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Abstract 

Metamaterials created through artificial intelligence (AI) models are a new way to engineer 
materials with a wide range of properties. Variational autoencoder (VAE) is an AI model that 
allows engineers to quickly design materials with specific properties from the latent space. The 
motivation for this paper is learning how to use AI as a tool for future architectural engineers. 
Creating new meta materials with complex geometry allows architectural engineers to design 
sustainable buildings and cities with strong materials. The methods of this paper describe the 
research that has been done, including running codes for different AI models and utilizing VAE 
model for generating materials. The results look at the output generated by the code and its 
application towards various fields including architectural engineering is discussed. The 
discussions observe the importance of using AI as a tool for faster decision making. The 
conclusions discuss the future of AI.  

 

Introduction 

Metamaterials are artificial materials that have specific material properties and have been broadly 
applied in various fields, as shown in Figure 1 [1]. Metamaterials can be represented by using a 
regular mesh, in which each voxel in the mesh represents a building block for the construction of 
microstructures. By developing different combinations of voxels within the design domain, it is 
possible to achieve unprecedented properties that cannot be achieved by using single solid 
materials. Although metamaterials exhibit excellent performance in various applications, it is 
challenging to design metamaterials. This is because the computational cost of searching for the 
desirable microstructures from infinite candidates is too expensive [2].To overcome 
aforementioned challenges, AI, especially generative AI models, is introduced to design 
metamaterials with specific properties. AI models use powerful computers to mimic the neural 
connectivity of the human brain and allow universal approximation of complex interpolation 
functions [3]. This can help to design these complex multi-scale metamaterial in a low dimensional 
latent space [4].  

I am motivated to learn about metamaterials because they can be applied towards a wide variety 
of engineering fields, most notably architectural engineering [5]. Metamaterials are modeled after 
metals and plastics, which are common building materials for architectural engineers. 
Metamaterials are important for architectural engineers because they provide multifunctional 
performance by fine tuning the materials’ microstructure. In this project, I used variational 
autoencoders (VAEs) to generate materials. VAEs describe in a detailed manner the probability of 
several different observations happening in a latent space. Figure 2 describes the process of the 
VAE for metamaterials development. The input variable goes into the encoder and comes out of 
the decoder. The encoder is the process that produces new features based on latent space. The 
decoder does the reverse of the encoder, going from the samplings to the microstructure design. 



The result includes a latent space describing the probability of this variation and the reconstructed 
metamaterial [6]. The encoder and decoder work together while automatically performing the 
calculations to determine the values faster than calculations done manually [7]. Conditional 
variational autoencoders (cVAEs) are the same basis but have an additional condition in between 
the input and output, allowing for a more precise observation [8]. I also did research on stable 
diffusion, which is a more advanced model that allows the input to be a text prompt, and the output 
be an image generated based off the prompt. 

 

 

Figure 1: This is a gallery of 3D metamaterials [9]. 

 

Figure 2: Schematic illustration of VAE model for metal materials development. [10] 

State of the Art 

Recently, more people have conducted research on applying deep neural networks and deep 
machine learning for structure and material designs. This includes both predictive models and 
generative models [11]. Predictive models predict a given design’s performance and aim to lower 
the computational cost associated with an AI model [12]. Deep generative models learn the 
underlying structure of a given dataset to generate innovative designs in a low latent space. 
Examples of deep generative models are Generative Adversarial Networks (GAN) [13] and 
Variational Autoencoders (VAEs) [14]. Deep generative models have been applied towards 
reconstructing micro materials [15]. 

In this project, I chose to use VAEs to design metamaterials. By using datasets provided by 
Professor Cheng. VAEs can learn the structure and generate new structures of materials. The VAEs 
can develop new geometries and properties of metamaterials that are not provided in the database. 
Extensive research helps understand the process of AI through VAEs. Understanding Python and 



coding is an essential part of AI development. VAEs use Stochastic Gradient Bayes Framework 
and Gaussian Latent Variables in their computations to estimate the likelihoods of an outcome. 
The goal is to create robust structured predictions. The following equation describes this 
framework: 

−𝐾𝐿 (𝑞𝜑(𝑧|(𝑥)||(𝑝𝜃(𝑧))  +  𝐸𝑞𝜑[log 𝑝 𝜃(𝑥|[(𝑧)]|)]|)) 

This equation describes the lower bound calculations of the input x and z in the latent space. X is 
the data the model is trained on. Z is hidden data of X in latent space. qφ(z|x) represents the 
recognition distribution. pθ(x|z) represents the approximate true postier. AI repeats these 
calculations for several inputs, allowing for faster results [16]. 

Data Collection and Preparation 

The data used to train the VAEs in this project is provided by Professor Cheng. Additional data 
used is from the CelebA [17] and MINST dataset [18] to learn the VAEs. Professor Cheng’s dataset 
consists of metamaterials with randomly sampled fibers in a squared matrix material. The 
properties that the VAEs use to train the materials include various mechanical properties, such as 
Young’s modulus and Poisson’s ratio. The loss function computes the mean square error between 
the input image and the reconstructed image. The lower the number, the better the reconstruction 
of the original design from the latent space. 

The following images are composite materials consisting of two base materials from the database. 
One is the matrix materials, represented by the pink color, while the other is the inclusion materials, 
represented by black color. The differences of the composite materials include the size of the 
circular cylinder and the locations of the cylinder (inclusion materials). 



 

Figure 3: Sample images from Professor Cheng’s dataset. 

Results 

The architecture of the VAEs model contains encoder, decoder, and latent space. The encoder is a 
neural network that converts data into the latent space. The decoder reconstructs the data given in 
the hidden distribution. The latent space is a representation of compressed data that allows for easy 
random sampling and interpolation. The input of the code is images as shown in Fig. 3 while the 
output of the model is the same materials. The aim of the VAEs model is to replicate the input 
metamaterials and learn the latent space of the materials properties. Once the model is well trained, 
new materials can be generated by the decoder of the VAEs model from latent space. The loss 
function in the code estimates the differences between the predicted and ground truth 
microstructures. The optimizer of the code aims to optimize the weights and biases of the VAEs 
model and minimize the loss function.  

VAEs can take an image that represents a material with a certain density or other property and 
generate new images by the learned latent space. The VAEs code used to create new composite 
materials and generates images through Python Matplotlib library. The loss function, as shown in 
Figure 4, shows the loss against the epoch. 

 



 

Figure 4: Epoch loss over time for the VAE model used in this project. The goal is to minimize 
the loss to optimize the model. 



 

Figure 5: Screenshot showing architecture of the VAEs model. 

                                     

              

Figure 6: Clear results from the VAEs model. 



                               

Figure 7: Blurry results from the VAEs model. 

Figure 5 shows the architecture of the code and how the data was loaded into the code. The data 
loader makes the data specific batch size. After that, it passes through the dataset in a random 
order. Then, it goes through the encoder and decoder. Finally, a reconstructed image is generated. 

The VAEs model takes an image of the material and transforms and restructures it into a new 
image. Figure 6 consists of images generated by the VAE model trained on Professor Cheng’s 
dataset. The results are good because of the clarity of the image and the material.  

Figure 7 contains results that are not good because the image is very blurry, and it is hard to 
distinguish the varying geometries from each other in the image. The limitation of the VAEs is 
that not all results will be clear images. To fix this problem, the VAEs model needs more training 
to produce clearer results and physical constraints should be added in the future. 

Stable Diffusion AI Model in WPI’s Architectural Engineering Program 

During WPI’s Architectural Design Studio III course (AREN 3002), AI was introduced to students 
during the conceptual design phase of the studio project. Color.io is a stable diffusion AI model 
that is available online for free and generates an image based off a prompt. The project was to 
design a museum of emotions. The following images are from my project and were used as 
inspiration and a model to design the museum’s exterior and the spaces within it.  

 



Figure 8: The color.io stable diffusion method allows for both detailed and broader statements. 
The type of drawing, shape, and materials are inputted. Within a few minutes, through the power 

of AI, several images were generated. Specific prompts are used to meet the guidelines and 
vision of the architectural engineer, but the variation in the images generated goes beyond what 

the engineer could have produced. 

 

Figure 9: With the same prompt, quite different spaces are reflected in the images generated by 
color.io. 

 

 

Figure 10: This image uses AI to produce the foundational drawings. The drawings are all 
generated by AI. 

AI can also be used to create new materials for architecture through VAEs. Materials with different 
properties, such as Poisson’s ratio, are integral for following all appropriate building codes. For 
example, most commercial buildings use type II-B construction. According to this construction, 



the minimum fire-resistant rating for building materials is 2 hours for exterior, and 1 hour for 
interior [20]. Exterior walls that extend below the elevation are required to be constructed with 
flood-resistant materials [21]. Earthquake and seismic load resistant materials are also important 
to consider when constructing buildings, as many parts of the country have experienced 
earthquakes [22]. 

Also, soundproof materials are increasing in popularity and necessity. Many people live in 
townhouses, apartments, or close to their neighbors. Everyday tasks can be quite loud for neighbors 
and take away privacy without soundproof materials. A Vitamix blender’s noise is around 90 
decibels [23]. To not disturb neighbors, the materials should be soundproof rated to handle 
prominent levels of decibels. 

There are several factors to consider when deciding what materials to use, but the cost is what 
limits clients and engineers. AI can produce new ways to combine and create new materials that 
have multiple properties with the same material.  

Discussion 

VAEs use mathematical equations to encode, decode, and estimate the reconstruction loss. This 
valuable AI process can be used to decide on the most efficient and effective solution with the 
lowest reconstruction loss. 

The computational cost of running AI models is very high for normal CPU computers. For 
example, my computer at home is a regular CPU computer, and it took 9 and a half hours to run a 
stable diffusion code. Using high performance GPU computers specifically designed for AI, I took 
the same code, and it ran in seconds. 

AI allows architectural engineers to broaden their perspectives by generating images of new 
metamaterials. These artificial materials are completely generated by AI. The AI models are 
trained on a dataset of different material properties. The models create an abstract space of 
concepts, such as low Poisson’s ratio or high stiffness, and form a conceptual space. In this space, 
the encoder and decoder store the latent vectors, and the result will be a metamaterial that follows 
the specific concepts contained in the conceptual space [24]. 

AI is also being used to create new materials, and will help architectural engineers design energy 
efficient, safe, and sound buildings for future generations. 

Conclusions 

Deep learning models allow engineers to model new metamaterials with different geometries and 
properties. In this project, I used VAEs to model these complex metamaterials in a low dimensional 
latent space. I also conducted research on stable diffusion, which builds upon this architecture and 
allows people to input prompts and receive an image as the output. For future work, we should 
continue to train VAEs models to produce clear images while limiting the epoch loss. Continuing 
to advance AI models of metamaterials will allow society to engineer a better future, because AI 
is the future. 
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