
Horizontal Confinement of a Melamine
Formaldehyde Dust Particle in an Argon

Plasma

A Major Qualifying Project Report: Submitted to the Faculty of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science
by

Autumn D. Paro
Advisors: Professor Germano Iannacchione and Professor Alex Zozulya

April 2012



ABSTRACT

This project focused on the how the horizontal confinement of a dust particle in
a laboratory plasma changes based on pressure and cutout size. When a cutout
is placed on the bottom electrode of a GEC reference cell, a potential well is
created due to the change in the shape of the electric fields within the sheath. This
provides the horizontal forces needed to restrict the particle from falling off the
edge of the lower electrode.

Using different MATLAB programs, a single dust particles position was tracked
though several frames, converted from pixels to meters, and used to determine the
potential energy. A quadratic curve was then fitted to the potential versus time
graph to determine the confinement coefficient κ on the x2 term.

From the data analysis, it was determined that the potential energy assumes
a parabolic form, which agrees with different proposed theories. It was also de-
termined that κ increases proportionally as pressure increases for the 1/4 inch
cutout, which also agrees with theory.
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1. PROBLEM STATEMENT

Complex (dusty) plasmas are partially ionized gases containing micrometer sized

particles. Dusty plasmas account for the majority of plasmas within the universe

and can be found in a variety of different places: interstellar clouds, planetary ring

systems, and a variety of laboratory plasmas. Within laboratory plasmas such as

the surface processing industry and high energy fusion reactors, the presence of

dust is significant because it causes instabilities within the plasmas and damage

to the equipment. In order to better understand the nature of the plasma-dust

interactions, this project will study the horizontal confinement of dust particles

within a low temperature argon plasma. A better understanding of the horizontal

forces on a particle will provide a better understanding of how dust crystal lattices

form and how it changes depending on the plasma parameters.



2. BACKGROUND

2.1 Plasmas

Throughout the universe there are four types of matter: solids, liquids, gases,

and plasmas. According to Big Bang Theory, the universe began as a small hot

dense ball that was unstable. When it exploded it began expanding, and some of

the plasma cooled to gas, which then cooled to liquids, and eventually cooled to

solids [5]. The fourth state of matter, plasma, is the least common on earth but the

most common throughout the universe. It can be found in a variety of places such

as the sun, stars, lightning, Aurora Borealis, Saturn’s rings, solar wind, and other

astrophysical bodies[5, 6, 7].

Plasma is an ionized gas that contains ions, electrons, and neutral atoms. Just

like when a substance transitions from solid to liquid, or liquid to a gas, a phase

transition occurs between the gas and plasma states. One of the differences be-

tween plasma and the other states of matter is that a plasma is comprised of

charged particles as shown in figure 2.1. To transition from a gaseous state to

a plasma state, energy is required to excite the particles. As the particles become

more excited they move faster, colliding into one another. These collisions excite

electrons to higher energy states, requiring little energy from the next collision to
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Fig. 2.1: Visual representation of the different states of matter and their transitions over
temperature [1]. The plasma shown is fully ionized thus it only contains ions
and electrons. Many plasmas are not fully ionized and contain neutral atoms as
well.

release an electron, leaving a positive ion and a free electron. Two common ways

of providing energy is to increase the temperature of the gas to between 3eV and

25eV or by sending an electric pulse through the gas. Unlike the other states of

matter, plasma is able to interact internally with itself. Since each charged particle

has its own electromagnetic field, the particle’s fields and orbits affect each other

concurrently [5, 7, 8, 9, 10].

When a gas is first ionized, the particles begin to move at a speed based on

their mass and temperature. Since the ions are more massive than the electrons

they move at a significantly slower speed. Because of this difference there are

more collisions between electrons and the walls of the chamber, causing a net

negative charge to build up. The positive ions are then attracted to the walls, thus

a positive space charge forms around the edge of the walls. Once an equilibrium
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state is reached, there are two distinct regions of the plasma.

Fig. 2.2: Image of how the plasma interacts with its surrounding walls.

The two different regions of the plasma are called bulk and the sheath. The

bulk is the main glowing area shown in figure 2.2. It has the highest density of

ions and electrons and is where the majority of ionization occurs. The second

area is called the sheath and consists of the dark region between the bulk and

the containment walls. The sheath is created when the electrons move to prevent

external electromagnetic forces from interacting with the bulk. Within the sheath,

the number densities of the ions and electrons are not equal, causing the electric

potential energy to increase monotonically from the negative value on the wall to

a positive value within the bulk [9, 11].
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2.2 Dusty Plasmas

Most plasmas found throughout the universe contain dust and are therefore classi-

fied as dusty (complex) plasmas. Dusty plasmas are partially ionized gases which

contain micrometer sized particles. Occurring naturally in space, they had a large

effect on the formation of the solar system [12, 13].

Scientists are fascinated by dusty plasmas because they occur naturally in ex-

traterrestrial bodies and model other phenomena, such as crystals, found in na-

ture. In a laboratory however, plasmas play a different role. The formation of dust

within a plasma causes many issues because dust obtains a rather large negative

charge. Since the electrons move much faster than the heaver ions, there are more

collisions between electrons and the dust particles. This causes the dust to collect

more free electrons than ions, altering the ion/electron ratio. If too much dust is

present then the change in the ratio affects the ion/electron temperatures, plasma

potential energy, and electromagnetic field within the chamber [13].

2.3 GEC Reference Cell

A Gaseous Electronics Conference (GEC) radio frequency (RF) reference cell is

a common environment used to run low temperature plasma experiments. Since

plasma characteristics are based on the geometry of their environment it was im-

portant that different labs had a similar geometry to allow for fair comparison

of their data. At the 1988 Gaseous Electronics Conference it was agreed that a

common geometry was required, and as a result the GEC RF reference cell was
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created in March 1989 [14, 4, 3].

Fig. 2.3: Top view of the upper electrode for the original GEC reference cell. This elec-
trode contains little holes, mimicking a shower head, that act as gas outlets for
the cell [2].

Figure 2.4 shows the basic design of the GEC reference cell decided on at the

March 1989 meeting. The main part of the cell is the vacuum chamber, which con-

tains two parallel plate electrodes. The lower electrode is connected to an RF am-

plifier and the upper electrode, called a shower electrode, is grounded. The upper

electrode is called a shower head electrode, Figure 2.3, because it is mostly solid

with small holes through it. There are four equally spaced viewing areas around

the cell. The vacuum chamber is connected to two different types of pumps, a

high vacuum pump and a mechanical pump. The high vacuum pump is turned on

when the cell is not being used, which cleans the cell by preventing contaminants

from sticking to the walls. During experiments the high vacuum pump is turned

off, the gate valve is closed, and the mechanical pump is used. A throttling valve,

connected to the mechanical pump and gas canister, is used to control the gas flow

during the experiments.
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Fig. 2.4: Schematic of the GEC RF reference cell decided on in March 1989 [3].



3. THEORY

Dust particles within plasmas are exposed to a variety of forces in both the hori-

zontal and vertical directions. While dust particles move through the plasma, they

obtain a negative charge proportional to their size and location within the plasma.

As they approach the lower sheath, the electrostatic force within the sheath can-

cels out the gravitational force, causing the dust to levitate in the sheath. Other

forces that are present, but neglected for this experiment, are ion drag and ther-

mophoretic forces.

If only one particle is present within the plasma, there are no forces in the

horizontal direction, and the particle’s random motion will eventually cause it to

fall off the edge of the lower electrode. If several particles are present within

the plasma they repel each other, and fall off the edge of the lower electrode at a

faster rate. In order to contain the particles in this direction, a shallow circular well

called a cutout is placed on top of the lower electrode. The presence of the cutout

changes the shape of the sheath creating a weaker electric field in the horizontal

direction which contains the particle. Since the sheath conforms to the shape of

the lower electrode, it takes the form of a shallow bowl due to the cutout, which

is why the potential is called a well [15]. It is assumed that this well takes on a
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parabolic shape, though little has been found to prove or disprove this [16, 17].

In order to determine the shape of the potential energy we have to look at the

particles equations of motion

mdẍ+Rẋ− dU

dx
=


0 laser off

Flaser laser on
(3.1)

where md is the mass of the dust particle’s mass, R is the drag coefficient, and U

is the potential energy. Solving the potential energy for when the laser is off gives

U (x (t)) = U0 −
mdẋ

2

2
−R

t∫
1

ẋ2(τ)dτ. (3.2)

which is the potential energy as a function of position. To simplify calculation

the x-axis is aligned parallel to the path of the particle reducing the equation to

one dimension the potential energy at x = 0, is set to U0 = 0, leaving the drag

coefficient R as the only unknown. The gas drag coefficient

R = mdβ (3.3)

is a constant that is dependent on the plasma parameters through the Epstein drag

coefficient β. The Epstein drag coefficient

β =
8

π

P

ρavth,n
(3.4)
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changes based on the plasma pressure P , the radius of the particle a, the density

of the dust particle ρ, and the thermal velocity vth,n of the neutral gas[18]. The

thermal velocity

vth,s =

√
kBTs
ms

(3.5)

determines the speed at which ionized particles move when first ionized. Once

the plasma is ionized the particles move based on their interactions with the sur-

rounding particle. In this equation the subscript s stands for the possible particles,

ions, electrons, and neutral particles, found in the plasma. If the ions and elec-

trons had the same temperature, the ions will move at a much slower speed than

the electrons since they are more massive which is shown in equation 3.5.



4. EXPERIMENTAL SETUP

The experiment for determining the shape of the potential well was run using

a modified GEC RF reference cell located in the Baylor University Center for

Astrophysics, Space Physics, and Engineering Research lab. The cell used, shown

in figure 4.1, is very similar to the one decided on at the 1989 meeting, with

slight variations. Instead of using a showerhead electrode, figure 2.3, this cell

uses a hollowed upper electrode, figure 4.2. Four 6-inch diameter viewing ports

are placed around the cell, with a fifth placed above the upper electrode. Two

CCD cameras, one located above the upper electrode and one at one of the side

ports, are used to obtain top and side views of the plasma simultaneously. Each

camera is paired with a low-powered diode laser used to illuminate the dust as

shown in figure 4.3 [2]. The horizontal diode laser is focused into a horizontal

sheet while the vertical laser has is focused into a vertical sheet.

Before running this experiment, the electrode spacing was set to 1 inch and

using an rf amplifier, argon plasma was ignited. After the plasma was ignited, a

single 8.8µm melamine formaldehyde dust particle was dropped into the plasma

using the dust shaker positioned above the upper electrode. Once the particle set-

tled in its equilibrium position, it was pushed away from the center using radiation
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Fig. 4.1: Image of the GEC reference cell used at in the CASPER lab [2].
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Fig. 4.2: Schematic of the upper electrode used in the CASPER cell. The hollowed nature
allows for optical measurements to be taken from above [2].

pressure from a variable power Verdi laser (0−5W ), not shown in figure 4.3. This

laser was focused down to a small spot in order to push the particle away from its

equilibrium position. When the laser was turned off the particle returned to the

equilibrium position. Using a 60 FPS camera, the particle’s trajectory was tracked

while the laser was pushing it and on its return trip to equilibrium. The experi-

ment was repeated for two different cutout sizes, seven different pressures, and

two different voltage DC (VDC) values. The VDC is the voltage applied to the

lower electrode to keep the voltage fixed.
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Fig. 4.3: Schematic of how the cameras and lasers pair up to illuminate the dust [4].



5. METHODS

Using a computer program I tracked the particle’s position through each of the

frames for each run. The code cropped the image to a specified area and a mini-

mum brightness threshold was set. Once this was done the center of the particle

was determined and the pixel location of the center was recorded for each frame.

Once the particles position was determined in pixels, it was converted to meters.

Both data sets had a frame rate of 60frames/s, however they had different pixel

sizes. The first data set had a pixel size of15.95µm, while the second had a pixel

size of 30µm. After the position was determined in meters, the position versus

time was plotted, the areas of interest shown in figure 5.1 were isolated. At this

point the position was differentiated to determine the particles position which was

then used to find
t∫
0

v2(τ)dτ . Using 75, 100, 125, 150, 200, 250, and 300mTorr

for the pressure values, equations 3.3, 3.4, 3.5 were used to determine the drag

coefficient R. Putting this data back into equation 3.2 the potential as a function

of position was found. Using a curve fitting tool a quadratic curve was fitted to the

data and the confinement coefficient κ was obtained from the coefficient on the x2

term. This was done for about ten runs at each setting and the values obtained for

κ at each setting were averaged.
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Fig. 5.1: Particle trajectory while under the influence of the laser and on its return trip
with the area of interest highlighted.



6. RESULTS AND DISCUSSION

Fig. 6.1: Positions as a function of time for the two different cutout sizes, a) 1/4inch b)
1inch, at 100mTorr Pressure and −7 VDC. The solid line is the fitted quadratic
equation describing the shape of the data.

Figure 6.1 shows the positions versus time for a single particle at 100mTorr, -7

VDC, and both the 1/4 inch and 1 inch cutouts. In Figure 6.1(a) the 30mW Verdi

laser was turned on at 2.5 seconds and was switched off at about 2.75 seconds. The

return trajectory takes the shape of an exponential decay until the particle reaches
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its equilibrium position at about 3 seconds when it becomes constant. For figure

6.1(b) the laser was turned on just after the 5 seconds mark and switched off just

before the 6 seconds mark. Again, the trajectory takes the form of an exponential

decay, though it takes longer to reach its equilibrium position at approximately 8

seconds. The exponential decay comes from the equations of motion which are

damped due to the drag forces proportional to the thermal velocity of the particles.

For each of the different settings the return has the form of an exponential decay,

though it takes longer for particles in the 1 inch cutout to return to equilibrium, as

shown in Figure 6.1.

As the distance between the particle and the edge of the cutout increases, the

force on the particle will decrease, causing the acceleration to decrease. Since the

1 inch cutout has a larger radius, there is more distance for the particle to travel

from the equilibrium point to the edge of the cutout. This gives a larger distance

between the particle and the edge, decreasing the force acting on the particle. The

smaller force contributes to a slower acceleration and thus the smaller slope found

in 6.1(b) compared to the slope in 6.1(a).

The potential energy versus position graphs shown in Figure 6.2 shows how

the potential energy changes based on the particles position for a sample of the 1

and 1/4 inch cutouts. As the two graphs show, the potential energy has a parabolic

shape which agrees with literature [16, 17]. The potential energy was found to be

parabolic for each setting used, but the confining coefficient, κ, which determines

the steepness of the parabola, varied between settings. Figure 6.4 shows how the

confining coefficient, κ, changes based on pressure for the two different cutout
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Fig. 6.2: Potential Energy as a function of position for the two different cutout sizes, a)
1/4inch b) 1inch, at 100mTorr Pressure and −7 VDC
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Fig. 6.3: Potential Energy as a function of positions for the six different pressures and the
1/4 inch cutout at -7 VDC.
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Fig. 6.4: Confining coefficient as a function of pressure for the 1/4 and 1 inch cutouts at
-7 VDC.
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sizes. For the small cutout κ increases as pressure increases. As seen in Figure 6.3,

the absolute value of the potential energy typically increases as pressure increases

with a few outliers such as the 300mTorr and the 150mTorr. For the 1 inch cutout,

the confining coefficient decreases as the pressure increases. This does not agree

with the other papers or the theory. The discrepancy in this data could be due to

the small data set that was used.

6.1 Future Work

For future work on this project, additional settings as well as a larger variation on

the setting currently being used. Possible settings to look into are cutout size, the

glass box, pressure, and VDC.
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