduction). Let f : X × Y → {0, 1} and g : A× B → {0, 1} be two communication
problems. We say f reduces to g if there exists mappings ρ : X → A and φ : Y → B such that

g(ρ(x), φ(y)) = f(x, y) for all (x, y) ∈ X × Y.

We call the reduction injective if ρ and φ are both injective (i.e. ρ(x) = ρ(y) if and only if x = y).

For instance, we show later that DISJ reduces to SSD. It follows that if we would have a
communication protocol P for SSD then we would have a protocol Q for DISJ with the same cost
as of P . However, Q cannot contradict existing lower bounds on DISJ. This means that SSD is at
least as “hard” as DISJ, ignoring technical details discussed in Proposition 5.

Definition 7 (Bi-partition). For any communication problem, the bi-partition describes “who gets
what” with respect to the input bits. We mainly focus on the natural bi-partition in which Alice
holds x and Bob holds y. A more general version of this communication problem gives both parties
complementary partitions of both x and y. For example, Alice may receive the odd-indexed bits of
x while Bob receives the even-indexed bits.

We consider both natural and worst-case bi-partitions, and the partition under consideration
will always be clear from the context. We sometimes consider a protocol for every possible bi-
partition. In this case, the cost of the protocol is the maximal cost over all possible bi-partitions
and inputs.

Definition 8 (Communication Matrix). Let f : X × Y → {0, 1}. The communication matrix Mf

is the |X | × |Y| matrix with (Mf)x,y = f(x, y).
For n ≥ k ≥ 1 and alphabet Σ, we denote the communication matrix Σn×k := MSSDn

k
. This is

a |Σ|n × |Σ|k binary matrix with

(Σn×k)x,y = SSDn
k(x, y).

Example 2. Let Σ = {0, 1}. Then

Σ3×2 =



00 01 10 11

000 1 0 0 0
001 1 1 0 0
010 1 1 1 0
011 0 1 0 1
100 1 0 1 0
101 0 1 1 1
110 0 0 1 1
111 0 0 0 1


4

1.1.2 Learning Complexity

We also consider subsequence containment as a learning problem. See [SSBD14] for a more detailed
discussion on statistical learning.

Definition 9 (Subsequence classifiers). Let Hnk denote the hypothesis class of length-k subsequence
classifiers acting on strings of length n. That is, the collection of functions {hy : y ∈ {0, 1}k} where
hy : {0, 1}n → {0, 1} such that hy(x) = 1 if and only if y is a subsequence of x.

Also let Hn∗ denote the collection of subsequence classifiers of any length acting on strings of
length n.

Definition 10 (Supersequence classifiers). Let Gnk denote the hypothesis class of length-n superse-
quence classifiers acting on strings of length k. That is, the collection of functions {gx : x ∈ {0, 1}n}
where gx : {0, 1}k → {0, 1} such that gx(y) = 1 if and only if y is a subsequence of x.

Also let Gn∗ denote the collection of length-n supersequence classifiers acting on strings of any
length.

Definition 11 (PAC learning). Let X = {0, 1}n be labelled by a fixed hy ∈ Hnk (which is unknown
to the learner). Then, given a distribution D over X , the loss of a hypothesis hz is equal to

LD(hz) = Px∼D(hy(x) 6= hz(x)).

A learning algorithm A is said to (ε, δ)-PAC -learn Hnk if for every distribution D over X and
every hy ∈ Hnk , there exists a sample size N such that the following holds∗:

Given N i.i.d samples {(x1, hy(x1)), · · · , (xN , hy(xN))} from D as input, A outputs (with prob-
ability 1− δ) a hypothesis hz ∈ Hnk with LD(hz) < ε.

Finally, we introduce the Vapnik–Chervonenkis dimension, a parameter often relevant to sta-
tistical learning which is known to be strongly connected to communication complexity (as in
[KNR99]).

Definition 12 (VC dimension). For a finite set A, let H be any collection of functions f : A →
{0, 1}. Then, a subset B ⊆ A is shattered by H if for every subset B′ ⊆ B there exists a function
fB′ ∈ H which realizes B′: For each b ∈ B, fB′(b) = 1 iff b ∈ B′. The VC dimension of H, denoted
by VCdim(H), is the largest size of a subset of A that is shattered by H.

For a communication problem f : X × Y → {0, 1}, we define VCdim(fX) as the VC dimension
of the hypothesis class parameterized by X . That is, the collection of functions HX := {hx : x ∈ X}
such that hx(y) = f(x, y).

VC dimension essentially characterizes the number of samples needed to PAC-learn a family of
classifiers.

Theorem 2 ([Han16, EHKV89]). For any hypothesis class H, the sample size required to PAC-
learn H is equal to Θ (VCdim(H)). (Here, Θ hides polynomial dependency of 1/ε, 1/δ, and indicates
that the upper bound on the asymptotic learning complexity is tight.)

∗We focus on the realizable case: For a definition of agnostic PAC-learning please see [SSBD14]

5

1.2 Related work

1.2.1 Contiguous pattern matching

In the classical pattern matching problem, we seek to determine whether a string y of length k
appears in contiguous locations in a string of length n ≥ k. Let SMn

k denote the contiguous string-
matching problem. For k ≤

√
n and arbitrary partitions, [GGRS19] prove an upper bound of

D(SMn
k) = O(n/k · log k) and a lower bound of R(SMn

k) = Ω(n/k · log log k) bits of communication.
We prove significantly smaller bounds for the communication complexity of non-contiguous pattern
matching.

1.2.2 Non-contiguous pattern matching

[SW07] and [LNVZ06] proved tight lower bounds for the communication complexity of the LCS-k -decision
problem of determining whether two strings of length n have a common subsequence of length k
or greater. For example, [SW07] prove that R(LCS-k -decision) = Ω(n). These works are different
than ours as they consider sequences with arbitrary alphabets and we focus on fixed alphabets
allowing us to circumvent their strong lower bounds. Additionally, we focus on detecting a sub-
sequence of length k in a string of length n whereas these works focus on computing the largest
length of a common subsequence in two strings of length n. Consequently, our proof ideas differ
from those by [SW07, LNVZ06].

Lower bounds on the query complexity of one-sided testers for subsequence-freeness were devised
recently by [RR21]. While lower bounds for query complexity of testing algorithms were used by
[GGR98] to derive lower bounds on VC-dimension, their lower bounds as well as those of [RR21] do
not seem to imply our lower bounds for the VC dimension of classifiers based on the inclusion of a
fixed pattern as a subsequence. This is because the lower bound proven by [RR21] applies to testers
with one-sided error and arbitrary alphabets as opposed to our setting where binary sequences are
concerned.

The deletion channel takes a binary string as input and independently deletes each bit with
fixed probability d (See [JS21] for a detailed analysis). It was proven by [DSV12] that the problem
of determining the capacity of the deletion channel can be exactly formulated as the subsequence
detection problem.

[BC18] show an Ω((k/|Σ|)|Σ|) lower bound on the one-way communication complexity of sub-
sequence detection. Additionally, they construct a sketch of size O(k|Σ| log k), showing the lower
bound is nearly tight.

1.2.3 Reconstructing from subsequences

The problem of reconstructing strings from their subsequences has been previously studied, initi-
ated by [MMS+91] and subsequently expanded on by [Sco97, DS03, ADM+15] which give various
conditions on when a string can be reconstructed from its k-subsequence decomposition. Our prob-
lem differs from the reconstruction problem studied in these works. For example, these works all
consider the multiset-decomposition of subsequences which includes the multiplicities of each subse-
quence whereas we only consider the set-decomposition for the purposes of subsequence detection.

1.2.4 VC dimension

That the one-way randomized communication complexity of f is greater than or equal to its
VC dimension was observed by [KNR99]. The crux of our discussion on sample complexity is
the exponential gap between the VC dimension of contiguous and non-contiguous subsequence

6

containment. In particular, [GGRS19] showed recently that the contiguous string-matching problem
has VC dimension Θ(log(n)), whereas we prove a linear lower bound on the VC dimension of non-
contiguous subsequences.

2 Communication complexity

2.1 Deterministic protocols for the natural bi-partition

We now consider the natural bi-partition in which Alice holds x and Bob holds y. First, we lower
bound the deterministic communication complexity of subsequence detection using the well-known
log-rank method :

Theorem 3 ([KN96]). For any function f : X × Y → {0, 1},

D(f) ≥ log2(rankMf),

where rankMf is equal to the number of linearly independent rows (or columns) of Mf .

We now compute the rank of the communication matrix for subsequence detection, Σn×k.

Lemma 1. For all n ≥ k ≥ 1,
rank(Σn×k) = |Σ|k

Proof. For simplicity, we assume Σ = {0, 1, · · · ,m} and index the rows and columns of Σn×k

lexicographically (by the sequence [0n, 0n−11, · · · ,mn]). Then, it is clear that a string s ∈ Σk does
not appear as a subsequence in Σn until the s’th string, 0n−ks, where it appears as a contiguous
subsequence. Thus

• i < j =⇒ (Σn×k)i,j = 0.

• i = j =⇒ (Σn×k)i,j = 1.

In particular, the first |Σ|k rows of Σn×k are a full-rank lower-triangular matrix.

Proposition 2. For all n ≥ k ≥ 1 and alphabet Σ, under the natural bi-partition of inputs,

1. D(SSDn
k) = k log |Σ|+ 1

2. D(SSDn) = n log |Σ|+ 1

Proof. Theorem 3 applied to Lemma 1 yields the first lower bound:

D(SSDn
k) ≥ log rank(Σn×k) = k log |Σ|.

The second lower bound follows from the fact that the communication matrix for SSDn contains
each Σn×k as a sub-matrix (for every k ≤ n) and thus has rank equal to n.

It is easy to achieve these bounds under the natural bi-partition; Bob sends Alice every character
of y, each requiring log |Σ| bits. Alice then uses 1 bit to share the answer with Bob.

Remark 2. In fact, the same bounds apply to SMn
k , the contiguous string-matching problem,

because s appears contiguously in 0n−ks.

Corollary 1. For all n ≥ k ≥ 1 and alphabet Σ, under the natural bi-partition of inputs,

D(SMn
k) = k log |Σ|+ 1.

7

2.2 Deterministic protocols for arbitrary bi-partitions

We are also able to tightly bound the deterministic communication complexity of subsequence
detection under the worst-case bi-partition via a reduction from disjointness.

Proposition 3. For all n ≥ k ≥ 1, there exists a bi-partition B such that DISJnk (under the natural
bi-partition) reduces to SSD3n

4k under B.

Proof. Given inputs a, b ∈ {0, 1}n of DISJnk to Alice and Bob, consider the following inputs to
SSD3n

4k :

• y = 1010 · · · 10 = (10)2k,

• x = a1b10a2b20 · · · anbn0 = (aibi0)1≤i≤n.

This induces the bi-partition of inputs to SSD3n
4k which has Alice hold the ai’s and Bob hold the

bi’s. The remaining bits can be partitioned arbitrarily, or even known to both parties simultane-
ously.

We note that both a and b contain exactly k 1’s each. Thus there are 2k “isolated” 1’s in x (i.e.
y is a subsequence) if and only if a and b are disjoint. This completes the proof.

Corollary 2. There is a bi-partition of inputs such that

D(SSDn
k) = Ω

(
log

(
n

k

))
for every k ≤ n/2.

Proposition 4. Under any bi-partition of inputs (and any alphabet),

D(SSDn
k) = O(k log n).

Proof. Alice and Bob first exchange y requiring O(k log |Σ|) bits. Then they compute i, the first
index in which xi = y1, requiring O(log n) bits (by exchanging an integer less than or equal to n).
If there is no such index, then y is not a subsequence of x. Otherwise, this reduces to an instance
of SSDn−i

k−1 with input x′ := xi+1xi+2 · · ·xn, and y′ = y2y3 · · · yk. The bi-partition of inputs remains
unchanged, although exchanging y is no longer required.

Continuing iteratively, we have D(SSDn
k) = O(k log |Σ| + k log n) = O(k log n) if we assume

|Σ| ≤ n as in Definition 2. This achieves the lower bound in Corollary 2, up to a difference of
O(k log k), as

log

(
n

k

)
= O

(
log
(n
k

)k)
= O (k log n− k log k)

2.3 Randomized protocols for the natural bi-partition

We now give a similar reduction from disjointness which proves a randomized lower bound for
subsequence detection under the natural bi-partition.

Proposition 5. DISJnk (injectively) reduces to SSD3n
2n+k under the natural bi-partition.

Proof. Let Alice and Bob hold a, b ∈ {0, 1}n respectively. Alice and Bob each construct (without
communication) strings x and y, which both consist of n “blocks”. Each block will consist of either
two or three bits.

8

• Alice constructs block i equal to aiai0 (i.e. 0 7→ 010 and 1 7→ 100). That is,

x = a1a10 · a2a20 · · · anan0

• Bob constructs block i equal to 00 if bi = 0, and 010 if bi = 1 (i.e. 0 7→ 00 and 1 7→ 010).
Supposing b contains k ones appearing at indices i1 < · · · < ik, then

y = 02(i1−1) · 010 · 02(i2−i1−1) · 010 · · · 02(ik−ik−1−1) · 010 · 02(n−ik−1)

If a and b are disjoint, then the i’th block of y is a subsequence of the i’th block of x for all i.
Thus, y is a subsequence of x. Otherwise, there exists some index i with ai = bi = 1. Let α, β, γ, δ
partition x and y around the i’th block as follows.

x = α · 100 · γ
y = β · 010 · δ

Note that both α and β contain exactly 2i− 2 zeros, and both terminate in a 0. Thus, 010 · δ
must be a subsequence of 100 · γ. Furthermore, γ and δ contain exactly n − i zeros. If y was a
subsequence of x, then 010 must be a subsequence of 100, which is not the case. Thus, y is not a
subsequence of x.

As x has length 3n and y has length 2n+ k, we have proven that DISJnk(a, b) = SSD3n
2n+k(x, y).

As every a maps to a unique x (and similarly b to y), the reduction is injective, concluding the
proof.

Table 1: An example instance of the reduction when a and b are not disjoint. Note that there
are precisely two zeros in every cell of x and y. Thus, for y to be a subsequence of x, every zero
in y must match a zero in x in the same column. However, we cannot match both zeros in the red
column because we must also match the bold “1”.

a 0 1 1 0 0 1 1 0 1 1 0

x(a) 010 100 100 010 010 100 100 010 100 100 010

y(b) 010 00 00 010 00 010 00 010 00 00 010

b 1 0 0 1 0 1 0 1 0 0 1

Note that the reduction above is fairly restrictive; we require the lengths of x and y to be 3n
and 2n+ k respectively. However, a simple padding argument gives us the following.

Corollary 3. For n ≥ k ≥ 0, under the natural bi-partition of inputs,

1. R(SSDn
k) = Θ(k)

2. R(SSDn) = Θ(n)

Proof. Lower bounds follow from two observations regarding the strings constructed in Proposition
5:

9

1. Alice may pad as many 1’s as desired to the end of x without compromising the reduction.
In particular, if Alice constructs x · 1N and Bob constructs y as above, we have a reduction
from DISJnk to SSD3n+N

2n+k for any value of N . Then, for any fixed value of n, we may make a
simple parameterization, n′ = 3n+N and k′ = 2n+ k, to obtain

R(SSDn′
k′) = Ω(k) = Ω(k′).

2. As x always has length 3n, the exact same construction reduces DISJn to SSD3n.

Indeed, both of these lower bounds are met (up to constant factors) by the trivial deterministic
protocol.

Remark 3. It is interesting to note that, although y appears non-contiguously in x, it is highly
constrained (using the language of [FSV06]). That is, y appears in x such that no two consecutive
characters are separated by more than 1 character of x.

3 VC dimension

This section amounts to the following lemma, which connects our communication complexity results
to subsequent sample complexity results.

Lemma 2. Let f : X × Y → {0, 1} and g : A × B → {0, 1} be two communication problems and
suppose f has an injective reduction to g. Then,

1. VCdim(fX) ≤ VCdim(gA).

2. VCdim(fY) ≤ VCdim(gB).

Proof. (We prove only statement 1 as both arguments are identical.) Recall that a reduction from
f to g induces two mappings ρ : X → A and φ : Y → B such that

g(ρ(x), φ(y)) = f(x, y) for all (x, y) ∈ X × Y.

Let S ⊆ Y be shattered by fX . By definition, for every T ⊆ S, there exists an xT ∈ X such
that (for all s ∈ S),

f(xT , s) = 1 if and only if s ∈ T. (1)

We will show that every such T (which is realized by xT) uniquely maps to a subset φ(T) which
is realized by ρ(xT). Indeed, as ρ is injective, every xT maps to a unique ρ(xT) ∈ A such that

g(ρ(xT), φ(s)) = f(xT , s).

By (1), and for every s ∈ S, this is equal to 1 if and only if s ∈ T . Now consider the set
φ(S) = {φ(s) : s ∈ S} ⊆ B. As φ is injective, we have s ∈ T if and only if φ(s) ∈ φ(T). Thus, φ(S)
is shattered by gA.

In the same vein as in Proposition 5, we now calculate the VC dimension of disjointness clas-
sifiers† for the sake of lower-bounding the VC dimension of subsequence classifiers.

†As DISJ is symmetric (DISJ(a, b) = DISJ(b, a)), we can refer to the corresponding hypothesis class as DISJn.

10

Table 2: For k = 2, 3, 4, 5 (and various values of n) we calculate (by brute force) the largest
S ∈ {0, 1}n that is shattered by Hnk .

k n S ⊂ {0, 1}n shattered by {0, 1}k
2 3 011, 001

3 6 100001, 111000, 000111

4 5 10100, 10010, 01010

5 8 11000101, 01110010, 10011010, 10110011

Proposition 6 ([KNR99]). For all n ≥ 0,

VCdim(DISJn) = n.

Proof. Of course, VCdim(DISJn) cannot be greater than n by a simple surjectivity argument; if S
is shattered, then for each T ∈ 2S , there must exist a unique classifying subset XT ∈ 2[n]. Thus,
|S| ≤ n.

We can construct a shatterable set of size n. In particular, we can take the collection of
singletons S = {{1}, · · · , {n}}. Indeed, the subset of singletons {{i1}, · · · , {ik}} ⊆ S is realized by
the complement of their union, C = [n] \ {i1, · · · , ik}; for each i ∈ [n], each singleton {i} is disjoint
from C if and only if i ∈ C.

Corollary 4. For all n ≥ 0,
n

3
≤ VCdim(Hn) ≤ n+ 1.

Proof. Recall that we have an injective reduction from DISJn to SSD3n (Proposition 5). Thus, the
lower bound follows from Lemma 2 applied to Proposition 6. The upper bound in this case again
follows from a simple surjectivity argument.

Example 3. What follows is the explicit construction for n = 9. The shattered strings (which
correspond to the singletons {1}, {2}, {3}), are

s1 = 100010010

s2 = 010100010

s3 = 010010100

11

Table 3: For completeness, we enumerate every subsequence-classifier y and the corresponding
subset Sy ⊆ {s1, s2, s3} (i.e. y is a subsequence of every string in Sy, but no strings in the
complement).

y Sy ⊆ {s1, s2, s3}
010010010 ∅
00010010 s1

01000010 s2

01001000 s3

0000010 s1, s2

0001000 s1, s3

0100000 s2, s3

000000 s1, s2, s3

The restricted version follows similarly, with a slight loss of generality due to the fact that every
classifying subset must have size exactly k.

Corollary 5. For all k ≤ n/2,
VCdim(DISJnk) ≥ k.

Proof. We can indeed shatter a subset of the singletons, T = {{1}, · · · , {k}} provided that k ≤ n/2.
Every subset {{i1}, · · · , {i`}} ⊂ T would indeed be realized by the complement [k] \ {i1, · · · , i`} as
before, but every classifying subset must have size k (which is not necessarily the case here). Thus,
we pad these classifiers with elements not in [k]. In particular, let P (m) = {k + 1, · · · , k + m}
consist of m padding elements (where P (0) = ∅). Then, the set {{i1}, · · · , {i`}} is realized by the
union

([k] \ {i1, · · · , i`}) ∪ P (`)

The left-hand side contributes k−` elements and the right-hand side `, for a grand total of k elements
as desired. At most, we require k padding elements to realize T itself. Thus, T is shattered when
k ≤ n/2.

Corollary 6. For all n ≥ 6k/5 ≥ 0

k

5
≤ VCdim(Hnk) ≤ k.

Proof. By Proposition 5 and the subsequent padding argument from Corollary 3, we have an
injective reduction from DISJnk to SSD3n+N

2n+k for all N ≥ 0. Thus, by Lemma 2 applied to Corollary
5, we have for k ≤ n/2,

k ≤ VCdim(H3n+N
2n+k) ≤ 2n+ k.

Then, by optimizing over n (i.e. substituting n = 2k) we obtain k ≤ VCdim(H6k+N
5k) ≤ 5k, and

dividing k by 5 completes the proof.

Remark 4. Note that the same bounds apply even for arbitrary n. Clearly, {0, 1}n ⊂ {0, 1}∗, so
our shattered set is also a subset of {0, 1}∗. Thus, our results apply even to the hypothesis class
H∗k whose domain includes sequences of any length.

12

Indeed, Corollary 6 applied to Theorem 2 tells us that non-contiguous subsequences have sample
complexity independent of n.

Corollary 7. For all k ≥ 0, n ≥ 6k/5, the sample complexity of PAC-learning length-k subsequence
classifiers is Θ(k)‡.

Remark 5. Efficiently recovering the subsequence based on the training data via the ERM rule
seems intractable even in the realizable case: Computing the longest common subsequence of
multiple strings was shown by [JL95] to be NP-hard. When the LCS is promised to have length k,
[IF92] give an algorithm which computes a common subsequence of length k in O(Nn(n−k)N−1) =
O(kn(n− k)O(k)) time.

3.1 Supersequence classification

The previous section analyzed subsequence classifiers, which essentially parameterize the two-
argument subsequence detection problem f(x, y) for a fixed subseqeunce y and variable string
x, that is fy(x). We may also consider the analogous supersequence classifiers, fx(y), where the
string x is fixed and the subsequence y is varied.

As the disjointness function DISJn(x, y) is symmetric with respect to x and y, the following is
a direct consequence of the second statement of Lemma 2 applied to Proposition 6 and Corollary
5.

Proposition 7. For all n ≥ 6k/5 ≥ 0,

1.
n

3
≤ VCdim(Gn∗).

2.
k

5
≤ VCdim(Gnk).

As usual, we can prove a general upper bound of n by a simple surjectivity argument. However,
in some cases it is possible to obtain a tighter bound.

Proposition 8. For all n ≥ 0 and k ≥ n/2,

VCdim(Gnk) ≤ n ·H(k/n) + 1

where H(x) = −x log2 x− (1− x) log2(1− x)) is the binary entropy function.

Before proving Proposition 8, we first prove the following Lemma.

Lemma 3. Let E(n, k) denote the maximum number of length-n supersequences of any fixed binary
string of length k. Then,

VCdim(Gnk) ≤ log2(E(n, k)) + 1.

Proof. Let S be some shattered set (y1, · · · , yd). By definition, for each T ⊆ S, there exists a unique
classifying supersequence xT which realizes T . In particular, as the string x1 belongs to precisely
2d−1 elements of 2S (i.e. unique subsets of S), there must exist at least 2d−1 unique supersequences
of y1. Thus, if E(n, k) < 2d−1, we have a contradiction.

‡As in Theorem 2, Θ hides polynomial dependency on 1/ε, 1/δ, and indicates that the upper bound on the
asymptotic learning complexity is tight.

13

Thus, proving Proposition 8 amounts to calculating the value of E(n, k). To begin with, we
may consider the subsequence y = 1k. Then, any x ∈ {0, 1}n is a supersequence of y if and only if
x contains ` ≥ k ones. We have by counting that there are exactly

(
n
`

)
binary strings which contain

precisely ` zeros. Thus, we obtain the lower bound E(n, k) ≥
∑n

`=k

(
n
`

)
. Interestingly, as noted by

[Dix13], E(n, k) is invariant over the choice of subsequence. Thus, this expression is indeed the
exact value of E(n, k). For completeness, we give a self-contained proof below.

Lemma 4. For all n ≥ k ≥ 0,

E(n, k) =

n∑
`=k

(
n

`

)
Proof. First we define some simplifying notation: For a binary string z, we let z−1 denote the tail
of z (i.e. z−1 = z2z3 · · ·). Now, let n ≥ k ≥ 0 and fix a binary string y ∈ {0, 1}k. Then, let E(n, y)
denote the number of supersequences of y. We show inductively that E(n, y) is invariant over the
choice of y.

Clearly, when y has length 1, we have E(n, 0) = E(n, 1) = 2n − 1, and when y has length n we
have E(n, y) = 1. Then, for 1 < |y| < n, we have the following.

E(n, y) =
∑

x∈{0,1}n
1[x contains y as a subsequence]

=
∑

x∈{0,1}n
(1[x1 = y1]1[x−1 contains y−1 as a subsequence]

+ 1[x1 6= y1]1[x−1 contains y as a subsequence])

=
∑

z∈{0,1}n−1

1[z contains y−1 as a subsequence] +
∑

z∈{0,1}n−1

1[z contains y as a subsequence]

= E(n− 1, y−1) + E(n− 1, y).

The induction step essentially “strips” the first bit from x, regardless of the value of y. Thus,
E(n, y) depends only on the length of y. So we may abuse notation and let E(n, k) := E(n, 1k)
for the sake of computation. Then, x ∈ {0, 1}n is a supersequence of 1k if and only if x contains
` ≥ k ones. The result follows from the fact that there are exactly

(
n
`

)
binary strings which contain

precisely ` ones.

Now, upper bounding the VC dimension of supersequence classifiers amounts to the following
well-known application of Stirling’s approximation.

Proof of Proposition 8. The result follows from the estimate (for α > 1/2)

n∑
k=αn

(
n

k

)
≤ 2H(α)n

as derived in [MS77].

14

4 Future directions

There are several questions arising from this work. For the learning problem, we focused on binary
alphabets. Studying the VC dimension for larger alphabets is of interest in several applications.
Additionally, studying subsequence classifiers based on the occurrence of multiple subsequences is
of potential interest. Recently the effect contiguity of features in classification tasks on the efficacy
of various architectures of neural networks (convolutional vs fully connected nets) was studied
by [SS+20]. Future empirical and theoretical study on how the number and magnitude of gaps
influences the success of different learning methods for our subsequence-based classifier could be of
interest.

5 Acknowledgements

We wish to thank the anonymous reviewers for providing helpful feedback, as well as for bringing
[BC18] to our attention. We also thank Cristopher Moore for insightful discussions on this topic.

References

[ADM+15] Jayadev Acharya, Hirakendu Das, Olgica Milenkovic, Alon Orlitsky, and Shengjun
Pan. String reconstruction from substring compositions. SIAM Journal on Discrete
Mathematics, 29(3):1340–1371, 2015.

[BC18] Karl Bringmann and Bhaskar Ray Chaudhury. Sketching, streaming, and fine-grained
complexity of (weighted) lcs. In 38th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, 2018.

[BKKM04] Tugkan Batu, Sampath Kannan, Sanjeev Khanna, and Andrew McGregor. Recon-
structing strings from random traces. Departmental Papers (CIS), page 173, 2004.

[BNR+18] Sara Bahaadini, Vahid Noroozi, Neda Rohani, Scott Coughlin, Michael Zevin, Joshua R
Smith, Vicky Kalogera, and A Katsaggelos. Machine learning for gravity spy: Glitch
classification and dataset. Information Sciences, 444:172–186, 2018.

[BYJKK04] Ziv Bar-Yossef, Thathachar S Jayram, Robert Krauthgamer, and Ravi Kumar. The
sketching complexity of pattern matching. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 261–272. Springer,
2004.

[CS75] Václáv Chvatal and David Sankoff. Longest common subsequences of two random
sequences. Journal of Applied Probability, 12(2):306–315, 1975.

[Dix13] John D Dixon. Longest common subsequences in binary sequences. arXiv preprint
arXiv:1307.2796, 2013.

[DS03] Miroslav Dudık and Leonard J Schulman. Reconstruction from subsequences. Journal
of Combinatorial Theory, Series A, 103(2):337–348, 2003.

[DSV12] Michael Drmota, Wojciech Szpankowski, and Krishnamurthy Viswanathan. Mutual
information for a deletion channel. In 2012 IEEE International Symposium on Infor-
mation Theory Proceedings, pages 2561–2565. IEEE, 2012.

15

[EHKV89] Andrzej Ehrenfeucht, David Haussler, Michael Kearns, and Leslie Valiant. A gen-
eral lower bound on the number of examples needed for learning. Information and
Computation, 82(3):247–261, 1989.

[FAAK19] Soroush Fatemifar, Shervin Rahimzadeh Arashloo, Muhammad Awais, and Josef Kit-
tler. Spoofing attack detection by anomaly detection. In ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
8464–8468. IEEE, 2019.

[FSV06] Philippe Flajolet, Wojciech Szpankowski, and Brigitte Vallée. Hidden word statistics.
Journal of the ACM (JACM), 53(1):147–183, 2006.

[GGR98] Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its connection
to learning and approximation. Journal of the ACM (JACM), 45(4):653–750, 1998.

[GGRS19] Alexander Golovnev, Mika Göös, Daniel Reichman, and Igor Shinkar. String match-
ing: Communication, circuits, and learning. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[Han16] Steve Hanneke. The optimal sample complexity of pac learning. The Journal of
Machine Learning Research, 17(1):1319–1333, 2016.

[HNAK16] Medina Hadjem, Farid Näıt-Abdesselam, and Ashfaq Khokhar. St-segment and t-wave
anomalies prediction in an ecg data using rusboost. In 2016 IEEE 18th International
Conference on e-Health Networking, Applications and Services (Healthcom), pages 1–6.
IEEE, 2016.

[HW07] Johan H̊astad and Avi Wigderson. The randomized communication complexity of set
disjointness. Theory of Computing, 3(1):211–219, 2007.

[IF92] Robert W Irving and Campbell B Fraser. Two algorithms for the longest common sub-
sequence of three (or more) strings. In Annual Symposium on Combinatorial Pattern
Matching, pages 214–229. Springer, 1992.

[JL95] Tao Jiang and Ming Li. On the approximation of shortest common supersequences
and longest common subsequences. SIAM Journal on Computing, 24:1122–1139, 1995.

[JS21] Svante Janson and Wojciech Szpankowski. Hidden words statistics for large patterns.
The Electronic Journal of Combinatorics, pages P2–36, 2021.

[Juk12] Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27.
Springer Science & Business Media, 2012.

[KC17] Takuya Kamiyama and Goutam Chakraborty. Real-time anomaly detection of continu-
ously monitored periodic bio-signals like ecg. In New Frontiers in Artificial Intelligence,
pages 418–427. Springer International Publishing, 2017.

[KLLVH07] Eamonn Keogh, Jessica Lin, Sang-Hee Lee, and Helga Van Herle. Finding the most
unusual time series subsequence: algorithms and applications. Knowledge and Infor-
mation Systems, 11(1):1–27, 2007.

16

[KN96] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1996.

[KNR99] Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication
complexity. Computational Complexity, 8(1):21–49, 1999.

[LNVZ06] David Liben-Nowell, Erik Vee, and An Zhu. Finding longest increasing and common
subsequences in streaming data. Journal of Combinatorial Optimization, 11(2):155–
175, 2006.

[MMP+13] Katsiaryna Mirylenka, Alice Marascu, Themis Palpanas, Matthias Fehr, Stephan Jank,
G. Welde, and D. Groeber. Envelope-based anomaly detection for high-speed manu-
facturing processes. In European Advanced Process Control and Manufacturing Con-
ference, 2013.

[MMS+91] Bennet Manvel, Aaron Meyerowitz, Allen Schwenk, Ken Smith, and Paul Stockmeyer.
Reconstruction of sequences. Discrete Mathematics, 94(3):209–219, 1991.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error
correcting codes, volume 16. Elsevier, 1977.

[PFT+15] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. Gorilla: A fast, scalable, in-memory time series
database. Proceedings of the VLDB Endowment, 8(12):1816–1827, 2015.

[Raz90] Alexander A Razborov. On the distributional complexity of disjointness. In In-
ternational Colloquium on Automata, Languages, and Programming, pages 249–253.
Springer, 1990.

[RR21] Dana Ron and Asaf Rosin. Optimal distribution-free sample-based testing of
subsequence-freeness. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 337–256. SIAM, 2021.

[SCC+05] Michel Simard, Nicola Cancedda, Bruno Cavestro, Marc Dymetman, Eric Gaussier,
Cyril Goutte, Kenji Yamada, Philippe Langlais, and Arne Mauser. Translating with
non-contiguous phrases. In Proceedings of Human Language Technology Conference
and Conference on Empirical Methods in Natural Language Processing, pages 755–
762, 2005.

[Sco97] Alex D Scott. Reconstructing sequences. Discrete Mathematics, 175(1-3):231–238,
1997.

[SS+20] Shai Shalev-Shwartz et al. Computational separation between convolutional and fully-
connected networks. In International Conference on Learning Representations, 2020.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. Advances in neural information processing systems, 27, 2014.

17

[SW07] Xiaoming Sun and David P Woodruff. The communication and streaming complexity
of computing the longest common and increasing subsequences. In Proceedings of
the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 336–345.
Citeseer, 2007.

[TMAM20] Behrooz Tahmasebi, Mohammad Ali Maddah-Ali, and Seyed Abolfazl Motahari. The
capacity of associated subsequence retrieval. IEEE Transactions on Information The-
ory, 67(2):790–804, 2020.

18

	Introduction
	Definitions
	Communication Complexity
	Learning Complexity

	Related work
	Contiguous pattern matching
	Non-contiguous pattern matching
	Reconstructing from subsequences
	VC dimension

	Communication complexity
	Deterministic protocols for the natural bi-partition
	Deterministic protocols for arbitrary bi-partitions
	Randomized protocols for the natural bi-partition

	VC dimension
	Supersequence classification

	Future directions
	Acknowledgements

