
Project Number: <ME-KZS-0602>

Design of a Roof Inspection Robot

A Major Qualifying Project Report

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

in Mechanical Engineering

by

Nicholas McMahon

Samuel Feller

Nathan Malatesta

April 26th, 2007

Approved:

Prof. Kenneth Stafford, Advisor

 i

Acknowledgements

We would like to thank the following people for their help and support throughout

the course of this project.

St. Paul Travelers

Jared Krechko

Kenneth Stafford

Brad Miller

Mike O’Donnell

Neal Whitehouse

 ii

Abstract

St Paul Travelers is an insurance company that performs over 35,000 roof

inspections per year. The goal of this project was to design and build a robot inspection

platform in order to limit risk to the human inspector and lower inspection time. The team

developed an all-wheel drive robot capable of traversing a variety of roof geometries

while visually recording data. The final deliverable also included an ascender system to

deliver the robot to the roof. The robot will serve as a platform for future MQPs to

further develop sensor systems for roof inspection.

 iii

Executive Summary

St. Paul Travelers conducted over 35,000 roof inspections last year, and with

inspections lasting up to two hours and costing as much as $1500 dollars each, they

represent a significant expenditure of time and money. Furthermore, each inspection

carries a degree of risk for the inspector, be it damaging the roof during the inspection

process, falling off, or even falling through the roof.

Robots have long been used to explore and investigate places where it is too

difficult or dangerous for a person to go. A roof inspection robot would face a number of

challenges. There are many types of roof surfaces, ranging from clay tile, to slate, to

metal, to composition. Some roofs are relatively flat, while others have pitches as steep

as
12

24
. A robot able to replace a human in roof inspections needs to navigate those

pitches, and be able to traverse the crests and valleys of the roof.

Project Task Specifications

This project’s goals were developed in collaboration with St. Paul Travelers,

reflecting both their needs and our limited timeframe. Because of the team’s expertise in

mechanical engineering, it was determined that the best use of time would be to develop a

roof-ascending system as well as a remotely-controlled vehicle capable of performing

visual inspections. Future projects could be developed to put together a sensing package

for physical inspections and to further refine our designs. The formal task specifications

for the inspection robot and ascender system are described below.

The robot must be able to traverse a roof, defined as:

• Maneuverability over composition tile with
12

12
pitch

• Able to crest rooftop and valley

• Remote control (untethered)

The robot must have the following autonomous features:

• Can sense roof edge to prevent operator from driving over the edge

• Tilt warnings to prevent operator-induced flip-over

 iv

• Manual overrides to allow operability in the event of a false sensor

warning

The robot must be able to conduct a visual inspection of the roof:

• Incorporates a camera with transmittable feed

• Is able to produce a record of visual inspection

The robot “prototype” must last through 50 hours of operation

The robot must be able to get on and off of a roof with a provided ascender

mechanism; a ten foot (one story) prototype will serve as a proof of concept

Results

 We met the project specifications through the

design and fabrication of robot and ascender

mechanism. The robot has a unique chassis design that

allows it to traverse the peaks and valleys of a roof

while avoiding any skidding that a tank style robot

would be subject to.

The robot uses a Vex microcontroller to receive

directions from the operator. Control algorithms take

sensor input from the wheels to provide all wheel drive and

traction control. Additional sensors provide edge detection and a

camera allows the operator to see the roof from the robots point of

view.

Figure 1: Robot Driving on Roof

Center of
Gravity

Figure 2: Robot CAD

Model

 v

The ascender mechanism transports the robot to the top of the roof without putting a

person in danger. The final ascender design is an

attachment for a standard extension ladder. The

robot is placed inside of a carriage which is pulled

up the ladder by means of a pulley. Once the

carriage reaches the top it tilts to allow the robot to

drive on to the roof.

Conclusions and Recommendations

Through this Major Qualifying Project we

have shown that it is possible to build a robot that can operate on a 45° roof with an

asphalt shingle surface. We have concluded that it is feasible to use a robot to conduct

roof inspections and we have further recommendations on how to continue to develop our

work.

Conduct Further Research into Friction Materials

The major design challenges that we faced

were centered around the frictional coefficient

between the roof and the wheels. The robot is stable

and balanced on a 45° slope, but its performance is

traction limited. The best material combination we

found was a EPDM foam over a Scotchbrite substrate,

but there is not a large margin of safety. The robot

occasionally loses traction and skids, but catches

itself. We recommend future research into finding

friction materials to help the robot navigate the roof without risk of slippage.

Continue to Develop and Optimize the Current Design

We have met nearly all of the original task specifications but were limited by time

constraints. All the systems can be improved and optimized. Because all the team

members working on this MQP were mechanical engineers, there is particular room for

improvement in the electrical and control systems. The Vex microcontroller used on the

Figure 3: Ascender Carriage Operation

Figure 4: Robot Wheel on Roof

 vi

robot, for example, is a very easy to use system and serves as a proof of concept, but its

lack of two way wireless data communication makes it a poor choice for a remotely

operated vehicle. We recommend that future project teams include an electrical engineer

and computer scientist to develop the systems on the robot that are outside the expertise

of a mechanical engineer.

Develop a New, Roof Specific Sensor Packgage

 One of the intentions of this project was to test whether a robot could even

navigate the steep inclines and geometries of a roof. To fit within the time constraints of

this project, the robot was only required to conduct a visual inspection. Having

concluded that it is feasible for a robot to conduct a roof inspection, the next step is to

develop a roof specific sensor package.

 Our work can serve as a basis for future projects based on a roof inspection robot.

We have laid the groundwork for the development of a sensor package, a more advanced

operator interface, and an improved ascender mechanism through our work with this

prototype.

 vii

Table of Contents

Acknowledgements.. i

Abstract ... ii

Executive Summary... iii

Introduction... 1

1 Background ... 2

1.1 Commercially Available Robots... 2

1.1.1 iRobot Packbot.. 2

1.1.2 Mesa Robotics, MATILDA .. 3

1.2 Lift Mechanisms ... 3

1.3 Robot Design .. 5

2 Methodology... 6

2.1 Robot Task Specifications .. 6

2.2 Testing Procedure ... 7

2.3 Preliminary Design with Vex Kit ... 7

2.4 Chassis Design .. 9

2.5 Joint... 13

2.6 Drive Components .. 17

2.7 Battery Selection... 18

2.8 Wheels and Friction Materials .. 19

2.9 Articulated Chassis Kinematics .. 24

2.10 Microcontroller Selection ... 27

2.11 Overall Code Architecture .. 28

2.12 User Interface.. 28

2.13 Wheel Speed Algorithm.. 31

2.14 Feedback Algorithm.. 32

2.15 Sensor Package ... 33

2.16 Ascender System... 34

3 Results... 43

 viii

3.1 Navigation and Maneuverability... 43

3.2 Autonomous Features ... 44

3.3 Visual Inspection .. 44

3.4 Durability .. 45

3.5 Ascender Mechanism.. 45

4 Recommendations... 46

5 Conclusions... 52

Appendix A- CAD Drawings.. 53

Appendix B- Robot Code.. 86

Appendix C- Weight Breakdown.. 97

Appendix D- Bill of Materials .. 98

 ix

Table of Figures
Figure 1: Robot Driving on Roof... iv

Figure 2: Robot CAD Model ... iv

Figure 3: Ascender Carriage Operation .. v

Figure 4: Robot Wheel on Roof.. v

Figure 5 – Packbot Robot ... 2

Figure 6 – MATILDA robot ... 3

Figure 7 - Man Portable .. 4

Figure 8 - Trailer Towable.. 4

Figure 9 - Truck Mounted... 4

Figure 10 - Peak and Valley Roof... 7

Figure 11: Vex Robotics kit robots... 7

Figure 12: First Prototype ... 7

Figure 13: Active stabilization.. 9

Figure 14: Roof Robot Final Design... 9

Figure 15: Joint Rotation .. 9

Figure 16: Robot Cresting Peak.. 10

Figure 17: Center of Gravity Representation.. 10

Figure 18: CAD Assembly.. 11

Figure 19: Cracked Panel.. 12

Figure 20: Robot joint forces .. 13

Figure 21: Joint Housing Disassembled ... 14

Figure 22: Joint Housing Assembled.. 15

Figure 23: Joint front view 3... 15

Figure 24: Joint front view 2... 15

Figure 25: Joint front view 1... 15

Figure 26: Joint vertical and horizontal pin assembly .. 15

Figure 27: Joint Assembled .. 16

Figure 28: Joint Disassembled .. 16

Figure 29: Torque vs Current Draw.. 18

 x

Figure 30: Friction Test System.. 20

Figure 31: Static Friction Testing Results .. 21

Figure 32: Pressure Rig... 22

Figure 33: Substrate Testing on EPDM Foam.. 23

Figure 34: Wheel Compression Under Load .. 24

Figure 35 - Geometry and Kinematics for Driving... 25

Figure 36 - Geometry and Kinematics for Steering.. 26

Figure 37: User Interface Version One... 29

Figure 38: User Interface Version 2.. 30

Figure 39: Laddervator, Power Ladder... 34

Figure 40: Telescope Diagram.. 35

Figure 41: First Ascender Prototype CAD Model .. 35

Figure 42: First Ascender Prototype ... 35

Figure 43: Geo Data Systems Telescoping Pole... 36

Figure 44: Ascender Flow Chart... 37

Figure 45: Ascender Schematic Diagram ... 38

Figure 46: Pulley Free Body Diagram (Not To Scale) ... 39

Figure 47: Carriage Tilt vs Force Applied at Handle ... 40

Figure 48: Carriage Operation Schematic Diagram.. 41

Figure 49: Applied Force Free Body Diagram ... 41

Figure 50: Carriage Tilt vs Applied Force Equations... 42

 1

Introduction

St. Paul Travelers conducted over 35,000 roof inspections last year, and with

inspections lasting up to two hours and costing as much as $1500 dollars each, they

represent a significant expenditure of time and money. Furthermore, each inspection

carries a degree of risk for the inspector, be it damaging the roof during the inspection

process, or falling off or even through the roof.

Robots have long been used to explore and investigate places where it is too

difficult or dangerous for a person to go. A roof inspection robot would face a number of

challenges. There are many types of roof surfaces, ranging from clay tile, to slate, to

metal, to composition. Some roofs are relatively flat, while others have pitches as steep

as
12

24
. A robot able to replace a human in roof inspections needs to navigate those

pitches, and be able to traverse the crests and valleys of the roof. The robot needs a

vision system so the inspector can drive the robot, and sensors to check the roof for non-

visual damage. On top of that, the robot needs a deployment system to reach roofs which

may be as high as forty-two feet.

The goal of this project is to deliver a robotic chassis capable of navigating a composition

tile roof at a pitch of
12

12
. The robot will be able to cross both peaks and valleys, and will

carry a simple camera for navigation and a visual inspection. The project will include a

delivery mechanism capable of placing the robot on and off a roof from ground level.

 2

1 Background

 St. Paul Travelers insurance company has presented us with the task of

developing of a robot for the purpose of inspecting household roofs. This is an operation

that is normally carried out by a human inspector that must climb to the roof and then

carry out a visual and physical inspection. The following section contains background

research on commercially available robots, lifting mechanisms, and sensors.

1.1 Commercially Available Robots

The standards for the platform as specified by the sponsor of this project state that

the robot must:

• Be maneuverable by someone on the ground

• Be driven on roofs of various surfaces

• Be driven on roofs with a pitch of up to 45 degrees

• Fit into the trunk of a minivan or back of a pickup truck

We have investigated several different commercially available robots regarding their use

for roof inspection purposes. Remote-controlled all-terrain platforms meet most of the

design specifications and flying machines have been ruled out by the sponsor. Of

particular interest are remote-controlled platforms that have been contracted by the

military as all-terrain vehicles used in applications where it would be dangerous to send a

person. The following is a list of potential robots.

1.1.1 iRobot Packbot

 The Packbot, shown in Figure 5, is designed for

portability and survivability, both good qualities for a roof

inspection robot. It is small enough to fit in the back of almost

any consumer vehicle and can be lifted by one person. Its low

center of gravity allows it to traverse slopes of up to 60 degrees

and its unique articulating tread system allows it to climb stairs and Figure 5 – Packbot Robot

 3

other obstacles. The Packbot can also survive a two meter drop; while this is not

equivalent to a fall from a three-story building, it is an advantage. The Packbot is

designed to have a payload. This payload could be optimized for roof inspections with a

combination of sensors and actuators. iRobot can package the Packbot with a two-meter,

remote-controlled, extendable arm. Operator interface for the Packbot is based around

joystick controls and an LCD display of the robot’s vision system, a simple effective way

to control the robot for an insurance company agent. Packbots are sold for $50k-$115k,

depending on the payload features supplied by iRobot. This is relatively cost-prohibitive

to the sponsor. Additional development costs would be incurred for research and

development of payload sensors and a roof deployment system.

1.1.2 Mesa Robotics, MATILDA

MATILDA (see Figure 6) is similar to the Packbot in that it can fit in the trunk of

a car, be carried by one or two people, and is designed for rough use. It is controlled by a

briefcase operator system similar to Packbot’s. A

low center of gravity allows MATILDA to drive on

slopes of up to 55 degrees and which is suitable for

the roof pitch requirement. It has a payload bay

measuring 13.5x16.5 inches which would have to

house all of the rooftop inspection sensors.

MATILDA has an approximate cost of $55K,

making it also too expensive for the sponsor’s

budget.

1.2 Lift Mechanisms

 In the event that there is no convenient level access point to the roof, it will be

necessary to build or custom modify an existing device to place the robot on and off the

roof. In this section, various commercially available roofing, personnel, and lighting lift

mechanisms are discussed. Each mechanism is considered in terms of cost,

Figure 6 – MATILDA robot

 4

transportability, and effective lift height. Furthermore, the ease of operation and need for

modification is also considered.

Figure 7 - Man Portable Figure 8 - Trailer Towable

Figure 9 - Truck Mounted

 5

Portable roofing lifts can be categorized by their means of transport. There are hand

portable units, towed trailer units, and truck mounted units. (See Figure 7, Figure 8, and

Figure 9, respectively.) Price and effective height go up as the units get larger. All the

lifts are designed as general purpose lifts and a platform with a landing ramp might need

to be built to carry the robot up.

 Personnel lifts come in a variety of heights, again, usually varying with price.

Most units are hand portable and can be carried by one or two people. They already have

a wide, flat platform to carry the robot, and would need simple modifications to get the

robot onto a roof.

 Lighting lifts come as both hydraulic and hand-powered systems. Systems

intended for indoor use are hand portable by one or two people. Larger outdoor systems

are truck towable.

 The sponsor’s need for a compact and portable system is the ultimate limiting

factor to commercially available lifting devices. Ideally they would like a telescoping

device that can fit in the back of a car and deliver the robot to the roof. In our background

research we found no such device.

1.3 Robot Design

The sponsor would like to have a complete robotic system capable of lifting

independent shingles for damage inspection, using sensors for semi-autonomous

functions, with an ascender system to move the robot to the roof. However, this is

outside the scope of our three-man team in the allotted timeframe. Because of the team’s

expertise in mechanical engineering, it has been determined the best use of time will be to

develop a roof-ascending system as well as the remotely-controlled vehicle that will do

the inspections. A future project should be developed to put together a sensing package

for physical inspections and to further refine our designs.

 6

2 Methodology

2.1 Robot Task Specifications

In this section we state the task specifications for this project. To determine these

task specifications we collaborated with our liaison from Travelers and our project

advisors at WPI. Our goal was to set achievable specifications for our technical abilities

and timeframe while leaving room for future projects to improve and expand on our

designs. The resulting task specifications are as follows.

The robot must be able to traverse a roof:

• Maneuverability over composition tile with
12

12
pitch

• Able to crest rooftop and valley

• Remote control (untethered)

The robot must have the following autonomous features:

• Can sense roof edge to prevent operator from driving over the edge

• Tilt warnings to prevent operator-induced flip-over

• Manual overrides to allow operability in the event of a false sensor warning

The robot must be able to conduct a visual inspection of the roof:

• Incorporates a camera with transmittable feed

• Is able to produce a record of visual inspection

The robot “prototype” must last through 50 hours of operation

The robot must be able to get on and off of a roof with a provided ascender mechanism

• A ten foot (one story) prototype will serve as a proof of concept

 7

2.2 Testing Procedure

 Before the finished robot will be designated as

capable of doing rooftop inspections it will first have to

qualify itself in a series of tests developed to determine

its safety and reliability on simulated roof surfaces. The

test fixture will be a simulated roof similar to that

shown in Figure 10. It will consist of a peak and a

corner valley covered in composition shingles at a pitch

of 45 degrees. The robot must demonstrate that it is

stable in all possible orientations and that the

autonomous failsafe features prevent it from falling off.

2.3 Preliminary Design with Vex Kit

 In order to test out concepts for chassis design we used the

Vex robotics kit, seen in Figure 11 and Figure 12. It uses modular

components that can be quickly assembled and disassembled to try

out new ideas. The kit includes a six channel remote control and

microcontroller. A system like this is very useful for characterizing

the way different designs will behave on a simulated roof

environment.

 Our first prototype, seen in Figure 12, was made using the

Vex kit. Due to the Vex kits ability to prototype rapidly several

designs were tested to see how different joints, wheel bases, and

centers of gravity would affect the final design. Since we ended up

using the Vex kit controller to program our final robot it was

beneficial that we gained programming experience with this

controller early on in the project.

 The initial designs showed that we needed a drive system

that did not require loss of friction to turn, such as that of a tank

Figure 10 - Peak and Valley Roof

Figure 11: Vex Robotics kit

robots

Figure 12: First Prototype

 8

steering robot where the wheels must skid. It was found that when the wheels lose static

friction it is very difficult to regain control of the robot and keep it from sliding on the

roof. Thus we concluded that we would need a larger turning radius and a way for the

wheels to move perpendicular to that radius

To work through this problem several joints were tested that articulated on two

different axes. The purpose of a joint with two degrees of freedom was so that the robot

could have four wheels in contact with the roof while cresting any valley or peak. To do

this, one axis controlled the turning of the robot “yaw” and the other controlled the

rotation between the front and the back of the robot or the “roll”. Roll rotation is used

when the robot drives over a valley and must operate on two different planes. The joints

tested compared the effects of using active or passive rotation in each configuration. An

active joint is powered by a servo while a passive joint is not powered. The joint that we

found to work the best is a configuration where there is active rotation in the turning

“yaw” axis and passive in the “roll” axis. This allows the operator to control turning

while not having to control roll. Two gearing combinations were experimented with to

find a controllable rate of turn and it was found that about 30° per second would be

appropriate. This joint design seemed to work well during this stage and was

incorporated into the final design with some modifications discussed in section 2.5.

 Another design problem solved while prototyping with the vex kit was how to

crest the roof at the peak. Designs discussed were similar to that of iRobot’s Packbot

(see section 1.1.1) where the joint would have active rotation in a third axis to essentially

pull the robot over the peak and onto the other size. This was a benefit because it would

allow our design to have a lower center of gravity when it returned to a flat surface after

cresting the peak. The con of this system was the complexity. It was thought that by

either keeping our center of gravity low or creating an active stabilization system we

could eliminate this problem.

 9

A prototype of the active stabilization system can be

seen in Figure 13. To use this system the robot used an

accelerometer to measure the angle of the roof and calculate

where the counterweight of the robot would be above it to

keep it stable. This system, while workable, was excessively

complicated considering that a properly placed center of

gravity would eliminate the need for this feature.

One final consideration that was brought into the next

design stage was that of wheel base selection. Since we knew the robot might need to

crest over a vent and would need enough room to house additional sensor components it

was found that a wheel base of at least twelve inches would be needed.

The ideas brought into the next phase of the robot were driving configuration,

joint selection, concept of active stabilization, and a general concept of the final wheel

base measurements.

2.4 Chassis Design

 The design of the chassis was facilitated by two

main factors; the shape of the roofs that the robot must

navigate and the size of the payload. In order to traverse

the unique peaks and valleys of roofs we decided to use

an articulated design that uses a powered joint in the

center of the chassis. The joint allows freedom of

rotation in the yaw and roll as shown in Figure 15. This

allows the robot to turn without using skid steering

techniques and to operate on two unique planes as it

crosses a 90° corner. The joint will be discussed further in

section 2.5 as well as the unique control features

associated with it in section 2.9. In order to cross the peak

of a roof the underside of the chassis was left open so that

Figure 13: Active stabilization

Figure 14: Roof Robot Final

Design

Figure 15: Joint Rotation

 10

as the wheels cross from one side of the peak to the other there is clearance for the

chassis to pass. (See Figure 16)

 The size of the payload was determined by the

components that were needed for the robot to operate.

These components included; motors, batteries,

microcontroller, wireless camera, speed controllers

and various wires. The components were modeled in

CAD and placed in various configurations as the

chassis was designed. The placement of each

component was chosen to ensure that a proper center

of gravity (CG) was maintained in all operable

conditions of the robot. To maintain stability a body’s

center of gravity must remain over its contact points

with the ground, in this case the wheelbase of the robot.

The greater the pitch the robot encounters the smaller

the effective wheelbase becomes. The CAD package

Solidworks allows for the calculation of CG by

inputting the weights of each assembly item. By

running a simple software analysis the CG of the

assembly is calculated and outputted visually on the

model as well as in XYZ coordinates.

Figure 16: Robot Cresting Peak

Center of
Gravity

Figure 17: Center of Gravity

Representation

 11

 The initial body design was prototyped using the Vex kit discussed in section 2.3.

Working from this basic geometry and the CAD models of the components that were

chosen we positioned each component as low to the

wheels as practically possible keeping in mind that the

heavier components such as batteries would have a more

significant effect on CG placement. Once an acceptable

configuration was determined we ran a mass properties

analysis and the CG was displayed in context of the CAD

model. We further analyzed the results to ensure that in

all feasible body configurations (i.e. joint angles and

rotations) the CG was acceptably placed within the wheel

base. The calculated CG for the robot shows that it is able

to maintain stability on slopes up to 60°. This is feasible although we were not able to

find a friction material for the wheels that will provide the necessary coefficient of

friction to maintain traction on these angles.

 The CAD model also served as the source of dimensions and geometry of all the

parts that needed to be made for the robot in the machine shop. A complete assembly and

bill of materials can be found in Appendix A.

 The materials used for the chassis side walls were 1/16 inch aluminum panels.

The panels were cut using Haas CNC Vertical Machining Centers (VMC) and bent on a

sheet metal break. The panels were first made of Aluminum, alloy 6061 T6. The 6061

alloy was chosen because of its high strength. Initial attempts to bend these panels

resulted in cracking and breaking in several areas. After some research we determined

that 5052 aluminum would be a better alloy for bending due to its greater percent

elongation (12% for 6061 versus 25% for 50521). The resulting panels turned out much

better after bending and showed very little stretch. The bottom of the chassis was made

from 3/16” polycarbonate sheet. Polycarbonate was chosen for its low density and non

1 http://www.matweb.com/search/SpecificMaterial.asp?bassnum=MA6061AT6

Figure 18: CAD Assembly

 12

conductive properties. Conductivity was an important

issue since all the electrical components of the robot

were to be mounted to this surface.

 The chassis design translated from CAD to

physical prototype relatively well. With the aid of the

CNC milling machines we were able to produce

consistent and accurate parts. The materials have held

up well to their application. Further results and suggested modifications to the chassis

will be detailed in Section 4.

Figure 19: Cracked Panel

 13

2.5 Joint

 The joint that was developed during the prototyping phase of the Vex kit needed

to be produced on a larger scale and needed to be more reliable for our final design. The

Vex kit components only included plastic gears and small servo motors which would not

withstand the torsion forces required to turn the full size robot.

If the robot were to ever roll in an odd way there the wheels were not in contact to

drive it a powered joint would be needed to point the wheels in the desired direction. We

selected the power needed in the following way.

The center of gravity of half of the robot was approximately six inches from

center. To lift half the weight of the robot (10 lbs) we would need 60inlbs of torque.

 Our specifications were to find a motor that would allow the joint to turn at about

six RPM so that we could make a 45 degree pivot in 1.25 seconds and would have

enough torque to turn the joint in the worst case scenario.

Figure 20: Robot joint forces

 14

 We found a small DC motor from McMaster Carr that turned at 12 RPM and had

a stall torque of 40 in lbs. We used a one stage reduction though a sprocket and capstan

to give the joint a speed of six RPM and a torque of 80 in lbs giving us a safety factor of

1.33.

 The problem with the Vex kit joint was that there were no limitations to the travel

of either axis. The actively controlled “yaw” axis would allow the robot to turn into itself

unless the operator realized his/her error and the passive “roll” axis had no limitation

either allowing the robot to have one half upright and the other half inverted. To correct

this from happening mechanical and software stops were incorporated into the design.

To mechanically stop the joint from

turning too far, a housing was created (Figure 21)

to allow only 45° of turn to the left and 45° to the

right. This angle was chosen as a compromise

between a tank style zero turning radius which

requires a complete loss of friction, and driving in

a straight line for which there is no loss of friction

because there is no turn. Testing with the Vex kit

also showed that the turning radius was small

enough to navigate tight corners when inspecting a roof.

The more difficult part of the joint design was limiting the roll. However, we did

not want to limit the roll to one angle of rotation for all yaw positions. The problem was

that the robot required more roll articulation when driving straight and less when in a full

45° turn. If the joint was given more rotational allowance in a 45° turn than necessary,

we found that the robot would collapse on itself and one section of the robot would

become inverted.

To solve this problem we designed a joint similar to that of a skid steer logger. In

this design the joint allows for full rotation while driving straight and limits the rotation

as a linear function down to zero in a full 45 degree turn.

Figure 21: Joint Housing Disassembled

 15

To do this a custom joint was fabricated with these specifications in mind and

sized to fit the proposed chassis design. It was required that it be strong enough to

withstand the bending moment forces of a 20 pound robot.

To manufacture this joint the aforementioned housing was modeled in CAD and

then built out of two aluminum pieces as seen in Figure 21 and Figure 22. The angled cut

was matched to that of a toggle piece seen in Figure 25,

Figure 23, and Figure 24 This piece was welded onto a

shaft that holds the bending moment of the chassis and

is the piece that connectes the two halves.

This piece was then inserted into a vertical shaft seen in

Figure 26, which allowed for the active turning rotation.

This shaft was integrated into a capstan seen on the top of

Figure 27 which ran ¼” chain to the drive motor which powers

the active portion of the joint.

Figure 22: Joint Housing Assembled

Figure 23: Joint front view 3

Figure 24: Joint front view 2

Figure 25: Joint front view 1

Figure 26: Joint vertical

and horizontal pin

assembly

 16

A full disassembly can be seen in Figure 28.

Figure 27: Joint Assembled

Figure 28: Joint Disassembled

 17

2.6 Drive Components

The choice of drive components became the starting point of our design. Drive motor

selection ultimately dictated the size of our chassis and also accounts for approximately

one fourth of the robots weight.

 Our drive system needed to meet the following specifications:

• Non back-drivable

• Driving speed of approximately three feet per second

• One motor per wheel

• Drive time of at least one half hour

To have a non back-driving system we had two options. Design a ratcheting

system into our driveline to prevent back-drive or use worm gear transmissions which are

naturally back-drive resistant. Worm gear drive motors are commercially available

prepackaged making them very attractive to our application.

From experience with other robotic projects we thought that a speed of

approximately three feet per second would be appropriate for driving on the roof. This

would allow the robot to scan over 10,000 square feet assuming a field of view of two

feet. The speed calculation is derived from the output speed of the motor and the

circumference of the chosen wheel. The motors we chose for the drive line are Nippon-

Denso window motor that are used in many General Motors vehicles. These motors were

chosen because they are readily available and had a low max output speed of 85 RPM

and a stall torque of 106 inch lbs. Using these motors in conjunction with an 8.2” wheel

diameter we were able to achieve our desired speed of three feet per second.

As we moved further into the design of the robot chassis it was discovered that a

wheel diameter of nine inches would be needed for our robot to crest the peak of the roof,

giving it a driving speed of 3.33 feet per second. This was deemed to be a speed which

the operator should still be able to control.

 diameter = 9”

 18

sec/33.3sec60/85** ftrpmdiameterSpeed == π

With a 4.5” arm on each wheel and our estimated 20 pound robot we would be in

need of 64 inch pounds of torque assuming the robot is climbing a a 45 degree angle

slope. Therefore assuming we use half the stall torque because we are moving and we

are climbing a 45 degree slope we will still have a safety factor of 3.3.

2.7 Battery Selection

 This system needed to last at least one half hour at full draw from the drive

motors to be considered acceptable. A graph of the current draw of the drive motors can

be seen below in Figure 29.

Current vs. torque

y = 0.1919x + 2

0

4

8

12

16

20

0 20 40 60 80

Torque (in lbs)

C
u

rr
e
n

t
(A

m
p

s
)

Figure 29: Torque vs Current Draw

 19

The motor draw was calculated for each motor giving equal power while traveling

up a 45° slope.

∑

∑
=

=

°==

==

==

inlbsTorque

RMTorque

slope

radiusR

lbsweightM

robot

robot

64

)sin(

45

"5.4

20

β

β

When driving up a 45 degree slope there will be approximately 32 inlbs of torque

on the rear two wheels.

2*)2*1919(. += TorqueCurrent We multiply by two to account for each wheel

This is given from the graph in Figure 29.

2*)232*1919(. +=Current = 16.28 Amps

(The batteries are rated for a peak draw of 36Amps and a recommended draw of

12Amps.)

Therefore to drive at this peak draw for ½ hour we would need a source which

can supply at least 8.14 Amp hours.

We used a safety factor of 1.5 and bought three 12 volt batteries supplying 4.2

Amp hours each totaling 12.6 Amp hours, giving us a total driving time of 45 min at max

draw.

2.8 Wheels and Friction Materials

 Maintaining static friction on a 45° slope requires that the coefficient of friction

be at least 1. In order to find a suitable material to interface with the roof we had to test

many different materials on asphalt shingles. To do this friction testing we set up a

measuring rig using a force gauge, data logging system and multiple weights. Each

material was fastened to the underside of a block of known mass. This block was then

fixed to the end of a force gauge using a length of line. A pulley was used to ensure that

the force was directed in the same direction at all times.

 20

 The block was loaded with weights and the force required to move the block was

determined through a data acquisition system reading the force gauge. The coefficient of

friction was determined by dividing the mass on the block by the force it took to move

the block. The test was repeated with weights measuring 5, 10, 15 and 20 Newtons. All

materials with a coefficient of friction less than one were eliminated. The top four

materials were selected for further testing.

Figure 30: Friction Test System

 21

 The results for the top four of the thirteen tested materials can be seen in the chart

below, Figure 31. EPDM foam was the clear winner and we decided to proceed in using

it as the friction material on the robot’s wheels.

The equation relating friction to downward force is expressed as:

eNormalForcN

efficentFrictionCo

NF friction

=

=

=

µ

µ

.

Static Friction Testing

1

1.4

1.8

2.2

0 10 20 30

Normal Force (Newtons)

C
o

e
ff

ic
ie

n
t

o
f

F
ri

c
ti

o
n

EPDM Foam

Cougar Paw (Kushon Foam)

ECH Foam

Gum Foam

Figure 31: Static Friction Testing Results

 22

This equation implies that there is no relation between friction and surface area.

However, we observed a phenomenon when using these materials on the roof that shows

this is not the case on asphalt shingles. Because an asphalt shingle is composed of grit

adhered to a tarpaper backing, it is natural that with the correct amount of force the grit

will come off of its backing. We observed this happening as the robot drove on the

shingles. The theory is that when the normal force per unit area becomes too high the grit

lets go of the backing, thereby inducing slip between the wheel and the shingle. There is

evidence of this in our static friction testing graph which shows that once the applied

weight becomes too great the frictional coefficient goes down. To counteract this

problem we decided to try decreasing the pressure per unit area of the wheel on the roof.

In a pneumatic tire this would be accomplished by letting air out. Since we were not

using pneumatic tires we experimented with different substrates between the hard rim and

the friction material of the wheel. The idea is that the substrate will compress increasing

the contact patch between the friction material and the roof lowering the pressure per unit

area. The substrates we experimented with included; open cell sponge, Scotchbrite, and

insulating foam. To test this setup a rig was constructed as pictured in Figure 32. This rig

was used on the same fixture as described for the initial friction testing.

Figure 32: Pressure Rig

 23

We found that using a substrate with the selected materials caused the coefficient

of friction to go up. However, it was inconclusive as to which substrate worked better

than another. The results of this testing can be found in Figure 33. We decided to use

Scotchbrite as the substrate because it scored well in the testing but also for its shear

resistance. Scotchbrite, unlike the rest of the substrates tested resists shear loads while

maintaining low resistance to compressibility. The ability to resist these shear loads was

important because when the robot is driving parallel to the peak of the roof there is a high

axial load on the substrate which, under the right circumstances may fold and cause the

robot to lose traction.

1

1.4

1.8

2.2

0 10 20 30

Normal Force (Newtons)

C
o

e
ff

ic
ie

n
t

o
f

F
ri

c
ti

o
n

Round Patch

Gray Substrate

Scotchbrite Substrate

Sponge Substrate

Figure 33: Substrate Testing on EPDM Foam

 24

The use of EPDM with a

Scotchbrite substrate allows the robot to

maintain static stability on 45° slopes.

Figure 34 shows how the substrate

compresses under the load of the robot

increasing the contact patch of the

wheel. The robot is also able to drive on

45° slopes. However if a slip is induced

it is possible for the robot to lose its

adherence to the roof and continue to

slide. To reduce the possibility of induced slip an electronically controlled all wheel drive

system was developed to control the speeds and power of each wheel.

2.9 Articulated Chassis Kinematics

The articulated chassis was designed with the intent of maintaining the wheels in

rolling contact with the roof surface at all times. A design choice was made early on to

have four independent motors powering the wheels, rather than a single motor and a set

of mechanical differentials. Therefore, it was necessary to describe the kinematics of the

articulated chassis so that electronic means of controlling the wheel speed could be

implemented using a microcontroller later on. The kinematics for the two major

navigation motions, driving and steering, are described below.

The wheel speeds during driving are a function of the angle between the two

halves of the chassis. As the robot articulates and drives through a turn, the wheels travel

along two different radii of curvature. The inner wheels have a shorter distance to travel

than the outer wheels and must travel slower to remain in contact. As the chassis

straightens, the radius of curvature of the turn approaches infinity, and the inner and outer

wheels drive closer and closer to the same speed.

Figure 34: Wheel Compression Under Load

 25

Figure 35 below shows the relevant geometry, where

 θ is the measurement of the relative angle between the chassis halves
 l is half the length of the wheel base
 w is half the width of the wheel base
 C is the center of rotation for driving
 d is the distance from the centerline of the chassis to the center of rotation C

 Lines d and l make up two sides of a perpendicular triangle, with angle θ/2. The

unknown distance d to the center of rotation C can be calculated using the known

constant l.

 d = l / tan (θ/2)

Given a driving velocity V, the velocities Vinner and Vouter can be calculated using the

equations:

 Vinner=V * (d – w) / d

 Vouter = V * (d + w) / d

Figure 35 - Geometry and Kinematics for Driving

As the chassis articulates, one pair of wheels moves closer to each other, while the other

pair moves farther apart. To keep the wheels in pure rolling, a center of rotation is

calculated that lies exactly between the wheels. This location is also a function of the

relative angle of the two chassis halves.

 26

Figure 36 below shows the relevant geometry, where

 θ, l, w, are the same as above
 C is the center of rotation for steering
 r is the distance from the centerline of the chassis to the center of rotation

Lines r and l make up two sides of a perpendicular triangle, with angle θ/2. Again, the

unknown distance r to the center of rotation C can be calculated using the known

constant l.

 r = tan (θ / 2) * l

As before, if given a steering velocity V, the velocities Vinner and Vouter can be calculated

using the equations below. The one addition being that the wheels on the opposite halves

of the chassis spin in the opposite direction and the equation describing their speed is

simply multiplied by -1.

 Vinner= V * (w + r) / w

 Vouter = - V * (w – r) / w

Figure 36 - Geometry and Kinematics for Steering

 27

2.10 Microcontroller Selection

The Qwerk microcontroller, produced by Charmed Labs, was our first choice for

use as a robot controller. Its chief advantage was that it had support for a web cam and a

wireless internet adapter, so that we could drive the robot over a wireless internet

connection and get integrated video feedback. The robot was also very adaptable for

future upgrades, with a wide range of inputs and outputs including 16 PWM outputs, 4

motor outputs with integrated current sensing feedback, support for 4 quadrature

encoders, 16 digital inputs and outputs, and 12 analog inputs with 12 bit resolution. The

Qwerk was intended to act as a webserver, and could be accessed over the internet using

a Java-based client. An out of the box solution had support for a tank style robot with

video navigation. Unfortunately, our lack of java programming ability and the lack

of documentation and poor support (the Qwerk was just out of beta testing), made it

impossible for us to modify the client for use with an articulated robot.

After ruling out the Qwerk, we switched to the Vex microcontroller. Although the

Vex did not have video support or the wide range of inputs that the Qwerk did, it had

enough PWM outputs to drive the motors and enough inputs to gather data from the

sensors we incorporated into our design. The Vex also has a well documented, easy to

use API, which is written in C, a programming language we are familiar with. It was also

possible to add video on a wireless home security system, which is completely

independent of the Vex microcontroller.

 28

2.11 Overall Code Architecture

The overall architecture for the code was fairly simple, as seen below. A

continuously running loop cycles through and polls the inputs from the radio controller,

collects feedback from the sensors, and updates the motors appropriately.

while (true)

{

 getInput(); //gets joystick positions from the radio controller

 getFeedback(); //gets feedback from

 // chassis articulation angle

 // wheel encoders

 // timers

 // IR sensors

calculateOutputs(); //adjusts outputs appropriately based on input and

//feedback

 driveMotors(); //sends signal to the motors

}

2.12 User Interface

The user interface makes use of the six channel radio controller, supplied with the

Vex microcontroller. The first four channels are defined by two joysticks on the front of

the controller and the remaining two are controlled by buttons on the back.

In the first iteration, the left joystick was used to pan and tilt the camera and the

right joystick was used for navigation. It was impossible to drive and turn at the same

time and the operator would have to pause, adjust course, and continue driving. At best,

it was difficult and at worst it caused violent shaking in the robot as the joystick moved in

and out of its dead zone.

The camera was located above the joint at the highest point on the robot. The

operator had no sense of proportion and because the camera pan/tilt platform didn’t auto-

center, the operator had no sense of which direction the robot was going.

 29

After driving the robot and gaining experience as an operator, we made several

changes to improve the interface. First, the forward/reverse navigation axis was changed

so that the amount of power available would scale depending on the angle of articulation

of the chassis, i.e. during a full turn, the maximum joystick position would correspond to

half-speed along the centerline, so the outer wheels could spin at the correct speed

without maxing out power. While driving straight, however, the joystick controlled the

full range of power.

Second, the navigation left/right channel was changed so that it controlled the

angle of the chassis articulation, much like a steering wheel on a car controls the angle of

the wheels. This gave the operator a much better sense of where the robot was, as a

joystick slightly to the left would mean the robot chassis was angled slightly to the left,

rather than meaning the robot was simply turning more and more left. Additionally, the

code was revised making it possible to drive and turn at the same time.

Third, the camera location was changed to sit on a mast on the back half of the

robot. The operator now had a third person view of the robot, and much better sense of

where it was going. The operator could use the camera to look down at the robot and see

if it were stuck, if it were articulated appropriately, or if the wheels were spinning like

they should.

Channel Mode Description

Navigation

Forward/Reverse

Linear Proportional

Velocity Control

The joystick is linearly correlated with the centerline

speed of the robot. During turns, the outer wheel might

spin twice as fast as the centerline, so maximum power is

cut in half to avoid clipping.

Navigation

Left/Right

Non Linear

Velocity Control

The axis pans the robot through turns at a constant speed

if the joystick is out of the deadzone.

Camera Up/Down Non Linear

Velocity Control

Tilts the camera.

Camera Left/Right Non Linear

Velocity Control

Pans the camera

Camera Location N/A Camera is located over the joint at the highest point on

the robot.

Figure 37: User Interface Version One

 30

Fourth, the camera pan/tilt platform was improved to include an auto-centering

feature. In addition, as the robot turned, the camera would turn in that direction as well.

By keeping a point of interest centered in the field of view, the operator could easily

drive towards it. The left/right of the camera control was changed to an adaptive,

position control system, so if the robot, and therefore the camera, were pointed slightly

left, pushing the joystick right could still allow you to look all the way to the right.

Pushing the joystick all the way to the left would allow you to look all the way to the left

without going to far. Letting go of the joystick and centering it would cause the camera

to snap back to its original position

Finally, a sort of “artificial horizon” in the form of a simple vertical pole was

added to the robot to aid the operator in navigation. The pole was placed at the joint,

directly on the centerline of the robot. The operator can see the pole in the field of view

and get a much better sense of which way is straight forward.

Channel Mode Description

Navigation

Forward/Reverse

Adaptive, Linear

Proportional

Velocity Control

Joystick has linear control over power. The available

power scales so that the outer wheels never spin too fast

during a turn, but the robot can still go full speed while

driving straight forward.

Navigation

Left/Right

Position Control The axis pans the robot through turns at a constant speed

if the joystick is out of the deadzone.

Camera Up/Down Non Linear

Velocity Control

Tilts the camera.

Camera Left/Right Adaptive,

Proportional

Control

Camera looks in the direction the robot is going. Joystick

looks left and right, but snaps back to center

Camera Location N/A Camera is located on a mast on the back of the robot

Figure 38: User Interface Version 2

 31

2.13 Wheel Speed Algorithm

One of the biggest problems driving the robot was caused by the Victor Speed

Controllers, which take a low power PWM signal to control the high power current loads

to the motors. The Victors have a built in deadband, which cause the motors to freeze

when they should be moving. In the worst case scenario, the Victors are not calibrated to

the same settings and one wheel will spin while the other is stuck, causing a loss of

traction.

The original algorithm to calculate wheel speed used the kinematic equations

described above. Each wheel speed was calculated relative to the centerline velocity.

The centerline velocity was calculated from the forward/reverse axis of the controller.

There were two problems with this algorithm. The first was the problem with the

deadband , as described above. The second was that during a full turn, the outer wheels

of the robot spin nearly twice as fast as the inner wheels. To avoid maxing out the

motors, the top speed corresponding to the full forward and reverse joystick positions was

simply cut in half. This limited the robot’s top speed while driving straight forward as

well.

The solution to both of these problems was to calculate the wheel speeds relative to

each other, rather than to the centerline of the robot. Specifically, the wheel speed of the

right half of the robot was compared to the left half. There is a deadband on the joystick,

and it was set so that if the robot was supposed to be moving, whichever side was slower,

right or left, would receive a signal to make sure it was out of the Victors’ deadband. The

wheel speed for the faster side was then calculated as a ratio of the slow wheel speed. To

avoid maxing out the motors, without giving up top speed, the forward/reverse joystick

channel was scaled as a function of chassis angle, so that while driving straight forward,

all the motors could run at top speed and during a turn, only the outer wheels could run at

top speed.

 32

2.14 Feedback Algorithm

The feedback algorithms were implemented in response to traction control

problems that arose during testing. The outputs of the wheel speed algorithms were sent

to directly to the motors as a “power level” signal, meaning that if the wheel was meant

to go at 20% of its top speed, it received 20% power. On flat ground, with an equal load

on all the motors, this worked very well. Driving up a 45° slope, the robot’s weight shifts

to the back wheels. At 20% power, the front wheels would spin in place, while the back

wheels would be stalled.

Optical encoders were placed on all the wheels so that control loops could be

implemented to control the actual speed of the wheels, rather than power levels. Because

the Victor speed controllers had a deadband and because the motors had worm gears and

did not back drive while under load on the roof, it was possible to use simple, single

channel optical encoders and keep track of the wheel direction in the computer code,

rather than use quadrature encoders.

Because of limited resolution of the Vex output signals and the backlash in the

drive train, programming a control loop that could respond quickly to errors in wheel

speed without overshooting and creating oscillations was extremely difficult.

The solution was to use two Proportional inputs simultaneously. Each wheel’s

speed was calculated independently and used as part of the feedback loop. This was good

enough to work under most driving conditions, but when the robot was starting from a

dead stop on a 45° slope, the back wheels did not respond quickly enough to avoid

significant loss of traction in the front wheels. The second proportional input to the

control loop was the speed of both wheels on each half of the robot. If a wheel was

traveling too slowly and it was traveling slower then its respective wheel on the other half

of the chassis, it got an extra speed boost.

 33

2.15 Sensor Package

In order to make the robot safer for the operator to use, autonomous edge detection

and lockout was added. Four Sharp IR sensors were added, pointing slightly outwards at

all four corners of the robot. The IR sensors have a transmitter and receiver and look for

the reflection of the IR beam. The sensor is very robust and tolerant to noise because it

uses a lens and a strip of photocells to triangulate the distance to the target, rather than

measuring the amount of reflected light.

In operation, the computer code polls the IR sensors during each loop of the main

code. If the sensors return a low enough value, indicating that it is looking into open

space beyond the edge of the roof, the robot is immediately halted and the operator is

locked out from the controls. A manual override button may be pressed for the operator

to resume control of the robot.

 34

2.16 Ascender System

The ascender was viewed as a system independent of the robot. Initial technical

specifications for the ascender stated that it must: raise the robot to a three story roof, be

transportable by one to two people, and fit inside of a car. These specifications changed

as the design of the ascender progressed. This section will discuss initial design concepts

and the progression of the design to its current working state.

 The first step in designing the ascender was to research current means of lifting

loads to a roof. There are a number of different cranes and elevator

like devices on the market for such purposes. These devices are used

primarily by the construction industry for moving materials such as

shingles to the top of a roof. The commercially available products we

identified were impractical for delivering a twenty pound robot to the

desired height of three stories. A typical ladder lift for instance

consists of individual eight foot sections which must be bolted

together. The assembled ladder must then be raised to the rooftop. At

this point the payload is placed on a platform which rides on the

ladders rails and a motor, gas or electric, is used to drag the platform

up the ladder. This at first seemed like a perfect solution to lifting the

robot. In a system like this the ladder must be assembled to full length

on the ground and then positioned against the side of the building. We

decided that positioning a system like this was undesirable because of

the large moments involved in lifting a thirty foot ladder to vertical from horizontal.

Furthermore the commercially available systems are designed to carry a maximum

weight of at least 250 pounds which is significantly more than the twenty pounds of the

robot.

Figure 39:

Laddervator,

Power Ladder

 35

 We decided against using any form of ladder that must be

assembled to length on the ground. This meant that the ascender must be

some form of telescoping mechanism. The most recognizable form of a

telescoping mechanism is an extension ladder. By nature, a telescope

device must have profiles that nest within each other. An actuator,

usually a cable on a pulley, then pulls one profile along the other until

the device has extended to its full height. We also had to design a

carriage which would hold the robot as it was brought up telescope. This

carriage needed to have some form of linear bearing on it to keep it on

the telescope. The inherent problem with telescoping devices is that they

do not provide a constant profile for a linear bearing to follow. This

means that in order to have a carriage follow a telescope device it must

have loose tolerances or have an adaptable mechanism capable of

following the profiles of the

extension.

 The first device that we

prototyped was a four stage telescoping extension with

a spring loaded four-bar linkage used to follow the

telescope profiles. The design was modeled in CAD

(Figure 41) and a prototype was fabricated from wood

and metal to test the concept (Figure 42). Because of

tolerance issues with the wood the carriage never

properly mated

with profiles.

This was a

significant problem because as we looked forward

to a full size prototype we realized that constructing

the necessary profiles would not be feasible since

we did not have the manufacturing facilities

Figure 40:

Telescope

Diagram

Figure 41: First Ascender Prototype

CAD Model

Figure 42: First Ascender Prototype

 36

necessary nor would it be economical to outsource the design. This concept was a reality

check that showed us even though something works great in CAD it will not necessarily

translate to the real world.

 We contacted Travelers again to go over the technical specifications.

We found that the inspectors currently use ladders that bolt together from four

foot sections to a height of sixteen feet and when access to a taller roof is

needed a twenty-eight foot fiberglass extension ladder is used. When this was

determined we proposed the idea of using a sled that rides in the existing

extension ladder to transport the robot to the roof. Our liaisons at Travelers

expressed that while this was not ideal it would be sufficient. We continued to

press on looking for a means of creating our own telescoping device. The use

of a commercially available telescoping pole was explored but when the

manufacturing company (Geo Data Systems) provided us with the pole’s

specifications we found the deflection with the weight of the robot to be

excessive. (A thirty foot fiberglass pole available from Geo Data Systems will

deflect fourteen feet with a fifteen pound load on the end).2 Because time was

running out we decided to go back to the design involving a sled on a

commercially available extension ladder.

 An extension ladder is essentially a prepackaged two stage telescoping

platform. We purchased a twenty foot fiberglass extension ladder made by Werner, the

preferred brand of Travelers. The twenty foot length was selected because moving and

storing a twenty-eight foot ladder was not practical for us and upon inspection we found

that all Werner fiberglass ladders have the same profile dimensions, the only thing that

varies is the length. This meant that we could design a sled system for the twenty foot

ladder that could then be bolted onto a twenty-eight foot ladder later. The sled was

modeled in CAD and a prototype built from lexan for testing. The design uses a sled to

carry the robot to the top of the ladder. The robot sits on a platform enclosed in a lexan

box preventing the robot from falling out. The platform pivots about the end of the sled.

2 http://www.geodatasys.com/pole3.htm

Figure 43:

Geo Data

Systems

Telescoping

Pole

 37

As the sled approaches the end of the ladder the tilting platform engages with an angled

profile which guides the tilt of the platform as it rotates at the end of the ladder. The roof

itself is used as a positive stop. The angled profile also guides the platform back into its

original position for lowering the robot back to the ground. The entire assembly is

operated by a hand operated drum at chest height fixed to the ladder.

 Once this prototype was made it was apparent that there were

certain situations where the stability of the sled on the ladder became

precarious. To remedy this, the addition of an 8020 extruded profile was

made. The extruded profile is fastened to the upper portion of the

extension ladder. Linear bearings were secured to the sled which

interfaces with the 8020 extrusion; this locks the sled to the ladder,

preventing it from falling off. The sled cannot leave the upper portion of

the extension ladder or it will come off of the extrusion. Because of this

the robot must be loaded before the ladder is extended. The process for

raising the robot to the roof can be seen in Figure 44.

 To reduce the force required to tilt the platform over the sled a

two bar linkage was designed. The linkage remains locked by spring

loaded latches as the sled is pulled up the ladder; once the sled reaches

the top the latches are depressed allowing the platform to be actuated.

The platform can actuate to 90°, however, the roof will stop the platform

at the appropriate angle for the robot to drive off at.

 The forces involved in raising and actuating the ascender are not

insignificant. The following is a compilation of free body diagrams and

force calculations that were carried out to ensure that the ascender would

be operable as designed. The forces were calculated for what we

perceived was worse than the worst case scenario, where the ladder is

setup at 90° to the ground. This situation is not possible and the ladder

manufacturer only recommends up to a 75° angle. Therefore there is a

safety factor of 15°.

Figure 44:

Ascender Flow

Chart

 38

Figure 45: Ascender Schematic Diagram

 39

Figure 46: Pulley Free Body Diagram (Not To Scale)

"25.12

"75.01

301

0

011

0*22*1

=

=

=

=

=−=

=−=

∑

∑

∑

R

R

lbsF

F

FFF

lFRFM

x

y

A

Equation 1: Force at Handle

l

F2

 40

 Using the winch that we built the required applied force to raise the robot in its

carriage is 3.1 lbs. After the sled reaches the top of the ladder the carriage is actuated

tilting the robot into a position from which it can be driven onto the roof. The force

required to actuate the linkage is a function of the angle of tilt of the carriage. The applied

force at the handle is a maximum of 18.8lbs. Figure 47 plots the force required to actuate

the carriage linkage at the handle versus the angle of carriage tilt.

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90

Theta (Degrees)

F
o

rc
e

 (
lb

)

Figure 47: Carriage Tilt vs Force Applied at Handle

 41

Figure 48: Carriage Operation Schematic Diagram

Figure 49: Applied Force Free Body Diagram

Y

X

 42

lbsW

B

A

WFF

F

BWFAM

robot

robotRy

x

robotA

20

"5.14

"8

0

0

0*)sin(*1*

=

=

=

=−=

=

=−=

∑

∑

∑ θ

Figure 50: Carriage Tilt vs Applied Force Equations

 43

3 Results

This section describes the robot’s performance as defined by our original task

specifications. Once we finished our first prototype of the robot we went through several

design iterations to improve performance. Our results come from testing performed on

the mock-up roof located in Washburn Shops at WPI.

3.1 Navigation and Maneuverability

The robot is capable of traversing a roof, with some limitation on performance. It

should be noted that to date, all testing has been conducted indoors on a mockup roof.

Specification: Maneuverability over composition tile at a 12/12 pitch

This specification has been partially met. The robot is capable of driving up

12/12 sloped composition tile roofs, but there is a very limited margin of safety.

Conditions such as loose surface grains or dirty or worn out treads may cause the robot to

slip. In testing, the robot would occasionally slide, but would still regain traction. The

robot is capable of driving up 35° slopes without slipping.

Specification: Able to traverse rooftop and valley

This specification has been met, but with some limitations. The robot has enough

ground clearance to clear the rooftop, however, the operator must take the rooftop

straight on. The robot is also able to traverse valleys, but if the operator drives at too

shallow an angle relative to the fold of the valley, a wheel may get caught, inducing a

tipover. Driving at a perpendicular angle to the fold avoids any problems while

traversing it.

Specification: Remote Control (Untethered)

This specification has been fully met. Again, it should be noted that indoor testing

has prevented us from testing radio control at ranges likely to be found in outdoor

conditions.

 44

3.2 Autonomous Features

The robot’s autonomous features respond very quickly. Limitations of the VEX

controller make it difficult to send feedback to the operator when an override has

triggered.

Specification: Can sense roof edge to prevent operator error

This specification has been fully met. The IR sensors lock the operator out of the

controls between 12” – 18” from the roof edge and immediately stop the robot. The IR

sensors are reliable and have an excellent signal to noise ratio, but have not been tested

under outdoor lighting conditions.

Specification: Tilt warning

We were not able to meet this specification. We would have integrated

accelerometer based tilt warnings into the system but because the Vex controller will not

send information back to the operator we had no way of reading the warnings. One option

we explored was to have the controller light up an LED on the robot which would be

visible through the robot’s camera. We deemed this to not be practical since the next

version of the robot will not use the Vex controller and will be able to send the warning

to the operator.

Specification: Manual overrides to allow operability in the event of a false sensor

warning

This specification has been fully met.

3.3 Visual Inspection

As a proof of concept, the robot has shown that it is possible to use a camera to

conduct a visual inspection, but the current prototype does not have enough resolution to

produce a high quality image.

Specification: Robot incorporates a camera with a transmissible feed

This specification has been fully met.

 45

Specification: Robot is able to produce a record of visual inspection

This specification has been fully met.

3.4 Durability

Without further testing, we do not have enough data to be able to evaluate the robot’s

durability or lifecycle. We estimate that the robot has been through 20 hours of operation

so far, but a 50 hour lifecycle was specified. During this time, we have noted the

following issues.

• The treads are subject to wear and may need to be replaced regularly. (We are

unable to specify how often without further testing)

• Occasionally, wires came loose during operation, which cause unpredictable

behavior.

• The joint which holds together the two chassis halves broke with two different

failure modes. The first time, a screw which held the pin in the roll axis failed.

The second time, a lost signal from the potentiometer caused the robot to drive

against itself, breaking the key stock which holds the pin on the capstan. See

Section 4 for further recommendations.

3.5 Ascender Mechanism

We have built an ascender mechanism that will transport the robot to a height of

twenty feet. This meets the specification that we originally stated; however, the

packaging of the ascender is not consistent with the desired state. Travelers would prefer

that the ascender be small enough to fit in the back of a car and light enough for one

person to setup. This is not the current case and we ran into trouble with time resources.

See Section 4 for further recommendations.

 46

4 Recommendations

This Major Qualifying Project has significant potential for follow on projects at WPI.

For this reason this section is geared towards future improvements to the design of the

robot and ascender by follow on MQP teams.

Redesign the driveline and control system:

The current driveline and control system is limited by its components. A redesign

of the driveline and control system would provide more efficient power consumption,

better handling, and simpler computer code.

Replace the window motors to improve power consumption and handling:

The window motors that drive the robot are not optimal because they run

too fast and have a significant amount of backlash. The motors are run very close

to their minimum speed, resulting in poor power efficiency. The backlash limits

the response time of the control loop and makes it difficult to avoid control loop

oscillations.

Replace the current optical encoders with quadrature encoders to simplify code:

The optical encoders on the robot are non-directional, meaning they can

only tell the speed of the wheels, but not the velocity. A quadrature encoder can

sense both speed and velocity and would greatly reduce the complexity of the

computer code.

Move the optical encoders closer to the motor in the gear train to improve

handling:

The optical encoders are currently mounted near the rims of wheels,

outside of the chassis, where they are exposed and unprotected. Furthermore, it is

very important for the robot to be able to control wheel speed very precisely,

 47

especially at low speeds. If the encoder was mounted on the motor before the

reduction through the worm gear, it would improve the resolution of the encoder,

thereby shortening the response time of the control loop and improving handling.

Replace the Vex and Victor Speed Controllers to improve handling and simplify

code:

The pulse width modulated (PWM) signal sent to the Victor Speed

Controllers contains analog information on both direction and duty cycle for the

signal that is sent to the motors. To avoid crossover issues with the input signal

changing from forward to reverse, the Victor has a deadband. The deadband

reduces handling performance at slow speeds, and introduces incredible

complexity to finding workarounds in the computer code.

All speed controllers will have the same problem with the analog PWM

signal sent by the Vex. The only solution is to replace the Vex with another

microcontroller that can have tighter integration between the processor and the

speed controller, avoiding the issue altogether.

Replace the Vex microcontroller with something more powerful:

The original intent of this project was to use the Qwerk microcontroller available

from Charmed labs to control the robot. After spending several months trying to adapt it

to our uses we decided it would be more productive to use the Vex microcontroller that

we had from the early prototype despite its limitations. The Vex, while it is able to

support all of our signal processing and controls has a major limitation in that it cannot

log or transmit any data back to the operator. Because the intent of the roof robot is to

inspect the roof it will be necessary to incorporate a more advanced controller, such as

the Qwerk, into the next iteration of the roof robot to read and transmit sensor data.

 48

Replace the X10 camera with a higher resolution device:

One of the advantages to the Qwerk controller was its support for transmitting a

webcam feed to a laptop. Webcams are now capable of providing feeds with video over

one mega pixel in resolution. When we decided not to use the Qwerk controller we had to

provide an alternative camera with an independent transmitter. The simplest way to

provide video feedback was by incorporating an X10 wireless home security camera into

the design. The X10 is an all inclusive package has a transmitter and battery pack.

Unfortunately the resolution of this camera is not very clear and a better camera should

be identified.

Have separate navigation and inspection cameras:

The camera, at it present location on a mast on the back of the robot, is not suited

for close up visual inspections. We recommend keeping a camera there for the purpose

of navigation, where it is possible to see the robot in the field of view and have a better

sense of the surroundings, but for the purpose of visual inspection, we recommend having

a dedicated camera on the front of the robot. The camera would be in a more ideal

position to look at the roof and could send back high resolution photos of the target areas.

Replace X10 camera transmitter with a more powerful transmitter:

The transmission of video from the X10 to the laptop is accomplished through a

radio channel. The provided antenna for the X10 is a directional antenna. The signal

becomes fuzzy or non-existent under certain conditions where the transmitter is not

facing the receiver. The X10 has been modified by other people to use an omni-

directional antenna; however we did not have time to incorporate this into the roof robot.

We therefore recommend that more suitable transmitter be found, or the camera be

replaced by a more appropriate one.

 49

Add additional autonomous sensors to prevent operator induced flip-over:

Currently, the robot has no features to prevent the operator from inducing an

unstable condition where the robot may flip over. Additional sensors, such as an

accelerometer, can be used to detect this condition. Other situations may be induced

when a wheel gets stuck, causing the robot to pivot about the stuck wheel and flip the

robot over. To prevent this condition, we would recommend additional sensors to detect

whenever a wheel loses contact with the ground.

Re-evaluate battery requirements and alter individual battery packs to function as one:

The battery packs currently supplying the robot with power run at twelve volts.

There are three of these battery packs wired in parallel to supply power necessary for our

specified operating time of one half hour at full power. These battery packs are not wired

to charge through one cable. The current setup requires that each battery pack be charged

individually until full. Rewiring the charge terminals would simplify this procedure.

Additionally the Vex controller runs off of a nine-volt battery. This has its own separate

battery pack. The X10 camera also runs off of its own 24-volt battery pack. Through

some relatively simple circuitry these three systems; drive train, controller and camera

could be powered off of one battery pack. This would also simplify the procedure to turn

on the robot which currently requires activating three separate switches to turn on power

to all the systems.

Improve the durability of the joint components:

The construction of the joint has two observed failure modes that need to be

corrected. The first is the welded key-stock bar connecting the rotating shaft A to the

capstan. Under high torque loads the shaft will break causing the robot to not have the

ability to turn. Furthermore the bolt holding shaft A to shaft B will also snap. This is due

to tolerances between joint A and B being too loose. The resulting gap means that all

forces associated with the weight of the robot may be directed through this .195” bolt. If

this bolt breaks then the joint falls apart and the robot is left in two pieces. To fix this

 50

shaft A and B should be fabricated out of a single piece of stock eliminating the bolt

completely.

Further research into friction materials for the wheels:

Although the robot maintains static frictional stability with roof on the specified

angle of 45°, if slip is induced it does not have a satisfactory margin of safety to arrest

sliding. Despite our testing of materials we were not able to find anything with better

frictional coefficients than EPDM foam. To prevent slip we implemented the electronic

traction control system, this improves traction capabilities, but it is not fool proof. Further

testing should also be done on weathered shingles and wet shingles to see what the

frictional properties under these conditions are. One proposed solution would be to

develop an active friction material that interfaces with the roof surface the same way a

gecko’s toe is able to hold on to a vertical wall.

Redesign of the ascender system:

The largest design challenge the ascender presented was how to deliver the robot to

the roof while staying small and lightweight enough to be easily transportable. Although

the robot and the ascender were being developed concurrently the design of the robot

heavily influenced the design of the ascender. The robot’s size and weight made it

necessary to have a robust ascender mechanism which in turn became large and heavy. If

the robot had been designed to fit a compact ascender mechanism it is possible it would

have worked out much more efficiently. The concurrent design of the robot and the

ascender was a large work order. We think that should one have preceded the other

entirely the results would have been more acceptable. This way each system would

receive everyone’s full attention. Future considerations for the ascender should include

the use of a telescoping device that is only as big as it absolutely needs to be, furthermore

the size of the robot should not be the ultimate dictator of the ascenders design

specifications. Through the use of a more customized drive train and electronics the size

of the robot could easily be reduced making the load on the ascender much less and

 51

opening up the possibilities for further innovation. For instance we had to rule out using a

telescoping pole to place the robot on the roof because it would not support the size of the

robot. If the robot were one third of it’s current weight (approximately six pounds), it

would have been possible to use a commercially available telescoping pole as a means of

placing the robot on the roof.

 52

5 Conclusions

Through this Major Qualifying Project we have shown that it is possible to build a

robot that can operate on a 45° roof with an asphalt shingle surface. We have met nearly

all of the original task specifications but were limited by time constraints and

complications with programming. The prototype that we built has room for improvement

and we have detailed these areas in our recommendations section of this report. This

project lays the groundwork for future projects that will go on to improve on our designs

and develop further sensor packages for the St Paul Travelers insurance company.

 53

Appendix A- CAD Drawings

 This appendix is a compilation of CAD drawings relevant to the design of the roof

robot. All CAD files were made using Solidworks Design Studio. The appropriate

electronic files are included on the CD attached to the hardcopy of this report. Solidworks

was used as a design aid in determining the dimensions and geometries of all of the

components that we machined. Some of the components were made using HAAS CNC

mills while others were made using manual mills and lathes. Due to the iterative design

process of this project the CAD model does not completely reflect the ultimate state of

the robot. For this reason any parts needing to be reproduced should be referenced against

the physical part on the robot to determine what liberties were taken during the

machining of the part.

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

Appendix B- Robot Code

// runRobot.c : implementation file
#include "API.h" //this is the API to access all the Vex’s sensors/motors/etc.
#include "math.h"

//Global Variables
unsigned char servoNeutral = 127;

//*********************************
//variables for Wheel feedback

float error;
float correction;

int target[4];
int output[4];

int oldCount1[4];
int oldCount2[4];
int newCount[4];
int numClicks;

float expectedClicksPerSec[4];
float expectedTimeBetweenClicks;
unsigned long oldClickTime1[4];
unsigned long oldClickTime2[4];
unsigned long newClickTime[4];
long timeInterval;
unsigned long stuckWaiting[4];

long delay[4];

float clicksPerSec[4];
float clicksPerSec1[4];
float clicksPerSec2[4];
//*********************************
//variables for geometry
float halfLength = 9 ;
float halfWidth = 9 ;
//*********************************
//variables to equate motorspeeds
float rateOfTurn = .05;
float P = 50 ;
float P2 = 30 ;

//***
int panTiltDelay = 10 ; //this is a delay - higher rate is slower pan
int panTiltDelayCount = 0;
//*********************************

 87

//variabls for Joint feedback
float potNeutral = 512;
float potAngle;
float halfTangent;
float rightToLeftRatio;
float slowSide ;
float fastSide ;
//*********************************
//PID "Goal Values"
float targetAngle;
char I = 0;
int D ;
unsigned char targetAngPWM;
int targetFL; //Target speed for the front left motor
int targetBL;
int targetFR;
int targetBR;
unsigned char targetPan = 127 ;
unsigned char targetTilt = 127 ;
//*********************************
//PID "Feedback Values"
unsigned int potReading;
//*********************************
unsigned char inputFB; //forward and reverse joystick input
unsigned char inputLR;
unsigned char inputPan;
unsigned char inputTilt;
float joystickInRadians ;
unsigned char inputOverRide;
//*********************************

//*********************************

void runRobot(void);
void init(void);
void getInputs(void);
void getFeedback(void);

void updateDisplay(void);

void updateTargets(void);
void setTargetsForTurning(void);
void setTargetsForDriving(void);
void setTargetsForPanTilt(void);

void calcSpeed(int i);
void adjustForError(int i);

void drivePanTilt(void);
void driveMotors(void);
void lockOut(void);

 88

void runRobot(void)
{
 int i;

 init();

 while (1)
 {

 getInputs();

 updateTargets();

 getFeedback();

 target[0] = targetFL;
 target[1] = targetFR;
 target[2] = targetBL;
 target[3] = targetBR;

 calcSpeed(0);
 calcSpeed(3);
 calcSpeed(1);
 calcSpeed(2);

 for(i = 2; i <=5 ; i++)
 {
 if (GetAnalogInput(i) < 85 && inputOverRide != 255)
 {
 lockOut();
 PrintToScreen ("%d\n" , (int)i) ;
 PrintToScreen ("%d\n" , (int)GetAnalogInput(i)) ; // this is leftover from debuging
 Wait(50);
 }
 }

 driveMotors();
 drivePanTilt();
 }

}
//**
// initialization sequence
void init(void)
{
 int i;

 getFeedback();
 targetAngle = potAngle ; // this prevents the joint from spazzing on startup
 D = potReading ;
 panTiltDelayCount = 0;

 89

 for(i = 0 ; i <= 3 ; i++)
 {
 PresetEncoder(i+1,0);
 StartEncoder(i+1);

 PresetTimer(i+1,0);
 StartTimer(i+1);
 }
}

//**
// update inputs
void getInputs(void)
{
 inputLR = GetRxInput (0 , 1) ; //joystick axis 1 controls Left/Right
 inputFB = GetRxInput (0 , 2) ; //joystick axis 4 controls Front/Back
 inputTilt = GetRxInput (0 , 3);
 inputPan = GetRxInput (0, 4) ;
 inputOverRide = GetRxInput (0 , 5);
}

//**
// get feedback
void getFeedback(void)
{

 int countDiff1;
 int countDiff2;

 long timeDiff1;
 long timeDiff2;

 char i;

//**************
//joint feedback
//**************
 potReading = GetAnalogInput (1) ;
 potAngle = ((float)potReading - potNeutral) /508 ;
 if((potAngle < .03) && (potAngle > -.03)) //i'm trying to avoid a divide
 halfTangent = .0001; //by zero later on. .03 radians is about 1.7degrees
 else
 halfTangent = tan(potAngle/2);
/*
Explanation of the number "508" above:
I took readings off the pot while I turned the knob.
It would seems that about pi/2 raidans of rotation corresponds
to about 400 "bits" on the analog input range. hence,
pi/2 radians = 400 bits / 508
}
*/

 90

//**************
//wheel feedback
//**************
 for (i = 0 ; i <= 3 ; i++)
 {

 newCount[i] = GetEncoder(i+1); //this section of code prevents the encoder
 newClickTime[i] = GetTimer(i+1); //counters from overflowing

 if (newCount[i] > 32000)
 {
 countDiff1 = newCount[i] - oldCount1[i];
 countDiff2 = oldCount2[i] - oldCount1[i];

 oldCount2[i] = 0;
 oldCount1[i] = countDiff2 ;
 newCount[i] = countDiff1 + countDiff2;

 PresetEncoder(i+1,newCount[i]);
 }

 if (newClickTime[i] > 1000000000) //this prevents the timers from overflowing
 {
 timeDiff1 = newClickTime[i] - oldClickTime1[i];
 timeDiff2 = oldClickTime1[i] - oldClickTime2[i];

 oldClickTime2[i] = 0;
 oldClickTime1[i] = timeDiff2 ;
 newClickTime[i] = timeDiff1 + timeDiff2;

 stuckWaiting[i] = newClickTime[i];

 PresetTimer(i+1,newClickTime[i]);
 }
 }
}

void updateDisplay(void) //this section of code is for debugging
{
 PrintToScreen ("%d\n " , (int)slowSide) ;
 PrintToScreen ("%d\n " , (int)fastSide) ;
 // PrintToScreen ("%d\n " , (int)(potAngle*57.)) ;
 PrintToScreen ("%d\n " , (int)(rightToLeftRatio*1000)) ;
 PrintToScreen ("%d\n " , (int)targetFL) ;
 PrintToScreen ("%d\n " , (int)targetFR) ;
 PrintToScreen ("%d\n " , (int)targetBL) ;
 PrintToScreen ("%d\n " , (int)targetBR) ;
 PrintToScreen ("\n") ;
 // Wait (100) ;
}

//**
// set targets based on input
void updateTargets(void)

 91

{
// in this control scheme, the LR joystick position should correspond
// directly to the position of the joint motor

 joystickInRadians = (float)((servoNeutral - inputLR))/ 175 ;

 rightToLeftRatio = (halfWidth + halfWidth*halfTangent)/(halfWidth - halfWidth*halfTangent);

/* the above is a confusing magic conversion, so that a full throttle
 joystick position should correspond to about .785 radians, or a full,
 45 degree turn*/

 setTargetsForTurning();

//during development, I found that while driving, with the wheels already spinning, the joint motor could

// use brute force to turn the robot. So I set targets for turning, which would normally cause the wheels to

// spin in opposing directions, but then I override those targets to set the wheels to the normal driving speed.

//a consequence of this is that an explicit signal to stop the robot isn’t clearly written into the code

//it is buried in an if statement in the setTargetsForTurning() subroutine

 if ((inputFB - servoNeutral) < -15 || (inputFB - servoNeutral)> 15)
 setTargetsForDriving();

 setTargetsForPanTilt();

 if (panTiltDelayCount < panTiltDelay) // I did this to slow the pan tilt down
 {
 if ((inputPan - servoNeutral) < -15 || (inputPan - servoNeutral)> 15) //set deadbands

 if ((inputTilt - servoNeutral) < -15 || (inputTilt - servoNeutral)> 15)

 panTiltDelayCount++;
 }
 else
 panTiltDelayCount = 0;

}
//**
// set DRIVING TARGETS
void setTargetsForDriving(void)
{
 //float rightToLeftRatio ;
 float maxPower = 50. ;
 float powerScaleToJoystick ;

 if (rightToLeftRatio > 1 || rightToLeftRatio < -1)
 powerScaleToJoystick = maxPower / rightToLeftRatio ; //dynamically scales the throttle range
 else
 powerScaleToJoystick = maxPower * rightToLeftRatio ; //dynamically scales the throttle range

 92

 slowSide = ((float)(inputFB - servoNeutral) / 128) * powerScaleToJoystick ;

 // the code below should keep it out of the deadband
 // it assumes that the maxPower setting will keep it from maxing out

 if (slowSide > -15 && slowSide < 0)
 slowSide = -15 ;
 if (slowSide >= 0 && slowSide < 15)
 slowSide = 15 ;

 if (rightToLeftRatio > 1 || rightToLeftRatio < -1)
 {
 fastSide = slowSide * rightToLeftRatio ;
 targetFR = (int)(slowSide);
 targetBR = (int)(slowSide);
 targetFL = (int)(fastSide);
 targetBL = (int)(fastSide);
 }
 else
 {
 fastSide = slowSide / rightToLeftRatio ;
 targetFR = (int)(fastSide);
 targetBR = (int)(fastSide);
 targetFL = (int)(slowSide);
 targetBL = (int)(slowSide);
 }

 }

//**
// set TURNING targets
void setTargetsForTurning(void)
{
 targetAngle = joystickInRadians ;

 if((potAngle - targetAngle) > -.037 && (potAngle - targetAngle) < .037)
 {
 I = 0;
 slowSide = 0;
 }
 else
 {
 if ((D - (int)potReading) > -5 && (D - (int)potReading) < 5
 && (-20 < I < 20))
 {
 if (potAngle < targetAngle)
 {
 slowSide = -12;
 if (I > -12)
 I = -12 ;
 else
 I--;
 }

 93

 if (potAngle > targetAngle)
 {
 slowSide = 12;
 if (I < 12)
 I = 12 ;
 else
 I++;
 }

 }
 }

 D = potReading ;
 targetAngPWM = (unsigned char)(servoNeutral + I);

 if (rightToLeftRatio > 1 || rightToLeftRatio < -1)
 {
 fastSide = slowSide * rightToLeftRatio ;
 targetFR = (int)(slowSide);
 targetBR = (int)(-slowSide);
 targetFL = (int)(-fastSide);
 targetBL = (int)(fastSide);
 }
 else
 {
 fastSide = slowSide / rightToLeftRatio ;
 targetFR = (int)(slowSide);
 targetBR = (int)(-slowSide);
 targetFL = (int)(-fastSide);
 targetBL = (int)(fastSide);
 }
}

//**
// set the PAN/TILT
void setTargetsForPanTilt(void)
{
 int turnOffset;
 int scaledPan;
 float scale;

 if (panTiltDelayCount < panTiltDelay)
 {
 if ((inputTilt - servoNeutral < -15) && targetTilt > 1)
 targetTilt--;
 if ((inputTilt - servoNeutral > 15) && targetTilt < 255)
 targetTilt++;

 panTiltDelayCount++;
 }
 else
 panTiltDelayCount = 0;

 94

 turnOffset = (servoNeutral - inputLR) / 1.5;

 if ((inputPan - servoNeutral) > 0)
 scale = (float)(127 - turnOffset) / 127.;
 if ((inputPan - servoNeutral) <=0)
 scale = (float)(turnOffset - (-127))/127;

 scaledPan = (inputPan - servoNeutral) * scale ;
 targetPan = (unsigned char)(scaledPan + turnOffset + servoNeutral);

}
//**
// calculate Current Speed

void calcSpeed(int i)
{
 expectedClicksPerSec[i] = (float)(target[i])*.85;
 if (target[i] < 0)
 expectedClicksPerSec[i] = -1 * expectedClicksPerSec[i];

 expectedTimeBetweenClicks = (1200 / expectedClicksPerSec[i]) ;

 if (expectedTimeBetweenClicks > 120)
 expectedTimeBetweenClicks = 120;

 // the above should give you the time between clicks...
 // there is a little extra leeway to account for rounding error
 // and stuff like that

 if(newCount[i] > oldCount1[i])
 {
 timeInterval = newClickTime[i] - oldClickTime2[i] ;
 numClicks = newCount[i] - oldCount2[i];

 oldClickTime2[i] = oldClickTime1[i];
 oldClickTime1[i] = newClickTime[i] ;

 stuckWaiting[i] = newClickTime[i] ; //a click has occured,

 oldCount2[i] = oldCount1[i] ; //so reset everything
 oldCount1[i] = newCount[i] ;

 clicksPerSec[i] = 1000 / (float)(timeInterval / numClicks);

 adjustForError(i);
 }

 if ((newClickTime[i] - oldClickTime1[i]) > expectedTimeBetweenClicks)
 {
 clicksPerSec[i] = 0;
 }

 95

 if ((newClickTime[i] - stuckWaiting[i]) > expectedTimeBetweenClicks)
 {
 stuckWaiting[i] = newClickTime[i];
 delay[i] = 2;
 adjustForError(i);
 }
}

//**
// adjust output for error
void adjustForError(int i)
{
 int Pwheel;
 int speedBehind;
 float percentError;
 char comp;

 delay[i]++ ;

 if(delay[i] < 2)
 return;
 else
 delay[i] = 0;

 if(i == 0) //figures out which wheel is on the same side, (left and right sides)
 comp = 2;
 if(i == 1)
 comp = 3;
 if(i == 2)
 comp = 0;
 if(i == 3)
 comp = 1;

 error = clicksPerSec[i] - expectedClicksPerSec[i] ;
 percentError = error / expectedClicksPerSec[i] ;
 speedBehind = (int)(clicksPerSec[i] - clicksPerSec[comp]) ;

 if (percentError > .1)
 Pwheel = (-percentError * 2) - 1;
 else if (percentError < -.1)
 Pwheel = (-percentError * 2) + 1;
 else
 Pwheel = 0;

 if (percentError < -.1 &&
 speedBehind < -12)
 Pwheel = Pwheel + 10;

 if (target[i] > 0)
 correction = Pwheel ;
 else if (target[i] < 0)
 correction = -Pwheel ;

 96

 output[i] = output[i] + correction;

//************************
 //dead zone
 if (target[i] == 0)
 output[i] = 0 ;

 if (target[i] > 0 && output[i] < 12)
 output[i] = 12;
 if (target[i] < 0 && output[i] > -12)
 output[i] = -12;

//************************
//dont max out
 if (output[i] > 127)
 output[i] = 127 ;
 if (output[i] < -127)
 output[i] = -127;

}

void driveMotors(void)
{

 SetPWM (1 , (unsigned char)(output[0] + servoNeutral)) ;
 SetPWM (2 , (unsigned char)(output[1] + servoNeutral)) ;
 SetPWM (3 , (unsigned char)(output[2] + servoNeutral)) ;
 SetPWM (4 , (unsigned char)(output[3] + servoNeutral)) ;
 SetPWM (5 , targetAngPWM) ;
}

void drivePanTilt(void)
{
 SetPWM (6 , targetTilt) ;
 SetPWM (7 , targetPan) ;
}

void lockOut(void)
{

 output[0] = 0;
 output[1] = 0;
 output[2] = 0;
 output[3] = 0;
 targetAngPWM = 127;
}

 97

Appendix C- Weight Breakdown

Bill of Materials
Item Quantity Weight (lbs) Total (lbs)

Wheel Assembly 4 1.3 5.2

Window Drive Motors 4 1.2 4.8

Batteries 3 1.3 3.9

Misc Wires and Hardware 1 2.9 2.9

Bottom Panel 2 0.7 1.4

Side Panel 4 0.33 1.32

Victor Speed Controllers 5 0.25 1.25

Joint Drive Motor 1 1 1

X10 Wireless Camera 1 1 1

Vex Power Pack 1 0.71 0.71

Bracket 2 0.23 0.46

Vex Controller 1 0.28 0.28

Pan Tilt Assembly 1 0.25 0.25

Camera Mast 1 0.24 0.24

Joint Inner Housing 1 0.24 0.24

Joint Vertical Shaft 1 0.22 0.22

Joint Outer Housing 1 0.16 0.16

Joint Side Block 1 0.14 0.14

Joint Block 2 0.07 0.14

Joint Capstan 1 0.07 0.07

Joint Toggle 1 0.06 0.06

Joint Bottom Block 1 0.05 0.05

Joint Bottom Block 1 0.05 0.05

Joint Spacer 1 0.05 0.05

Joint Top Plate 1 0.01 0.01

 Total 25.9

Table 1: Weight Breakdown

 98

Appendix D- Bill of Materials

Bill of Materials
Item Quantity Cost Total

Vex Controller 1 $300.00 $300.00

Window Drive Motors 4 $41.75 $167.00

Victor Speed Controllers 5 $116.00 $580.00

Pan Tilt Assembly 1 $65.00 $65.00

Joint Drive Motor 1 $42.00 $42.00

Wheel Material 1 $13.00 $13.00

X10 Wireless Camera 1 $100.00 $100.00

Aluminum 1 $100.00 $100.00

Lexan 1 $100.00 $100.00

Misc Wires and Hardware 1 $100.00 $100.00

Batteries 3 $60.00 $180.00

Laptop 1 $400.00 $400.00

Ladder 1 $230.00 $230.00

8020 Rail 1 $50.00 $50.00

8020 Bearings 2 $30.00 $60.00

 Total $2,487.00

Table 2: Total Cost

