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Abstract

We develop a selfconsistent solution of the Schrödinger and Poisson equations in semicon-

ductor heterostructures with arbitrary doping profiles and layer geometries. An algorithm

for this nonlinear problem is presented in a multiband k ·P framework for the electronic

band structure using the finite element method. The discretized functional integrals asso-

ciated with the Schrödinger and Poisson equations are used in a variational approach. The

finite element formulation allows us to evaluate functional derivatives needed to linearize

Poisson’s equation in a natural manner. Illustrative examples are presented using a number

of heterostructures including single quantum wells, an asymmetric double quantum well,

p-i-n-i superlattices and trilayer superlattices.
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1. INTRODUCTION

In modulation doped semiconductor heterostructures, the presence of discontinuities in

the band edges leads to the possibility of the separation of the carriers from their parent

donors or acceptors. This redistribution of the free carriers, together with the presence of

ionized impurities in so-called depletion regions, gives rise to a selfconsistent reconfiguration

of the band edges. As is well known, this problem is numerically unstable because small

changes in the potential profile lead to substantial rearrangements of free carriers. The

carriers are free in the sense that they are ionized away from the impurity atoms, though

they could be bound within quantum wells, for example.

Here we present a selfconsistent solution of the spatial behavior of the energy band edge

in arbitrary layered semiconductor nanostructures. For illustrative purposes and to describe

the algorithm, we first consider the case of donor impurities and conduction band carriers

in a single energy band model, and later treat the multiband case. The carrier charge

density is determined by the solution of Schrödinger’s equation for the wavefunctions of the

carriers in the layered quantum system. This is introduced into Poisson’s equation as a

source term together with the positive charge distribution of ionized donors. The resulting

potential arising from the redistributed charges is obtained by solving Poisson’s equation.

This potential alters the initial band edge potential with flat bands, and Schrödinger’s

equation is solved once again for the new total potential energy. This cycle of solving the two

differential equations is iterated to convergence. We do not include any polarization charges

due to stress-induced piezoelectric or spontaneous polarization in the layers. Also, we do not

consider structures with Type-II energy band gap alignments that have semimetallic (zero

band gap) properties, though Type-II structures with open band gaps are amenable to this

analysis.

We have utilized the finite element method (FEM) for the solution of both Schrödinger’s

and Poisson’s equations. Both of these equations are solved by employing the principle of

least action.[1–3] Being a time-independent problem, this reduces to making the Lagrangian

stationary to variations. In our modeling of structures with high doping, we find that the

convergence is substantially faster in FEM in terms of the number of iterations and stability,

even for doping concentrations as high as 1021 cm−3, than conventional finite difference

methods based on the shooting approach.[4]
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Almost all earlier work has focused on specific structures, such as single interfaces be-

tween semiconductor materials,[5, 6] single quantum wells, bilayer superlattices,[7] or double

barrier resonant tunneling structures.[8] The single symmetric quantum well with modula-

tion doping in the barriers was treated by us earlier in a finite element framework,[1, 9] but

the algorithm was specialized to that particular case.

The present method borrows from the recent work by Trellakis, et al.,[10] who solve the

selfconsistency problem for a two-dimensional distribution of carriers with finite difference

methods. We specifically consider layered III-V semiconductor structures with modulation

doping in terms of a finite element formulation. The finite element approach corresponds to

the discretization of a functional integral over the Lagrangian density defined as the func-

tional to be made stationary. The variational principle is invoked after the discretization of

the functional is performed and the spatial dependence is integrated out. The same method

is applied to both the Schrödinger and Poisson functionals. While the total functional is the

sum of the Schrödinger and the Poisson parts, we vary the total functional independently

with respect to the Schrödinger wavefunction and also by the electrostatic potential to ob-

tain two coupled equations. Poisson’s equation is nonlinear in the change in the potential,

and the nonlinearity is accounted for by iterating over a locally linearized form. An added

complication is that the electronic portion of the charge density requires the calculation of

the wavefunctions for all in-plane wave vectors (a matrix diagonalization), which is a very

time-consuming calculation. These wavefunctions are dependent on the in-plane dispersion

and should be taken into account even for a one-band calculation.

Given the nonlinear nature of the calculation we separate it into two nested loops. In

the outer iteration loop, the electronic charge density is calculated and updated by solving

Schrödinger’s equation with the latest value of the potential energy. In the inner loop, the

ionized donor charge is evaluated together with the local feedback to the electronic charge

density. Both the donor and the mobile charge densities act as source terms in the Poisson

equation which is solved to obtain the change in the potential energy through the given inner

iteration loop. Typically, the number of (fast) iterations in the inner loop can be 10 ∼ 100 for

each outer loop, and overall convergence is achieved in 5∼20 outer loop (slower) iterations.

This break-up into nested iteration loops was also advocated by Trellakis, et al.[10]

Throughout the calculations we take advantage of the finite element representation of

the discretized integrals for the Schrödinger and Poisson functionals. Most of the global
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matrices are calculated only once in the finite element framework – an advantage in the

large matrix analysis used in this iterative approach. The matrices are banded and sparse

and we exploit this in our matrix computation algorithms. We also have of quadratic

convergence to the minimum, in the variational sense, in the finite element approach. By

using a Taylor expansion through the lowest order, functional derivatives are evaluated

through the variation of the nodal values of the discretized functions. This too provides

numerical simplifications within the finite element framework, while representing a general

way of implementing functional derivatives numerically, since the values of the discretized

functions at the nodes alone determine them; the interpolation polynomials are not altered.

The essential theory for obtaining electronic wavefunctions in the FEM is derived in

section II. We describe, very briefly, the use of FEM for the determination of bound state

eigenvalues and wavefunctions and for the scattering states. The algorithm for the solution

of Poisson’s equation is presented in section III. Examples of selfconsistent calculations for

III-V layered heterostructures are presented in section IV.
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2. SCHRÖDINGER’S EQUATION

2.1. A finite element formulation

We begin by considering Schrödinger’s equation in the layered quantum heterostructure

for a conduction band electron using the spherical effective mass approximation.[11] An

extension to the multiband representation of the electronic states is straightforward and

this is used in the example calculations that follow. The envelope functions satisfy the

equation

−~
2

2
∇

(
1

m∗(z)
∇ψ(r)

)
+ V (z) ψ(r) = E ψ(r). (1)

Here, ψ(r) represents the wave function in the structure, where each layer is for the moment

assumed to have a uniform composition and a constant effective mass. The potential energy

V (z) is the superposition of the potential energy due to the conduction band offsets at

interfaces between layers, which may be denoted by V0(z), and V ch(z), which arises from

the presence of ionized donors and the free charges released by them, so that

V (z) = V0(z) + V ch(z). (2)

The changes in the potential function due to charge redistribution can be substantial, as

shown in Fig. 1.

We further assume that the electron is free in the in-plane direction, so that the envelope

portion of the three-dimensional wavefunction in the effective mass approximation takes the

form

ψ(r) =
1

L
eikxxeikyyf(z), (3)

where L is an in-plane quantization length. Substituting Eq. (3) into Eq. (1) we obtain an

equation for f(z) in any given layer given by

− ~2

2m∗
d2

dz2
f(z, k‖) +

~2k2
‖

2m∗ f(z, k‖)

+ V (z)f(z, k‖) = Ef(z, k‖), (4)

whose solution for the composite heterostructure gives us the envelope functions and the

energy eigenvalues of the quantum system. Here k‖ = (kx, ky) represents the in-plane wave

vector.
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The action integral is defined by

A[f ∗, f ] =

∫
dtA =

∫
dt

∫
dz L(f ∗, f),

and

A =∫
dzf ∗(z)

[←−
d

dz

~2

2m∗

−→
d

dz
+
~2k2

‖
2m∗ +V (z)− E

]
f(z), (5)

from which we can derive Schrödinger’s equation, Eq. (1), using the principle of stationary

action. Here the Lagrangian density L has no explicit time dependence. We start by

discretizing the physical region into elements, line segments in the one-dimensional case, with

special points called nodes that include the endpoints. In each element, the z-dependent part

of the envelope wave function, f(z), is represented as the sum of its as-yet-unknown value

at each node multiplied by a Lagrange interpolation polynomial, called a shape function

Nα(z). Each shape function is nonzero only in the particular elements containing or sharing

the node α, and satisfies the relation Nα(zβ) = δαβ, where zβ is the location of node β.

These properties allow f(z) to be expressed at any coordinate in the system as

f(z) =
∑

α

Nα(z)f(zα), (6)

with index α referring to the node number for the global system. If additional accuracy is

desired, two degrees of freedom are used at each node by considering both f(zα) and f ′(zα)

to be nodal variables that are multiplied by Hermite interpolation polynomials for shape

functions.[12] We then decompose f(z) in the form

f(z) =
∑

α

Nα(z)φα, (7)

where the array elements of φα alternate between the value of the function at the node and

the value of the derivative of function at the same node.

We substitute Eq. (7) into Eq. (5) and integrate out the known spatial dependence over

each element. The functional integral in element iel is given by

Aiel[f ∗, f ] = φ∗α[A
(iel)
αβ + B

(iel)
αβ − E S

(iel)
αβ ]φβ, (8)

with A(iel) containing the kinetic energy contribution, B(iel) having the potential energy con-

tributions, and S(iel) being the wavefunction overlap matrix. These contributions are added
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up to obtain the discretized form of the total functional. The individual element matrices

A(iel), B(iel), and S(iel) are inserted into the corresponding global matrices. Appropriate care

is taken to overlay the element matrices to ensure that inter-element continuity is enforced

at the shared node between two elements. The resulting functional integral is given by

A[f ∗, f ] = φ∗α[Aαβ + Bαβ − E Sαβ]φβ. (9)

We now invoke the (nodal) variational principle to obtain

δA
δφ∗α

= 0, (10)

or

(Aαβ + Bαβ) φβ = E Sαβ φβ, (11)

which is the discretized Schrödinger equation represented here as a generalized eigenvalue

problem, with eigenvectors φ having the nodal values and nodal derivatives of f(z) as com-

ponents. Here the overlap matrix Sαβ is not diagonal because the shape functions are not

orthogonal. In practice, the matrix Aαβ is separated into terms dependent on powers of kx

and ky. In the 1-band case

Aαβ =
∑

iel

Aiel[f ∗, f ]

= A
(0)
αβ + k2

xA
(1)
αβ + k2

yA
(2)
αβ . (12)

Then the global matrices A(0), A(1) and A(2) are not recalculated for each value of kx, ky, but

rather are stored in memory so that the reconstruction of A in Eq. (12) is very rapid. This

has the added advantage that we can immediately apply the Feynman-Hellmann theorem[13]

to obtain the in-plane effective mass of the carrier in the system. Given the solution of the

eigenvalue problem, Eq. (11), and the corresponding eigenfunctions φi
β, the effective mass

in the ith energy subband level is given by

1

m∗
i

=
1

~2

〈
fi

∣∣∣∣
∂2H

∂k2
x

∣∣∣∣ fi

〉
,

=
2

~2
φi

α A
(1)
αβ φi

β. (13)

Again, the overlap matrix Sαβ is computed only once. The matrix Bαβ contains the potential

energy term, and this is reevaluated as the potential energy function is updated in the

iterations.
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With 3∼10 quintic Hermite elements per layer, the matrix dimensions are typically

250∼2500 with a bandwidth of 6 (diagonal + supradiagonal) leading to fairly sparse matri-

ces.

2.2. Boundary and interface conditions in the FEM

For any layered semiconductor structure at hand, we now apply boundary conditions to

the wavefunctions at the left and right ends of the heterostructure by specifying the values of

the wavefunction or its derivative at the initial and final nodes. The boundary nodal values

depend on whether we are considering bound states, free (traveling) states, or quasibound

states.

For bound states, the wavefunction is zero at the left and right boundaries, far into

the barrier regions. These boundary conditions are now built into the set of simultaneous

equations, Eq. (11).[14]

For free and quasibound states we have to account for the form of incoming and outgoing

traveling waves. While the finite element approach gives the total wavefunction, we are

concerned with boundary conditions on the incoming or outgoing wave amplitudes. This calls

for a modal analysis of the wavefunction in terms of the incoming and outgoing component

wavefunctions at the two ends. For such scattering problems, the energy E of the incident

wave is given. We rewrite Eq. (5) to include additional surface terms needed to express the

conditions on the incoming and outgoing probability currents at zL and zR.

For a wave incident from the left with amplitude a we have

f(zL) = a eikLzL + r e−ikLzL ,

f ′(zL) = ikL(a eikLzL − r e−ikLzL), (14)

where the reflected wave has amplitude r. Thus the boundary condition on the left is given

by

f ′(zL) + ikL f(zL) = 2ikL a eikLzL . (15)

Similarly, on the right side, we have

f ′(zR) = ikR f(zR), (16)
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since f(z) = t exp(ikRz) in this region. These two boundary conditions are incorporated

into the functional by writing

A[f ∗, f ] =

∫
dz L(f ∗, f)

=

∫
dz f ∗(z)

[←−
d

dz

~2

2m∗

−→
d

dz
+
~2k2

‖
2m∗ + V (z)− E

]
f(z)

−ikR f ∗(z)f(z)

∣∣∣∣
zR

−f ∗(z)[ikL f(z)− 2i kLaeikLz]

∣∣∣∣
zL

. (17)

The variational principle now gives Schrödinger’s equation and also the mixed boundary

conditions of Eq. (14) required of scattering states above the barriers. The discretization of

the functional integral leads to global matrices analogous to the case of bound states except

that now we have at hand a set of simultaneous equations with driving terms proportional

to the incident amplitude a taken over to the right side.

In addition to the boundary conditions at the endpoints, we have to ensure the continuity

of the wave function and of the probability current across interfaces between the layers in the

heterostructure. This is implemented by the continuity of ψ
′
/m∗ across interfaces. For the

case of one degree of freedom per node, the continuity of the probability current is implicitly

built in, while for two degrees of freedom per node, the element matrices need to be modified

before they are overlaid to form the global matrices. For the element just to the right of

the interface we replace its right nodal derivative evaluated at the interface nodal location

with φ
′
R(z) = (m∗

R/m∗
L)φ

′
L(z). We can apply the interface constraint by multiplying the

row and column of the element matrix ielR appropriately by the effective mass ratio before

overlaying onto the global matrix.

The bound state wavefunction is normalized such that
∫∞
−∞ dz|f(z)|2 = 1, as usual. The

free state wavefuntion is normalized such that the incoming wave has an amplitude of 1√
2π

.[15]

Now
∫

Ωk
dk

∫
Ω
dz|f(z)|2 is the number of states in the phase space ΩkΩ. Alternatively, we

can set the amplitude of the incoming wave to be 1 and use
∫
Ωk

dk
2π

∫
Ω
dz|f(z)|2 to calculate

the number of states. Under these normalization conditions, |f(z)|2 for a bound state has

a dimension of inverse length, but is dimensionless for a free state. In Fig. 2 we show the

lowest two heavy hole wavefunctions of the single quantum well of Fig. 1.
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FIG. 1: The bending of the valence band edge in a 100 Å GaAs quantum well with Ga0.65Al0.35As

barriers that are p-doped (i) to 1.0 × 1017 cm−3 (dotted line), and (ii) to 1.0 × 1019 cm−3 (solid

line), are shown. The dot-dashed line marked by V0 is the potential due to band offsets before

band bending. Note the larger depletion region generated in the case of lower doping.

3. POISSON’S EQUATION

Now consider the Poisson equation in the selfconsistent problem.[16] It is useful to mul-

tiply the potential function by −|e|, the electronic unit of charge, so that we directly solve

for the potential energy V ch(z). We begin with the Poisson functional P

P [V ] =

∫
dz

[
1

2

(
d V ch(z)

dz

)
ε(z)

(
d V ch(z)

dz

)

+ 4π|e|
(

ρd(V (z)) + ρn(V (z))

)
V ch(z)

]
, (18)

where ε is the dielectric function assumed to be constant in each layer, ρ is the charge

density which is a function of the total potential, and the subscripts d and n refer to the

ionized donor and the free electron charge densities, respectively. The potential arising from
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FIG. 2: The lowest two heavy hole wavefunctions and their energy eigenvalues (horizontal lines)

in a 100 Å GaAs quantum well with Ga0.65Al0.35As barriers that are p-doped to 1.0 × 1019 cm−3

(Fig. 1) are shown. The wavefunctions and the band edge have been labeled in the legend. Note

the wavefunctions which reflect the double-well nature of the quantum well under selfconsistent

band bending.

the band offsets at the heterointerfaces, and the potential arising from the spatially varying

charge densities ρn and ρd, all contribute to the total potential V (z). Now P is discretized

using finite elements and is minimized with respect to V ch(z).

3.1. The source terms

The second term in the integrand in Eq. (18) is the ionized donor contribution to the

charge density, which determines the depletion regions. At zero temperature, the donor

charge density is ρd(z) = e nd(z) θ(V (z) − Ed − EF ), where θ(x) is the Heaviside step

function, nd(z) is the number density of the donors, V (z) is the total potential, Ed is the

binding energy of the donors, and EF is the quasi-Fermi level. At finite temperature, the
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donor charge density is

ρd(z) =
|e|nd(z)

1 + 2 exp[(EF + Ed − V (z))/kBT ]
, (19)

where T is the temperature.

The third term in the integrand in Eq. (18) is the free-carrier electronic charge density

and is given by

ρn(z) = −2|e|
∑∫

ν

∫
d2k‖
(2π)2

|fν(z, k‖)|2

×F(Eν(k‖), EF , T ), (20)

where the symbol Σ
∫

succinctly represents the sum over discrete bound states and an integral

over the continuum states, labeled by ν, associated with the energy for the motion along

z. Here fν(z, k‖) is the z component of the envelope portion of the wavefunction and F is

the Fermi function. The wavefuntion, fν(z, k‖) and its corresponding energies, Eν(k‖), are

found by solution to the Schrödinger equation for each value of the integration variable, k‖.

We step in the integration variable, k‖, until the additional charge becomes negligible.

Converting the integral in Eq. (20) directly into an integral over the density-of-states

(DOS) multiplied by the Fermi factor may not be simple in general, since the dispersion

relation in energy can be nonparabolic for bound states in a heterostructure. This is certainly

the case for the complex valence band structure of heterostructures; it is also the case even

within the simple one band effective mass model. A simple way of evaluating this integral

is to consider a series of energy intervals or bins of width 1∼5 meV. The energy spectrum is

given in terms of {ν, k‖} and the corresponding wavefunctions are known. Then the integral

is evaluated in discrete cells in momentum space and stored in the corresponding energy

bins. We label the DOS in the energy bin i at Ei as Λi(z). The Fermi function weights

the partial contributions of the integral in the various bins, and the sum is the total charge

density. By staying in momentum space, and using the energy discretization, we evaluate

the DOS directly. We thus have at hand the charge density in the form

ρn(z) = −|e|
∑

i

Λi(z)F(Ei, EF , T ), (21)

with the accuracy depending on the level of discretization. Earlier approaches[17–20] to the

evaluation of the DOS in semiconductors exploit the known energy dispersion curves over a
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grid of points and employ interpolation in order to perform the integrals. The determina-

tion of the Jacobian of transformation from momentum integrals to an integral over energy

entails the gradient of the energy dispersion in the denominator. This requires additional

care in order to evaluate it accurately. The crossing of the energy dispersion surfaces across

given energy planes is required in order to obtain the energy gradients in these methods.

The method used in this thesis is effective enough for the in-plane 2D phase space evalua-

tions essential to layered semiconductors. Improving the accuracy of the DOS calculation

would require us to reduce the size of the energy bins, leading to increasing time for the

computation. It is clear that this issue should be revisited in order to develop a fast and

numerically accurate approach to the evaluation of the DOS.

The Fermi level is determined as follows. For the modulation doped quantum wells in

which the barrier can supply enough carriers to fill the well up to Fermi level, the Fermi

level for the whole heterostructure can be taken to be the Fermi level in the bulk region on

either end of the heterostructure. The bulk Fermi level must be calculated using the donor

and electronic charge densities. We use

ρD(z, Ef , ED) + ρn,bulk(z, EF ) = 0 (22)

to determine the Fermi level through a root finding procedure.[21] The electronic charge

density in the bulk is given at T=0K by

ρn,bulk = −|e|(2m∗(EF − Ec)/~2)3/2/3π2, (23)

Ec being the conduction band edge energy, and at finite temperature we have

ρn, bulk = − |e|
2π2

(
2m∗kBT

~2

)3/2

×
∫ ∞

0

dξ ln
[
1 + e−ξ2

e(EF−Ec)/kBT
]
. (24)

The conduction band edge is assumed to be at Ec in the above expression.

If the doped barrier in a superlattice is not thick enough to supply the needed carriers,

or if the well is doped, there is no easy way to predict the location of the Fermi level. In

this case, the Fermi level should be found by assuming a trial Fermi level and monitoring

the slope of the potential in the barrier region in the case of quantum well or watching the

continuity of the slope of the potential at the interface between one period and the next

period in the case of superlattice.
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The solution of Eq. (18) entails using the charge distributions as source terms which in

turn depend on the potential energy. The method of solution is given below.

3.2. Selfconsistency iterations

The charge density is nonlinear in V (z) and is linearized in each element so that the

final solution may be approached iteratively starting from an initial guess for the potential

energy. An overview of the method is now in order.

We have two parts to the problem. The first is a time-consuming diagonalization of

the Schrödinger equation for bound states, and solving for the wavefunctions for each free

or quasibound state as well, using the latest potential obtained through iteration. The

resulting wavefunctions are used to calculate ρn. The second part is the solution of the

Poisson’s equation for the change in the potential energy. This requires the calculation

of the ionized donor charge density. This inner loop can be iterated over quickly with

corresponding small corrections to the carrier densities estimated to first order. While this

is a faster calculation the ionized donor density can be a discontinuous function. Invoking

superposition, we evaluate only the changes in the potential energy due to changes in the

charges as estimates for both ρn and ρd are updated in the inner loop iterations. Once

this calculation has stabilized, we return to the slower calculation for updating solutions to

Schrödinger’s equation.

We now provide the notational details. Start with an initial guess for the potential energy:

V ch
j=0, k=0(z). Here the indices j and k refer to the outer and inner loops, respectively. The

function V ch
j=0, k=0(z) can be selected as follows. We require this potential to be zero at the

edges of the layered structure under consideration where the asymptotic values of V0(z)

prevail. In the absence of an external field we also require that V ch
0, 0(z) have zero derivatives

at the edges.[6, 22] An initial guess of a cubic function is adequate for our purposes to

account for any mismatch in the value of V0 at the two ends. In practice, these boundary

conditions will have to be modified if the modeled system is truncated and does not extend

far enough into bulk regions.

For the jth iteration of the Schrödinger solver we use the updated potential energy Vj, 0(z),

and determine the charge density ρn(V ch
j, 0). The inner loop is then initiated starting with

the index k = 0. In each inner loop iteration we evaluate the Poisson functional integral
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cm−3 convergence to 1 × 10−5 eV is achieved in 5 iterations, and for p-doping of 1 × 1019 cm−3

convergence is achieved in 21 iterations. A typical rate of convergence in the inner (Poisson)

iteration is shown in the inset.

P minimizing it with respect to the nodal values of the potential. The resulting Poisson’s

equation is solved by successively working with the discretized form. Here, we solve for just

the change δV ch
j, k in the potential energy at the (j, k)th iteration defined by

V ch
j, k+1 = V ch

j,k + δV ch
j, k. (25)

We use a scaling factor λ in order to dampen oscillations in the iterative process. Here λ

is a control parameter, 0 < λ ≤ 1, that is adjusted to accelerate convergence in the inner

loop. If the changes in the charges oscillate over two consecutive iterations, λ is lowered

so that a more conservative change in the potential energy is accepted. The convergence

criterion for the inner loop can be numerically quantified by evaluating the vector 1-norm

of the difference between the nodal values at the nodes β only, rather than integrating the
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modulus of the difference between these functions.

1

Ng

Ng∑

β

|V ch, β
j, kmax

− V ch, β
j, kmax−1| < η1, (26)

where Ng is the array size of the vectors and η1 ∼ 10−5, say. The parameter λ is reset

to unity for each k-loop. In the initial iterations of the inner loop the change in potential

δV ch can be significant enough to demand the use of λ; however, as we proceed through

these iterations we are solving for smaller and smaller quantities δV ch and hence the role

of λ becomes less important. The need for such damping factors is well appreciated in the

literature.[6, 23, 24] An example of the rate of convergence with the number of iterations is

displayed in Fig. 3. The number of iterations to convergence to 1.0 × 10−5 eV in the change

in the potential function is shown for a p-doped quantum well of Fig. 1.

Assume that we are given the final output of the inner loop as V ch
j,kmax

(z). We re-initiate

the outer loop calculation with j → j + 1 and kmax → 0 and iterate until charge neutrality

is achieved. Equivalently, we require that the potential energy V ch
j+1, 0(z) has not changed

substantially from the V ch
j, 0(z) within a tolerance η2 ∼ 10−5 over the entire structure. For

convergence we require

1

Ng

Ng∑

β

|V ch, β
j+1, 0 − V ch, β

j, 0 | < η2. (27)

On convergence, charge neutrality occurs naturally in the modeled structure extended far

enough to be represented by bulk regions at the ends. Charge neutrality may not be a valid

criterion if the structure is truncated before the depletion region is included in the modeled

structure. However, we can still reach convergence in V ch with a truncated physical region

if the potential energies at the two ends are specified. Here again we may include a damping

factor µ to control the fraction of δV that is included in V ch
j+1, 0. The outer iteration is

stopped when the tolerance criterion, Eq. (27), is satisfied.

3.3. Finite element implementation

At the (j, k)th iteration, the Poisson functional P can be written in terms of

V ch(z) = V ch
j, k(z) + δV ch

j, k(z). (28)
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This scalar potential is expressed in each finite element in terms of interpolation shape

functions in the form

V ch(z) =
∑

α

V ch
α Nα(z), (29)

and is substituted into Eq. (18). In the following, we suppress the dependence of ρn and ρd

on the band offset potential V0. Let us represent the change in the carrier charge density as

the potential energy changes from V ch
j, 0 to V ch

j, k by

∆ρn(V ch
j, k + δV ch

j, k) = ρn(V ch
j, k + δV ch

j, k)− ρn(V ch
j, 0). (30)

This can be approximated as follows. As in Eq. (21), we discretize the integrations in

Eq. (20) over {ν, k‖} into bins in the electronic total energy. Using the same DOS factors

but altering the Fermi distribution function alone, we write

∆ρn(V ch
j, k + δV ch

j, k) =
∑

i

Λi(z)
[F(Ei + V ch

j, k + δV ch
j, k − V ch

j, 0, EF , T )

−F(Ei, EF , T )] . (31)

In other words, instead of updating Ei all over again by employing the Schrödinger solver,

we account for the change in energy appearing in the Fermi function by adding the change

in the potential energy to Ei.[10] The above expression is consistent with the condition

∆ρn(V ch
j, 0) = 0, since for k = 0 we have already determined ρn(V ch

j, 0).

Substituting Eqs. (28-31) in Eq. (18), and using the expression Vj, k+1, α = Vj, k, α +δVj, k, α,

we obtain

P = Vj, k+1, α
1

2

∫
dz

(
N ′

α(z)ε(z)N ′
β(z)

)
Vj, k+1, β

+ Vj, k+1, α 4π|e|
∫

dz Nα(z) ρd(V
ch
j, k(z) + δV ch

j, k(z))

+ Vj, k+1, α 4π|e|
∫

dz Nα(z)

(
ρn(V ch

j, 0)

+ ∆ρn(V ch
j, k + δV ch

j, k)

)
. (32)

We now write the integrals in Eq. (32) using a matrix notation. Define

Mαβ =

∫
dz N ′

α(z) ε(z) N ′
β(z). (33)
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The matrix Mαβ is evaluated once and systematically reused in the iterations. While all the

charge densities appearing in the integrals on the right side of Eq. (32) are not known, we

can formally write the integrals as vector arrays with the spatial dependence integrated out.

Let us consider these integrals one by one.

(i) With Vj, k(z) expressed in terms of the interpolation polynomials in each finite element,

the integral over the donor charge density can be written as

4π|e|
∫

dzNα(z)ρd(Vj, k(z) + δVj, k(z)) ≡
Gα({V ch

j, k, β + δV ch
j, k, β}), (34)

where the set of variables {V ch
j, k, β + δV ch

j, k, β} refer to the nodal values of the potential energy

functions at the nodes β. A Taylor expansion of the charge density ρd(V (z), z) with respect

to V (z) = (V0(z) + V ch(z) + δV ch(z)) entails a functional differentiation that is obviously

nontrivial to evaluate. However, we can approximate Gα({V ch
j, k, β + δV ch

j, k, β}) by

Gα({V ch
j, k, β + δV ch

j, k, β})
= G0

α({V ch
j, k, β}) +

∑

β

∂Gα

∂V ch
j, k, β

· δV ch
j, k, β,

= G0
α +

∑

β

G1
αβ · δV ch

j, k, β (35)

where G1
αβ in the second term is represented by

G1
αβ = 4π|e|

∫
dzNα(z)

[
ρd(V

ch
j,k (z) + [V ch

j,k,β − V ch
j,k−1,β])− ρd(V

ch
j,k (z)− [V ch

j,k,β − V ch
j,k−1,β])

2(V ch
j, k, β − V ch

j, k−1, β)

]
.

(36)

Here V ch
j, k(z) and V ch

j, k−1(z) are known at every z, except in the k = 0 case, and ρd in the above

expression is a known function. (For k = 0, this derivative is not evaluated.) The incremental

difference V ch
j, k, β − V ch

j, k−1, β in the nodal values corresponds to the change in one iteration of

the inner loop and is a known, small quantity. In effect, we have approximated the functional

derivative of ρd(z) with respect to the potential energy function V ch(z) by the derivative

with respect to the variations in the nodal variables representing V . This discretized version

of the derivative may be justified by noting that the only variations that are allowed in

the interpolated form of the potential energy function are the nodal values of the potential
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energy. Each nodal value is independently varied in order to approximate the functional

variation of V ch at every coordinate. Here G1
α β is block-diagonal and again expressible in a

sparse matrix format. (While ρd can be evaluated analytically, it varies abruptly with z and

its derivative becomes a highly peaked function. The numerical differentiation effectively

smoothes out the result and is easier to represent in computation.)

(ii) The third term on the right side of Eq. (32) is

Jα = 4π|e|
∫

dz Nα(z) ρn(V ch
j, 0(z)). (37)

Here ρn(V ch
j, 0(z)) is explicitly determined during the outer loop as soon as one steps out of

the inner loop. The carrier charge density is given by Eq. (20), in which all the factors are

known.

(iii) The last term in Eq. (32) is

4π|e|
∫

dz Nα(z)
[
∆ρn(V ch

j, k + δV ch
j, k)

]

= Kα({V ch
j, k, β + δV ch

j, k, β})
= K0

α +
∑

β

∂Kα

∂V ch
j, k, β

· δV ch
j, k, β

= K0
α +

∑

β

K1
αβ · δV ch

j, k, β. (38)

The first term, K0
α is readily evaluated numerically in the (j, k)th iteration using Eq. (31)

to obtain

K0
α = 4π|e|

∫
dz Nα(z)

∑
i

Λi(z)×
(
F(Ei + V ch

j, k(z)− V ch
j, 0(z), EF , T )−F(Ei, EF , T )

)
. (39)

We again approximate the functional derivative required in a Taylor expansion of

Kα(V ch(z) + δV ch(z), z) by its discretized version, ∂Kα/∂V ch
j, k β. Defining

ξi = Ei + V ch
j, k(z)− V ch

j, 0(z), (40)

we write

K1
αβ =4π|e|

∫
dz Nα(z)

∑
i

Λi(z)×
(

∂F(ξi)

∂ξi

) (
∂ξi

∂V ch
j, k, β

)
. (41)

The derivatives are discretized and evaluated using
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∂F(ξi)

∂ξi

=
F(Ei+1 + V ch

j, k(z)− V ch
j, 0(z))−F(Ei + V ch

j, k(z)− V ch
j, 0(z))

Ei+1 − Ei

, (42)

and

∂ξi

∂V ch
j, k, β

=
∂

∂V ch
j, k, β

(
Ei + V ch

j, k(z)− V ch
j, 0(z)

)

=
∂V ch

j, k

∂V ch
j, k, β

= Nβ(z), (43)

so that we can evaluate the integral K1
αβ numerically.

Combining and rearranging all the terms in Eq. (32) the Poisson functional is given by

Pj, k =
1

2
Vj, k+1,α ·Mαβ · Vj, k+1,β

+ Vj, k+1,α · (G0
α + Jα + K0

α)

+ Vj, k+1,α · (G1
αβ + K1

αβ) · δV ch
j, k, β. (44)

Invoking the variational principle for the electrostatics problem, we require δP/δVj, k,α = 0,

which leads to

[
Mαβ + G1

αβ + K1
αβ

] · δV ch
j, k,β

= − (
Mαβ · V ch

j, k,β + G0
α + Jα + K0

α

)
. (45)

Thus at each inner loop iteration we determine the “small” change in the potential energy

δV ch by solving the above set of simultaneous equations.[25] The solution at nodal locations

are then used to reconstruct δV everywhere.

In the above discussion, we have purposely left the details of the heterostructure unspeci-

fied. The only features it needs to have are that it is modulation-doped, the doping profile

being specified by nd(z); the structure can have bound states, quasibound states, and free

or traveling states. We have exploited the method of finite elements and discretized the

physical region into elements in which the carrier wavefunctions and also the electrostatic

potential energies are determined at nodal points. These are solved for and the complete

functions reconstructed using interpolation polynomials. The method being a variational

procedure, we are assured of a quadratic convergence to the minimum. By integrating out

the spatial dependence we have reduced the Schrödinger-Poisson problem into one in which
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we need determine only values at nodes in the elements. Functional differentiations are re-

duced to nodal variational derivatives. These are concrete advantages inherent in the finite

element approach to this fairly complex nonlinear problem. We now present applications of

this method.
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4. APPLICATIONS

4.1. multi-band k ·P model and selfconsistency

The approach presented in section III above for a single energy band is readily extended

to a 6-band description of the valence heavy hole, light hole and spin-orbit split-off bands,

and also to a full 8-band representation of the conduction and valence bands used to describe

the energy band structure in typical III-V or II-VI compound semiconductors.[26] The k ·P
band parameters for the materials in the layers are known.[27]

The required Lagrangian has been formulated elsewhere.[28–30] While the Poisson part

of the problem remains the same as in the 1-band model, the calculation of the bound,

quasi-bound, and traveling states requires a careful application of boundary conditions at

the two ends of a heterostructure. The boundary conditions at interfaces between the layers

are also more complex.

At the interfaces, we apply the current continuity conditions for the multiband k ·P
model. The usual Löwdin perturbation theory[31] of degenerate bands employs the elimina-

tion of remote high energy bands in favor of the valence and the lowest conduction bands.

This “folding in” of higher energy bands[32] requires additional care in the presence of layer

interfaces in heterostructures.[33, 34] With the z-axis perpendicular to the layer interfaces,

the functional integral takes the general form[34–36]

A =

∫
dzf ∗i (z)

[←−
∂ z(A)ij

−→
∂z +

←−
∂ z(BL)ij + (BR)ij

−→
∂ z

+ (C)ij − Eδij

]
fj(z), (46)

where the order of the derivative terms becomes important. Here the envelope functions

fi(z), i = 1, . . . , nb, have components corresponding to the number of bands nb appearing

in the k ·P model that is employed. The coefficients are nb×nb matrices. The matrices BL

and BR are non-Hermitian, but transform into one another under Hermitian conjugation

so that the Lagrangian is Hermitian. The current continuity condition is derived from the

Lagrangian through a gauge-variational approach described earlier.[30]

For bound states again we set the wavefunctions at the boundaries to zero, while for

traveling states we specify the incoming plane waves. This requires a modal analysis to

determine the wavevectors for given energy in the bulk-like regions at the two ends of the
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heterostructure. The k ·P bulk Hamiltonian

Hψ(r) = (Ak2
z + i(BR −BL)kz + C)ψ(r)=Eψ(r). (47)

is a quadratic eigenvalue equation for kz, given E. The plane wave eigenfunctions and

wavevector-eigenvalues are determined in a straightforward manner.[37, 38] This then al-

lows us to select the traveling wave solutions for the above-barrier states and account for

them in the calculation of the carrier density; With each energy band we sum over the free

carrier density by doing the finite element calculation over a discretied set of energy values.

This computation is then inserted into the Poisson solver. The inclusion of strain in the lay-

ered structures generates strain related energy level splitting which generates no additional

significant issues.

The example structures investigated below illustrate the results from multiband band

structure computations also.

4.2. Further considerations

The effect of exchange and correlation[39] due to electron–electron interactions can be

taken into account through numerical calculations. The full electrostatic potential energy

Vch = −|e|φch(z) + Vex(z)

has the electron–electron exchange and correlation effects in the local density approxima-

tion [40, 41] given by

Vex(z) = −
[
1 + 0.0545 rs ln

(
1 +

11.4

rs

)]

×(18/π2)1/3R∗
y, (48)

where

rs =

[
4

3
πa∗3nn(z)

]−1/3

,

a∗ = ε~2/m∗e2,

R∗
y = m∗e4/(2ε2~2),

and nn(z) is the electron charge density. Numerical calculations which have included the

effects of Vex show[16, 24, 41, 42] that these effects can be neglected at least in GaAs

heterostructures with doping levels of about 1018 cm−3.
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FIG. 4: The valence band bending in a double quantum well that is asymmetric due to the well

widths and due to the Al content in the well layers is shown. The wells are 75 Å and 40 Å wide

separated by a 20 Å barrier, all sandwiched between wide barriers, with Al content of all barriers

being x=0.35. The narrower well is shallower, containing 20 % Al. The end barriers are p-doped

with 1 × 1018 cm−3 impurity concentration while the middle barrier is p-doped with 1 × 1019 cm−3

impurities

4.3. Results

The structures we consider include p-type modulation-doped single quantum wells, a p-

type modulation-doped asymmetric double quantum well, p-i-n-i superlattices, and n-type

modulation-doped trilayer superlattices. These calculations are done at zero temperature.

In the final example, we studied temperature effects in a n-type modulation-doped single

quantum well. In all examples, GaAs and AlxGa1−xAs layers are used, and input material

parameters are taken from Ref. 27.
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FIG. 5: The first heavy hole and light hole wavefunctions in the asymmetric double quantum well

of Fig. 4 are shown. Since this calculation used the 6 band k ·P model including heavy hole,

light hole and spin-orbit split-off bands, the light hole wavefunction has a large light hole basis

component and a small spin-orbit split-off basis component. At zero inplane wavevector, the heavy

hole components are completely decoupled from the others.

4.3.1. A single quantum well with p-type modulation doping

We calculated the selfconsistent potential of p-type modulation-doped

GaAs/Al0.35Ga0.65As single quantum wells at two p-doing concentrations, 1019 cm−3

and 1017 cm−3. In Fig. 1, the degenerate heavy-hole and light-hole band edges and the

spin-orbit split-off band edge are shown. V0 is the initial potential due to band offset, and

the solid and dotted lines represent the selfconsistent potential for p-doping levels of 1019

cm−3 and 1017 cm−3, respectively. As expected, the width of depletion region is shorter for

higher doping; about 25 Å for p = 1019 cm−3 case and over 200 Å for p = 1017 cm−3 case.

The band bending effectively gives rise to a symmetric double quantum well and this is
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reflected in the behavior of the wavefunctions. In Fig. 2 we show the lowest two heavy hole

states. The ground state happens to be higher in energy than the peak of the potential in

the quantum well and it clearly shows a double peak.

Figure 3 shows a typical convergence behavior in a semilog scale. The inner iterations

converges to below 10−5 eV after a few hundred iterations, while the outer iterations con-

verge after a few tens of iterations. In general, the convergence is faster if the free carrier

concentration is smaller.

4.3.2. A p-type modulation-doped asymmetric double quantum well

In Fig. 4 we show the selfconsistent potential for an asymmetric double quantum well of

Al0.35Ga0.65As/GaAs(75 Å)/Al0.35Ga0.65As(20 Å)/ Al0.2Ga0.8As(40 Å)/Al0.35Ga0.65As. The

end barriers are p-doped at 1018 cm−3 while the center barrier is doped at p = 1019 cm−3.

The left barrier, close to the wide and deep well, is depleted more than the right barrier and

the center barrier is fully depleted. Fig. 5 shows the first heavy-hole and the first light-hole

wavefunctions. The deeply confined heavy-hole is mostly confined is the wide well, while

the light-hole has a substantial probability in the narrow well.

4.3.3. p-i-n-i superlattices

Next we consider the case of a p-i-n-i GaAs superlattice, each region being 50 Å. The

band bending is displayed in Fig. 6. The dotted line is for p = n = 1018 cm−3. In this

case, the Fermi level is around mid-gap and all the donors and acceptors are ionized, with

the system attaining charge neutrality with no free carriers. At zero temperature there is a

wide range of the Fermi level with which all the impurities are ionized and no free carrier

states are occupied, and the exact position of the Fermi level is irrelevant. The solid line in

Fig. 6 corresponds to the case of p = 2× 1018 cm−3 and n = 1018 cm−3. Again there are no

free carriers. In order to maintain the charge neutrality, only half of the acceptors should

be ionized. Only one Fermi level which is close to the valence band edge satisfies the charge

neutrality.

In Fig. 7 we show the first two conduction eigenenergies and eigenfunctions at zero su-

perlattice wavevector (q = 0) in the case of p = 2 × 1018 cm−3 and n = 1018 cm−3. The
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FIG. 6: The conduction band bending in a p-i-n-i GaAs superlattice with each region being 50 Å

is shown. (i) The dotted curve corresponds to equal n and p doping at 1.0 × 1018 cm−3, while (ii)

the solid curve has twice the number of acceptor doping in the p-layers. The original GaAs band

edge is shown for reference.

first conduction subband energy is below the maximum of the conduction band edge, but

since the potential barrier in this p-i-n-i superlattice is not large, the wavefunction is rel-

atively flat. The eigenenergy of the second subband energy is well above the maximum of

the conduction band edge.

4.3.4. n-type modulation-doped trilayer superlattices

We considered band bending under selfconsistency in two trilayer GaAs(100

Å)/Al0.2Ga0.8As(50 Å)/Al0.35Ga0.65As(50 Å) superlattices where the Al0.35Ga0.65As layer is

doped with n = 1018 and n = 1019 cm−3, respectively. In the n = 1019 cm−3 case, the

barrier is partially depleted and the Fermi level for the whole structure is the bulk Fermi

level of the barrier region. On the other hand, in the n = 1018 cm−3 case, the barrier is fully

26



1.48

1.52

1.56

1.60

0 50 100 150 200

COORDINATE (A)

E
N

E
R

G
Y

(e
V

)
C1
C2

Band edge

E1

E2

FIG. 7: The first two zone center energy levels and wavefunctions in the p-i-n-i GaAs superlattice

of Fig. 6 are shown, together with the band edge (solid curve).

depleted and the Fermi level is determined to be at 1.666 eV. Figure 8 shows the selfcon-

sistent potential of the two trilayer superlattices, and Fig. 9 shows the first two conduction

subband wavefunctions at q = 0 for the n = 1018 cm−3 case. Unlike the quantum well, the

wavefunctions of the superlattice do not go to zero in the barrier region.

4.3.5. Effect of finite temperature

The variation of the selfconsistent potential with temperature for a modulation-doped

(n = 1018 cm−3) GaAs/Al0.35Ga0.65As single quantum well structure is shown in Fig. 10. As

the temperature increases from 0 K to 100 K and to 300 K, the bandgap of both the well

and barrier regions decreases, which accounts for most of the displacement along the energy

axis. Beside this, the most significant effect is that the transition between the depleted and

neutral barrier regions becomes smoother at higher temperature.
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FIG. 8: The conduction band bending in a trilayer superlattice is shown. The superlattice consists

of a 50 Å GaAs quantum well followed by a 50 Å layer of Al0.2Ga0.80As and a 100 Å barrier of

Al0.35Ga0.65As. The band edge is shown for a barrier n-doped to (1) 1.0 × 1018 cm−3 (solid curve)

and to (2) 1.0×1018 cm−3 (dotted curve). The 100 Å barrier is shown distributed symmetrically on

both sides of the stepped quantum well. For 1018 cm−3 doping the barrier is completely depleted

of unionized donors and the Fermi level is in the quantum well.

5. CONCLUDING REMARKS

We have shown that the finite element approach to the Schrödinger-Poisson selfconsis-

tency calculations provides a controlled means of obtaining convergence in a fairly general

manner. This has been illustrated in this thesis by several examples which bring out the

nuances in the procedure.

The formulation presented here allows the generalization to numerically evaluating func-

tional derivatives in the ”weak” sense as a variational approach in which only the nodal

values of the functions are varied in evaluating the derivative. This clearly has further
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applications in the context of field theoretic calculations of physical quantities.

The calculation of the selfconsistent potential is a ubiquitous problem that occurs in ev-

ery active quantum device. For example, the first step in multiband modeling of tunneling

effects in layered structures is the determination of the band bending of the conduction and

valence band edges under modulation doping. This includes the effect of strain and external

electrically applied bias, and the effect of nonparabolicity in the in-plane energy band dis-

persion. The next stage is the computation of the multiband tunneling coefficient, which is

then included in a tunneling current calculation. Again, in quantum well lasers, the energies

of the actual energy levels employed in the lasing depend on the selfconsistent quantum well

band profile. The problem is of central interest in layered spintronic semiconductor mate-

rials where the ferromagnetic behavior of Mn-doped layers is mediated by the free carriers

interacting with the Mn spins through the exchange interaction. We hope to explore these

problems in the near future.
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FIG. 9: The zone center energy levels and wavefunctions for the trilayer superlattice of Fig. 8 are

shown with the band bending for n = 1.0 × 1018 cm−3.
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FIG. 10: The variation of the conduction band edge with temperature in a 100 Å GaAs quantum

well structure. The reduction in the band gap with temperature has been included and the presence

of free carriers above the band edge has been accounted for.
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