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Abstract

The dissertation focuses on scaling outlier detection to work both on huge

static as well as on dynamic streaming datasets. Outliers are patterns in the

data that do not conform to the expected behavior. Outlier detection tech-

niques are broadly applied in applications ranging from credit fraud preven-

tion, network intrusion detection to stock investment tactical planning. For

such mission critical applications, a timely response often is of paramount

importance. Yet the processing of outlier detection requests is of high algo-

rithmic complexity and resource consuming. In this dissertation we investi-

gate the challenges of detecting outliers in big data – in particular caused by

the high velocity of streaming data, the big volume of static data and the large

cardinality of the input parameter space for tuning outlier mining algorithms.

Effective optimization techniques are proposed to assure the responsiveness

of outlier detection in big data.

In this dissertation we first propose a novel optimization framework called

LEAP to continuously detect outliers over data streams. The continuous dis-

covery of outliers is critical for a large range of online applications that mon-

itor high volume continuously evolving streaming data. LEAP encompasses

two general optimization principles that utilize the rarity of the outliers and

the temporal priority relationships among stream data points. Leveraging

these two principles LEAP not only is able to continuously deliver outliers

with respect to a set of popular outlier models, but also provides near real-



time support for processing powerful outlier analytics workloads composed

of large numbers of outlier mining requests with various parameter settings.

Second, we develop a distributed approach to efficiently detect outliers over

massive-scale static data sets. In this big data era, as the volume of the data

advances to new levels, the power of distributed compute clusters must be

employed to detect outliers in a short turnaround time. In this research, our

approach optimizes key factors determining the efficiency of distributed data

analytics, namely, communication costs and load balancing. In particular we

prove the traditional frequency-based load balancing assumption is not ef-

fective. We thus design a novel cost-driven data partitioning strategy that

achieves load balancing. Furthermore, we abandon the traditional one detec-

tion algorithm for all compute nodes approach and instead propose a novel

multi-tactic methodology which adaptively selects the most appropriate algo-

rithm for each node based on the characteristics of the data partition assigned

to it.

Third, traditional outlier detection systems process each individual outlier de-

tection request instantiated with a particular parameter setting one at a time.

This is not only prohibitively time-consuming for large datasets, but also te-

dious for analysts as they explore the data to hone in on the most appropriate

parameter setting or on the desired results. We thus design an interactive out-

lier exploration paradigm that is not only able to answer traditional outlier

detection requests in near real-time, but also offers innovative outlier ana-

lytics tools to assist analysts to quickly extract, interpret and understand the

outliers of interest.

Our experimental studies including performance evaluation and user studies



conducted on real world datasets including stock, sensor, moving object, and

Geolocation datasets confirm both the effectiveness and efficiency of the pro-

posed approaches.
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Introduction

1.1 Motivation

As the advances in hardware, software and networks have enabled applications from busi-

ness, scientific and engineering disciplines, social networks, to government, to generate

data at unprecedented volume, variety, velocity, and varsity not seen before, discovering

precious knowledge hidden in such data has become more critical than ever before.

Important insights extractable from such big data sources include abnormal phenom-

ena or outliers. In general outliers are patterns in the data that do not conform to the

expected behavior. Many modern applications ranging from credit fraud prevention, net-

work intrusion prevention, climate change analysis to financial strategy planning rely on

effective methods for detecting outliers to discover suspicious card usage and potential

identity theft, to prevent cyber attack, to forecast disastrous weather phenomena, and to

predict market changes and trade opportunities, respectively [1]. For such mission critical

applications, a timely response often is of paramount importance.

Outlier Detection Techniques. Driven by the importance of outlier detection, a lot of

work has focused on developing effective outlier detection techniques, including statistics
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based [2, 3], classification based [4, 5, 6, 7] and unsupervised detection techniques [8, 9,

10, 11].

Statistical techniques [2, 3] fit a statistical model to the given data and then apply a

statistical inference test to determine if an unseen instance belongs to this model or not.

Instances that have a low probability of being generated from the learned model, based

on the applied test statistic, are declared to be outliers. Statistical techniques rely on the

assumption that the data is generated from a particular distribution. This assumption often

does not hold true for big real data sets.

The typical classification-based approach [4, 5, 6, 7] is to first learn a classifier us-

ing the available labeled training data. Then at the testing phase any unseen data in-

stance is classified as normal or anomalous using the classifier. The testing phase in such

case is fast, since each test instance only needs to be compared against the pre-computed

model. However there are several issues that arise in supervised outlier detection. First,

the anomalous instances are far fewer compared to the normal instances in the training

data. Second, obtaining accurate and representative label, especially for the anomaly

class, can be challenging. Furthermore, in many domains normal behavior keeps evolv-

ing and a current notion of normal behavior might not be sufficiently representative in the

future.

The unsupervised techniques [8, 9, 10, 11] apply the concept of nearest neighbor

analysis. They are based on the following key observation: normal data instances occur

in dense neighborhoods, while outliers occur far from their closest neighbors. These

unsupervised techniques are widely applicable [1] for the following reasons: (1) they do

not make any assumption regarding the generative distribution for the data. Instead they

are purely data driven; (2) they do not require training data which usually is difficult to

acquire in the real world; (3) adapting nearest neighbor-based techniques to different data

types is straightforward, and primarily requires defining an appropriate distance measure
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for the given data. Therefore by nature they are friendly to the large variety of big data

types.

However, the computational complexity of unsupervised techniques is a significant

challenge when handing big data since unsupervised techniques involve computing the

distance between each pair of data instances to compute the nearest neighbors for each

point. Although approximation based solutions such as sampling in big static data [12,

13, 14] or load shedding [15, 16, 17] in high velocity streaming data have been adopted

to relieve the problem of high computation complexity of other analytics tasks, applying

such an approximation-based solution in outlier detection might miss critical outliers that

may indicate a credit card fraud or a severe security breach. Furthermore, similar to many

other data mining techniques, the performance of unsupervised outlier detection greatly

relies on the user-specified input parameter setting. For example a density threshold may

define how sparse the neighborhood should be for a given data instance to be considered

an outlier. Specifying an appropriate input parameter setting is challenging, since the

number of possible parameter options (the cardinality of the input parameter space) tends

to be huge or infinite.

Therefore although extensive research effort has been made on unsupervised tech-

niques in the literature [18, 19], the current approaches are still not sufficient to effectively

capture true outliers hidden in big datasets in a timely manner. As shown in [18] the

largest dataset that had been tested in the literature is smaller than 1G, while no technique

[19] can efficiently handle streaming data when the velocity is higher than 1M per second.

Significant research remains to be undertaken to scale these widely applied unsupervised

outlier detection techniques to big data. This is thus the focus of this dissertation.

Overall in this dissertation we thoroughly investigate and address the challenges caused

by high velocity streaming data, big volume static data and large cardinality of the input

parameter space and thus fill the void in the literature of effectively detecting outliers over
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big data. Other interesting problems such as how to select an appropriate distance metric

to scale unsupervised outlier detection to various types of data (big variety), proposing

methods that can quickly approximate the outliers yet without missing critical outliers,

detecting outliers from uncertain data and supervised outlier detection under imbalanced

class distributions of labeled data, are out of the scope of this dissertation.

High Velocity Streaming Data. The number of mobile devices, such as smart phones,

pads, and RFID equipment, and their capabilities of generating and transmitting live data

have both grown rapidly in recent years. As the volume and speed of data streams advance

to new levels, discovering outliers hidden in this data has become more challenging than

ever before. For example when monitoring the stock trading streams on the stock market,

investors may continuously look for the recent outlier stocks whose behavior significantly

differs from that of the majority of their peer stocks. Such abnormal stocks typically are

either the hot spots or some forgotten treasure in the market. Both of them may corre-

spond to potentially excellent investment opportunities. When monitoring the potential

credit fraud in bank transaction streams, analysts may look for unusual transactions whose

values in recent days significantly differ from those of the majority of transactions made

by peers at the similar income levels. In such applications real time responsiveness is

extremely important. Even a one-second delay may lead to a loss of huge funds and

investment opportunities. Satisfying this stringent response time requirement is challeng-

ing when the stock or bank transactions are reported at several thousand transactions per

second rate. Therefore efficient continuous processing strategies that are able to mine

outliers at real-time from extremely fast streams must be developed.

Furthermore, a stream processing system may face a difficult challenge when it needs

to handle not only one but potentially a large number of outlier mining queries simulta-

neously. Since outlier detection queries are usually parameterized, different analysts may

submit queries of the same type but with different parameters settings to a single system,
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based on their own domain knowledge and their specific analysis tasks.

In the stock market application, with a large number of analysts monitoring the same

stock transactions stream from NYSE every day [20] each may customize their outlier

search requests by tuning their parameter settings using their personalized interpretation

of abnormity. For example when utilizing an outlier detection technique to capture the

stocks that dropped or rose significantly in the most recent transactions, each analyst has

to define their own notions of “significance” in price fluctuation (e.g., 10, 30 or 50 percent

of the original price) and the meaning of “most recent” transactions (e.g., transactions

that happened in last 5, 10 or 30 minutes) based on their application semantics. Given the

high algorithmic complexity of most outlier mining algorithms, serving a large number of

such outlier mining queries in a single system is extremely resource intensive. The naive

method of executing each query independently has prohibitively high demands on both

computational and memory resources. Therefore efficient shared execution strategies for

multiple outlier mining queries over data streams must be designed.

Big Volume Static Date. Nowadays various applications are generating data at un-

precedented scale. For example based on the statistics from IBM [21], in social network

applications 30 billion pieces of content are shared every month on Facebook, while 400

millions tweets are sent per day by about 200 million monthly active users. In the stock

market the New York Stock Exchange captures 1 TB of trade information during each

trading session. While in computer network it is projected that by 2016 there will be

18.9 billion network connections. Clearly one single machine even when configured with

most advanced hardware does not have the storage resources to accommodate such huge

amount of data nor the CPU power to quickly detect outliers.

Therefore in this big data era the development of a distributed solution for outlier de-

tection that effectively leverages distributed computing is not an option, but a necessity.

The MapReduce-based [22] platforms such as Hadoop [23] and Spark [24] are among
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the most popular distributed infrastructures due to their many desirable features including

scalability to thousands of machines, flexibility in the data model, efficient fault tolerant

execution, and cost effectiveness. Nevertheless, despite the importance of outlier detec-

tion and the popularity of the MapReduce distributed computing paradigm, to the best

of our knowledge no work has been proposed to date to support outlier detection on the

MapReduce-based infrastructures. Therefore, efficient distributed outlier detection ap-

proaches must be designed to handle terabyte or even petabyte level big datasets.

Large Cardinality of Input Parameter Space. Last but not least, traditional outlier

detection systems require the analyst to select a fixed set of parameter values, and then

to submit this instantiated request to attempt to detect outliers of interest. This request is

then executed from scratch as a one time query to compute the outliers from the target

dataset that match that specification. This one-at-a-time query approach suffers from

severe limitations.

First, using the current systems, to acquire a good input parameter setting the ana-

lyst has to continuously re-submit individual requests with different parameter settings

in a trial-and-error fashion and then manually analyze the respective results. This is ex-

tremely ineffective and corresponds to a taxing process for the analysts because of the

sheer infinite number of possible parameter settings.

Second, mining outliers according to a particular parameter setting from scratch on

large data tends to take hours or more as confirmed in our experiments [25]. This is

clearly not within the tolerable response time range for the analysts during the process of

parameter tuning and outlier examination.

Furthermore, important insights, such as how the detected outlier set changes when

varying parameter settings, or what the relationship among different outlier points is (for

example, whether some points are “stronger” outliers than others), might be missed during

this tedious yet expensive exploration process. This information is critical for the analysts
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to interpret the characteristics of the outliers hidden in the dataset.

In short, the traditional one-at-a-time approach is neither effective nor efficient for

modern outlier analytics applications. Therefore methodologies that allow users to inter-

actively analyze the outliers in the big dataset and easily locate appropriate parameter

setting are needed to address these shortcomings.

1.2 State-Of-the-Art

1.2.1 Continuous Outlier Detection over Streams

In recent years researchers started to look at the problem of detecting outliers in streaming

environments [26, 27, 28]. Specifically [26, 28] proposed solutions for detecting outliers

in count-based sliding windows. [27] improves upon this solution [26] by now supporting

outlier detection in time-based sliding windows. All solutions leverage the overlap of

sliding windows and thus avoid huge overhead wasted on recomputing-from-scratch at

each window.

However, these existing techniques [26, 27, 28] didn’t explore the optimization op-

portunities enabled by the critical observation below. That is, they didn’t exploit the fact

that outliers by nature only constitute a small portion of the general stream data popu-

lation (otherwise they wouldn’t be called outliers after all). Thus, the outlier detection

algorithms should ideally concentrate their resource utilization on strictly serving these

minority outlier candidates, rather than the general and much larger stream population.

Without this important optimization opportunity, the existing techniques [26, 27, 28] can-

not handle high-speed streams in real-time, say 1M tuples per second, as confirmed by

the experiments in [19]. Yet such huge volume streams are increasingly common in mod-

ern streaming applications. As an example the US stocks market continuously receives

around 1M transaction requests per second [20].
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Furthermore, all of the above approaches focus on handling one single outlier request

with a fixed parameter setting [26, 27, 28]. The simultaneous execution of multiple outlier

mining queries with varying parameter settings remains unexplored.

In the broader area of shared execution strategies for multiple queries in streaming

environments, the main focus of previous work has been on Select-Project-Join [29, 30,

31] and aggregation queries [32, 33]. These methods include rewriting queries to expose

common subexpressions, sharing indices, or segmenting input into partitions and sharing

partial results over the partitions. However the key problem we aim to address in this

dissertation is different from the more general-purpose optimization effort required by

the traditional SQL query sharing. The semantics of outlier detection request does not

contain any subexpression. Furthermore, usually no partial result will be generated and

possibly shared in the mining process.

The only work we are aware of that supports simultaneous execution of multiple min-

ing requests is [34]. It presents shared execution strategies for processing a workload

of density-based clustering requests instead of outliers [34]. This work organizes clus-

ter structures identified by multiple queries into one compact hierarchical data structure.

The incremental maintenance of this structure for progressive clustering is then proposed.

However outliers are defined as individual data points unlike clusters that can be modeled

as connected structures with set-based inter-dependencies among the data points. There-

fore the solution in [34] cannot be applied in our context.

1.2.2 Distributed Outlier Detection

A few recent efforts have been proposed to support distributed outlier detection [35, 36,

37, 38]. Among these works some focus on outlier definitions [37, 38] specific to par-

ticular domains (such as health care or network intrusion). These definitions leverage

the domain knowledge having already been discovered by the experts in the particular
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fields to classify outliers. Therefore it is difficult to generalize such approaches to other

fields. Others utilize different distributed computing paradigms that, unlike MapReduce,

either suffer from a bottleneck by requiring a central master node to split and broadcast

data to each slave node [36], or they allow all nodes unrestricted exchange of data with

each other [35]. In contrast, the MapReduce infrastructure neither assumes a central node

nor does it allow data exchange among the mappers (nor among the reducers) to enable

easier distribution of tasks and higher scalability. Therefore none of these techniques

is applicable on the MapReduce infrastructure. To support distributed outlier detection

on MapReduce, partitioning approaches that make sure each reducer can detect outliers

independently from other reducers have to be designed.

In the literature Map-Reduced based approaches have been proposed for other ad-

vanced analytics techniques such as similarity join, KNN-Join, and clustering [14, 39, 40].

Although they investigate the key concepts in distributed systems such as load balancing

and efficient partitioning that determine the efficiency of distributed mining algorithms,

their methods cannot be applied in our outlier detection area as shown below.

For example in [39] the authors propose an efficient similarity join algorithm called

MR-MAPSS that studies the load balancing problem. MR-MAPSS first partitions the in-

put data records into work sets. It then achieves load-balancing across the reducers by

splitting and repartitioning the densely clustered large work sets. However their load-

balancing method relies on the traditional load balancing assumption, namely an equal

number of data points indicates equal work load. This assumption is proven to be not true

in outlier detection by our experimental investigation and theoretical analysis [25].

In [40] an approximation KNN-Join algorithm is proposed on MapReduce. Their par-

titioning method ensures that each reducer produces results in total isolation with other

reducers. It first maps the multi-dimensional data sets into a single dimension data using

space-filling curves (z-values), and then transforms kNN join into a sequence of one-
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dimensional range searches. Thus the partitioning of a multi-dimensional dataset is re-

duced to an equal size one-dimensional partitioning problem. Although this problem can

be efficiently solved for uniform datasets, the approximation accuracy is highly compro-

mised when handling skewed data. Furthermore, its equal size partitioning method might

lead to a highly unbalanced workload across different reducers.

In conclusion new approaches with innovative partitioning strategies and load bal-

ancing methodologies have to be developed to efficiently detect outliers by leveraging the

Map-Reduce paradigm.

1.2.3 Interactive Outlier Exploration

To the best of our knowledge, the problem of interactively exploring outliers in big

datasets proposed to be tackled in this dissertation has not been considered before in

the literature.

In the context of other data mining techniques, [41] proposes the PARAS model to

support the exploration of association rules in the interactive manner. By leveraging the

redundancy relationships among rules and the common rules shared by the similar param-

eter settings, PARAS maintains the final rule sets with respect to all parameter settings

(all possible combinations of support and confident values). Using the proposed index,

association rule mining requests can thus be answered by PARAS with near real-time

responsiveness as confirmed by their experiments [41]. However, in contrast to PARAS

we focus on outlier exploration that is distinct from association rule mining. Associa-

tion rule mining is supported by first discovering all frequent item sets. Clearly these set

based techniques cannot be applied to detect individual point based outliers. Furthermore,

PARAS has to maintain the final results with respect to all parameter settings, while the

number of association rules generated by large datasets is prohibitively large. Therefore

this solution is not scalable to large datasets. In order to interactively analyze outliers over
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large datasets other approaches have to be explored instead of extensively maintaining all

possible final results.

In density-based clustering, the OPTICS algorithm [42] produces the clusters in a time

complexity linear in the size of the dataset with respect to any parameter settings picked in

a given parameter setting range. OPTICS achieves this by creating an augmented ordering

of the dataset to represent the clustering structure corresponding to a set of parameter

settings. However, producing outliers as by-products of clustering has already been shown

to be not effective in capturing abnormal phenomena [18]. Furthermore, the ordering

information is only effective in representing the clusters with respect to a small range of

parameter settings. Our work instead aims to support any outlier detection request with

any possible parameter setting in a near real-time fashion.

1.3 Research Challenges Addressed in This Dissertation

Continuous Outlier Detection Over Data Streams. First, designing scalable stream

outlier detection strategies that satisfy the stringent response time requirements of online

monitoring applications is extremely difficult, because the processing of an outlier de-

tection request is resource-consuming due to the algorithmic complexity of the mining

process. As shown in [1], the algorithmic complexity of most outlier detection techniques

is known to be quadratic with respect to the number of points. Continuously mining out-

liers from high volume, high velocity stream data is like mining needles in a haystack.

There is so much hay to mine and so little time to utilize.

Second to handle a large workload composed of hundreds or even thousands of out-

lier requests over data streams in real time, effective sharing of system resources utilized

for the processing of each of these queries must be achieved. However outlier mining

requests with different parameter settings may cause totally different outliers to be iden-
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tified. Furthermore, given a data point p, the evidence needed to prove its outlier status,

i.e., whether it is an outlier or an inlier, with respect to distinct outlier interpretations

(parameter settings) can differ. Therefore a sharing-aware execution strategy that com-

pletely avoids the redundant computation across the process of different outlier detection

requests on data is hard to develop.

Distributed Outlier Detection. The design of an efficient distributed outlier detection

algorithm is challenging.

First, designing an effective partitioning strategy for the MapReduce-based outlier

detection approach is challenging. Intuitively the default partitioning solution in MapRe-

duce would randomly spread the information that is necessary to prove the status of one

point into possibly numerous nodes. Therefore a point p would not be able to prove its

outlier status on the local reducer node on which p resides. This inevitably would lead

to a multi-pass solution, thus introducing heavy communication costs due to requiring

a repeated re-distribution of the whole dataset. On the other hand partitioning the data

points with similar characteristics to the same node might be able to preserve the norm on

the local node for each data point to evaluate its abnormity. However real world datasets

tend to be skewed [43] instead of being uniformly distributed over their domain spaces.

For this reason, data characteristics-based partitioning suffers from the problem that the

number of points allocated to each node may vary extremely − leading to an unbalanced

workload.

Second, a common limitation in distributed analytics work [35, 36, 37, 38] is that they

apply one single detection algorithm to all compute nodes. This “monolithic” detection

approach is based on the implicit assumption that there is one outlier algorithm that is

superior to all others for all types of datasets. However, we observe that although numeri-

ous centralized algorithms have been proposed to speed up the outlier detection process,

e.g., [8, 44], none of them has shown consistent superiority in all circumstances. Instead,
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the performance strongly varies depending on the characteristics of the dataset being pro-

cessed. Since the data partitions in a distributed environment may each have different

characteristics, this “monolithic” detection approach misses important optimization op-

portunities to minimize the overall costs of the distributed outlier detection process. To

solve this problem we must assign an appropriate detection algorithm to each partition

based on its characteristics. This requires a thorough understanding of the correlations

between the characteristics of the data and the performance of the algorithms. However,

to date no such work appears in the literature.

Third, the partition generation problem (Challenge 1) and the algorithm-selection

problem (Challenge 2) are strongly interdependent, i.e., a change in one may cause a

modification in the other. For example, to minimize the overall detection costs, the effec-

tiveness of a partitioning plan should be evaluated based on the costs estimated from the

detection algorithms assigned to each partition. On the other hand, the algorithm assign-

ments must be determined based on the characteristics of the data subsets produced by

the partitioning plan. This raises the proverbial chicken and egg question.

Interactive Outlier Exploration. Designing an interactive outlier detection system

that effectively derives the outliers of interest to the analysts with real time responsiveness,

thereby meeting the requirements of online analytics applications, is challenging. It is

challenging to design an interactive system that can recommend appropriate parameter

settings and allow users to online analyze outliers over big data.

First, due to the algorithmic complexity of mining techniques [45], processing each

outlier request from scratch over big datasets each time when it is submitted clearly cannot

satisfy the response time requirement of interactive systems. On the other hand pre-

computing and storing the results for all potential detection requests beforehand on first

sight appears infeasible because of the infinite number of possible parameter settings.

Furthermore, even if this were achievable, it would remain hard if not impossible for
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an analyst to figure out the most appropriate parameter setting in a trial and error fashion.

Worst yet together the cardinality of the big dataset and the sheer number of possible

parameter settings make the problem of explicitly modeling the relationships among the

outliers and the trends of how the detected outlier set migrates across distinct parameter

settings almost intractable. However this is inevitable for the analysts to be able to analyze

the characteristics of the outliers.

1.4 Proposed Solutions

In this dissertation, we focus on the unsupervised outlier detection approaches [1, 46].

Different unsupervised outlier detection approaches can be categorized as global versus

local approaches [46], i.e., the decision on the outlierness of a data point p can be based

on the complete (global) dataset or only on a (local) selection of adjacent data points.

We investigate the typical detection techniques of both categories, namely distance-based

outliers [8, 9] of the global approach and density-based outliers [10] of the local approach.

The seminal distance-based technique proposed in [8] computes the anomaly score of

a data instance by counting the number of neighbors (k) that are not more than r distance

apart from the given data instance, while in another major variation of distance-based

technique proposed in [9] the anomaly score of a data instance is defined as its distance

to its kth nearest neighbor in a given data set.

The density-based technique in [10] assigns an anomaly score to a given data instance,

known as Local Outlier Factor (LOF). For any given data instance, the LOF score is equal

to the ratio of average local density of the k nearest neighbors of the instance and the local

density of the data instance itself. The local density is represented by the radius of the

smallest hyper-sphere centered at the data instance that contains its k nearest neighbors.

In this dissertation we thoroughly investigate the problem of making unsupervised
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outlier detection techniques effective yet efficient in big static and streaming data. Fun-

damental observations and optimization principles that are not only general across a rich

variety of unsupervised outlier detection techniques, but also applicable to other big data

mining problems are proposed to attack the challenges of Continuous Outlier Detection

Over Data Streams, Distributed Outlier Detection and Interactive Outlier Exploration.

1.4.1 Continuous Outlier Detection Over Data Streams

Single Outlier Detection Request. We design an efficient continuous processing strategy

called LEAP to mine outliers from extremely fast streams [19]. To satisfy the stringent re-

sponse time requirement of the online monitoring applications, the design of this strategy

explores the fundamental optimization opportunities enabled by the general properties of

the unsupervised outlier definitions in streaming data.

First, this strategy takes advantage of the rarity property of outliers. Given a dataset

D, the majority of points in D are guaranteed to be inliers. Furthermore, given a data point

p in D potentially examining a small subset of points in D will be sufficient to prove that

p is an inlier. Therefore an efficient outlier detection algorithm should be able to quickly

eliminate inliers by collecting the least amount of evidence necessary to prove the inlier

status of the data points (inlier evidence).

Second, this strategy fully utilizes the temporal relationships among stream data points.

The data points that arrived later in the window are guaranteed to have a more decisive

impact on the outlier detection process compared to earlier ones. This is so because the

younger a data point p is, the longer its contribution of proving the outlier status of other

points will persist into the future. Since the key task for the outlier detection process is

to eliminate any guaranteed inliers, identifying enough longer lasting inlier evidence is

likely to eliminate the need for further examination for those shorter lasting ones.

In particular our contributions include:
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1. We present the first result on efficiently supporting the major distance-based outlier

classes. In particular neither the O(k,n)
kmax [9] nor the O

(k ,n)
kavg [47] outliers had been

handled in the streaming outlier detection literature to date.

2. We propose the minimal probing optimization principle, which frees detection algo-

rithms from the burden experienced by the state-of-the-art methodologies of having

to conduct range query searches [26, 27, 48].

3. We introduce the lifespan-aware prioritization principle, which guides the outlier

detection algorithms to probe neighbors for stream data points in a time-aware man-

ner to minimize the frequency of probing operation.

4. We integrate these two principles into a general framework called LEAP, which is

proven to be optimal in terms of the CPU costs for determining the outlier status of

each point.

5. Our experimental studies based on real and synthetic data show that our proposed

algorithms achieve three orders of magnitude performance gain compared to the

state-of-the-art techniques in a rich variety of scenarios.

Multiple Outlier Detection Requests. We propose the SOP strategy to efficiently han-

dle an outlier analytics workload composed of a large number of outlier detection requests

with arbitrary parameter settings. This includes optimization to guarantee the full sharing

of both CPU computations and memory utilization for the processing of the outlier ana-

lytics workload. In particular computation-wise, in each active window it only requires a

single pass through the batch of the data points to answer all requests. Memory-wise, it

assures that only one single copy of the neighbor information shared across all requests is

maintained. The key observation here is that certain relationships exist among the outliers

generated by different mining requests. For example some mining requests might gener-
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ate the same set of outliers although they are configured with different parameter settings.

Some parameter settings are “more restricted” than others in terms of recognizing outliers,

therefore guaranteed to generate more outliers than the others.

The contributions in this area include:

1. Our SOP framework is the first to tackle the problem of shared execution of multiple

outlier requests with arbitrary pattern and window specific parameters in the stream

context.

2. The key innovation of SOP is to transform the multi-query outlier problem into

a single-query skyband problem. The output of the skyband query is proven to

be minimal yet sufficient for determining the outlier status of each point for any

parameter setting on the workload.

3. Our customized skyband algorithm is tuned to process outlier requests with diverse

parameter settings. K-SKY is proven to be optimal in the number of points being

evaluated.

4. Leveraging the commonality and dominance among the data populations, we are

able to utilize one specific skyband query to support multiple queries with vary-

ing window specific parameters. By this full sharing is achieved across the query

windows.

5. Our extensive experiments demonstrate that SOP routinely achieves three orders of

magnitude or more speed up over the state-of-the-art methods [19, 27].

1.4.2 Distributed Outlier Detection

We design scalable distributed approaches to detect both distance-based and density-

based outliers from high volume static data. In general our approaches feature novel
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partitioning strategies to be deployed on mappers and outlier detection strategies to be

deployed on reducers. These strategies together minimize the overall execution costs that

in a distributed system correspond to both communication and processing costs.

First at the mapper side our supporting area partitioning strategy makes each partition

self-sufficient yet only introducing a minimal amount of data replication. This minimizes

the costs that are required when having to re-distribute data repeatedly between mappers

and reducers. Furthermore, an imbalanced workload may not only result in a significant

slowdown in processing time, but also risk job failure in some cases. Therefore the par-

titioning strategy has to ensure that each reducer is assigned a balanced workload. The

key observation here is that to achieve load balancing, assigning an equal number of data

points to each reducer is not sufficient. Instead the partitioning strategy should also take

into consideration the data distribution of the mined dataset and the costs estimated by the

cost model for the detection algorithm to be applied.

At the reducer side the traditional MapReduce based mining algorithms assume that

one single mining algorithm is applied to all reducers. However the data partitions in

different nodes might have different characteristics. Therefore the best algorithm selected

based on the overall characteristics of the whole dataset might not serve any of the data

partitions well. Therefore we propose a novel multi-tactic paradigm. This model makes

use of the fact that each reducer in a computer cluster executes independently of each

other. Hence they may run different outlier detection algorithms as needed, namely dif-

ferent algorithms for different reducers.

The key contributions in this area include:

1. We propose the first distributed approach called DLOF that effectively solves the

problem of detecting density-based outliers from large volume data.

2. We design a distributed framework called DOD that, using the supporting area
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technique, detects all distance-based outliers in a single MapReduce job. DOD is

proven to involve minimal communication overhead.

3. For the first time, we theoretically analyze and contrast the costs of distinct classes

of outlier detection algorithms under various data distributions. Based on this the-

oretical foundation we prove that the traditional frequency-based load balancing

assumption does not hold in the outlier detection context, and propose a novel cost-

driven strategy that effectively generates partitions of balanced workloads.

4. We propose a multi-tactic strategy that automatically selects the best outlier detec-

tion algorithm for a given data partition. Our proposed density-aware technique

successfully separates the two interdependent problems of partition-generation and

algorithm-selection.

5. We experimentally evaluate our DLOF and DOD techniques using TBs of data.

The results demonstrate that our techniques outperform the baseline solutions by a

factor of 15x.

1.4.3 Interactive Outlier Exploration

In this area we propose to design an interactive outlier exploration paradigm called ONION

to meet the requirements of online outlier analytics applications. First, ONION is able to

answer any outlier detection request with real time responsiveness. Second, it assists the

analysts to quickly pinpoint a good parameter setting fitting the datasets to be mined in a

systematic way. Furthermore, it facilitates the understanding and interpretation the mined

outliers.

In general ONION is composed of two phases, namely offline phase and online phase.

At the offline phase we extract and abstract the key components of outlier analytics,
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namely the input data, the input parameter settings along with the possible outliers gener-

ated from the data together into a comprehensive yet compact knowledge base by utilizing

the power of computer clusters. The key observation here is that most of the data points

are guaranteed to be inliers no matter how the parameter setting changes. The offline

phase only needs to be conducted once. At the online phase we provide the users a rich

set of analytics tools. It not only supports the traditional outlier mining operation, that is,

given a particular input parameter, asking for the generated outliers. It also supports other

novel analytics operations such as given a set of outliers, returning the parameters gener-

ating this outlier set, or given a set of sampling outliers, output other outliers similar to

these samples. Furthermore, these analytics operations will not be conducted on the raw

big dataset and the large parameter space any more. They will be supported by directly

looking at the aggregated knowledge base built in the offline phase. Therefore they can

be answered in real time. These analytics operations in combination provide a powerful

yet flexible tool for users to explore the data and interpret the generated outliers as well

as recommend appropriate parameter settings to the users.

In particular the key contributions in this area include:

1. We propose the first interactive outlier analytics platform that enables analysts to

pinpoint appropriate parameter settings and explore outliers in a systematic way.

2. We establish for the analysts an “outlier-centric panorama” into big datasets by

integrating the input data and parameter space into a comprehensive multi-space

ONION knowledge base.

3. We design logarithmic-complexity algorithms for the processing of each outlier

exploration operations with real-time responsiveness by leveraging the compact

ONION knowledge base.

4. We confirm the superiority of ONION compared to the traditional mining platform
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in effectiveness of recognizing true outliers by conducting a user study with real

GroundMoving Target Indicator (GMTI) dataset.

5. Our experimental performance study demonstrates that ONION is at least five or-

ders of magnitude faster than its state-of-the-art competitors for traditional outlier

detection queries.

1.5 Dissertation Organization

The rest of this proposal is organized as follows. Chapter 2 first provides the back-

ground and preliminary materials needed for this dissertation. We then discuss in detail

the three research topics of this dissertation, namely Continuous Outlier Detection Over

Data Streams in Part I (Chapters 3-7) and Part II (Chapters 8-12), Distributed Outlier

Detection in Part III (Chapters 13-17 and Part IV (Chapters 18 to 22), and Interactive

Outlier Exploration in Part V (Chapters 23-26), respectively. The discussion of each of

the three research topics includes the problem formulation and analysis, description of

the proposed solution, experimental evaluation, and lastly a discussion of related work.

Chapter 27 concludes this dissertation and Chapter 28 discusses promising future work.
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Preliminaries

In this dissertation, we study the unsupervised outlier detection that is categorized as

global outliers and local outliers. we focus on typical detection techniques of both cate-

gories, namely distance-based outliers in global outlier category [8, 9] and density-based

outliers [10, 11] in local outlier category. In this chapter we give the definitions of

distance-based outlier notion, density-based outlier notion, and the corresponding stream-

ing outlier detection concepts. The Hadoop distributed platform that we utilize to detect

outliers in large volume dataset is also briefly introduced.

2.1 Distance-Based Outlier

The work of Knorr and Ng on the distance-based notion of outliers (DB-outlier) [8] uni-

fies statistical distribution-based approaches and triggered the data mining community to

develop different approaches that have a less statistically oriented but more spatially ori-

ented notion to model outliers. The idea is based on statistical reasoning but simplifies

the approach to outlier detection considerably motivated by the need for scalable methods

handling huge datasets.
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DB-Outlier uses a range threshold r ≥ 0 to define the neighborship between any two

data points. For two data points pi and pj , if the distance between them is no larger than

r, pi and pj are said to be neighbors. Any distance function can be plugged to calculate

the distance. We use the function NumNei(pi , r) to denote the number of neighbors a

data point pi has, given the r threshold.

Definition 2.1 Distance-Based Outlier (DB-Outlier): Given a distance range threshold

r and a neighbor count threshold k, a distance-based outlier is a data point pi, where

NumNei(pi , r) < k .

Inspired by [8] two variations of distance-based outlier notion were proposed in [9]

and [47] that are both defined based on the well-known notion of “k-nearest neighbors

(kNN)”. Given a data point pi and its kth-nearest neighbor pj , d(pi , pj ) is called the

kNN maximum distance of pi denoted as Dkmax (pi), while the average distance to all

its k-nearest neighbors is called the kNN average distance of pi denoted as Dkavg(pi).

Dkmax (pi) is also called k-distance.

Definition 2.2 Given input parameters k (k ≥ 1) and n (n ≥ 1), a point pi is a kNN

maximum distance outlier denoted by O (k ,n)
kmax inD if at most n-1 other points pj exist with

1 ≤ j ≤ n− 1 in D such that Dkmax (pj ) > Dkmax (pi).

Definition 2.3 Given input parameters k (k ≥ 1) and n (n ≥ 1), a point pi is a kNN

average distance outlier denoted by O
(k ,n)
kavg s in D if at most n-1 other points pj exist with

1 ≤ j ≤ n− 1 in D such that Dkavg(pj ) > Dkavg(pi).

2.2 Density-Based Outlier

Density-based approaches consider ratios between the local density around an object and

the local density around its neighboring objects. These approaches introduce the notion
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of local outliers. The concept of a local outlier is important since in many applications,

different portions of a dataset can exhibit very different characteristics, and it is more

meaningful to decide on the outlying possibility of a point based on other points in its

neighborhood. However, unlike distance-based outlier local outlier model is not effec-

tive in detecting outlying clusters, namely the clusters in the sparse region. The original

density-based outlier approach is introduced by Brenunig et. al. in [10]. The basic idea is

to assign a density-based local outler factor (LOF) to each object of the dataset denoting

a degree of outlierness.

We begin with the notion of the k-distance neighborhood of point p.

Definition 2.4 (k-distance neighborhood of an object p)

The k-distance neighborhood of p contains every object in dataset D whose distance

from p is not greater than the k-distance, is denoted as:

Nk(p) = {q ∈ D \ {p} | d(p, q) ≤ k − distance(p)}.

Note that since there may be more than k objects within k-distance(p), the number of

objects in Nk(p) may be more than k. Later on, the definition of LOF is introduced, and

its value is strongly influenced by the k-distance of the objects in its k-distance neighbor-

hood.

Definition 2.5 (Reachability distance of p w.r.t point o)

The reachability distance of point p with respect to point o is defined as:

reach − distk(p, o) = max{k − distance(o), dist(p, o)}

Definition 2.6 (Local reachability density of p)

The local reachability density of a point p is the inverse of the average reachability

distance from the k-nearest-neighbors of p defined by:

lrdk(p) = 1/[
∑

o∈Nk (p)
reach−distk (p,o)
|Nk (p)(p)|

]
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Essentially, the local reachability density of an object p is an estimation of the density

at point p by analyzing the k-distance of the points in Nk(p). The local reachability

density of p is just the reciprocal of the average distance between p and the points in its k-

neighborhood. Based on local reachability density, the local outlier factor can be defined

as follows.

Definition 2.7 LOFk(p) =
∑

o∈Nk (p)
lrdk (o)

lrdk (p)

|Nk (p)(p)|

LOF is the average of the ratio of the local reachability density of p and those of p’s

k-nearest-neighbors. Intuitively, p’s local outlier factor will be very high if it is local

reachability density is much lower than those of its neighbors.

2.3 Global Outlier Versus Local Outlier

In a rather general sense, the nature of outlier detection requires the comparison of an

object with a set of other objects w.r.t some property (e.g., the kNN distance or a density

model). When comparing different outlier detection methods, we find different levels of

restriction of the set to compare with. Furthermore, the property to be compared is usually

also derived from the dataset taking into account again a set of other objects. Both sets,

namely set A from which to derive the property for an object and set B to compare with,

need not be identical. We can name set A the context set for model building, and set B

the reference set for model comparison.

This decomposition has been implemented gradually (and probably only to a certain

extent intentionally) during the development of outlier detection methods as surveyed in

the previous section. Consider the fundamental statistical methods. They are modeling the

complete dataset by a single distribution and judging an object basically by the probability

of whether it could have been generated by the corresponding model. In this case, both

the model building set and the reference set are the complete dataset.
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The first approach to DB-outlier detection already considers the local neighborhood

by means of a range-query but compares the property thus derived with the complete

dataset. The same is true for kNN-related outlier models: the model building set are the

kNNs while the derived property is compared with the properties of the complete dataset

as a reference. Therefore they are called global outliers.

The meaning of “locality” introduced in LOF relates to the locality of the reference set

as well as the model building set. LOF uses the same neighborhood for both situations,

but it could easily be abstracted to use different neighborhoods.

2.4 Outlier Detection in Sliding Window Streams

Periodic sliding window semantics as proposed by CQL [49] are widely utilized for defin-

ing the substream of interest from the otherwise infinite data stream. Such semantics can

be either time or count-based. Each query Q has a fixed window size Q.win and slide

Q.slide. For time-based windows each windowWc ofQ has a starting time Wc.Tstart and

an ending time Wc.Tend=Wc.Tstart+Q .win. Periodically the current window Wc slides,

causing Wc.Tstart and Wc.Tend to increase by Q .slide. For count-based windows, a fixed

number (count) of data points corresponds to the window size Q.win. The window slides

after the arrival of Q .slide new data points.

Outliers will be generated based on the points that fall into the current window Wc,

namely the population of Wc. A point pi in Wc might have different outlier status (outlier

or inlier) in the next window Wc+1 if it is still alive in Wc+1, since each window has a

different population. Now we define the stream outlier detection problem we tackle.

Definition 2.8 Outlier Detection In Sliding Window Stream: Given a stream S, a stream-

ing distance-based outlier detection query Q with O
(k ,R)
thres , O (k ,n)

kmax , O (k ,n)
kavg , LOF defined in

Def. 2.1, 2.2, 2.3, 2.7 with window size as Q .win and slide size as Q .slide, Q continu-
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ously detects and outputs the outliers in the current window Wc when the window slides.

2.5 MapReduce Basics

MapReduce is a framework for parallel processing of massive data sets popular for its

scalability to thousands machines, flexibility in the data model, efficient fault tolerance

execution, and cost effectiveness. A job to be performed using the MapReduce frame-

work has to be specified as two phases: the map phase as specified by a Map function

(also called mapper) takes key/value pairs as input, possibly performs some computation

on this input, and produces intermediate results in the form of key/value pairs; and the

reduce phase which processes these results as specified by a Reduce function (also called

reducer). The data from the map phase are shuffled, i.e., exchanged and merge-sorted,

to the machines performing the reduce phase. It should be noted that the shuffle phase

can itself be more time-consuming than the two others depending on network bandwidth

availability and other resources.

In more detail, the data are processed through the following 6 steps as illustrated in

Figure 2.1:
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Figure 2.1: MapReduce Dataflow

1. Input reader: The input reader in the basic form takes input from files (large blocks)

and converts them to key/value pairs. It is possible to add support for other input
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types, so that input data can be retrieved from a database or even from main mem-

ory. The data are divided into splits, which are the unit of data processed by a map

task. A typical split size is the size of a block, which for example in HDFS is 64

MB by default, but this is configurable.

2. Map function: A map task takes as input a key/value pair from the input reader, per-

forms the logic of the Map function on it, and outputs the result as a new key/value

pair. The results from a map task are initially output to a main memory buffer, and

when almost full spill to disk. The spill files are in the end merged into one sorted

file.

3. Combiner function: This optional function is provided for the common case when

there is (a) significant repetition in the intermediate keys produced by each map

task, and (b) the user-specified Reduce function is commutative and associative.

In this case, a Combiner function will perform partial reduction so that pairs with

same key will be processed as one group by a reduce task.

4. Partition function: As default, a hashing function is used to partition the intermedi-

ate keys output from the map tasks to reduce tasks. While this in general provides

good balancing, in some cases it is still useful to employ other partitioning func-

tions, and this can be done by providing a user-defined Partition function.

5. Reduce function: The Reduce function is invoked once for each distinct key and

is applied on the set of associated values for that key, i.e., the pairs with same

key will be processed as one group. The input to each reduce task is guaranteed

to be processed in increasing key order. It is possible to provide a user-specified

comparison function to be used during the sort process.

6. Output writer: The output writer is responsible for writing the output to stable
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storage. In the basic case, this is to a file, however, the function can be modified so

that data can be stored in, e.g., a database.

As can be noted, for a particular job, only a Map function is strictly needed, although

for most jobs a Reduce function is also used. The need for providing an Input reader and

Output writer depends on data source and destination, while the need for Combiner and

Partition functions depends on data distribution.

Hadoop [50] is an open-source implementation of MapReduce, and without doubt, the

most popular MapReduce variant currently in use in an increasing number of prominent

companies with large user bases, including companies such as Yahoo! and Facebook.

Hadoop consists of two main parts: the Hadoop distributed file system (HDFS) and

MapReduce for distributed processing. As illustrated in Figure 2.2, Hadoop consists of a

number of different daemons/servers: NameNode, DataNode, and Secondary NameNode

for managing HDFS, and JobTracker and TaskTracker for performing MapReduce.
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Figure 2.2: Hadoop Architecture
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Outlier Detection Over Data Streams
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3

A Generic Outlier Detection

Framework

We now introduce our scalable framework called LEAP, capable of continuously process-

ing distance-based outliers with low CPU and memory resource utilization. LEAP is built

on two fundamental optimization principles namely minimal probing and lifespan-aware

prioritization as described below.

3.1 Theoretical Foundation

In all distance-based outlier definitions, points in a dataset D are classified either as out-

liers or inliers. Thus, the process of identifying outliers in D is equivalent to the process

of eliminating inliers from it. In fact, initially, each point pi in the dataset is a potential

outlier candidate, until one has acquired enough evidence to show that pi is an inlier. For

example, in the process of identifying O(k,R)
thres outliers, until finding that pi has at least k

neighbors and thus qualifies as inlier, pi cannot be safely removed from the outlier candi-

date set.
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This fact leads us to an important observation. That is, to identify whether a point pi is

a distance-based outlier in a dataset D, one may not need the distance between pi to every

other point in D. Instead, a potentially small subset of points will be sufficient to prove

that pi is an inlier. Also due to the rarity of outliers, the majority of points in the dataset

could be labeled as inliers in this way by collecting only a small amount of information.

To describe the least amount of information needed to prove pi’s inlier status we define

the concept of Minimal Evidence Set for Inlier (MESI).

Definition 3.1 Given an outlier query and a dataset D, the MESI set for a data point

pi ∈ D is a dataset M such that M ⊆ D , if the distance set DistSet(M , pi) = {d(p1 , pi),

d(p2 , pi), ..., d(pn , pi)| pj (1≤j≤n) ∈ M } is sufficient to label pi as an inlier, and there does

not exist any M ′ ⊆ D such that |M ′| < |M | and DistSet(M ′, pi) = {d(p1 , pi), d(p2 , pi),

..., d(pm , pi)|pj (1≤j≤m) ∈ M ′} is sufficient to label pi as an inlier.

The size of MESI for a point pi is usually much smaller than the size of pi’s complete

neighborhood. For example, for O (k ,R)
thres outlier, the MESI for any point pi is composed of

any k points that are within R distance from pi. Thus its size is k. In general, this input

parameter k is much smaller than the average number of neighbors each point may have in

R distance range. Otherwise the outliers detected with fewer than k neighbors would not

considered to be abnormal phenomena in the dataset. The cardinality of MESI for a point

pi in the kNN outlier definitions is also bounded by a constant value k as we will show

in Chapter 5. This observation guides us to propose the Minimal Probing optimization

principle (Sec. 3.2).

Although MESI is sufficient to prove a point’s inlier status in the current window,

unlike in static environments, locating more neighbors beyond MESI for a given point

may be beneficial in streaming environments. These additional neighbors may help us to

determine the status of this point in future windows. Thus, we now extend the concept
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of MESI in a static dataset to MESI in a sequence of stream windows. In particular, we

define the concept of Minimal Evidence Set for Inlier in a Window Sequence as below.

Definition 3.2 Given a streaming outlier detection query Q and all points in the cur-

rent window Wc, denoted by DWc , MESI(Wc,c+x ) for pi in a window sequence from Wc to

Wc+x , is a datasetM with M ⊆ DWc , if the distance set DistSet(M , pi)={d(p1 , pi), d(p2 , pi),

..., d(pn , pi)|pj (1≤j≤n) ∈ M } is sufficient to label pi as an inlier in windows Wc to Wc+x,

and there does not exist any M ′ ⊆ DWc with |M ′| < |M | and DistSet(M ′, pi) = {d(p1 , pi),

d(p2 , pi), ..., d(pm , pi)|pj (1≤j≤m) ∈ M ′} is sufficient to label pi as an inlier in windows

Wc to Wc+x.

In other words, the MESI(Wc,c+x ) for a point pi is a minimal subset of the current

window population DWc that provides sufficient evidence to prove that pi is an inlier in

windowsWc toWc+x, regardless of the characteristics of the future incoming stream. This

is possible because by analyzing the time stamp of a point pi and the query window (the

slide and window sizes), we can determine the number of windows that pi will survive

in. For example, for a point pi that just arrived with the latest slide in the current window

Wc, if we found k points within R distance from pi that arrived when pi did, then these k

points form MESI(Wc,c+x ) for pi, where Wc+x is the last window in which pi will be alive.

This is because these points will be accompanying pi as its neighbors until pi expires. We

are now ready to define the concept of Life Time Minimal Evidence Set for Inlier.

Definition 3.3 MESI(Wc,c+x ) for pi is a life time MESI of pi, denoted as MESIlt , ifWc+x

is the last window in which pi participates before its expiration.

A MESIlt for pi is an ideal evidence set because it proves the inlier identity of pi

during its entire remaining life, hence named safe inlier. It eliminates the need for any

future maintenance effort on pi for the potential detection of its outlier status. Acquiring
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the MESIlt with minimal CPU costs is the key objective for outlier detection in streaming

windows. This insight inspires us to propose the Lifespan-Aware Prioritization opti-

mization principle in Sec. 3.3.

3.2 Minimal Probing Principle

As elaborated in Chapter 7, all state-of-the-art techniques [26, 27, 48] rely on complete

neighborhood searches to identify outliers. In this work, we abandon this methodology

and instead present an optimization principle referred to as minimal probing. The key

idea is that we no longer conduct complete neighborhood searches, such as range query

searches, but instead use a lightweight operation called probing.

Definition 3.4 Given a point pi in the current window Wc, probing is an operation that

evaluates the distance between pi and other points in Wc until either the MESI for pi in

Wc is acquired or pi’s entire neighborhood has been evaluated.

The goal of probing for a point pi is the discovery of a MESI for pi in the current

window rather than its complete neighbor set. Therefore probing is fundamentally more

efficient compared to a complete neighborhood search, as it significantly reduces the num-

ber of data points that need to be evaluated.

Furthermore, the minimal probing principle guides us to intelligently use this lightweight

probing operation so to maximize the system resource savings. The idea is to carefully

extract and then to organize the evidence gathered during each probing process, and fur-

thermore to reuse it whenever possible to avoid repeated probing process.

For all three outlier definitions, with the probing only applied in two situations as

explained below we can guarantee the correctness of the query. First, each new point pi

that just arrived in the query window needs a probing to figure out its status in the current
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window. Second, an existing point pi without a valid MESI in the new window needs a

probing to re-evaluate its status.

In the first situation, for a newly arriving point pi the probing operation has to be

conducted from scratch to search for the needed evidence of pi.

However this is not the case in the second situation. For a point pi two conditions can

lead to the absence of its MESI. First, pi had been classified as an outlier in the previous

window. Therefore no MESI has so far been acquired. Second, pi lost its prior MESI

when the stream slides to the current window Wc and expired points are removed from

Wc. In both cases, the known MESI evidence about pi which survived the stream data

expiration can still contribute to simplify this probing operation. Rather than searching

for a new MESI from scratch, the probing operation instead only acquires enough new

evidence to prepare the MESI for pi for the window Wc.

Therefore although the goal for probing is to acquire MESI for pi in the current win-

dow, the collected evidence provides us with much richer information than just proving

pi’s current status. The method of organizing the MESI to facilitate the fully reuse of the

evidence gathered by probing is discussed in Sec. 3.4.

As conclusion, the minimal probing principle uses a lightweight probing process to

replace the expensive complete neighbor search. It guides us to fully exploit all evidence

gathered during the probing process and thus to minimize the costs of each probing pro-

cess.

3.3 Lifespan-Aware Prioritization Principle

Next we propose our second optimization principle termed

Lifespan-Aware Prioritization. By utilizing the lifespan information of data points this

principle further optimizes the probing operation to always discover the best MESI.

35



3.3 LIFESPAN-AWARE PRIORITIZATION PRINCIPLE

Lifespan of MESI. As mentioned in Sec. 3.1, the MESI of a point pi in the current

window as a whole may serve as the MESI of pi in a sequence of future windows. The

number of windows in which a MESI can survive, termed the lifespan of MESI, relies

on how many windows each point pj in this MESI can survive, also termed the lifespan

of point pj . In the sliding window scenario, the lifespan of a point pi can be determined

as follows.

Lemma 3.1 Given the slide size Q .slide of a query Q and the starting time of the current

window Wc.Tstart , the lifespan pi .life of a data point pi in Wc with time stamp pi .ts is

calculated by pi .life = dpi .ts−Wc .Tstart

Q .slide
e1, indicating that pi will participate in windowsWc

to Wc+pi .life−1 .

Hence given Lemma 3.1 the lifespan of a MESI can be decided as below.

Lemma 3.2 Given a MESI of pi in the current window Wc denoted as MESI (pi), the

lifespan of MESI(pi) MESI (pi).life = min{pj .life | pj ∈ MESI (pi)}.

By Def. 3.2 MESI (pi) is a MESI(Wc,c+MESI (pi ).life−1 ) of pi covering the window se-

quence from Wc to Wc,c+MESI (pi ).life−1 . As introduced in Sec. 3.2, among the existing

points in windowWc only those without their MESI covering the new windowWc+1 must

conduct probing to re-evaluate their status. Therefore, the longer a window sequence a

MESI covers, the fewer probing processes are needed for this point. Naturally the MESI

with largest lifespan will be the best MESI. Henceforth quickly deriving the best MESI

of each point is critical for minimizing the probing frequency and in turn saving CPU

resources.

Next we analyze how we can further optimize our probing process to always acquire

the best MESI, but without sacrificing its efficiency. On the one hand, the probing process
1For count-based windows, pi .ts and Wc .Tstart are sequence numbers indicating the arrival positions

of data points in a stream.
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3.4 LIFESPAN-AWARE PROBING OPERATION

for pi should acquire the best MESI of pi. On the other hand, we want the probing process

must stay lightweight, so that it stops immediately once it has gotten the MESI of pi in

the current window. Our solution is to leverage the lifespan theory of MESI in Lemma

3.2 to prioritize the order in which the probing operation processes the data points.

Definition 3.5 Lifespan-aware Prioritization: During the probing process of pi, if two

data points pj and pk have the same probability to be in the MESI of pi for the current

window, we always evaluate pj first, if pj .life > pk .life.

Since the succeeding points pj that arrived after pi do not expire earlier than pi, their

influence will persist during the entire life of pi. Therefore any such pj contributes equally

to pi in terms of determining pi’s outlier status, although they may have different lifespans.

Therefore we can treat all succeeding points of pi as if they all had the same lifespan,

namely a lifespan larger than pi’s.

3.4 Lifespan-Aware Probing Operation

The above lifespan-aware prioritization principle together with the minimal probing no-

tion implies an optimized probing operation termed LifEspan-Aware Probing operation

or LEAP. LEAP represents the core operation of our framework.

Definition 3.6 Assume window Wc is composed of k slides denoted as Si, (1 ≤ i ≤ k). Si

arrives earlier than Si+1. Given a point pi in Wc, LEAP is a probing that evaluates the

status of pi by testing other points in the Sk, Sk−1, ... order.

Intuitively we can see that LEAP is guaranteed to produce the best MESI. In sliding

window streams the data points are naturally ordered by their arrival time and expire in a

predictable order. Hence the lifespan of any point can be precisely calculated. By Lemma
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3.4 LIFESPAN-AWARE PROBING OPERATION

3.1, points in a particular slide share the same lifespan, while points in different slides

have distinct lifespans. Later arriving slides have longer lasting lifespans. By conducting

the search with a later arriving slide first order, the points with a larger lifespan will

always be tested first. Therefore given a point pi, LEAP will produce a MESI composed

of the evidence with the largest lifespan, that is the best MESI. Furthermore LEAP stops

immediately as soon as a MESI is acquired. Thus it is as lightweight as an ordinary

probing operation.

The information collected in the probing process of pi needs to be carefully selected

and kept to minimize the costs of the future probing for pi (Sec. 3.2). The information

shown to be valuable and termed potential evidence, is organized as a general lifespan-

aware evidence structure denoted as pi .evi [ ].

Definition 3.7 The lifespan-aware evidence for a data point pi (pi .evi [ ]) represents an

ordered list of potential evidence of pi in the current window Wc with each entry of

pi .evi [ ] corresponding to a set of data points with the same lifespan, where the order-

ing is determined by the lifespan.

Figure 3.1: LEAP: Sharing of the lifetime proximity measure

As shown in Fig.3.1 the storage of the evi [ ] structure of a particular window Wi

with 4 slides can be abstracted as a two dimensional matrix Mi. The element Mi[Sx][Sy]
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3.5 OPTIMALITY OF LEAP

represents a linear data structure which contains the Syth entries of all points in slide Sx.

This abstract structure explicitly illustrates that our lifespan-aware evidence infrastructure

is extremely conclusive to handle the stream evolution. When the window slides from Wi

toWi+1, by moving the elements bounded in the dash rectangles one unit up to the top left

corner of Mi, it can be easily transformed into Mi+1 of Wi+1 only by having to conduct

the computation for the elements within the new slide S5.

Space Complexity Analysis. The storage of the evi [ ] structure has a worst case space

requirement O(nr) with r as the ratio of the Q.win over Q.slide and n as the number of

unsafe inliers and outliers. In fact this structure can be further compressed to its half size

due to the observation that pi’s succeeding neighbors contribute equally to pi in terms

of determining pi’s status, even if they have different lifespan (as stated in Section 3.3).

Therefore the entries representing its succeeding neighbors can be merged with the final

number of entries at most being equal to its lifespan.

The precise data structure specific to each outlier type will be introduced in Chapters

4 and 5.

3.5 Optimality of LEAP

The LEAP operation, when continuously applied to determine the outlier status of a data

point pi until its expiration, is shown to be optimal in CPU resources consumed for all

three outlier definitions.

Theorem 3.1 Given a point pi in current window Wc and function f(pi,Wc, Prs) indicat-

ing the CPU costs required by a search strategy Prs to evaluate the outlier status of pi.

Then
c+life−1∑

j=c

f (pi ,Wj ,LEAP) ≤
c+life−1∑

j=c

f (pi ,Wj ,Prs) with life denoting the lifespan of

pi.
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3.5 OPTIMALITY OF LEAP

Proof: We first establish a prerequisite. Given a data point pi LEAP takes the same

CPU cost to acquire a member of MESI for pi as any other search strategy Prs takes. We

denote this cost as Cm. This prerequisite is justified as follows.

First, given a stream S with an unknown distribution, then each point in Wc has the

equal chance to be in the MESI of pi. Thus in average any Prs will test the same number

of points, hence the same costs to acquire a member of MESI for pi.

Second, LEAP is orthogonal to indexing. The both optimization principles of LEAP

aim to minimize the frequency of neighbor searches, while indexing instead focuses on

accelerating the search of each single neighbor by reducing the neighbor search space.

Therefore LEAP is able to exploit whatever indexing methods ever invented or possibly

coming up with in the future.

Then we prove Theorem 3.1 using Math Induction.

(1) First we prove
c∑

j=c

f (pi ,Wj ,LEAP) ≤
c∑

j=c

f (pi ,Wj ,Prs).

LEAP immediately stops once it acquires the complete MESI for pi. We use |MESI(pi) |

to denote the cardinality of MESI. Hence f(pi,Wj , LEAP ) = | MESI (pi) | * Cm. For any

other probing strategy Prs the cost f (pi ,Wj ,Prs) = x * Cm. By Def. 3.1, MESI is the

minimal information needed to prove pi’s status. Hence | MESI (pi) |≤ x . Therefore

c∑
j=c

f(pi,Wj , LEAP ) = f(pi,Wc, LEAP ) =|MESI(pi) | ∗Cm

≤ x ∗ Cm = f(pi,Wc, P rs) =

c∑
j=c

f(pi,Wj , P rs).

(3.1)

(2) Then our induction step from n to n+1 is:

if
n∑

j=c

f(pi,Wj , LEAP ) ≤
n∑

j=c

f(pi,Wj , P rs), then

n+1∑
j=c

f(pi,Wj , LEAP ) ≤
n+1∑
j=c

f(pi,Wj , P rs)withn < c+ life− 2

(3.2)
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3.5 OPTIMALITY OF LEAP

Given the costs Cs LEAP reaps in savings to process pi from Wc through Wn com-

pared to Prs , we can prove Eq. 3.2 as follows. When the stream slides from Wn to Wn+1,

the costs LEAP takes to ensure the status of pi are guaranteed to be not Cs larger than the

costs Prs takes.

LEAP will be more expensive than Prs only if more elements expire in Lm(pi) (the

MESI for pi produced by LEAP) than in Prms (pi) (the evidence produced by Prs). Sup-

pose r more elements expire in Lm(pi) than in Prms (pi). This means that in Prms (pi) of

Wn, there are at least r members younger than the oldest member of Lm(pi). However in

the first window Wc, the oldest member of Prms (pi) is at least as old as the oldest mem-

ber of Lm(pi). To achieve this, Prs must have acquired at least r more MESI members

than LEAP, because LEAP always tests the points with larger lifespans first. However

to re-establish the MESI of pi in Wn+1, LEAP only has to acquire exactly r more MESI

members than Prs.

(3) By steps (1) and (2), Theorem 3.1 is proven. �
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4

Strategies for Distance-Threshold

Outliers

We now apply our framework to distance-threshold outliers.

MESI and Lifespan-Aware Evidence. By Def. 2.1 once acquiring k neighbors, a

point pi can be safely declared as an inlier. Therefore the MESI for pi is a data set that

contains exactly k neighbors. As the window slides, all other data points examined so

far besides its unexpired MESI members have no chance to ever be in the MESIs of pi.

Therefore only keeping the k neighbors in the MESI is sufficient to avoid any distance re-

computation for pi. Furthermore to determine the status of pi, we only need the number

of its neighbors rather than who its exact neighbors are. Therefore the Lifespan-Aware

Evidence structure of pi (pi .evi [ ]) for distance-threshold outliers is simply a list of counts,

each list entry corresponding to the number of MESI members (neighbors) of pi in a

particular slide.

Thresh LEAP. Based on the above MESI and Lifespan-Aware Evidence structure we

present a customized algorithm Thresh LEAP (Alg. 1) for O (k ,R)
thres outlier detection. When

a new window Wc arrives, Thresh LEAP starts by evaluating each new arrival pi that had
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not been in Wc−1 by simply calling the LEAP operation (Alg. 2). Here we explain step

by step using an example how LEAP works.

Wc Succeeding first Preceding next
S1 S2 S3 S4pi

(a) LEAP: Wc

Wc+2 S3 S4 S5 S6
New probing

pi
(b) LEAP: Wc+2

Algorithm 1 Thresh LEAP(Wc)
1: for each pi ∈Wc .Snew do
2: LEAP(pi,Wc);
3: for each pi ∈Wc .Sexp .triggered do
4: expireEvidence(pi);
5: LEAP(pi, pi.skippedPoints(Wc));

Algorithm 2 LEAP(pi,Wc)
Input: Data point pi, Dataset Wc //Data points in the current window
Output: Bool isOutlier //Outlier status of pi
1: Bool IsOutlier = false;
2: if (NULL == pi.evi[ ]) then
3: buildSuccEvidence(pi);
4: for each q ∈ pi.succPoint(Wc) do
5: if (true == pi.isInNeighborhood(q)) then
6: pi.updateSuccEvidence();
7: if (true == pi.isMESIAcquired()) then
8: pi.isSafe = true;
9: return isOutlier;
10: while pi.precSlides 6= NULL do
11: slide = getSlideWithLargestLifespan(pi.precSlides(Wc));
12: pi.buildPrecEvidence(slide);
13: for each q ∈ slide do
14: if (true == pi.isInNeighborhood(q)) then
15: pi.updatePrecEvidence(slide);
16: if (true == pi.isMESIAcquired()) then
17: slide.updateTriggeredList(pi);
18: return isOutlier;
19: isOutlier = true;
20: return isOutlier;

Example 4.1 We use an example query Q with k = 5 and a fixed R with the ratio of

Q .win over Q .slide as 4 to explain how LEAP handles the new data points. As shown in

Fig.4.1(a), window Wc is divided into four slides. Given a new data point pi LEAP first

tests its succeeding data points (Line 5). At the same time the first entry of pi .evi [ ] is

43



established as (Ssucc:0) which represents the number of pi’s succeeding neighbors (Line

3). Once a neighbor is acquired, we update the succeeding entry of pi .evi [ ] (Line 7), and

check whether its MESI has been achieved (Line 8). By testing all its succeeding data

points in this window, pi finds three neighbors. However, it still did not acquire its MESI.

Then it has to turn back and proceed to probe its preceding slides (Line 14). The slide

with the largest lifespan is tested first (Line 15). In this case it is S2. Correspondingly a

new entry (S2:0) is created and appended to pi.evi[ ] (Line 16). The search is terminated

after pi gets its fifth neighbor which completes the MESI for pi (Line 20). pi is labeled

as unsafe inlier. S2 is being remembered as the triggering slide of pi, meaning that the

expiration of S2 might lead to a status transformation of pi. To indicate this check pi is

inserted into the triggered outlier candidate list of S2, namely S2 .triggered (Line 21). The

pi .evi [ ] at this point is < (S2 : 2 ), (Ssucc : 3 ) >.

After the new arrivals have been all processed, Thresh LEAP proceeds to process

the unexpired points from Wc−1 that remain in Wc. Clearly the evi [ ] has already been

previously established for them. However not all unexpired points need to be re-evaluated.

As shown in Alg.1 (Line 4), only the points in S exp .triggered list are re-examined by

the LEAP operation with S exp denoting the most recently expired slide. For example,

when the stream evolves from Wc to Wc+1 the expiration of S1 would not trigger the

examination of pi, because pi is not in S1 .triggered . Only the departure of S2 will trigger

the process of checking the status migration of pi (Fig. 4.1(b)).

Example 4.2 We still use pi of Example 4.1 to explain the above re-evaluation procedure.

For Wc+2, Thresh LEAP first updates the pi .evi [ ] to (Ssucc:3) by removing entry (S2:2)

(Line 5, Alg. 1). Then the LEAP operation is activated again on the new slide S5 which

was skipped while S1 expired (Line 6, Alg. 1). The MESI is filled up again after finding

the two newly arriving neighbors in S5. Its pi .evi [ ] is updated to (Ssucc:5). Now pi has
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five MESI members which did not arrive earlier than pi. Therefore pi achieves its life

time MESI MESIlt . Now pi is guaranteed to never become an outlier again and thus is

marked as safe inlier (Line 9, Alg. 2). Thus at this point the pi .evi [ ] can be safely purged

altogether.

As shown in this example it is extremely efficient to determine the status of pi with the

assistance of pi .evi [ ] structure. When the window slides from Wc+1 to Wc+2, its leftmost

most side S2 entry will be pruned from pi .evi [ ]. Then by summing up the alive entries (in

this case this would be only one entry Ssucc), the LEAP operation continues to be aware

of the current status of pi. To acquire the new status of pi, it proceeds to test the new data

points from S5 until pi’s MESI is again established.
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5

Strategies for kNN Outliers

MESI for kNN Outliers. We now demonstrate how we apply our framework to detect

kNN outliers. We use Alg.3 to introduce the MESI for kNN outliers. By Def. 2.2 of O (k ,n)
kmax

outliers, Alg. 3 outputs the top-n outliers in a window Wc. Such a set called outliersSet

in Line 1 is maintained during the search process. Let Dkmax
min be the shortest distance

between any data point in outliersSet seen so far and its kth nearest neighbor (Line 2).

Assume that for a given point pi we are processing its distance to its kth-nearest neighbor

(Dkmax (pi)) (Lines 4 to 6). Since Dkmax (pi) monotonically decreases as we process more

points, the current value is an upper-bound on its eventual value. If the current value

becomes smaller than Dkmax
min , then pi cannot be an outlier (Lines 7 to 9). Therefore the

MESI for pi is acquired, which is its kNN in the data points seen so far (neighbors(pi)).

These points are so-called the temporary kNN of pi.

If Dkmax (pi) is larger than the cutoff threshold Dkmax
min , pi will be an outlier candidate.

Both the outliersSet and Dkmax
min will be updated (Lines 12-16). As more points are pro-

cessed, more extreme outliers will be found. The top-n outliers will be finalized after all

data points have been processed.

By replacing the Dkmax (pi) with Dkavg(pi) and Dkmax
min with Dkavg

min the same rule can
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Algorithm 3 kNN MESI(Wc)
1: outliersSet = ∅; //the top-n outliers set
2: Dkmax

min = 0;
3: for each pi ∈Wc do
4: for each pj ∈Wc - pi do
5: neighbors(pi) = nearest(pi,neighbors(pi) + pj , k);
6: Dkmax (pi ) = maxDist(pi, neighbors(pi));
7: if ((| neighbors(pi ) | == k) ∧ (Dkmax (pi ) ≤ Dkmax

min )) then
8: pi.outlierCandidate = false;
9: break;
10: if (false 6= pi.outlierCandidate) then
11: outliersSet = topOutliers(outliers + pi, n);
12: if (| outliersSet | == n) then
13: Dkmax

min = min(Dkmax (pi ) — ∀ pi in neighbors);

be applied to O
(k ,n)
kavg outlier.

Lifespan-Aware Evidence. Unlike the O
(k ,R)
thres outlier for kNN outliers, only record-

ing MESI of pi is not sufficient for avoiding the distance re-computation whenever the

status evaluation is triggered. The non-MESI points could also contribute to the MESIs

of future windows. For example, given a point pi whose MESI members all expire, if no

arriving points are close enough to pi, the MESI of pi in the next window must be formed

based on the points which have been evaluated before but were not yet part of the MESI of

pi. In this case to avoid re-computation we would have to keep more information besides

the MESI of pi in the current window. However keeping all pre-computed distances is not

practical.

Fortunately this is where our insight comes to the rescue. Namely keeping the kNN

corresponding to each unexpired slide (or the temporary kNN for a slide not completely

evaluated) is sufficient to avoid re-computation. The global kNN with respect to the

unexpired data points seen so far is guaranteed to be in the union of these local kNN sets.

That is, this global kNN can be easily derived by merging and sorting the local kNN sets.

We need to evaluate the distance between pi and new arrivals only if the kNN distance of

this global kNN is still larger than the cutoff threshold. Otherwise this global kNN will

remain to be the MESI of pi in the new window. In short, with this structure the distance

re-computation is completely eliminated. Therefore for kNN outliers pi .evi [ ] is a list of
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data points (along with their distances to pi) sets, each corresponding to its kNN in each

unexpired slide. Since pi .evi [ ] is compact, keeping it for each point does not introduce

prohibitive memory overload.

Algorithm 4 kNN LEAP(Wc)
1: Dkmax

min = 0; //Reset cutoff threshold
2: outliersSet = ∅; //Reset the top-n outliers set
3: for each pi ∈Wc.unExpired do
4: if (false == pi.isSafe) then
5: expireEvidence(pi);
6: if (true == isStillInlier(pi)) then
7: continue;
8: else
9: LEAP(pi,pi.skippedPoints(Wc));
10: for each pi ∈Wc.newArrival do
11: LEAP(pi,Wc);

LEAP Operation for kNN Outliers. Given a point pi, LEAP first probes the points

with larger lifespan. An entry of pi .evi [ ] is established to represent the kNN in its suc-

ceeding points. If its MESI is not acquired by considering its succeeding points, then the

search will need to proceed by processing the preceding points in decreasing order with

respect to their lifespans. During this process an entry is created for each preceding slide.

LEAP continues to evaluate the distance between pi and other data points in Wc until

either its temporary kNN distance is smaller than the cutoff threshold (MESI is acquired)

or all points of Wc have been tested. Only in the latter case, the probing operation will

return the traditional full kNN of pi. In this case both the top-n outliers set outliersSet and

the cutoff threshold will be updated. Due to space restriction, the pseudo code is omitted

here.

kNN Outliers Detection With LEAP (kNN LEAP). Alg. 4 shows how LEAP is

utilized to detect kNN outliers in a window Wc. kNN LEAP first resets the top-n outlier

candidates set and the cutoff threshold (Lines 1 to 2). Then it starts processing the unex-

pired data points, namely the points that were already in window Wc−1 (Line 3). Given

a point pi, kNN LEAP first purges the expired entry of pi .evi [ ]. Then it re-calculates its

temporary kNN (Lines 4, 5) if its MESI consists of expired data points (unsafe status).
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If its current kNN distance (either the previous distance for a safe point or the newly

established one for an unsafe point) is larger than the cutoff threshold, the LEAP opera-

tion for pi will be triggered again on the points skipped last time (Lines 7 to 11). Then

kNN LEAP proceeds to process the new arriving data points with the LEAP operation

(Lines 13 to 15) until all new arrivals are evaluated.
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6

Experimental Evaluation

6.1 Experimental Setup & Methodologies

All algorithms are implemented on the HP CHAOS Stream Engine [51]. Experiments are

performed on a PC with 3.0G Hz CPU and 4GB memory, which runs Windows 7 OS.

Real Datasets. We use two real streaming datasets. The Stock Trading Traces dataset

(STT) [52] has one million transaction records throughout the trading hours of a day.

The high dimensional Forest Cover (FC) dataset available at the UCI KDD Archive

(url:kdd.ics.uci.edu) also used by [27], contains 581,012 records with 54 quantitative at-

tributes.

Synthetic Datasets. We deploy a data generator to produce streams with a controlled

number of outliers and data distribution types. Those datasets contain Gaussian dis-

tributed data points as inlier candidates with uniform distributed noise. Both the Gaussian

distributed points and noise are randomly distributed in each segment of the stream.

Metrics. We measure two metrics common for stream systems, namely CPU time and

peak memory consumption. Each experiment evaluates 10,000 windows. Both metrics

are averaged over all windows. Although the experiments are reported using count-based
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windows, time-based windows provide similar results.

Alternative Algorithms. Our experiments focus on evaluating the effectiveness of

our both optimization principles, namely minimal probing and lifespan-aware prioriti-

zation, in detecting distance based outliers. For distance-threshold outliers, we com-

pare our algorithms Thresh MinProbe and Thresh LEAP (Chapter 4) against the state-

of-the-art method DUE [27] as introduced in Chapter 7. 1 The Thresh MinProbe ap-

plies only the first principle. It essentially equals to DUE enhanced with minimal prob-

ing. Thresh LEAP instead utilizes the LEAP framework which applies both principles.

For kNN outliers, no existing algorithms in the literature tackle this type of outlier in

the streaming context. Hence, we compare our kNN MinProbe and kNN LEAP algo-

rithms against kNN BASIC which applies the static Orca algorithm [53] to compute

the top-n outliers from scratch for each window. Similar to distance-threshold outliers,

kNN MinProbe applies only Minimal Probing principle, while kNN LEAP applies both.

Since these three methods all experience only a slight difference for O (k ,n)
kmax and O

(k ,n)
kavg out-

lier types, for space reasons, we present the results for O (k ,n)
kmax outliers only. To evaluate

the effect of indexing, similar to [54] we implement a hash-based grid index augmented

with a time-aware mechanism for efficiently evicting expiring data. We carefully tune the

granularity of the cells and equally apply the same best setting to all compared algorithms.

We denote each algorithm xx augmented by this index by “xx-Index”.

Methodology. We evaluate the performance of the proposed methods by varying

the most important parameters. Specifically, our experiments cover the three major cost

factors, namely stream velocity, volume, and outlier rate. We vary the velocity of a data

stream by varying the slide size from 0.5k to 50k while leaving all other settings constant.2

1In this work we chose to compare against DUE rather than the more sophisticated MCOD algorithm
of [27], because in the experiments of [27], MCOD does not show clear advantage over DUE in most of the
cases.

2Here we only present the results for distance-threshold outliers, since kNN outliers are confirmed to
be not sensitive to slide size.
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We also measure scalability on high volume streams by varying the window size ω from

1k to 200k. Similarly, we measure how well these methods work for different outlier rates.

For the distance-threshold type, this means varying R, while for kNN types varying n as

defined in Sec. 2.1. Both control outliers from being rare (0.001%) to being common in

the dataset (100%). Since this change also affects the density of neighboring area for each

data point, this experiment also reflects data distribution variation in essence. We also

measure the scalability of our approach over data dimensionality by varying dimensions

from 2 to 40.
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Figure 6.1: LEAP: Varying Outlier Rates on Synthetic Dataset
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Figure 6.2: LEAP: Varying Slide Sizes on Synthetic Dataset
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6.2 Evaluating Distance-Threshold Outliers

6.2.1 Varying Outlier Rates

We first analyze the effect of the outlier rate β by varying β from 0.001% to 100% with

a fixed slide size of 500 and window size of 100K on synthetic data. As shown in Fig.

11.6(b), our Thresh MinProbe and Thresh LEAP are superior to DUE with respect to

both CPU time and memory usage. In particular, as outlier rate is smaller than 0.01%

which is common in real life application [47], Thresh MinProbe shows a 10 times im-

provement over DUE while Thresh LEAP gains another 100 times improvement on this

basis in terms of CPU time. Thresh MinProbe wins over DUE by applying the prob-

ing operation, which stops immediately after acquiring MESI rather than evaluates the

complete neighborhood as range query search does. Thresh LEAP further outperforms

Thresh MinProbe by applying the lifespan-aware prioritization principle which enables

probing operation to always produce MESI with largest lifespan without introducing any

additional cost. This minimizes the frequency of conducting probing in continuously

evolving streams. The CPU time of all three methods increases as β increases, because

more computation time is spent on verifying the larger number of outliers. Our methods

win for all outlier rates from 0.001% to 100%. That is, even in the extreme case when

all data points are outliers, the overhead introduced by our methods is still smaller than

DUE.

Thresh MinProbe and Thresh LEAP use on average 35% and 40% less memory than

DUE. This is because Thresh MinProbe and Thresh LEAP only store the neighbor count

of each slide for outlier candidates, while DUE maintains the actual neighbor relation-

ships. Comparing against Thresh MinProbe, Thresh LEAP maximally accelerates the

speed of discovering safe inliers. Since safe inlier introduces zero memory overhead,

Thresh LEAP consumes less memory.
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6.2.2 Varying Slide Sizes

Fig. 11.1 depicts the performance of the three algorithms for varying slide sizes on syn-

thetic data when the outlier rate is fixed to 0.01% and the window size to 100k. Again

Thresh LEAP and Thresh MinProbe clearly outperform DUE in CPU time, reaching up

to 15 times and 1350 times improvement than DUE for small slide sizes. This is again due

to the effectiveness of the LEAP operation as explained in the previous section. As the

slide size increases, the processing time on each window increases accordingly. The rea-

son is obvious. The larger slide size introduces more new data points, which in turn cost

more CPU time to process. The CPU time of DUE increases by 290 seconds when vary-

ing the slide size from 0.5k to 50k, while Thresh MinProbe and Thresh LEAP increase

only by 130 and 10 seconds.

Again, our method is not only superior in CPU but also in memory consumption. As

the slide size increases, the percentage of safe inliers over the whole window increases,

leading to less memory consumption for all three algorithms to store information for

unsafe inliers.

6.2.3 Varying Window Sizes

Next, we evaluate the effect of varying window sizes ω from 1k to 200k. We show the

results on real dataset STT with fixed k as 30, the outlier rate 0.1%, and slide size 500.

In Fig. 6.3(a)-(b), Thresh LEAP and Thresh MinProbe outperform DUE in terms of both

CPU and memory. In all cases, the CPU time consumed by Thresh MinProbe is up to 1 or-

der of magnitude smaller than DUE. Thresh LEAP further outperforms Thresh MinProbe

by 2 orders of magnitude. As the window size increases, all algorithms consume more

CPU time. Thresh LEAP and Thresh MinProbe take more CPU resources to process

the triggered outlier candidates, while for DUE, larger window takes the range query
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Figure 6.3: LEAP: Varying Window Sizes on STT Real Dataset
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(a) Synthetic dataset
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(b) FC cover real dataset

Figure 6.4: LEAP: Dimension Experiments

more time to search for neighbors for new arrivals. Thresh LEAP wins more against

Thresh MinProbe in larger window. The reason is lifespan-aware prioritization enables

probing operation to always acquire MESI with largest lifespan. When window size in-

creases, the potential value of this lifespan increases, making this optimization even more

effective. As the window size increases, Thresh LEAP and Thresh MinProbe still in-

cur less memory consumption compared to DUE since only DUE has to store the actual

neighbors.
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6.2.4 Varying Dimensionality of Data

We evaluate the scalability of our algorithms on high dimensional data by varying the

number of dimensions from 2 to 40. We fix the window size to 100K, slide size to 5K,

and outlier rate to 0.1%. As shown in Fig. 6.4(a), Thresh MinProbe algorithm con-

sistently outperforms DUE around 15 fold in terms of CPU time, while Thresh LEAP

further outperforms Thresh MinProbe around 35 fold. This is expected, since both our

optimization principles are orthogonal to the number of data dimensions. The CPU costs

of all three algorithms are near linear in the data dimensionality, because the cost of the

distance calculation between two points is linear in the number of dimensions, while dis-

tance calculation costs are the most significant fraction of the overall outlier detection

costs. This is the base price any method has to pay.

We also evaluate the performance of our algorithm on real life FC cover dataset (54

dimensions) by varying the slide size. The results shown in Fig. 6.4(b) again confirm the

effectiveness of our approach to high dimensional datasets.

(a) Synthetic dataset (b) STT real dataset

Figure 6.5: LEAP: Indexing Experiments
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6.2.5 Effectiveness of Indexing

We compare all three algorithms against their corresponding indexed versions on syn-

thetic dataset with the number of dimensions varying from 2 to 8. Other settings remain

the same as in Sec. 6.2.4. As shown in Fig. 6.5(a), for the 2D and 4D cases, index-

ing improves the performance of all algorithms. This is as expected, because our both

optimization principles are orthogonal to indexing as shown in Sec 3.5. In the 2D case

with the help of the index, DUE reduces around 37 percent of their CPU costs, while

Thresh MinProbe and Thresh LEAP reduce 64 and 76 percent respectively. This is be-

cause Thresh LEAP and Thresh MinProbe have different stopping criteria for the neigh-

bor search than DUE. Given a data point pi, Thresh LEAP and Thresh MinProbe first

locate and probe for neighbors in the cell that pi falls in. This cell can be located in

constant time using the grid index. Potentially Thresh LEAP and Thresh MinProbe will

acquire enough neighbors of pi, and hence terminate after searching through this single

cell. On the other hand, DUE would not stop its search until all neighbors of pi are ac-

quired. Therefore it locates all cells which could contain the neighbors of pi, leading

to a larger cell lookup costs compared to Thresh LEAP and Thresh MinProbe. Second,

Thresh MinProbe performs worse than Thresh LEAP because it triggers probing opera-

tion more frequently and consequently introduce more expensive cell lookup operations.

However, as the number of dimensions increases, the number of the cells in the index

to be examined also increases exponentially, leading to a significant increase of index

maintenance overhead. This overwhelms the performance gain achieved by utilizing the

grid index when the dimensions rise up to 8. In the 8D case, DUE introduces 900ms

on average index maintenance costs per each slide which is much larger than the 60ms

saved for distance calculation. This condition holds for all the algorithms. Thus, indexing

performs well only on low dimensional datasets as had previously been observed for static

data in the literature [8, 9].
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As shown in Fig. 6.5(b), our experimental results on real life STT dataset with varying

slide size also confirms the orthogonality of our approach to the indexing.
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Figure 6.6: LEAP: Varying Outlier Rates on Synthetic Dataset
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Figure 6.7: LEAP: Varying Window Sizes on STT Real Dataset

6.3 Evaluating KNN Outliers

6.3.1 Varying Outlier Rates

This experiment evaluates the impact of varying outlier rates, namely varying n, on per-

formance. We fix the window size at 10k and slide size at 1k, while varying n from 10
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to 300. Most practical applications have a low outlier rate (below 1%). Here we adopt

outlier rates ranging from 0.1% to 3% as done in [27].

The CPU costs of all three algorithms increase as the outlier rate increases because a

major part of the computation time is spent on processing the potential outliers. As shown

in Fig. 6.6, KNN MinProbe and KNN LEAP both significantly outperform the baseline

method KNN BASIC. In particular, KNN MinProbe outperforms KNN BASIC 2.5 fold.

KNN LEAP further outperforms KNN MinProbe 6 fold. The reason that KNN MinProbe

wins over KNN BASIC is that it exploits the minimal probing principle to reuse the un-

expired MESI members. Similar to distance-threshold outlier, KNN LEAP wins over

KNN MinProbe because it searches for the MESI in an intelligent time-aware order. This

minimizes the probing frequency needed.

The memory consumption of KNN MinProbe is a little more than KNN LEAP, while

KNN BASIC consumes less. This is as expected, because the first two need to maintain a

similar kNN metadata structure per slide to reuse it in the next window. KNN LEAP con-

sumes less memory than KNN MinProbe since it reduces the demand for acquiring new

MESI members. The memory consumption is stable even with increasing outlier rates,

making this a practical compromise for the tremendous gain achieved in CPU resources.

6.3.2 Varying Window Sizes

Here, we use the real dataset to evaluate the impact of varying window sizes. We fix

the slide size at 200 and n at 100, while varying the window size from 1k to 40k. As

depicted in Fig. 6.7, the CPU costs of all algorithms rise as the window size increases.

Yet our best solution KNN LEAP consistently utilizes the least CPU time and exhibits

the slowest increase in CPU consumption. KNN LEAP and KNN MinProbe are about 8

and 2 times faster than KNN BASIC at ω = 1k case and up to 15 and 3 times faster when

ω reaches 40k. For a fixed outlier rate, a larger window size results in a larger number of
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6.3 EVALUATING KNN OUTLIERS

inliers and a wider lifespan range. Both factors are key for our framework to outperform

the full kNN query search.

The memory consumption also scales with the window size. For KNN LEAP and

KNN MinProbe, when the window size increases 40 times, the overhead only increases

by about 2 fold. The reason is that the lifespan-aware evidence structure shares more

lifetime proximity as the window size increases. This helps our approaches to achieve

more compact storage.
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Figure 6.8: LEAP: Dimension Experiments (kNN Based)

(a) Synthetic dataset (b) STT real dataset

Figure 6.9: LEAP: Indexing Experiments (kNN Based)
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6.3.3 Varying Dimensionality of Data

Fig. 6.8(a) demonstrates the CPU costs of all three algorithms as the number of dimen-

sions increases from 2 up to 40. We fix window size at 10k, outlier rate at 1%, and slide

size at 500. KNN MinProbe and KNN LEAP outperform KNN BASIC even more as the

dimension number increases. In 2D case, the KNN MinProbe and KNN LEAP outper-

form KNN BASIC by 2.5 and 12 times respectively, while in 40D case they outperform

KNN BASIC by 4 and 20 times. This is because minimal probing and lifespan-aware

principle both minimize the frequency of when the distance calculation has to be de-

ployed. Therefore, when the distance calculation itself constitutes an even large percent-

age of overall computation cost with the increasing dimensions, they perform even better.

In conclusion, KNN LEAP performs consistently well as the number of data dimensions

increases.

We also run experiment on real life dataset FC Cover by varying slide size. The

results shown in Fig. 6.8(b) again confirm the effectiveness of LEAP to high dimensional

datasets.

6.3.4 Effectiveness of Indexing

Fig. 6.9(a) shows that indexing improves the CPU resource consumption of all three algo-

rithms for low dimensional data (< 4D), while it starts to negatively impact the detection

efficiency in higher dimensional cases. In the 8D case, indexing for the KNN BASIC

method reduces the distance calculation cost by 3000ms, yet costs 4500ms for maintain-

ing the grid. A similar situation of maintenance costs superseding any achievable gain

holds for our proposed algorithms. Therefore, the grid index benefits kNN outlier detec-

tion only when the data dimensions is rather low (in our case, < 4).

As shown in Fig. 6.9(b) the other experiment by varying slide size on real life STT
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data also confirms that our approach could benefit from the indexing as the data dimension

is low.
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Related Work

Distance-based Outliers on Static Data. The O (k ,R)
thre definition of distance-based outliers

was first introduced by Knorr and Ng [8] for static datasets. They describe two detection

algorithms. The cell-based algorithm, exponential in the number of data dimensions, is

not scalable for high dimensional datasets. The index-based algorithm (using an R-tree

or k-d tree) is shown to be non-competitive for three dimensional datasets and up if index

building costs are considered. This implies that such relatively expensive indexing would

not fit well in our streaming data scenario, because worst yet the index would have to be

continuously re-built.

The kNN-based outlier definition was first introduced for static data in [9]. As they

show for three dimensional datasets, their index-based (R*-tree) algorithm already per-

forms worse than their partition-based algorithm even after excluding the index building

costs. [53] proposes the Orca algorithm which outperforms the predecessor partition-

based algorithm [9] with randomization and a simple pruning strategy. Orca scales well

to high dimensional dataset. For this reason in this work we now adapt Orca to the stream-

ing context and then use it as baseline to compare our framework against.

Density-Based Outliers on Static Data. Like distance-based outliers density-based
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outlier detection is a particular category of neighbor-based outlier detection techniques.

They assign an outlier score to any given point by measuring the density relative to its

local neighborhood restricted by a pre-defined threshold [10, 11]. Therefore density-

based outliers are regarded as “local outliers”. However distance-based outlier detection

instead takes a global view of dataset and marks each point as either outlier or inlier with

respect to some user defined global parameters. Furthermore, both [10] and [11] only

handle static datasets without taking the potential data update into account. Therefore

the techniques proposed in [10] and [11] cannot be applied to solve our problem, namely

detecting distance-based outliers on streaming data.

Distance-based Outliers on Streaming Data. With the emergence of digital de-

vices generating data streams, outliers on streaming data have recently been studied

[26, 27, 48]. However existing work [26, 27, 48] only considers the simpler distance-

threshold variation of distance-based outliers. The processing of the more popular kNN-

based variants [9] remains unsolved in the streaming context. Next we further elaborate

on the existing results on this first outlier type.

In [48], given a data point pi, it pre-computes the number of neighbors of pi for each

future window that pi will participate in. It improves CPU performance at the expense

of a huge memory overhead by pre-discounting the effect of expired data points for each

and every future window in advance. Our work not only improves the CPU efficiency by

three orders of magnitude, but also reduces the memory consumption.

[26] analyzes the expiration time of all neighbors of a point gathered by a range query.

Then they use the expiration time of the neighbors to locate safe inliers, namely any point

pi with more than k neighbors which have arrived after pi.

[27] further outperforms [26] and [48] by integrating the safe inlier concept of [26]

into an event queue, so that it can efficiently schedule the necessary checks that have

to be made when points expire. However it still relies on full range query searches to
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process newly arriving points. Therefore it fails to respond in real time when applied to

high velocity streaming data targeted by our effort. In our work by exploiting the minimal

probing and lifespan-aware prioritization principles, we succeed to avoid the full range

query searches, thereby satisfying the performance requirements of modern streaming

applications. Furthermore the above algorithms ignore indexing, while in our work we

also investigate whether streaming outlier detection can benefit from indexing.

Outliers on Sensor Data. In [55] an interesting online technique is proposed to detect

outliers in streaming sensor data. First, it utilizes a kernel density estimator to model

the distribution of the sensor data. Then given a point pi, the number of its neighbors

is estimated by the density distribution function f (pi). Therefore [55] is able to quickly

approximate whether pi is a O (k ,R)
thres outlier. However the approximation nature determines

that it cannot be directly applied to our context of computing exact distance-based outliers.

Furthermore [55] only considers the O (k ,R)
thres definition of distance-based outlier. The more

popular kNN based definitions are not discussed.

Stream Clustering. The clustering definition most closely related to distance-based

outliers is density-based clustering [48]. It puts adjacent points that have enough neigh-

bors into the same cluster. This problem has been shown to be more expensive than

distance-based outlier detection [48], because due to the inter-dependence among the

data points the cluster structure is more complex to detect and update than the individual

outlier points.

Most other clustering or summarization methods [56] instead focus on discovering

accumulative statistical features of the stream. They do not specifically identify neighbor

relationships among individual points, which is the key for distance-based outlier detec-

tion. Thus they are not directly applicable to our problem of distance-based outliers.

Yet in principle the general idea of micro-clusters or summaries [56] could potentially

be exploited to eliminate points from dense areas that cannot be outliers. Clearly one
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could only eliminate points in dense areas as outlier candidates if the cell (micro-cluster)

is small enough such that all points in the cell are neighbors with each other. However

having such small cells tends to be not practical in streaming data with high dimensions,

potentially requiring us to dynamically maintain too many cells (exponentially increasing

with dimensions) and thus causing overwhelming costs.
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8

Varying Distance-Based Outlier

Parameters

In this section we first introduce our transformation of processing a workload composed

of queries with varying r but fixed k parameters into a skyband query. Then we present our

K-SKY algorithm that supports such skyband query with optimality. Next we extend K-

SKY to handle outlier detection queries with arbitrary k and r parameters. In this section

we assume all queries share the same sliding window parameters win and slide.

8.1 K-SKY: Varying Parameter - R

Given a query group Q with varying r but fixed k parameters, the goal is to design an ap-

proach that supports all member queries in Q with each point p of data stream S processed

only once in each current window Wc. The key insight here is that given such a query

group Q and one data point p in current window Wc of stream S, the output of one single

customized K -skyband query is sufficient yet necessary to determine the outlier status of

p with respect to all queries in Q.
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8.1.1 From Multi-Query Outlier Workloads to Single Query Sky-

band Processing

K -skyband query is a generalization of the well known skyline concept. As defined in

[57] a K -skyband query reports all points that are dominated by no more than K points.

The case K = 0 corresponds to a conventional skyline. The key idea underlying this

skyline concept is to define the domination relationship between any two data points. As a

simple example consider a dataset D composed of n one dimensional data points, namely

n distinct values {p1 , p2 , p3 , ..., pn}. Assume the domination relationship between any

pair of data points pi and pj ( 1 ≤ i , j ≤ n) is defined as pi dominates pj if pi > pj . Then

the K -skyband (K=2) query on dataset D returns the top-3 largest points in D: {pmax ,

pmax−1 , pmax−2}. pmax−2 is dominated by the two data points pmax and pmax−1 , while all

other data points in D are dominated by at least these three top-3 points of D.

To map our problem of determining the outlier status of a given point p to the K -

skyband problem, we have to similarly define the domination relationship between any

pair of data points in the dataset DWc , i.e., the population of the current window Wc. The

key observation here is that given any two points pi and pj , two key factors, namely their

relative arrival time and the distance to the point p under evaluation, determine whether

pi is more important than pj in terms of evaluating the outlier status of p.

Let us introduce a query group Q used in the remainder of this section. Assume we

have a query group Q: {q1(r1),q2(r2),...,qm(rm), qm+1(rm+1), ..., qn(rn)} 1, where rm

represents the r parameter of query qm . The r parameter of q1, q2,...,qn monotonically

increases, that is, r1 < r2 < ... < rm < rm+1 < ... < rn.

Distance Dimension. In distance-based outlier definition (Def. 2.1), points in a dataset

D are classified either as outliers or inliers. Thus, the process of identifying outliers in D

1For the ease of readability, we only list those parameters in the query notation qi(r , k ,win, slide) that
vary. In this case (k ,win, slide) would be removed from qi, since only parameter r is a variable.
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is equivalent to the process of finding and eliminating inliers from it. By Def. 2.1, p is

guaranteed to be an inlier once k neighbors are acquired in D. Given two points pi and pj ,

assume dist(pi , p) < rm < dist(pj , p) ¡ rm+1. Then pi is the neighbor of p with respect

to query subset Qi = {qm, ...,qn}, while pj is the neighbor of p only with respect to query

subset Qj = {qm+1, ...,qn}. Qi ⊃ Qj . In other words pi satisfies the neighbor requirement

of more queries than pj . For the evaluation of p, pi is more important than pj , because pi

makes the outlier status of p closer to be determined with respect to all queries in Q than

pj . In this perspective pi dominates pj .

On the other hand, assume rm < dist(pi , p) < dist(pj , p) ¡ rm+1. Then pi and pj

are both neighbors of p for the same set of queries {qm+1, ..., qn}. In this scenario pi

and pj equally affect the outlier status of p although dist(pi , p) 6= dist(pj , p). Based

on this observation we now are ready to re-define the distance function dist(p, pi) so to

normalize the distance between data points. The original distance function is denoted as

disto(p, pi) instead.

Definition 8.1 Given a query group Q: {q1 (r1 ), q2 (r2 ), ..., qm(rm), qm+1 (rm+1 ), ..., qn(rn)}

with r1 < r2 < ... < rm < rm+1 < ... < rn , dist(p, pi) = m + 1 if rm < disto(p, pi)≤ rm+1

for 0 ≤ m ≤ n with r0 defined as -∞ and rn+1 defined as∞.

By Def. 8.1, dist(pi , p) = dist(pj , p) if rm < disto(pi , p) < disto(pj , p) ¡ rm+1. This

new normalized distance calculated using Def. 8.1 now accurately represents the impor-

tance of each data point to p.

Time Dimension. In the streaming context the presence of the time dimension further

complicates matters. In particular we cannot simply claim that one data point pi closer

to p impacts the status of p more than the other points. Instead the arrival time of the

data points also has to be taken into consideration. A point pi that arrived later in the

window may have a more decisive impact on the outlier examination process compared
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to an earlier arriving pj even if pi is not closer to p than pj . This is so because the younger

a data point pi is, the longer its neighbor relationships (if any) with p will persist into the

future.

Domination Relationship. We now define the domination relationship between the

pair of points in dataset DWc that takes both the distance and time dimensions into con-

sideration.

Definition 8.2 Domination Relationship. Given a query group Q: {q1 (r1 ), q2 (r2 ), ..., qm(rm),

qm+1 (rm+1 ), ..., qn(rn)} with r1 < r2 < ... < rm < rm+1 < ... < rn , point pi dominates

pj with respect to point p if: (1) pi .time > pj .time; (2) dist(p, pi) ≤ dist(p, pj ) (pi , pj ∈

DWc − p) and p ∈ DWc ; (3) dist(p, pi) ≤ n, with dist() the normalized distance of Q

defined in Def. 8.1.

In other words, given a data point pi, pi dominates another point pj only if pi expires

later than pj from window Wc (Condition 1) and it is not further away from p than pj

(Condition 2). The third condition in the domination rule filters out any data point pi that

is not a neighbor of p for any query in Q. As otherwise this pi would never be influencing

the outlier status of p.

Based on the domination relationship defined in Def. 23.3, the outlier status of p with

respect to all queries in Q can now be correctly answered based on the skyband points

delivered by one single (k − 1 )-skyband query denoted as Q s , namely the K -skyband

query with K specified as k-1 1.

Lemma 8.1 Given a query group Q, for any data point p, the output of the skyband

query Q s corresponding to Q, denoted as Sp, is sufficient and necessary to continuously

determine the outlier status of p with respect to all queries in Q.

1For simplicity this notation does not reflect p and k − 1 .

71



8.1 K-SKY: VARYING PARAMETER - R

Here we sketch the key ideas of the proof for this lemma.

Sufficiency. The sufficiency of this mapping is based on two observations, namely

the KNN observation and the K-distance observation as explained below.

KNN Observation. First, Q s always returns the k nearest neighbors of p as part of the

skyband points. The k nearest neighbors of p denoted as kNN (p) are k points in DWc that

do not have larger distance to p than any other point in DWc . The proof of this observation

is intuitive. Given any point pi ∈ kNN (p), at most k − 1 points in DWc are closer to p

than pi. By the domination relationship defined in Def. 23.3, at most k − 1 points in DWc

dominate pi. Therefore pi is a skyband point of our skyband query Q s .

K-distance Observation. Second, once kNN (p) is discovered, the outlier status of

p with respect to each query in Q can be determined by examining the distance be-

tween p and its kth-nearest neighbor called k -distance(p). If rm < k-distance(p)≤ rm+1,

then p is guaranteed to be an outlier for queries {q1,q2,...,qm} and an inlier for queries

{qm+1,...,qn}.

Justifying this observation is straightforward. If k-distance(p) ≤ rm+1, then all points

in kNN (p) are neighbors of p for queries {qm+1,...,qn}. Therefore p is an inlier for such

queries. On the other hands, since k-distance(p) > rm, p does not have k neighbors for

queries {q1,q2,...,qm}. Otherwise the points in kNN (p) would not be the k nearest points

to p in DWc . Thus p is an outlier to queries {q1,q2,...,qm}.
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Figure 8.1: SOP: Sliding window stream

Next we illustrate these two observations with an example.
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Example 8.1 Given a query group Q: {q1(1),q2(2),q3(3)} with the k parameter set as 3

and the dataset DWc composed of points pi represented in the arrival time and distance

space (< ti, di >): {p1 :< t1, 2 >,p2 :< t2, 3 >, p3 :< t3, 2 > ,p4 :< t4, 1 >, p5 :<

t5, 1 >, p6 :< t6, 4 >, p7 :< t7, 3 >, p8 :< t8, 2 > } as shown in Fig. 8.1. Here ti

indicates the arrival time of pi (t1 < t2 <... <t8) and di indicates the distance of pi to

p. The (k − 1 )-skyband query Qs with k = 3 will return {p4 :< t4, 1 >, p5 :< t5, 1 >,

< p7 : t7, 3 >, < p8 : t8, 2 >} as the skyband points in window Wc . A subset of this

result, namely {p4 :< t4, 1 >, p5 :< t5, 1 >, p8 :< t8, 2 >} is the kNN of p. The k-

distance of p thus is 2. By the k-distance observation we can correctly derive the outlier

status of p. Namely p is an outlier for q1, while being an inlier for q2 and q3.

Necessity. Note in the above example since the skyband point p7 :< t7 , 3 > is not

in the kNN(p) set of Wc, p7 is not utilized to evaluate p in Wc . However p7 arrived later

than p4 and p5 in kNN(p). Potentially it might still benefit the evaluation of p in the future

windows.

As shown in Fig. 8.1 when the window slides from Wc to Wc+1, < t4 , 1 > will

expire. Since all new arrivals pi ({p9, p10, p11, p12}) in Wc+1 are far from p, namely

dist(p, pi) > 3 , now p7 will be in kNN(p) = {< t5, 1 >, < t7, 3 >, < t8, 2 >} of Wc+1.

As the third nearest neighbor of p, the distance between p7 and p dist(p7 , p) = 3 will be

utilized to determine the outlier status of p. Now p is an outlier for q1 and q2, while being

an inlier only for q3.

8.1.2 The K-SKY Algorithm

Although the traditional K-skyband algorithms could be applied to support our Q s query

[57, 58], we now design a customized algorithm called K-SKY that more efficiently sup-

ports the multiple outlier detection queries compared to existing algorithms [57, 58]. K-

SKY encompasses two optimization principles, namely time-aware prioritization and
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least examination, that leverage the unique properties of the domination relationship

among the streaming points shown in our outlier detection context. K-SKY is proven

to be optimal in minimizing the number of data points to be evaluated in the skyband

point discovery process.

Time-Aware Prioritization Principle. Given a data point pi only two attributes are

considered in the domination relationship of our skyband problem, namely the distance

to a certain point p and the arrival time of pi as defined in Def. 23.3. Furthermore, in

sliding window streams the data points are naturally ordered by their arrival time. In other

words, all data points can effectively been considered to be sorted on their arrival time

attribute upon arrival. Therefore K-SKY effectively only needs to consider one attribute

(distance to p) in the skyband point discovery process. By the definition of the domination

relationship, later arrivals will never be dominated by the earlier arrivals. Leveraging this

property we prioritize the order in which the K-SKY algorithm processes the data points.

More specifically K-SKY always conducts the search with a later arriving data points first

order. By this if one data point is not dominated by more than k points in the distance

attribute and thus considered to be a skyband point, then it is not necessary to evaluate

it again. This is so, because it will be guaranteed to never be dominated by other points

evaluated later. Thus all skyband points can be discovered in one pass over the data set.

Better yet, given a data point pi with dist(pi , p) no larger than the smallest r value

r1 in Q, if pi has already been dominated by k points when evaluated, K-SKY can be

terminated immediately. This is so because all remaining (unevaluated) points would

be dominated by at least these k points that dominate pi. Therefore K-SKY can safely

terminate without even examining all points.

Least Examination Principle. Second, in the sliding window context, the K-SKY

search is applied in two situations. First, any new point p that just arrived in the current

window Wc needs K-SKY to figure out its skyband points in the current window. Second,
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an existing point p needs K-SKY to update its skyband points when the stream slides to

the current window Wc. In the first situation, for a newly arriving point p, K-SKY has to

be conducted from scratch to search for the needed information of p. Instead in the second

situation the key observation here is that given the skyband points of the windowWc−1, to

acquire the skyband data points of a new window Wc, only a small fraction of data points

in Wc need to be evaluated, namely the new arrivals and the unexpired skyband points of

Wc−1.

This is so because any existing data point pi in Wc could not possibly be a sky-

band point in window Wc if pi is not also a skyband point in Wc−1. If pi is not listed

in the skybandPoints set of Wc−1, pi must be dominated by at least k data points pj

in skybandPoints. By the domination rule defined in Def. 23.3, if pj dominates pi,

pj .time > pi .time. This indicates pj would not expire earlier than pi. If pi is still valid

in window Wc, pj would also remain valid. Therefore in Wc, pi could not possibly be a

skyband point, since it is still dominated by at least k data points.

Algorithm 5 K-SKY(p,Wc.plist ,p.skyband ,Q)
Output: skybandPoints //the k-1-skyband point set
1: if p.skyband == NULL then
2: Wc .input = Wc .plist ; // New point;search from scratch
3: else
4: expireSkyband(p.skyband)
5: Wc .input = p.skyband + Wc .pList .new ; //Old point; search in new arrivals and unexpired skyband points
6: for each pi ∈Wc .input from Wc .input .tail to Wc .plist .head do
7: d = dist(p, pi );
8: if (TRUE == pi.skyEvaluate(d,skybandPoints, Q)) then
9: p.updateOutlierStatus(Q);
10: else
11: if d ≤ Q.rmin then
12: break;

K-SKY Algorithm. Next we show how K-SKY detects the (k-1)-skyband points in

each windowWc. The skyband is computed every time when the window moves. In other

words, the K-SKY algorithm is called after we receive a batch of new points based on the

slide size. As shown in Alg. 5, the points of window Wc are stored in a list structure

Wc.plist . When the streaming data arrives, the later arrivals are appended at the tail of
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Wc.plist . Therefore the points in Wc.plist are naturally ordered by their arrival time. If

p is a new point of Wc, then the search has to be conducted from scratch (Lines 1,2).

Otherwise based on our Least Examination optimization principle K-SKY only search in

the new arrivals and the unexpired skyband points of p (Lines 3-5).

Then guided by our time-aware prioritization optimization principle, K-SKY evalu-

ates the data points of the input list Wc.plist in the order from tail to head, i.e., via a “last

come, first served” order (Line 7). After calculating the distance between p and some

data point pi, K-SKY evaluates whether pi is dominated by at least k already discovered

skyband candidate points. If not, pi will be inserted into the candidate point set skyband-

Points (Line 9). Otherwise if pi is not a skyband point and dist(pi , p) is not larger than the

smallest r parameter r1 in Q, K-SKY terminates (Lines 12,13). This is so because again

by our time-aware prioritization principle, the remaining points does not have chance to

be skyband points.

Leveraging the time-aware prioritization and least examination optimization princi-

ples, K-SKY is able to discover all skyband points by scanning the data set at most once.

In other words, K-SKY is a one pass algorithm. Furthermore, it may terminate without

even seeing all data points. We now show that it is optimal in minimizing the number of

points being evaluated in the execution process.

Lemma 8.2 Optimality. K-SKY correctly discovers the (k-1)-skyband points in window

Wc by examining only the minimum number of data points.

Proof. We prove Lemma 13.1 by showing that: (1) Any point inserted to skybandPoints

during the execution of K-SKY is guaranteed to be a true (k-1)-skyband point; (2)No data

point that could not be a (k-1)-skyband point is examined during the execution of K-SKY.

Proof of (1). In K-SKY the later arrivals are always evaluated earlier than the earlier

arrivals. Therefore any point pi already added into skybandPoints has a larger timestamp
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than any point pj remaining to be evaluated. That is, pj .time < pi .time. By the domina-

tion rule defined in Def. 23.3, pj cannot dominate pi. Therefore pi would not be replaced

by any point evaluated later. Condition (1) holds.

Proof of (2). Proof in two steps. First, K-SKY stops immediately once the termina-

tion condition is satisfied. Namely K-SKY terminates immediately once one point pi is

dominated by k points if the distance between pi and p is not larger than the smallest r

parameter rmin in Q. Therefore the remaining points that will not be in skybandPoints

are not evaluated.

Second, we prove any data point evaluated during the execution of K-SKY is po-

tentially a (k-1)-skyband point. Data point pi is evaluated by K-SKY if and only if the

termination condition has not yet been satisfied. In other words when pi was evaluated, at

most k - 1 data points pj with dist(p,pj) ≤ rmin existed at that time. Therefore pi should

be listed in skybandPoints if dist(p,pi)≤ rmin. That is, if we were not to consider pi, then

potentially an incorrect skyband point set may be reported. Furthermore, in K-SKY if p

∈Wc is an point that survived the stream data expiration, only the new arrivals in Wc and

its unexpired unexpired skyband points in last window Wc−1 will be examined. By our

least examination optimization principle these points are the only points that will appear

in the skyband point set of the new window Wc. This confirms that any point evaluated

by K-SKY is indeed necessary to guarantee the correctness of the Q s query. �

The skyEvaluate Algorithm. The complexity of K-SKY relies on the number of

points being evaluated and on the cost of evaluating each point, that is, the cost to deter-

mine whether a given point pi is a skyband point or not. This decision is computed by

the subroutine skyEvaluate of K-SKY. Since the number of points examined by K-SKY

has already been proven to be minimal, the reduction of the second cost per point is now

critical for high-performance of K-SKY. For this we must design an efficient skyEvaluate

algorithm.
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Algorithm 6 skyEvaluate(d,skybandPoints, Q)
Output: isSkyband; //Boolean: skyband point or not
1: layer = skybandPoints.getLayer(d);
2: count = 0;
3: for i =1; i++; i ≤ layer do
4: count += skybandPoints.layerCount(i);
5: if count ≤ k - 1 then
6: skybandPoints.map(pi);
7: return true;
8: else
9: return false;

First we introduce the core data structure of the K-SKY algorithm called LSky. LSky

is a layered data structure that stores the skyband points acquired in the execution process

of K-SKY. It plays a critical role in assisting skyEvaluate to effectively determine whether

a point pi is a skyband point.

In LSky, skyband points are organized into a layered two dimensional structure that

preserves the order among the skyband points in both the distance and the time dimen-

sions. As shown in Fig. 8.2, the points in each layer have the same distance to point

p based on the normalized distance function in Def. 8.1. The points in the upper layer

always have a smaller distance to p than the points in lower layers. Furthermore, in each

layer the points are ordered based on their arrival time with the earliest arrival being at the

head. By this, skyband points can be quickly expired when the window slides forward in

time.

As shown in Fig. 6, given a data point pi, skyEvaluate first calculates which layer

it belongs to (Line 1). More specifically, given a query group Q: {q1 (r1 ), q2 (r2 ) ,...,

qm(rm), qm+1 (rm+1 ) ,..., qn(rn) } with r1 < r2 < ... < rm < rm+1 < ... < rn, a point pi

should be mapped to the layer corresponding to rm (bucket Bm) if rm−1 < dist(p, pi) ≤

rm. This can be done in logarithmic time in the number of buckets using a binary search.

Next, skyEvaluate evaluates whether a point pi is a skyband point. Since K-SKY

processes data points in the “last come, first served” order, a point pi to be inserted into

LSky is guaranteed to be dominated by the points falling in the same layer with pi and
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the points within its upper layers. If in total there are fewer than k such points in LSky

when pi is processed, then pi will be a skyband point (Lines 6 - 8). This can be easily

determined by explicitly maintaining the cardinality of each layer (Lines 3 - 5).
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Figure 8.2: SOP: Skyband Point Search With LSky

Next we utilize an example to demonstrate how K-SKY detects the skyband points

with the assistance of the LSky structure.

Example 8.2 Given the stream and the queries in Example 8.1, point p8 is processed

first by K-SKY as shown in Fig. 8.2. Since 1 < dist(p, p8 ) = 2 ≤ 2 , by Def. 8.1, p8 is

hashed into bucket B2. The next point processed by K-SKY is p7. Correspondingly p7

is inserted into bucket B3 because 2 < dist(p, p7 ) = 3 ≤ 3 . Point p6 will be excluded

from the skybandPoints set immediately since dist(p, p6 ) = 4 is greater than the largest

r parameter in query group Q. Points p5 and p4 instead will be inserted into bucket B1.

By Def. 8.1, p3, p2, and p1 should be hashed into bucketsB2, B3, andB2 correspondingly.

However all of them are excluded from the LSky structure, since they are dominated by

at least 3 data points. For example when we hash p3 into bucket B2, there are already 2

points in B1 and 1 point in B2. Therefore p3 is dominated by 3 points and thus it is not a

skyband point. In this example the skyband points are {< t4, 1 >, < t5, 1 >, < t7, 3 >,

< t8, 2 >}.
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Complexity Analysis. With the assistance of the LSky structure the overall com-

plexity of K-SKY is O(LB) with L the number of the points examined in K-SKY and B

the number of the layers (buckets) visited when evaluating whether a point is a skyband

point. We have already proven that K-SKY is optimal in L. Now let us assume that the

points are uniformly distributed among all layers of LSky , then on average B equals to |r|
2

,

where |r | represents the number of unique r parameter values in query group Q. Given a

window with |W | data points, the complexity of processing the whole window therefore

is O(|W |L |r |
2

).

8.2 Handling Various K and R Parameters

We now relax our problem to consider varying not only k but also r parameters. One

simple approach to handle a set of outlier detection queries with arbitrary pattern related

parameters k and r would be to divide this workload into groups, each of which contains

queries with the identical k parameter value. This then would simplify our problem into a

multi-skyband query problem with only the k parameter varying. Intuitively our problem

then could be handled by directly applying K-SKY on each group of queries. How-

ever this solution requires the independent identification and maintenance of the skyband

points for each group of queries. Since a large number of skyband points are likely to

be shared across these skyband queries, this naive solution inevitably leads to significant

wastage of CPU and memory resources. We now tackle this shortcoming.

8.2.1 Sharing-Aware Multi-Skyband Solution

Next we propose a sharing-aware solution that efficiently solves this multi-skyband query

problem. By maintaining the skyband points in one integrated LSky structure, given a

point pi, only one single skyband point evaluation operation is required to correctly an-
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swer all skyband queries. This way we assure that multiple skyband queries are supported

by K-SKY, while still guaranteeing that each data point is evaluated exactly only once.

Given a query group Q, Q is partitioned into sub-groups Qj: {(r1 , kj ), (r2 , kj ), ..., (rn , kj )}

(1 ≤ j ≤ max , k1 < k2 ... < kmax, r1 < r2 ... < rn). The member queries in each sub-

group Qj share the same k parameter value (kj). Therefore each Qj corresponds to one

skyband query Q s
j .

The key idea here is that our K-SKY algorithm can handle any number of skyband

queries with distinct k parameter values with only some slight adjustment in the criteria

used to determine whether a point pi is a skyband point of at least one Q s
j .

Definition 8.3 Skyband Point Rule. pi is a skyband point if:

(1) pi is hashed into some bucket Bm;

(2) k
′

=
m∑

j=1

| Bj |< kmax ; and

(3) dist(p,pi) ≤ max{rnofQj | ∀kj > k
′}.

The first two conditions in Def. 8.3 correspond to the examination rule of the single

query case except for replacing the k parameter of the single query with kmax (the largest

k parameter value in Q). However not all points satisfying these two conditions would

be in the skyband point set. Now pi is dominated by k′ points. By the definition of k-

skyband query, pi would not be a skyband point of query Q s
j unless k′ is smaller than the

k parameter kj of queries in Qג (the query sub-group corresponding to Q s
j ). Furthermore,

any point pi will be discarded by query Q s
j if dist(p, pi) is larger than rn of Qג by the

domination relationship defined in Def. 23.3. The above two conditions are captured by

Condition 3 in Def. 8.3.

Optimality. Based on the discussion of our time-aware prioritization optimization

principle it can be easily shown that K-SKY discovers all skyband points of multiple sky-

band queries in one pass over the data set. Here we provide the intuition. The processing
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order of K-SKY guarantees that the points added to skybandPoints during the execution

of K-SKY would not be replaced later. Therefore similar to the case of processing a sin-

gle skyband query, K-SKY correctly discovers the (k-1)-skyband points for all skyband

queries with only the minimum number of points evaluated.

Complexity Analysis. Similar to handling a single skyband query, the complexity

of K-SKY handling multiple skyband queries is determined by the number of the points

being evaluated (L) and the number of the layers (B) that exist in LSky . Given a win-

dow with |W | data points, the complexity of processing the whole window therefore is

O(|W |LB).

8.2.2 Outlier Detection With K-SKY

After acquiring the skyband points, these points then can be utilized to determine the

outlier status of p with respect to each member query in Q. For example, this can be done

by first calculating the k -distance of p with respect to each query sub-group Qj and then

applying the k-distance observation (Sec. 8.1.1). However the key observation here is

that to determine the status of p, this extra process is superfluous. In fact, we observe

that the outlier status of p can be naturally derived as part of the skyband point discovery

process as explained below.

Inlier Rule. Suppose we have a query sub-group Qj: {q1 (r1 , kj ), q2 (r2 , kj ), ..., qm(rm , kj ),

qm+1 (rm+1 , kj ), ..., qn(rn , kj )}. When evaluating whether pi is a skyband point, if point

pi is found to be dominated by kj − 1 points and mapped into bucket Bm of LSky, then p

is guaranteed to be an inlier for a subset of queries in Qj : {qm , qm+1 , ..., qn}. This is so

because all points dominating pi are as close as pi to p. Since pi is mapped to bucket Bm,

dist(pi , p) ≤ rm . Therefore pi along with all points dominating pi (in total kj points) are

neighbors of p for {qm , qm+1 , ..., qn}. By the outlier definition in Def. 2.1, p is thus an

inlier for these queries.
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As shown inliers are naturally recognized during the process of evaluating whether a

point is a skyband point without introducing any extra overhead. This logic can be seam-

lessly applied in K-SKY (see Line 11 in Alg. 5) to mark p as inlier for the corresponding

queries. Eventually p will be reported as outlier for those queries that do not mark p as

inlier after K-SKY terminates.

Safe Inlier in Sliding Stream Windows. Furthermore, given a point p its outlier sta-

tus might not always need to be evaluated in each window and against every query in

Q. Potentially skyband points discovered in the current window might provide sufficient

evidence to prove that p is an inlier during its entire remaining life for a particular subset

of queries in Q, regardless of the characteristics of the future incoming stream. In this

case, we would name p a guaranteed safe inlier with respect to a query subset Qsafe of

query group Q. This property arises due to the time order relationship among stream data

points.

Safe Inlier Condition. We observe that p is guaranteed to be a safe inlier if the point

pi that triggers the above inlier rule arrives later than p. By the domination relationship

definition in Def. 23.3, for each of the kj − 1 points pj that dominate pi, pj .time >

pi .time > p.time. In other words, all kj neighbors of p would have arrived later than p

and in turn would not expire before p. Therefore the neighbor relationship between p and

pi persists during the entire life of p. p is thus a safe inlier.

Evaluating the above safe inlier condition in K-SKY is straightforward. Namely when

monitors the satisfaction of the inlier rule (Line 11 in Alg. 5), we also compare the arrival

order of pi and p.

Once p is determined to be a safe inlier, it is no longer necessary to evaluate p for

Qsafe: {qm , qm+1 , ..., qn} in any future window. Thus the discovery of safe inliers can

significantly improve the CPU and memory efficiency of K-SKY.

Next we demonstrate with an example how K-SKY determines whether a given point
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p is an outlier with respect to query group Q.

Example 8.3 Given two query groups QG1 and QG2 in Fig. 8.3, on stream in Fig. 8.4

we demonstrate how K-SKY supports outlier detection queries with varying k and r pa-

rameters. As shown in Fig. 8.4, p8 is processed first and hashed to bucket B2 of LSky.

p7 is processed next and inserted into bucket B3. p7 is dominated by one point in B2. In

other words, p7 is dominated by k1 − 1 points, where k1 is the k parameter of QG1. By

the inlier rule this may cause p to be recognized as inlier for some queries in QG1. By

comparing dist(p, p7 ) against the r parameters in QG1, p is confirmed to be inlier for

queries < k1 , r3 > and < k1 , r4 >, since dist(p, p7 ) ≤ r3 < r4 . Then K-SKY proceeds

to hash p6 into bucket B4. p6 is dominated by two points p7 and p8. This triggers the in-

lier status check for queries in QG2 (k2 = 3). Since dist(p, p6 ) ≤ r4 , p is inlier for query

< k2 , r4 >. Next p5 is processed and inserted into bucket B1. When K-SKY processes

p4, p4 is dominated by 2 (k2 − 1) points. Furthermore, dist(p, p4 ) ≤ rmin of QG2 (r2

= 2). By the termination condition of K-SKY, QG2 (k2 = 3) is terminated now, since all

queries in QG2 classify p as inlier. Next p3 will be excluded from LSky, since p3 (in B3) is

dominated by four points and therefore is not a skyband point for any query group. After

p2 is evaluated, there are two points p2 and p5 inB1 whose distance to p is not larger than

rmin = r1 = 1 of QG1 (k1 = 2). This satisfies the termination condition of QG1. In turn

p is classified as inlier by all queries in QG1. This leads to the termination of the outlier

status evaluation process for point p, because both query groups have been completed.

The earliest arrival p1 is not evaluated.

The Overall Outlier Detection Approach. The overall process of utilizing the K-

SKY algorithm to continuously detect outliers from the sliding window stream is shown

in Alg. 7.

Given a point p in the current windowWc, Alg. 7 first checks whether p is a safe inlier

(Line 2). The K-SKY algorithm will only execute on the points that are not marked as
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Figure 8.3: SOP: Queries With Varying k and r Parameters
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Figure 8.4: SOP: K-SKY For Multiple Queries

safe inliers (Lines 4, 5). Then based on the output of K-SKY, we mark p as inlier for the

corresponding queries Qin (Line 6). The safe inlier status of p will also be updated (Line

7). Finally p is inserted into the output set outliers if not all queries in Q classify p as

inlier (Lines 8 - 10). Each element in the outlier set records one point p along with the

member queries qi ∈ Q - Qin that classify p as outlier.

Algorithm 7 detectOutlier(Wc.plist ,Q)
Output: outliers; //the outlier sets
1: for each p ∈Wc .plist do
2: if (IsSafeInlier(p) == TRUE) then
3: break;
4: else
5: K-SKY(p,Wc .plist ,p.skyband ,Q);
6: Qin = markInlierStatus(p, Q);
7: markSafeInlier(p, Q);
8: if Q - Qin 6= ∅ then
9: insertOutlier(outliers,p,Q - Qin);
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Varying Sliding Window Parameters

Next, we study the case that the window parameters can vary. The key observation here

is that such multiple queries can be supported by utilizing one single customized skyband

query. Therefore full sharing of both CPU and memory resources is achieved over sliding

windows.

9.1 Varying the Window Parameter

Here we first examine the scenario when the window sizes vary, while the slide size

remains stable. Therefore all queries slide to a new window at the same time. In other

words, they are synchronized. All queries require output at exactly the same moment, i.e.,

at time Wc.end in Fig. 9.1. This observation leads to an important characteristic. Given

a query group Q with member queries having the same slide size but arbitrary window

sizes, Q can be supported with one skyband query with respect to qmax denoted as qsmax ,

namely the member query with largest window in Q as in Fig. 9.1. Intuitively this is

so because the largest window covers all smaller windows. Therefore skyband points

discovered in the largest window can be utilized to answer all queries in the group.
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9.1 VARYING THE WINDOW PARAMETER

Therefore by employing the K-SKY algorithm and collecting the skyband points for

this special skyband query qsmax , this outlier query group Q can be correctly answered

with each point p in the data stream S evaluated only once in each window that contains

p.

Wc.end

q1.Wc.start

q2.Wc.start

q3.Wc.start

qmax.Wc.start p p
1

p
2

p
3

p
old

outlier

inlier

p

Succeeding neighbor

common points

Figure 9.1: SOP: Queries with varying window sides

As shown in Sec. 8.1.2, K-SKY gives more preference to the points arriving later than

the points arriving earlier. That is, K-SKY always processes the later arrivals first. On the

other hand the later arrivals in the stream happen to be the common points among the data

populations covered by the current windows of different queries (Fig. 9.1). Therefore

K-SKY naturally leverages the data commonality among the windows of distinct queries.

Redundant computations during the skyband point discovery process are eliminated.

Outlier Status Evaluation. After K-SKY terminates, as shown in Sec. 8.1.2, the

outlier status of p ∈ qmax .DWc with respect to qmax has already been determined. If

qmax marks p as outlier, then p is guaranteed to be an outlier for any other query qi in

Q . Therefore it is not necessary to evaluate the outlier status of qi anymore. However

this is not the case if p instead is marked as an inlier for qmax. This is so because the

neighbors of a particular qi are only a subset of the neighbor set of qmax. Even if qmax
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9.1 VARYING THE WINDOW PARAMETER

has acquired enough neighbors to prove the inlier status of p, this does not guarantee

that p has enough neighbors for other queries with smaller windows. Therefore an extra

outlier status evaluation step is necessary for other member queries qi in Q besides qmax.

Fortunately, as we demonstrate below, to determine the outlier status of p with respect to

the member queries in Q, it is not necessary to examine all points in qsmax .skyband .

Lemma 9.1 Given a query group Q: {q1 , q2 , ..., qm , qm+1 , ...,, qmax} (q1 .win < q2 .win <

... < qmax .win), p is an outlier for queries {q1 , q2 , ..., qm}, if qm+1 .Wc.start < pold .time <

qm .Wc. start , where pold is the oldest point in qsmax .skyband .

Proof. qsmax is a special skyband query with respect to the single outlier query qmax (k , r).

Since p is an inlier with respect to qmax, the skyband set qsmax .skyband contains k neigh-

bors of p. pold is dominated by k -1 points in qsmax .skyband , because pold .time < pi .time

(∀pi ∈ qsmax.skyband). Since qm+1 .Wc.start < pold .time < qm .Wc.start , pold falls in

the current windowWc of {qm+1 , ..., qmax}, but is out of theWc of {q1 , q2 , ..., qm}. There-

fore p has at most k - 1 neighbors in qsmax .skyband for {q1 , q2 , ..., qm}. Furthermore, any

point pj out of qsmax .skyband cannot be a neighbor of p for {q1 , q2 , ..., qm} in their current

window Wc. Otherwise pold would also be dominated by pj . Hence it would in total be

dominated by k points. This contradicts the fact that pold is a skyband point of qsmax . �

By Lemma 9.1 when p is an inlier of qmax, to determine the outlier status of p with

respect to all other queries in Q we only need to evaluate one single skyband point pold ,

namely the last skyband point acquired exactly when K-SKY terminates. This is achieved

by locating the query qm with largest window size whose current window Wc has not

started yet at the time when pold arrives. As shown in Fig. 9.1, queries q1 and q2 are

outliers, because the oldest neighbor of p, namely pold arrived earlier than the start time

of the windows of q1 and q2.

Let us assume the queries in Q are ordered by their window sizes. In that case, the de-

limiter query qm can be located in O(log | Q |) time with a binary search style algorithm.
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9.2 VARYING THE SLIDE PARAMETER

Safe Inlier. A point p declared as inlier by query qmax is not necessarily an inlier for

all queries in Q. However this is not the case when p is a safe inlier. Once p is confirmed

as a safe inlier by qmax, p is guaranteed to be a safe inlier for all queries in Q.

Since all queries in Q have the same slide size, their current window Wc ends at the

same time point. Therefore all queries in Q share the same succeeding points of p in Wc,

namely the points arriving later than p, but earlier than the end of the window as depicted

in Fig. 9.1. This indicates that the k succeeding neighbors of p discovered by qmax are

shared by all queries. Hence p is a safe inlier with respect to all queries in Q.

Based on this Safe-For-All property, once p is determined by K-SKY to be a safe

inlier of qmax, p can also be declared to be a safe inlier for all queries without requiring

any further evaluation. It is then safe to exclude p from further evaluation in any future

window. Therefore significant CPU and memory resources are saved.

In summary, we conclude that we only need to detect and maintain the skyband points

for one single skyband query with respect to the outlier query with the largest window

size. This then is sufficient to answer all outlier queries in the query group. Clearly, full

sharing is achieved.

9.2 Varying the Slide Parameter

Next, we consider the case where all queries have the same window size, while their slide

sizes vary. Unlike the previous varying window size case, these queries are not synchro-

nized. That is, their windows move at a different pace. Therefore no stable relationship

holds across the data populations covered by the active windows with respect to different

queries. In other words there is no such query whose active window continuously contains

the windows of other queries. Therefore the above strategy supporting queries with var-

ious window sizes does not handle this case. However independently generating output
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9.2 VARYING THE SLIDE PARAMETER

for this set of queries at different moments is not practical for large volume streams.

To solve this problem, given a query group Q, we build a single swift query qsft that

correctly answers all member queries of Q. Qsft has the same window size as all member

queries in Q , while its slide size is set as the greatest common divisor on the slide sizes

of all the queries in Q.

Intuitively by definition of the greatest common divisor, ∀qi ∈ Q, we have qi .slide

mod qsft = 0. Therefore at any time tj when qi ∈ Q produces an outlier result qi .outlier ,

qsft would also be producing result qsft .outlier . Furthermore, since qi .win = qsft .win,

the points covered by the window of qi and qsft would be identical at tj . Therefore at any

tj qi .outlier = qsft .outlier . Hence Qsft is sufficient to represent all queries in Q.

Therefore a query group Q with varying slide sides can be supported by one special

skyband query with respect to this special outlier query qsft. It is straightforward to

determine at runtime when to output the outlier detection results and what query the

output corresponds to by tracking for each query when the window slides.

Safe Inlier. Although potentially qsft slides its window more frequently than any qi

in Q, this swift query solution does wastes neither CPU nor memory resources. This is

because qsft is able to discover safe inliers and to terminate the outlier detection process

at the earliest possible moment. This observation relies on the Safe For All property

of qsft similar to qmax in the varying window size case. Namely given a point p, if p is

recognized as a safe inlier for the swift query qsft , then p is a safe inlier for all qi ∈ Q.

Next we briefly justify this observation.

We use succ(p, q) to denotes the points arriving later than p in the current window Wc

of query q. The safe-for-all property follows immediately from the fact that in any future

window succ(p, qsft) is a subset of succ(p, qi) for any query qi ∈ Q. This is so because

in any future window when query qi is scheduled to produce outlier status for p, all points

succeeding to p in the current window of qsft will not expire (since p has not expired).
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9.3 VARYING BOTH WINDOW AND SLIDE PARAMETERS

Furthermore, qi will also get some additional new points into the future window.

Since qsft is potentially scheduled more frequently than any query in Q, the safe inliers

will be discovered quicker.qsft is able to discover and prune the safe inliers earlier than

any query in Q. Therefore CPU and memory resources are saved.

In conclusion, this swift query solution achieves full sharing by utilizing only one

single skyband query to answer all member queries in Q. Furthermore safe inliers are

also discovered and discarded earlier than any actual member query, leading to additional

saving in CPU and memory resources.

9.3 Varying Both Window and Slide Parameters

We now describe our solution for the case when both window parameters, namely win and

slide, vary. This solution is a straightforward combination of the techniques introduced

in the last two sections. In particular, we simply build one single swift query that has the

largest window size among all member queries and its slide size as the greatest common

divisor of the slide sizes of all member queries. A specific skyband query with respect

to this single swift query will then be employed to collect skyband points, namely the

evidence to prove the outlier status of a given point p. Similar to the varying slide size

case the timing when each query is required to produce output is determined at runtime

(see Sec. 9.2). Then Lemma 9.1 introduced in Sec. 9.1 is applied to decide the outlier

status of each point for the queries requiring output based on the results of the swift

skyband query. In short, this case of arbitrary window and slide sizes can be regarded as

an arbitrary window size case with a fixed slide size whose value is the greatest common

divisor of the slide sizes of all member queries.
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Varying All Parameter Settings

Finally, we consider the most general case with arbitrary pattern and window-specific

parameters. Although sharing among a group of totally arbitrary queries appears hard

at first sight, we now demonstrate that this problem can be tackled utilizing the skyband

query technique. This is possible, because as shown in Sec. 9.3, the skyband query

technique designed for processing the outlier analytics workloads with varying pattern-

specific parameters can be leveraged to answer multiple queries with arbitrary window-

specific parameters.

SOP Outlier Detection Framework. As depicted in Fig. 10.1, SOP first employs a

query parser to divide the queries in a query group Q into sub-groups Qi based on their k

parameters. Queries with the same k parameter are grouped into one sub-group Qi. The

queries in each sub-group Qi are then sorted based on their r parameters. The queries

with same r parameters are further sorted based on their window sizes. Then the query

parser will create one skyband query Q s
i for each outlier query sub-group Qi. Its window

size is set as the the largest window size among the member queries in Qi. Its slide size

is then set as the greatest common divisor of the slide sizes of the member queries.

After the query parser transforms the outlier detection queries into the skyband queries,
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Figure 10.1: SOP Framework

the K-SKY algorithm for multiple skyband queries introduced in Sec. 8.2 will be applied

to detect the skyband points. Then the outlier status evaluator determines the outlier sta-

tus of each data point with respect to the outlier queries using the inlier rule introduced in

Sec. 8.2.2.

Similar to the varying window sizes case if a data point p is classified as an outlier

for the queries in some sub-group Qi, then p is guaranteed to be an outlier for all queries

in Qi no matter what their window sizes are. On the other hand if p is declared to be an

inlier for some queries, Lemma 9.1 has to be applied to evaluate whether p is indeed an

inlier for these queries by checking their window sizes as shown in Sec. 9.1.

Once the outlier status of p is determined for certain queries, the query scheduler

determines whether it is time to output the outliers for these queries based on their slide

sizes (per Sec. 9.2).

Conclusion. Computation-wise, SOP only requires a single pass through new data

points, each collecting the minimum evidence to prove its outlier status with respect to

93



all queries. Memory-wise, the evidence which proves the outlier status of each data point

with respect to multiple queries is maintained only once. In short, SOP achieves full

sharing for multiple distance-based outlier queries over sliding windows in terms of both

CPU and memory resources.
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Performance Evaluation

11.1 Experimental Setup & Methodologies

We conducted experiments on a PC with 3.4G HZ Intel i7 processor and 6GB memory,

running Windows 7 OS. All algorithms are implemented in JAVA on HP CHAOS stream

engine [51].

Real Data Sources. We use the Stock Trading Traces Data (STT) [52]. It has one

million transaction records throughout the trading hours of one day. All data has the same

format of name, transId, time, volume, price, and type.

Synthetic Data. We also implement a data generator to create a dataset containing

100M points. This dataset is composed of Gaussian distributed data points as inlier can-

didates and uniform distributed ones as outliers. The outliers are randomly distributed in

each time segment of the data stream.

Alternative Algorithms. We compare our proposed SOP algorithm with the two

state-of-the-art solutions from the literature [19, 27]. Since MCOD [27] does not sup-

port variations in window-specific parameters, we have extended MCOD by inserting our

window-specific techniques into MCOD. We now use this enhanced algorithm to compare
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11.1 EXPERIMENTAL SETUP & METHODOLOGIES

against SOP. In addition, we also compare our sharing strategy against the state-of-the-

art single query strategy LEAP [19]. Multiple queries are supported by applying LEAP

independently to process each query in the query group.

Metrics. We measure two metrics common for stream systems, namely the average

processing time (CPU time) per window and the peak memory consumption (MEM). The

CPU time per window corresponds to the total amount of system time resources used to

process the queries on the data in one window. The consumed memory metric corresponds

to the memory required to store the information for each active object (i.e. the skyband

points) and the outliers of all queries in the current window. All results are collected and

calculated at the unit of one window at a time. Then they are averaged over all windows

processed in the given experiments. All experiments are reported using the count-based

window, with time-based window processing achieving similar results.

We also conduct scalability tests to validate the performance of the proposed algo-

rithms with an increasing number of queries in the workload.

Workload
Pattern Window

R K W S
(A) arbitrary fixed fixed fixed
(B) fixed arbitrary fixed fixed
(C) arbitrary arbitrary fixed fixed
(D) fixed fixed arbitrary fixed
(E) fixed fixed fixed arbitrary
(F) fixed fixed arbitrary arbitrary
(G) arbitrary arbitrary arbitrary arbitrary

Table 11.1: SOP: Combinations of Different Workloads

Type Name Value
Pattern K [30,1500)

R [200,2000)
Window W [1Ks,500Ks)

S [50s,50Ks)

Table 11.2: SOP: The Ranges of the Parameters
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11.1 EXPERIMENTAL SETUP & METHODOLOGIES

All in all our study covers important combinations of the four query parameters. They

range from varying one specific parameter only at a time to the more general cases of

varying all 4 of them among the queries populating the workload as shown in Table 11.1.

The varying ranges of the parameters are listed in Table 11.2.
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Figure 11.1: SOP: Varying R Values For Queries On Synthetic Dataset
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Figure 11.2: SOP: Varying K Values For Queries On Synthetic Dataset
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11.2 Varying Pattern Specific Parameters

Our general methodology is to prepare four workloads with 10, 100, 500, 1000 queries

respectively by randomly choosing the values of the pattern-specific parameters in a range

for each query, while fixing the window-specific parameters. The synthetic dataset is

utilized in this set of experiments to make sure the outlier rate is small (< 5%) when

varying the k and r parameters.

Arbitrary R Case. In the first experiment, we evaluate the performance of our SOP

compared with the state-of-the-art MCOD [27] and LEAP [19] when only varying pa-

rameter r. We fix the window size to 10K, slide size to 0.5K and k parameter value to 30,

while r is randomly selected in the range from 200 to 2000.

As shown in Fig. 11.1(a), SOP significantly outperforms MCOD and LEAP up to

3 orders of magnitude in CPU time. By mapping the multiple outlier query problem to

the skyband query problem, SOP only needs to collect minimum information to prove

the outlier status of each data point with respect to all queries. Instead, MCOD relies on

routinely conducting a range query to detect outliers. That is, in each case it will compare

each data point with all the other data points in each window and collect all the points

satisfying the neighbor condition of any user query. On the other hand LEAP repeatedly

detects outliers for each query from scratch. Its CPU performance thus degrades quickly

as the number of queries increases. We thus confirm that the CPU efficiency of both

MCOD and LEAP is significantly worse than that of SOP.

SOP is also superior in memory usage as shown in Fig. 11.1(b). This is because in

each window given a data point p, MCOD keeps all data points satisfying the neighbor

conditions of p with respect to any query. SOP instead determines that it is not necessary

for the evaluation of the outlier status of p. On the other hand, LEAP, without leveraging

the sharing opportunities across multiple queries, maintains the neighbors of each point
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11.2 VARYING PATTERN SPECIFIC PARAMETERS

independently for each query.

Arbitrary K Case. In this experiment, we analyze the performance of SOP by vary-

ing k parameter values of the queries. We use a fixed window size of 10K and a slide size

of 0.5K. Parameter r is fixed at 700. A value for k is randomly selected in the range from

30 to 1500 for each query.

As shown in Fig. 11.2(a), similar to the case of varying r, the CPU performance of

SOP outperforms the other two alternatives up to 4 orders of magnitude. Since the case

of varying k can be treated as a special case of the case with arbitrary k and r values,

this experiment demonstrates the effectiveness of our K-Sky algorithm when handling

multiple skyband queries.

The CPU resources utilized by SOP are very stable as the number of queries increases.

This is because for each workload the k value is randomly selected in the same range. In

each workload at least one of the randomly selected k is likely to get fairly close to the

upper ceiling value in the range. In other words the maximum k in each workload is

similar on average. Therefore this experiment demonstrates that the performance of SOP

relies on the largest k value instead of on the number of queries in the workload. Therefore

SOP scales to a potentially huge workload composed of a large number of queries. A

similar trend can also be observed in memory utilization as shown in Fig. 11.2(b).

Arbitrary K and R Case. In this experiment, we assess the performance of the

algorithms when varying both k and r. We fix the window size to 10K, slide size to 0.5K,

while the values for both k and r are randomly generated in the range respectively from

30 to 1500 and from 200 to 2000 for each query.

Fig. 11.3 depicts the performance of the three algorithms in terms of CPU costs

and memory consumption. We observe that SOP consistently outperforms MCOD and

LEAP up to 3 orders of magnitude. This confirms that K-SKY not only effectively shares

the computation among the queries with an identical k parameter, but it also achieves
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Figure 11.3: SOP: Varying K and R Values ON Synthetic Dataset
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Figure 11.4: SOP: CPU (Log Scale): Small Workload

full sharing across multiple skyband queries with respect to different query groups with

distinct k values. MCOD instead solves this case by simulating an outlier query using the

largest k and smallest r values in the workload as its pattern parameters. Such a query

can have much more restricted neighbor requirements and in turn more expensive range

queries than any of the actual outlier queries. Huge CPU and memory resources may be

wasted compared to SOP.

Small Workload. In this set of experiments, we test the performance of SOP when

processing small workload. It is composed of two experiments. In the first experiment, all
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queries utilize the same set of attributes in the detection of outliers. We vary the size of the

workload by containing 1, 2, 4, 8 queries. Again it confirms that SOP performs well even

in this small workload case as shown in Fig. 11.4(a). In particular when the workload

contains only one single query, SOP does not perform worse than the state-of-the-art

single query approach LEAP. This shows that no much extra overhead is introduced by

SOP.

Furthermore, we also evaluate the performance of SOP when handling queries utiliz-

ing different set of attributes. In this experiment, the queries are divided into 3 groups.

The queries in the same group utilize the same set of attributes. We vary the number of

queries in each group from 1 to 4. To support such workload SOP is slightly extended

using a simple divide and conquer approach. As depicted in Fig. 11.4(b) our extended

SOP approach continues to perform well. More specifically SOP is at least 150 times

faster than MCOD and two times faster than LEAP even in this small number of queries

case.

11.3 Varying Window Specific Parameters

Next, we focus on workloads composed of 10, 100, 500, 1000 queries respectively for

the case when varying window-specific parameters, while using a fixed pattern-specific

parameter setting. In this set of experiments the stock data [52] is utilized to evaluate how

our SOP solution performs when handling real datasets.

Arbitrary Win Case. In this experiment, we study the performance of SOP for win-

dow sizes ranging from 1K to 500K. We fix the slide size as 0.5K, r as 200, and k as

30.

As shown in Fig. 11.5, SOP features significantly better performance on both CPU

and memory consumption compared to MCOD and LEAP. Since MCOD leverages the
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Figure 11.5: SOP: Varying W For Queries On STT Dataset
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Figure 11.6: SOP: Varying W and S Values On STT dataset

sharing opportunities across the windows of multiple queries by adopting our swift query

strategy, its CPU and memory usage is relatively stable compared to LEAP as the number

of queries increases. However MCOD is still outperformed by SOP by at least 2 orders

of magnitude in CPU time as shown in Fig. 11.5(a). This is because based on our safe-

for-all observation in Sec. 9.1, SOP terminates and excludes p from any future evaluation

process immediately once p is classified as safe inlier by the skyband query corresponding

to the outlier query with the largest window size. As stated earlier, MCOD instead relies

on a range query to detect these outliers. Even if a data point is recognized as safe inlier,
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11.4 VARYING PATTERN AND WINDOW PARAMETERS

this neighbor search continues completing the comparisons with all other untouched data

points. Therefore a huge amount of CPU resources can be wasted.

Arbitrary Win and Slide Case. In this experiment, we investigate the performance

of SOP when varying both window-specific parameters. We fix k as 30 and r as 200. The

window and slide sizes are arbitrarily selected for each query from the range of 1K to

500K and from 50 to 50K respectively.

As illustrated in Fig. 11.6, the average CPU time consumed by SOP increases only

from 28ms to 282ms (10 folds) as the number of queries increases from 10 to 1000 (100

folds). This continues to outperform the alternative algorithms by at least two orders of

magnitudes. Clearly, results shown in Fig. 11.6 demonstrate the effectiveness of the swift

query strategy for handling arbitrary win and arbitrary slide case.
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Figure 11.7: SOP: Varying K, R, W and S values on synthetic dataset

11.4 Varying Pattern and Window Parameters

In this most general case, we prepare four workloads composed of 100, 1000, 10,000,

50,000 queries respectively by varying all window-specific and pattern-specific parame-

103



11.4 VARYING PATTERN AND WINDOW PARAMETERS

ters.

We observe from Fig. 11.7(a) that similar to the cases of independently varying

pattern-specific parameters and window-specific parameters SOP achieves tremendous

gain in CPU utilization compared to (augmented) MCOD and (the non-shared) LEAP.

Furthermore SOP shows excellent scalability in the cardinality of the workload. As the

number of queries rises from 1000 to the extremely large cardinality of 50,000 queries,

the CPU costs of SOP only increase from 32ms to 892ms. As the number of the queries

increases, the sharing opportunities among the given set of queries also increase. Since

SOP achieves full sharing across queries, it effectively reduces the CPU burden caused

by the huge workload.

The memory usage of SOP also consistently outperforms the alternatives solutions as

shown in Fig. 11.7(b). As previously stated, the reason is that LEAP detects outliers on

the same streaming data for each query independently. Hence the memory consumed by

the workload queries accumulates as the number of queries grows. On the other hand,

MCOD always detects outliers by discovering and maintaining all neighbors for each

point. However, SOP only requires minimal information to prove the outlier status of

each point. As a result, SOP effectively avoids the usage of unnecessary space by purging

redundant intermediate results. Therefore significant memory utilization is reduced by

SOP.
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Related Work

Distance-based Outliers on Streaming Data. With the emergence of digital devices

generating data streams, outliers on streaming data are one type of anomalies recently

studied [19, 26, 27]. However as described in Chapter Chapter 7 existing work [19, 26, 27]

focuses primarily on processing a single outlier detection request.

kNN Queries on Streams. Continuous kNN queries over sliding windows have in-

deed been studied in [54, 59]. Both works use a grid to index the stream data. To improve

response time, they either postpone the processing of the new points which are not likely

to be in kNN set [59] or eagerly pre-compute the possible kNN set for each future window

as new data arrives [54].

However to determine the outlier status of p it is not necessary to always discover the

full kNN of p. Rather one algorithm should stop evaluating p as long as any k neigh-

bors of p have been discovered. Therefore the use of the streaming kNN algorithm to

continuously detect outliers is not an efficient approach. Instead our customized skyband

algorithm K-SKY always discovers the minimal information necessary to determine the

outlier status of p.

General Multi-Query Optimization. Multiple query sharing has been widely stud-
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ied as a general optimization problem in streaming environments. Previous research on

sharing computations studied traditional SQL queries such as selection, join, and ag-

gregation [29, 31, 32, 33]. Their methods include rewriting queries to expose common

subexpressions, sharing indices, or segmenting input into partitions and sharing partial

results over the partitions. However the key problem we address in this work, namely

correctly answering multiple outlier detection queries by only collecting minimal infor-

mation, is different from the more general purpose optimization effort required by the

traditional SQL query sharing.
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Distributed Outlier Detection:

Distance-Based Outlier
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13

Distributed Outlier Detection

Framework

In this section, we introduce the basic DOD distributed framework that correctly discovers

distance-based outliers using a single MapReduce job. This framework represents the

solid foundation upon which key optimization strategies are then introduced. Below we

will prove that under a uniform distribution of the data values, this proposed partitioning

scheme is guaranteed to generate minimal communication overhead between the map and

reduce phases in the MapReduce job.

13.1 The DOD Framework

DOD involves three key steps, namely grid cell partitioning, enhancement with support-

ing area, and parallelized outlier detection (refer to Figure 13.1).

Step 1: Grid Cell Partitioning. As a first step, DOD partitions the entire domain

space of a dataset D Domain(D) into n disjoint grid cellsCi such that C1 ∪ C2 ∪ ... ∪ Cn

= Domain(D). A grid cell is formally defined below:
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Map 1

Map 2

Map N

Object p1

Object p4

(K= C5, V =“0-p1”)
(K= C1, V =“1-p1”)

(K= C2, V =“0-p4”)
(K= C3, V =“1-p4”)
(K= C6, V =“1-p4”)
(K= C7, V =“1-p4”)

Output of p1

Output of p4

C1

C12

C4C3C2

C7C5

Supporting 
area of C1

Supporting 
area of C7Object p4

Object p1

Sh
uf

fl
in

g 
&

 S
or

ti
ng Reduce

1

Reduce
M

Each Reducer receives as a group 
one cell_id (key), and the cell’s 
core objects (tag = 0) plus the 
cell’s supporting objects (tag = 1)

HDFS Data 
Blocks

Partitioning plan 
is given as input 
to Mappers

(b) MapReduce Implementation of DOD

(a) DOD Framework: (1) The space is divided into grid
cells across all dimensions.(2) To detect the outliers in
each grid cell independently from others, each grid cell is
assigned to it both core points plus its support points.(3)
Finally, the outliers in each grid cell can be detected in a
fully-distributed fashion.
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Figure 13.1: DOD: Distributed Outlier Detection Using the DOD Framework.

Definition 13.1 Grid Cell. A grid cell Ci in a d-dimensional domain space is a hyper

rectangle Ci = 〈(low1i , high1i), (low2i , high2i), ..., (lowdi , highdi)〉, where (lowxi , highxi)

are the boundaries of Ci in the xth dimension, where 1 ≤ x ≤ d .

The points inside cell Ci, referred to as the Ci’s core points, are denoted as

Ci .core = {pj | pj ∈ Ci}. The areas of the domain space covered by each grid cell may

or may not be of equal size. In general, any partitioning strategy could be utilized to

produce such grid cells. Figure 13.1(a) depicts a two-dimensional space partitioned into

grid cells using an equi-width partitioning method or in short uniSpace. That is, it divides

each dimension of the domain space into equal width segments. Then points are grouped

based on their membership in a particular grid cell. Fig. 13.1(a) shows such a grouping

by representing the points in each grid cell with the same shape.

Step 2: Enhancement with Supporting Areas. The data points inside each grid cell

are not sufficient to detect the outliers in each cell independent from the other cells. For

example, data point p2 in grid cell C1 appears to be an outlier when considering only grid

cell C1. However, p2 may have neighbor points in grid cell C5, e.g., p1, which may make

p2 an inlier. To break such dependency between the grid cells and thereby enable true
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parallelization for outlier detection among different grid cells, we introduce the notion of

supporting area. As formally defined in Def. 18.1 the data points within the supporting

area of cell Ci may affect the outlier decision of at least one core point of Ci.

Definition 13.2 Supporting Area. The supporting area of a grid cell Ci, denoted as

Ci.suppArea, is an extension of the boundaries of Ci in each dimension of D. All data

points pj (also called support point )∈ Ci .suppArea satisfy the following two conditions:

(1) pj 6∈ Ci .core, and (2) there exists at least one point pk ∈ Ci .core such that dist(pj , pk)

≤ r, where r is the distance threshold parameter in Def. 2.1.

Figure 13.1(a) highlights in grey the supporting areas of grid cells C1 and C7 respec-

tively. Each grid cell Ci will now be augmented with its support points in addition to its

core points. For example, C1 will be extended to contain support points {p1, p3} in C1’s

supporting area, along with its circle-shaped core points.

Step 3: Parallelized Outlier Detection. The final step is to directly apply any cen-

tralized outlier detection algorithm, e.g., the Nested-Loop algorithm [8], to each of the

grid cells Ci to identify the outliers contained within that cell. This step can now be ap-

plied to each grid cell in total isolation from the others. Hence each can be distributed to

different machines.

13.2 Optimality in Duplication Rate

The cost of a MapReduce algorithm is usually determined by two factors, namely com-

munication and computation costs. The communication costs correspond to the costs of

transmitting data from mappers to reducers. Often, if not always, the communication

costs are the dominant costs of a MapReduce job [60]. Similar to the communication

costs, the computation costs (especially those of the reducers) are also directly related to
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13.2 OPTIMALITY IN DUPLICATION RATE

the number of the data points transmitted from mappers to reducers, i.e., the more data

points that are received by the reducers, the more computational work is performed by

them.

In the DOD framework presented in Figure 13.1, each data point has to be transmitted

at least once from mappers to reducers since the latter are performing detection of the

outliers. Therefore, the efficiency of the framework can be modeled using the notion of

“Duplication Rate”, which refers to the average number of duplicates that mappers need

to create for each input data point. The larger the duplication rate, the more data points

must be transmitted from mappers to reducers, and thus the higher the communication

and computation costs. The duplication rate is defined next.

Definition 13.3 Duplication Rate (dr). For a dataset D and a MapReduce algorithm

A for detecting distance-based outliers in D, the “duplication rate” dr(D, A) ∈ [1,∞]

represents the average number of duplicates that the mapper phase of A generates per

data point pi ∈ D.

Intuitively, to minimize the overall costs, an algorithm should produce all outliers

for input dataset D in the fewest possible rounds of MapReduce jobs. In addition, map-

pers should transmit the smallest number of data points to the reducers to minimize the

duplication rate. In the following, we show that the DOD framework using the uniS-

pace partitioning strategy is optimal w.r.t the duplication rate in the case of a uniformly

distributed dataset. Without loss of generality, we will use our working example of a

two-dimensional space in Figure 13.1(a).

Lemma 13.1 Correctness and Minimal Duplication Rate. Assume a two-dimensional

uniformly-distributed dataset D , where the values in each dimension d1, d2 are normal-

ized to [0 , 1 ] (0 ≤ d1 ≤ 1 and 0 ≤ d2 ≤ 1 ). Consider n the number of the equi-width

grid cells generated from the uniSpace partitioning strategy, and r the distance threshold
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13.2 OPTIMALITY IN DUPLICATION RATE

parameter in the outlier detection problem. Then the DOD framework correctly detects

the distance-based outliers in D in a single MapReduce job with the minimal duplication

rate dr(D ,DOD) = 1 + πr2n + 4r
√
n.

Proof. Since the two-dimensional domain space of D is partitioned into equi-width

squared grid cells of equal area sizes, the area that one grid cell Ci covers is: A(Ci)

= |d1 |×|d2 |
n

, where | d1 | × | d2 | represents the area of the entire domain. Since

0 ≤ di ≤ 1 , i ∈ {0, 1}, then | d1 | × | d2 |= 1 . Therefore A(Ci) = 1
n

, and the side length

of Ci, denoted as l , is computed as: l =
√

1
n

.

Since D is uniformly distributed, each grid cell Ci will hold the same number of core

points |core(Ci)| = |D |
n

. Moreover, the duplication rate over the entire dataset D denoted

as dr(D ,DOD) will be equivalent to the duplication rate of a single grid cell Ci denoted

as dr(Ci ,DOD), where

dr(D ,DOD) = dr(Ci ,DOD) = |core(Ci )|+|Ci .suppArea|
|core(Ci )| (1)

Since the data values are uniformly distributed over the space, the cardinalities can be

directly mapped to the underlying areas as follows:

dr(D ,DOD) = dr(Ci ,DOD) = A(Ci .suppArea)+A(Ci )
A(Ci )

(2)

where A(Ci .suppArea) represents the size of the supporting area of Ci.

As illustrated in Figure 13.1(a), Ci .suppArea is composed of four (r x l) rectangles

plus four quarter circles each of radius r. Therefore, A(Ci .suppArea) = πr2 + 4rl =

πr2 + 4r
√

1
n

. By replacement in Eq. (2), we get:

dr(D ,DOD) = dr(Ci ,DOD) = πr2+4rl+l2

l2
=
πr2+4r

√
1
n
+ 1

n
1
n

= 1 + πr2n +4r
√
n (3)

To prove that dr(D ,DOD) is the minimal possible duplication rate, we first prove that
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for a given grid cell Ci, the support points in Ci .suppArea are the necessary and sufficient

set of points to determine the outlier status of the core points in Ci.

“Necessity” Proof. By Def. 18.1, any point pj ∈ Ci .suppArea is the neighbor of at

least one point pi ∈ Ci . If pj is excluded from Ci .suppArea, then possibly pi in Ci would

have been falsely reported as an outlier if pi happens to only acquire k − 1 neighbors.

“Sufficiency” Proof. Any data point pj 6∈Ci .suppArea is not the neighbor of any point

pi ∈ Ci . Therefore pj has no influence on the decision of whether or not pi is an outlier

by the distance-based outlier definition in Def. 2.1.

Next we show that the square-shaped grid cells lead to the lowest duplication rate. In

other words, any other rectangle-shaped grid cells would lead to larger duplication rate.

Suppose Cj is a y by z rectangle cell. Cj covers the same size of domain space as the

square cell Ci with side length x, and hence x 2 = y × z . By applying Eq. (2) over Ci

and Cj , we get:

dr(Ci ,DOD) = 1 + πr2+4rx
x2 (4)

dr(Cj ,DOD) = 1 + πr2+2ry+2rz
yz (5)

Given that x 2 = y × z , to prove that dr(Ci ,DOD) ≤ dr(Cj ,DOD) we only need

to show that 2x ≤ y + z . This is equivalent to proving that (2x )2 ≤ (y + z )2 , or

equivalently (y + z )2 − 4x 2 ≥ 0 . Since x 2 = y × z , then by replacement of x, we

need to prove that ((y + z )2 − 4yz ) ≥ 0 . The L.H.S is equivalent to (y − z )2 , which is

guaranteed to be always larger than or equal to zero. That is:

dr(Ci ,DOD) ≤ dr(Cj ,DOD) (6)

This proves the optimality claimed in Lemma 13.1. �
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Map (key k, value p) Function 
Auxiliary Inputs 
     - S ! Space partitioning strategy  
     - r ! distance threshold of the outlier algorithm 
 
1- Begin 
2-     Ci " Compute the grid cell in which p is a core point; 
3-     output (Ci, “0-p”); 
 

4-     For (each grid cell Cj in which p is a supporting point) Loop 
5-               output (Cj, “1-p”); 
6-     End Loop 
7- End 
   

Reduce (key cell-Id, v-list [ p1, p2, …, pm ]) Function 
Auxiliary Inputs 
     - k !count threshold of the outlier algorithm 
     - r ! distance threshold of the outlier algorithm 
 
1- Begin 
2-     core-list " the set of points in v-list with prefix tag = “0” 
3-     support-list "the set of points in v-list with prefix tag = “1” 
         

4-     outlier-list " Execute OutlierDetection(v-list, r, k); 
5-      For (each outlier o in outlier-list) Loop 
6-             If  (o exists in core-list) Then 
7-                  output (null, o)           // Report Outliers 
8-     End Loop 
9- End 
   

Figure 13.2: DOD: MapReduce Pseudocode of the DOD Framework.

13.3 MapReduce Implementation of DOD

We sketch one MapReduce implementation of the supporting area partitioning strategy

in Figure 13.1(b). For the ease of implementation, instead of directly applying the sup-

porting area definition in Def. 18.1, we utilize the simplified definition in Def. 13.4.

Definition 13.4 Given a d-dimensional grid cell Ci, the supporting area of Ci is an

r-extension to the boundaries of Ci in each dimension. That is, Ci .suppArea =

〈(low1i − r , high1i + r), (low2i − r , high2i + r), ..., (lowdi − r , highdi + r)〉 - Ci , where
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(lowxi , highxi) are the boundaries in the xth dimension of Ci ( 1 ≤ x ≤ d ).

Since the supporting area defined in Def. 13.4 is a superset of the supporting area

in Def. 18.1, it is guarenteed to be sufficient to support each grid cell to be processed

independently without relying on the points in any other cell.

The pseudocode of the map and reduce functions is presented in Figure 13.2. The

input dataset, which resides in HDFS, has no prior partitioning properties, i.e., the data

points are randomly distributed over the HDFS blocks. Each map function retrieves one

data block as well as the space partitioning strategy (Figure 13.1(b)). Then for each data

point pi, the map function produces two types of output records, i.e., core- and supporting-

related records.

The core-related record is one key-value pair record in the form of (K = Ci, V =“0-

pi”), where the key is the ID of the grid cell for which pi is a core point, i.e., pi ∈ Ci. The

prefixed flag “0” in the value component indicates that pi is a core point for Ci (Lines 2-3

in the map function in Figure 13.2). For example, referring to Figure 13.1(b), the mapper

Map 1 generates output record (K = C5, V =“0-p1”) for data point p1.

Mappers also create zero or more supporting-related records for an input data point

pi in the form of (K = Cj , V =“1-pi”), where the key pi ∈ Cj is the ID of the grid cell

for which pi is a support point, i.e., pi ∈ Cj .suppArea. The prefixed flag “1” in the value

component indicates that pi is a support point for Cj (Lines 4-6 in the map function in

Figure 13.2). For example, in Fig. 13.1(b), the mapper Map N generates three additional

output records for point p4 since it is a support point for C3, C6, and C7.

After the internal shuffling and sorting phase based on the cell ID, each group received

by a reducer will correspond to a specific grid cell, say Ci, and will consist of the union

of the core and support points belonging to Ci (See Figure 13.1(b)). The reducer function

categorizes the data points according to their attached flag encoded in the value (lines 2-3

in the reduce function in Figure 13.2). Lastly, it executes an outlier detection algorithm
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to detect outliers within the Ci.core set (lines 4-8).
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DOD with Load Balancing

As presented in Section 13.2, the DOD framework adopting the uniform space parti-

tioning method uniSpace leads to optimal duplication rate when handling uniformly dis-

tributed datasets. However, the datasets in most real-world applications are not uniformly

distributed over the domain space. Therefore, the uniSpace partitioning method may, at

times, cause a severe load imbalance. For example, Reducer 1 in Figure 13.1(b) may pro-

cess grid cell C1 which contains an order-of-magnitude more points than C7 processed by

Reducer M. Load imbalance has been shown to be one of the most challenging problems

for distributed data processing, e.g., [61]. It may not only result in significant slowdown,

but also cause job failure in some cases. In this section, we investigate more sophisticated

partitioning methods to overcome this challenge.

14.1 Data-Driven Partitioning (DDriven)

In this section, we propose a data-driven partitioning method called DDriven that now

takes the data’s distribution into account. Hence, DDriven generates grid cells that,

in spite of having different grid sizes, contain a similar number of data points (equi-
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cardinality cells). DDriven relies on a lightweight pre-processing strategy to determine a

plan for partitioning the domain space into grid cells, henceforth called the partitioning

plan. This new pre-processing phase is composed of two steps, namely distribution esti-

mation and partitioning-plan generation. Both steps can be performed using one MapRe-

duce job.

In the first step, DDriven estimates the distribution of the data by drawing a sample

from the input dataset. We opt for random sampling since it preserves the distribution

of the underlying dataset [62]. Since we only need to roughly estimate the distribution,

the sampling rate Υ as an input parameter by default is set to a small value, e.g., 0.5 %.

Considering the size of big datasets, the sample is generated in a distributed fashion, for

example by drawing samples within the map phase of a MapReduce job. Then, the map-

pers’ output is passed to a centralized node, i.e., a single reducer, for the plan generation

step. Since drawing the random sample at the map phase is intuitive [62], we ignore the

details here.

Map 1 

Map 2 

Map N 

Reduce 
   

HDFS Data 
Blocks 

Generate a sample 
given a sample rateϒ 

(a) The data driven partitioning for generating approximate equi-depth partitions  

Single reducer 
generating an  

equi-depth 
 partitioning plan 

Step 1: 
- Consider the dimension having the 

closest-to-uniform distribution (di) 
- Generate equi-depth di.numBuckets 

partitions on di  

Step 2: 
- Consider the next dimension having the 

closest-to-uniform distribution (dj) 
- For each of the existing partitions, divide 

into equi-depth dj.numBuckets partitions 

Reduce Function 
Inputs:  - Sample data produced from map tasks 
     - di.numBuckets ! Number of desired buckets in each dimension  
 

Output: - Partitioning plan   
 

1.  Begin 
2.      For each dimension di Loop 
3.               di.score " chi-square test on the sample projected on di  
4.      End Loop 
5.  dimList  "  Order the dimensions ascendingly based on 

di.score 
6.    Create equi-depth partitions for the 1st dimension in dimList  
7.     For the subsequent dimension dx in the dimList  Loop 
8.            For each of the existing partitions Loop 
9.                Divide it into dx.numBuckets equi-depth partitions 
10            End Loop 
11.     End Loop 
12.  End 

(b) Pseudocode of the centralized  Reduce() Function  

Figure 14.1: DOD: Equipped with the Data-Driven Partitioning Strategy (DDriven).

In the next step, the partitioning plan is generated by the single reducer (Fig-

ure 14.1(b)). In addition to the sample data, the reducer receives a list that specifies

the number of desired partitions in each dimension. For instance, di .numBuckets is the

number of desired partitions for dimension di. This list is calculated based on the number

of reducers n assigned to the outlier detection task. By default, each dimension has the
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same number of partitions, with di .numBuckets set as d
√
n for a d-dimensional dataset.

The reducer computes for each dimension di a uniformity score, i.e., a chi-square test

score that measures whether or not the values on di are close to a uniform distribution

(lines 2-4). The smaller the score di .score, the more uniformly the points are distributed

over di. Hence the better it is to start with this dimension in partitioning the dataset.

The dimensions are sorted in an ascending order according to their chi-square test score

(line 5). The 1st dimension is selected to be partitioned first (line 6). Then the subsequent

dimension having the next-smallest score, say dx, is selected for further partitioning (lines

7-11). This is performed by considering each of the existing cells, and dividing that cell

over dx into dx .numBuckets . Using this strategy, although the distribution of the dataset

as a whole may be skewed, the subsets falling into each grid cell tend to be relatively

uniform. As illustrated in Chapter 13, a uniformly distributed dataset leads to a low

duplication rate and lower overall costs.

Figure 14.1(a) illustrates an example of the partitioning process. We assume that

the x-axis is the 1st selected dimension. Thus, the points are divided vertically into

dx .numBuckets equi-cardinality cells. The next selected dimension is the y-axis. Each

of the existing vertical partitions will be further divided into dy .numBuckets equi-

cardinality cells. This process proceeds until all dimensions are partitioned. The gen-

erated partitioning plan is then passed to the DOD framework presented in Section 13.1

for deployment.

14.2 Cost-Driven Partitioning (CDriven)

As presented in Section 14.1, the data-driven partitioning method DDriven tries to achieve

a balanced workload across the computational nodes (reducers). However, this is based on

the traditional assumption that an equal number of data points leads to a balanced work-
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load [35, 36, 37, 38]. Although this assumption is widely adopted by most distributed

analytical algorithms, we will show that this does not hold in the context of distance-

based outlier detection. We will demonstrate this important observation using both an

empirical study and a theoretical analysis.

For this we design an experiment to study the effect of the data’s density on the execu-

tion of an outlier detection algorithm (Figure 14.2). We use two datasets, each consisting

of the same number of data points (100KB). However their densities are very different,

where D-Dense is much “denser” than D-Sparse. Here the density is defined as the ratio

of data cardinality to the domain area covered by the data. The domain area covered by

the D-Dense dataset is only 1
4

of the domain area covered by the D-Sparse dataset. By the

above measure, D-Dense is four times denser than D-Sparse.

We then apply the Nested-Loop algorithm [8] to both datasets with the r and k param-

eters set to 5 and 4 respectively. The Nested-Loop algorithm is among the most popular

algorithms for distance-based outlier detection. Its logic is based on the following idea.

Given a data point pi, the algorithm evaluates the distance between pi and other points in

the dataset D in random order until either k neighbors of pi are found (pi becomes inlier),

or all data points in D are examined (pi becomes outlier). As depicted in Figure 14.2,

although the input data size and the algorithm’s input parameters are exactly identical,

the execution performance is entirely different (4.5x slower in the case of D-Sparse).

The intuitive explanation is that the data points in D-Dense are closer to each other.

Thus finding enough neighbors of a given point p within a distance r to declare p as

inlier is relatively faster in D-Dense than that in D-Sparse. That is, the likelihood that

a randomly picked point in D-Dense is a neighbor of p is higher than that in D-Sparse.

Since outliers tend to be rare and thus the vast majority of the data points can be expected

to be inliers, the algorithm applied to D-Dense will terminate early for most points. This

explains the significantly lower overall costs compared to D-Sparse. This experiment
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reveals that the processing costs do not only depend on the dataset’s cardinality, but also

its densities and distribution over the domain space.

Next, we theoretically support this observation by establishing a formal model

(Lemma 14.1) for the family of outlier detection algorithms that rely on random selec-

tion and comparisons among the data points, such as Nested Loop [8].

Lemma 14.1 Given a uniformly-distributed datasetD of cardinality |D| data points, and

parameter settings k and r of the distance-based outlier algorithm, the cost of detect-

ing distance-based outliers based on random comparisons is computed as Cost(D) =

|D |×A(D)×k
A(pi )

, where A(D) and A(pi) represent the areas of the domain space covered by

the entire dataset D and by the distance parameter r around pi, respectively.

Proof. Since D follows a uniform distribution, we have:

Cost(D) = Cost(pi) ×|D | (7)

where Cost(pi) denotes the cost of determining whether or not a data point pi is outlier.

Since pi has, on average, |D | × A(pi )
A(D)

neighbors in D. Then, given any randomly picked

point pj , the probability that pj is a neighbor of pi denoted as µ equals to:

µ = |D | × A(pi )
A(D) / |D | =

A(pi )
A(D) (8)

The cost of processing pi denoted by Cost(pi) is determined by the number of trials

N to acquire k neighbors. Considering the event that a randomly picked point is or is

not a neighbor of pi as a binary variable, then the probability of observing k occurrences

of neighbors in a set of N samples (random trials) follows the Binomial distribution

Bin(k | N , µ) =
(
N

k

)
µk(1 − µ)N−k . And the expected value of N is E (N ) = k

µ
, which

leads to:
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Cost(pi) = k
µ = k

A(pi )

A(D)

= k×A(D)
A(pi )

(9)

By substitution in Eq. (7), we get Cost(D) = |D |×A(D)×k
A(pi )

, which proves the lemma. �

Based on Lemma 14.1, the cost of detecting the distance-based outliers in D relies

on both the number of the data points, i.e., |D|, and the domain space area covered by

the dataset A(D). Since the domain space covered by a sparse dataset D-Sparse is larger

than the domain space covered by a dense dataset D-Dense, we thus can conclude that

Cost(D-Sparse) > Cost(D-Dense).
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Figure 14.2: DOD: Sensitivity of Nested-Loop’s Performance to Dataset Densities.

CDriven Partitioning Algorithm. Inspired by Lemma 14.1, we propose a cost-driven

partitioning method to replace the data-driven partitioning method (DDriven) utilized in

the DOD framework. Instead of setting each grid cell to contain an equal number of

data points, the cost-driven partitioning method called CDriven utilizes the cost model

established in Lemma 14.1 to divides the domain space into grid cells each with similar

respective costs. Therefore, the key improvement of CDriven over DDriven is the criteria

used to determine how to split the large cells into smaller ones in an iterative partitioning

process (line 9 in Figure 14.1(b)).
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14.2 COST-DRIVEN PARTITIONING (CDRIVEN)

Recall that the cost model established in Lemma 14.1 is based on the assumption that

the dataset follows a uniform distribution. We now observe that this is a reasonable model

to use in real-world datasets even if the data is not fully uniform. This is so because, as

presented in Figure 14.1(a), the partitioning method aims to make each grid cell uniform.

Therefore, although the overall distribution of the input dataset may be skewed, each data

subset within a single grid cell tends to be uniform. Hence, the processing costs of each

grid cell calculated by Lemma 14.1 remain accurate estimates.
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DOD with Multi-Tactic Detection

So far the DOD framework follows the state-of-the-art approach of applying the same

centralized detection algorithm to all reducers, e.g., Nested-Loop. However, it has already

been observed in [18] that no conclusive winner emerged among alternative outlier detec-

tion algorithms that consistently outperformed all other algorithms on all datasets. In our

distributed context we now leverage this shortcoming as an advantage. Since each reducer

works independently of all other reducers, multiple distinct detection algorithms can be

deployed concurrently in our DOD framework. That is, we propose the novel multi-tactic

approach that selects a distinct outlier detection algorithm for each data partition driven

by the particular characteristics of the data therein.

With the introduction of this multi-tactic outlier detection approach, the data parti-

tioning problem (performed by the mappers), and the choice of the detection algorithms

(employed by the reducers) become strongly interdependent. That is, to minimize the

overall costs of the distributed outlier detection process, the new problem arises that the

partitioning plan should be driven by the costs estimated from a specific detection algo-

rithm. On the other hand, algorithms must be selected for each partition based on the

characteristics of the data subsets produced by the chosen partitioning plan. Clearly, this

124



15.1 DENSITY MATTERS

is a proverb chicken and egg problem.

15.1 Density Matters

Our proposed solution rests on our solid theoretical analysis and the understanding of the

performance of the typical classes of detection algorithms, such as the Nested-Loop and

Cell-Based algorithms [8]. Our comprehensive analysis reveals that the density of each

partition is the key factor that affects the performance of these algorithms. Again, we will

support this observation both empirically and theoretically.

Similar to Nested-Loop introduced in Section 14.2, the Cell-Based algorithm [8] is

another popular detection algorithm. As an index-based solution, it relies on pruning

strategies to avoid checking un-necessary points. First, it uniformly partitions the domain

space into a set of d-dimensional non-overlapped grid cells, where the length of the cell in

each dimension is r/2 and r is the distance threshold input parameter. Then it hashes each

data point to exactly one grid cell. Each cell maintains the number of points it contains

so that the algorithm can quickly identify all grid cells that have no outlier or no inlier.

Both types of cells can be excluded from any further processing. The data points in the

remaining grid cells have to be evaluated individually, in a fashion similar to Nested-Loop.

First, we evaluate the performance of the Nested-Loop algorithm versus Cell-Based

under different data densities. Again density is defined as the ratio of data cardinality

to the domain area covered by the data. In this experiment, we vary the density of the

datasets by varying the size of the domain area while keeping the number of data points

constant as 10,000. The r and k parameters are set as 5 and 4, respectively.

The results depicted in Figure 15.1 confirm our expectation that densities matter, and

no algorithm is superior in all cases. Better yet, we observe a general trend in the results.

Namely, the Cell-Based algorithm outperforms Nested-Loop in the cases where the data
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15.1 DENSITY MATTERS

is either very sparse or very dense. In contrast, in the intermediate density cases the

Nested-Loop algorithm is faster.

Intuitively the Cell-Based algorithm performs well when handling very sparse or very

dense datasets, because in both cases, many of the d-dimensional grid cells can be directly

marked as outliers (in the very sparse case) or as inliers (in the very dense case). This

then saves computations. In other cases, deciding on the outlier status of the data points

requires more computations on top of the pre-processing phase. Here, the Cell-Based

algorithm suffers from the additional overhead of having to index the data points. It thus

performs worse than Nested-Loop.

Next, we theoretically support this observation based on the cost model we establish

for the Cell-Based algorithm (Lemma 15.1).
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Lemma 15.1 Given a uniformly distributed two-dimensional datasetD of cardinality |D|
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and data points that cover a domain space of area A(D), the cost of detecting distance-

based outliers using the Cell-Based algorithm with parameters r and k is defined as

follows:

(1) Cost(D) = |D| If 9
8 r

2 × |D |
A(D) ≥ k ;

(2) Cost(D) = |D| If 49
8 r2 × |D |

A(D) < k ;

(3) Cost(D) = |D |+ |D |×A(D)×k
π×r2 Otherwise

Proof. In the Cell-Based algorithm, the area covered by each cell Ci corresponds to

A(Ci) = 1
2

( r
2

)2 = r2

8
, where r

2
is the diameter of one rectangular cell. According to the

algorithm, given a cell Ci , if there are more than k points in Ci and its direct adjacent

cells (nine cells in total), then all data points in Ci are marked as inliers. In other words,

if 9
8
r2 × |D |

A(D)
≥ k , then the cost of processing the entire dataset is equivalent to scanning

and indexing the data points. That is Cost(D) = |D|. This proves Equation (1) of

Lemma 15.1.

On the other hand, if there are fewer than k points in the combined cells of Ci and the

cells within 2r distance from it (in total 49 cells), then all points in Ci are guaranteed to be

outliers without requiring any explicit comparisons. In other words, if 49
8
r2 × |D |

A(D)
< k ,

then Cost(D) = |D|. This proves Equation (2) of Lemma 15.1.

If neither of the two aforementioned cases hold, then the unmarked cells need to

execute a Nested-Loop algorithm, in addition to the indexing costs of the entire dataset.

That is, the cost will be Cost(D) = |D |+ |D |×A(D)×k
π×r2 , where |D |×A(D)×k

π×r2 represents the

cost of Nested-Loop as proven in Lemma 14.1. This proves Equation (3) of Lemma 15.1

(3). �

According to Lemma 15.1, in the extreme cases of very sparse and very dense, the

cost of Cell-Based is linear w.r.t |D |. Thus it outperforms Nested-Loop. Whereas in the

other cases, it is more expensive than Nested-Loop due to overhead introduced by the

indexing phase, without added benefit from this extra step.
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Reduce Function 
Inputs:   
     - sample data produced from map tasks 
     - numPartitions ! Number of desired partitions 
     - numReducers ! Number of reducers in the system   
 

Output: - Partitioning plan           // how the data space is partitioned 
               - Execution strategy       // which algorithm will run on which partition 
 
Step 1: Initialization of mini clusters   
1.  - For each mini bucket (mini cluster) b Loop    // Compute some statistics 
2.      - b.count " count of points in b 
3.        - b.densityMeasureArray[] ! chi-square score for each dimension 
4.        - b.densityMeasureGlobal ! Aggregated score for the bucket  
5.  - End Loop 
 
Step 2: Hierarchical clustering and generation of partitioning plan   
1.    - For each cluster c Loop 
2.         - Generate candidate surrounding-neighbors extensions (rectangle shapes) 
3.         - For each candidate cluster, measure the similarities in their densities 
4.         - c.bestExt " The candidate with the highest similarity in densities  
5.    - End Loop 
6.    - nextExt " Select the extension with the highest similarity score 
7.    - Merge the clusters in nextExt to form one cluster, and update its statistics 
8.    - Repeat Step 2 until the number of clusters = numPartitions  
 
Step 3: Cost estimation and generation of execution strategy  
1.  - For each partition p & a possible outlier detection algorithm g Loop 
2.          - Estimate the cost of g on p 
3.          - p.(algorithm, cost) " assign to p the cheapest algorithm at its cost. 
4.  - End Loop 
 
Step 4: Assignments to reducers and generation of assignment plan 
     // Divide the numPartitions partitions into numReducers  groups, where the 
     // sum of costs in each group is roughly the same.  
1.   -MultiBinPacking(numPrtitions, numReducers); 

Figure 15.2: DOD: The Pre-Processing Stage of DMT (Reduce-Side).
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Figure 15.3: DOD: Execution Workflow of the Multi-Tactic DOD Framework.

15.2 Density-Aware Multi-Tactic Optimization

Inspired by Lemma 15.1, we propose a simplistic yet effective density-aware multi-tactic

approach (a.k.a DMT) that successfully decouples the partition generation and the algo-

rithm selection problems. In general, since the density of a partition P determines which

algorithm performs better on P, partitions with similar densities should share the same se-

lection of most appropriate detection algorithm. Therefore, DMT first divides the domain

space into a large number of small regions (called buckets), and then clusters the buckets

with similar densities together into larger clusters. The best detection algorithm is se-

lected for each cluster based on its density. Next, a cost-aware partitioning algorithm is

conducted by treating each cluster as one unit and estimating its detection costs using the

selected algorithm. Eventually the full-fledged DOD framework enhanced with the DMT

optimization effectively minimizes communication and computation costs along with a

balanced workload.
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MapReduce Implementation of DMT. Similar to the cost-aware partitioning tech-

nique introduced in Section 14.2, DMT executes a lightweight pre-processing job with

a centralized reducer. Again, in the map phase, the map tasks output a sample from the

input dataset according to the given sample rate Υ. The only difference is that the map

tasks will assume the entire data space is divided into equal size buckets, called “mini

buckets”. The mini buckets then form the unit of processing. That is, the map tasks will

not produce the individual sample points. Instead, they will aggregate them and produce

the statistics at the mini bucket level.

The reduce function is slightly more complex. It involves four key steps (Figure 15.2).

It receives as input the sample data in the form of mini buckets, the number of avail-

able reducers in the system (numReducers) and the number of desired partitions to be

generated (numPartitions). The number of the desired partitions is computed from the

number of available reducers multiplied by some integer number greater than 1, e.g.,

numPartitions = β × numReducers (β > 1 ). The intuition is that by having the num-

ber of partitions larger than the number of reducers, balancing the load among the reducers

will be easier (refer to Step 4 in Figure 15.2).

In Step 1, each reducer computes the final aggregation of the mini buckets passed to

it from the mappers. Several key statistics are computed for each mini bucket. These

include the density measure w.r.t each dimension (Step 1, line 3) and an aggregated den-

sity measure over the entire mini bucket (Step 1, line 4). After Step 1, each mini bucket

is treated as a micro-cluster. Step 2 applies a hierarchical clustering approach to group

the mini buckets with similar densities into numPartitions final partitions such that each

partition best conforms to one particular outlier detection algorithm. The clustering algo-

rithm is similar to traditional hierarchical clustering algorithms, e.g., BIRCH [63], with

the following customization: (1) our clustering algorithm takes the spatial properties of

the clusters into account, i.e., only the spatially-adjacent clusters of similar densities are

130
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considered for possible expansion, (2) only rectangle-shaped clusters are allowed for a

simple plan, and (3) the cardinality of each cluster is upper bounded by a threshold cor-

responding to the maximum number of data points that a single reducer can handle in

main-memory. Mapping the memory limitation of a reducer to this cardinality constraint

is straightforward, since a linear relationship exists between the memory consumption

and the cardinality of the dataset.

In Figure 15.2, the reduce function tests the valid expansions for each cluster c (Step 2,

line 2). For each candidate expansion of c, a similarity measure, e.g., diameter metric [64],

is estimated for the to-be-merged clusters based on their densities (Step 2, line 3). The

candidate expansion with the highest score is selected as the best expansion of c. Finally,

the best overall expansion in all existing clusters is selected and its sub-clusters are merged

together (Step 2, lines 6-7). In the case of ties, the candidate expansion involving smaller

clusters will be given a higher priority to balance the sizes of the clusters.

Step 2 repeats until the number of existing partitions reaches numPartitions (Step 2,

line 8). It is worth highlighting that the computations involved in each iteration of Step 2

(after the 1st one) are cheap. The reason is that most computations are re-usable between

the different expansion operations. The only similarity measures that must be computed

from scratch are those related to the newly-formed cluster. The outcome of Step 2 is the

final partitioning plan to be used in the DOD framework by the mappers.

Step 3 then decides on the execution strategy, i.e., which outlier detection algorithm

should be used for which partition. For each partition P and a specific algorithm A, the

cost of A is estimated based on P ’s properties including its size and densities (Step 3, line

3). The most efficient algorithm will be assigned to partition P .

The last step of this pre-processing phase (Step 4 in Figure 15.2) is then to assign the

partitions to reducers. Recall that numPartitions is larger than numReducers. This gives

us a degree of flexibility to make the assignments and balance the overall load. The load
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is measured as the sum of costs of the partitions assigned to a given reducer. This problem

is equivalent to the problem of multi-bin packing, in which a set ofN numbers needs to be

divided into K subsets, such that the sums within each subset are as similar as possible.

This problem is known to be NP-Complete. Several approximation algorithms have been

proposed to solve it. In DOD, we adopt the polynomial-time algorithm proposed in [65].

Overall Workflow of DOD. In Figure 15.3, we summarize the execution workflow

of the multi-tactic DOD framework. The workflow consists of two MapReduce jobs: the

pre-processing job (top), and the outlier-detection job (bottom). The pre-processing job

produces three types of outputs generated by the density-aware multi-tactic optimization

phase (Figure 15.2). Figure 15.3 illustrates the flow of these outputs to the DOD frame-

work. More specifically, the output of Step 2 (the partitioning plan) is passed to the map

phase of the DOD framework. The output of Step 3 (the algorithm selection) is passed to

the reduce phase. The output of Step 4 (the assignment plan) is passed to the partitioner

function to stipulate which partitions are assigned to which reducers.
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Performance Evaluation

16.1 Experimental Setup & Methodologies

Experimental Infrastructure. All experiments are conducted on a shared-nothing clus-

ter with one master node and 40 slave nodes. Each node consists of 16 core AMD 3.0GHz

processors, 32GB RAM, 250GB disk, and nodes are interconnected with 1Gbps Ether-

net. Each server runs CentOS Linux (kernel version 2.6.32), Java 1.6, Hadoop 1.0.1. Each

node is configured to run up to 8 map and 8 reduce tasks concurrently. The sort buffer size

is set to 512MB. Speculative execution is disabled to boost performance. The replication

factor is set to 3.

Datasets. We utilize the OpenStreetMap dataset [40] to evaluate the performance of

our strategy on real world application data. OpenStreetMap (500 GBs) is one of the largest

real datasets publicly available and has been used in other similar research work [40].

OpenStreetMap contains the geolocation information of buildings all over the world. Each

row in this dataset represents a building. Four attributes are utilized in this experiment,

namely ID, timestamp, longitude, and latitude.

In order to evaluate the robustness of our proposed methods for diverse data distribu-
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tions, we pick four segments from the whole dataset corresponding to buildings in Mas-

sachusetts, Ohio, California, and New York respectively. The four segments are equally

sized (≈30 million points). However, they vary significantly in their densities, i.e., New

York and California are very dense, Ohio is relatively sparse, and Massachusetts is in the

middle between them. In addition, we build hierarchical datasets with Massachusetts as

the smallest unit, then New England, then the United States, up to the whole planet. The

number of data points gradually grows from 30 million to 4 billion.

Lastly, to evaluate how DOD performs on terabyte level data we further generate a

2TB synthetic dataset based on the real OpenStreetMap dataset. More specifically, we

developed a tool that randomly creates a distortion of the original dataset D by replicat-

ing each point p in D three times to generate p′, p′′, p′′′, each with a random degree of

alteration on each dimension of D.

Metrics. We measure the end-to-end execution time, which is common for the evalu-

ation of distributed algorithms. Furthermore, we measure the breakdown of the execution

time for the key stages of the MapReduce workflow including the preprocessing time, the

partitioning (map) time, and the processing (reduce) time.

Experimental Methodology. We evaluate two key components of our MapReduce

outlier detection algorithms, namely the partitioning method at the mapper side and the

outlier detection method at the reducer side. In particular for the partitioning method,

we evaluate four alternative strategies, namely (1) the default domain-based partitioning

without supporting area Domain, (2) the uniform domain space partitioning uniSpace with

supporting area (Sec. 13.1), (3) the data-driven partitioning DDriven (Sec. 14.1), and (4)

the cost-driven partitioning CDriven (Sec. 14.2). Their performance is evaluated for

varying sizes of datasets and diverse distributions. We use the domain-based partitioning

Domain as the baseline approach to compare our proposed partitioning methods against.

Domain needs an additional MapReduce job to confirm the outlier status of a point p if p
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is at the edge of a partition and is classified as an outlier in the first MapReduce job.

For outlier detection at the reducer side, we evaluate three alternative algorithms,

namely Nested-Loop, Cell-Based, and the multi-tactic detection algorithm proposed in

Sec. 15. Nested-Loop is the basic distance-based outlier algorithm widely adopted in the

literature, while Cell-Based is the most commonly used index-driven detection algorithm.

To avoid any influence of the partitioning method on the result, the same partitioning

method is deployed for each, namely the data-driven partitioning DDriven.

We also compare the full-fledged DOD solution against the state-of-the-art centralized

distance-based outlier detection algorithm DOLPHIN [44] to confirm the scalability of

DOD (with CDriven partitioning and multi-tactic detection processing).

16.2 Evaluation of Partitioning Methods

First we conduct experiments to evaluate the effectiveness of the partitioning methods.

Effectiveness Evaluation For Various Distributions With Real Datasets. In this set

of experiments we evaluate the performance of our partition methods under diverse data

distributions using Ohio, Massachusetts, California, and New York areas. We show the

performance of the Domain, uniSpace, and DDriven strategies relative to our proposed

CDriven partitioning strategy. To exclude the influence of detection algorithm, we fixed

the detecting algorithm at the reducer side to be the Nested-Loop solution in Figure 16.1(a)

and the Cell-Based algorithm in Figure 16.1(b).

Clearly, as depicted in both Figures 16.1(a) and 16.1(b), the cost-driven partitioning

method significantly outperforms all other alternatives up to 5 fold, no matter how the data

distribution changes. Our uniSpace partitioning strategy outperforms the default Domain

partitioning method. This is due to the fact that uniSpace ensures that the detection task

can be done in a single pass, therefore incurring much smaller communication costs.
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Figure 16.1: DOD Partitioning: Effectiveness Evaluation for Various Distributions.
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Figure 16.2: DOD Partitioning: Scalability Evaluation For Varying Data Sizes.

However uniSpace is not effective at load balancing, because the real datasets tend to

be skewed. Therefore on average, the performance is 40% worse than that of DDriven.

On the other hand, although DDriven ensures that each partition has a similar number

of data points, the workload on each reducer is not effectively balanced, confirming the

observation that an equal number of data points does not guarantee an equal workload.

Our final CDriven partitioning strategy instead achieves true load balancing. Therefore it

outperforms DDriven by at least 50% and all other methods more significantly (up to five

fold).

136



16.2 EVALUATION OF PARTITIONING METHODS

Scalability Evaluation For Varying Data Sizes. Next we evaluate the scalability of

our partitioning method on increasing dataset sizes, from the Massachusetts dataset, New

England dataset, United States dataset, to the entire OpenMapStreet dataset. The results in

Fig. 16.2 show that the cost-driven partitioning method CDriven consistently wins in all

cases. Better yet, the larger the dataset, the more it wins. In particular when the dataset is

the largest (the planet dataset), CDriven is 6 times faster than the second best partitioning

method DDriven and 17 times faster than the default Domain partitioning. This thus

demonstrates that our partitioning method is scalable to real-world large datasets.
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Figure 16.3: DOD Detection Methods: Effectiveness Evaluation.
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Figure 16.4: DOD Overall Approach: Performance Breakdown & Scalability.
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16.3 Evaluation of Detection Methods

In this section, we focus on the evaluation of the outlier detection algorithms applied at

the reducer side. Three algorithms are considered in this set of experiments, namely the

Nested-Loop and Cell-Based algorithms and the novel multi-tactic algorithm proposed in

Chapter 15.

Effectiveness Evaluation For Varying Data Distributions. In this experiment, we

utilize the Massachusetts, Ohio, California, and New York areas to evaluate the efficiency

of the three detection algorithms with diverse data distributions. As shown in Figure

16.3(a), Cell-Based is at least two times faster than Nested-Loop when processing the

California and New York datasets. The reason is that overall, California and New York

are densely populated. As proven by Lemma 15.1, Cell-Based theoretically performs

better than Nested-Loop on dense datasets. Our multi-tactic algorithm further outperforms

Cell-Based by a factor of 2, because it integrates the advantages of both Cell-Based and

Nested-Loop. That is, it adapts to Cell-Based when handling very dense or very sparse

data partitions, while automatically switching to Nested-Loop when the density of the

data partition is in the middle.

As the dataset gets sparser and sparser, the dataset contains more outliers. In this

case, the pruning ability of the Cell-Based method becomes less effective. Therefore its

running time increases dramatically. On the other hand, the running time of Nested-Loop

increases at a more steady pace. As shown in Figure 16.3(a) Nested-Loop outperforms

Cell-Based when processing the Ohio data − the most sparse out of the four. This again

confirms our cost analysis in Sec. 15.1 with respect to these two typical classes of outlier

detection algorithms. The running time of our proposed multi-tactic algorithm remains

stable as the data distribution changes. It has overall much better performance in all cases.

Scalability Evaluation For Varying Data Sizes. In this experiment we evaluate the
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scalability of different detection algorithms utilizing real datasets. Similar to the scal-

ability test in Sec. 16.2 we increase the size of the real dataset by utilizing first the

Massachusetts only dataset, then New England, the United States, up to the entire Open-

StreetMap dataset. As shown in Figure 16.3(b), our multi-tactic algorithm consistently

outperforms Nested-Loop and Cell-Based. The larger the dataset, the more multi-tactic

wins. This is so because the larger datasets tend to be more skewed. In other words, large

data usually contains not only many sparse partitions, but also many dense partitions.

However as demonstrated in Sec. 15.1 neither Nested-Loop nor Cell-Based performs

well under all circumstances. Our multi-tactic algorithm is able to dynamically adapt to

Nested-Loop or Cell-Based for each partition based on its distribution. Therefore multi-

tactic scales well to large datasets.

16.4 Evaluation of Overall Approach

In this section we focus on the evaluation of the overall approach. We measure the break-

down of the execution time for all key stages of the MapReduce workflow. We also

compare our approach against the centralized distance-based outlier detection algorithm

DOLPHIN [44].

The Breakdown of the Execution Time. We measure the preprocessing time, the

partitioning time, and the detection time separately. At the mapper side, four partitioning

algorithms are considered, namely the baseline Domain partitioning and our uniSpace,

DDriven, and CDriven partitioning strategies. At the reducer side for CDriven partition-

ing we apply the multi-tactic strategy for outlier detection. CDriven and multi-tactic in

combination in fact constitute our final overall integrated DMT approach presented in

Chapter 15. For the other three partitioning methods we apply the Cell-Based detection

algorithm. This is because Cell-Based is confirmed by our additional experiments to be
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16.4 EVALUATION OF OVERALL APPROACH

the algorithm that on average fits this dataset better than Nested-Loop. In this experi-

ment we use the 2TB dataset derived from the OpenStreetMap dataset (see Sec. 16.1).

Therefore this dataset also confirms the scalability of DOD on terabyte-scale data.

As shown in Fig. 16.4(a), the preprocessing time of CDriven (DMT) is longer than

DDriven. This is expected because CDriven utilizes a hierarchical clustering approach to

group data with similar densities together. This is expensive. Domain and uniSpace do

not feature this preprocessing stage. Therefore no preprocessing costs are experienced.

In the partitioning map stage, all four approaches take almost the same amount of time.

For all, each datum can be mapped to its corresponding partition in near constant time. At

the reduce stage, DMT significantly outperforms other alternatives up to 10 fold for the

following two reasons. First, the CDriven partitioning of DMT achieves true workload

balancing across the reducers by utilizing our cost models designated for each known de-

tection algorithm. Second, given a particular partition, the multi-tactic detection method

automatically adapts to the algorithm best fitting the data characteristics of that partition.

Although this “dense” dataset on average fits the Cell-Based algorithm better than the

Nested-Loop algorithm, there are still many relatively sparse partitions for which Nested-

Loop is more appropriate.

Comparison to State-of-the-Art Centralized Algorithm. In this experiment, we

compare our most advanced DOD solution (DMT) against the state-of-the-art centralized

method DOLPHIN [44]. The centralized DOLPHIN algorithm, supported with an in-

dexing mechanism customized for distance-based outlier detection, executes on a single

node in our cluster with a maximum storage capacity of 250GB. Therefore we now use a

subset of the real OpenStreetMap dataset with size 200GB. Using a small dataset biases

the centralized algorithm, since centralized algorithms cannot support datasets larger than

the available disk capacity of one machine in the best case. Hence it cannot handle very

large datasets. The results shown in Figure 16.4(b) confirm the expected behavior. The
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16.4 EVALUATION OF OVERALL APPROACH

centralized algorithm performs better when the distributed algorithm uses few nodes (2

nodes), because the overhead of distribution, partitioning, and communication exceed the

speedup from parallel processing. In contrast, as the degree of distribution increases (to

5 nodes), the savings dominate the overhead. Our DOD approach beats the centralized

DOLPHIN algorithm. When the number of nodes increases to 35, DOD is 19 times faster

than DOLPHIN and 20 times faster than the 2 node case. This also confirms that our

DOD approach is scalable in the number of compute nodes.

141



17

Related Work

Centralized Outlier Detection. The concept of distance-based outliers was first pro-

posed in [8] along with popular two detection algorithms described in Sections 14.2 and

15.1. [44] improved upon these prior results [8] by introducing the pivot-based index

technique. However, this technique depends on building a global index. This thus does

not fit well the popular distributed shared-nothing architectures such as MapReduce be-

cause the overhead of building and then sharing the index among different machines can

be prohibitively high.

Distributed Outlier Detection. Hung and Cheung presented a parallel version of the

basic Nested-loop algorithm for distance-based outlier detection [66]. However, this

technique requires synchronization between the worker nodes. Thus, it is not suitable for

MapReduce-like infrastructures where mappers (and similarly reducers) work indepen-

dently from each other.

Angiulli et al. [35] presented a distributed detection algorithm to support KNN based

outlier definition [9]. First, it represents the original dataset using a compact solving set.

Then given a data point pi, its status as an outlier can be approximated by comparing

pi to only the elements in the solving set. Therefore [35] provides an approximate re-
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sult, whereas we instead focus on providing an exact solution for distance-based outlier

detection.

Bhaduri et al. [36], also working with the KNN based outlier definition, developed

a distributed algorithm on a ring overlay network leveraging a multi-core cluster of ma-

chines. Their algorithm passes data blocks around the ring allowing the computation of

neighbors to proceed in parallel. Along the way, each point’s neighbor information is up-

dated and distributed across all nodes. A central node is utilized to maintain and update

the topn points with largest k nearest neighbor distances. Checking the test blocks in a

round robin fashion, which requires m iterations, is not suitable for map reduce. Further-

more, MapReduce also does not feature central node.

The distributed outlier detection algorithms presented by Otey et al. [38] and Anna

et al. [37] focus on very domain specific outlier definitions instead of the more general

notion of distance-based outlier targeted by our work. The first algorithm utilizes the de-

pendencies among all attributes for tackling mixed-attribute data, while the second uses

value frequency to tackle categorical data. Unlike distance-based outliers, such tech-

niques do not utilize distance between each pair of data points to detect outliers. Thus

their techniques cannot be applied to solve our problem.

Advanced Analytics in MapReduce. The efficiency of our DOD approach relies on

important strategies in distributed systems such as load balancing, efficient partitioning

and sampling. These concepts have also been discussed in the MapReduce context with

respect to other advanced analytics tasks.

The problem of performing similarity joins using MapReduce has attracted significant

attention. In [39], the authors proposed the MR-MAPSS algorithm which partitions the

input data into work sets with minimal redundancy. It achieves load balancing by repar-

titioning the densely clustered large work sets. However their load balancing method

relies on the traditional load balance assumption, namely an equal number of data points
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indicating equal work load. This assumption is proven to be not true for distance-based

outlier detection (see Sec. 14.2).

Research work also has been done for KNN-Joins on MapReduce. The approxima-

tion algorithm in [40] first maps the multi-dimensional datasets into one dimension using

space-filling curves (z-values), and then transforms the KNN join into a sequence of one-

dimensional range searches. This way, the partitioning of a multi-dimensional dataset is

reduced to an equal size one-dimensional partitioning problem. This technique cannot

be applied to our context. First, we focus on producing exact and complete results of

distance-based outliers instead of approximation. Second, this approximation method is

shown to be not suitable for skewed data, while outlier detection usually handles skewed

data [18].

[14] studies density-based clustering on MapReduce. Although density-based clus-

tering is the clustering definition most closely related to distance-based outliers, this ap-

proach cannot be directly applied to solve our outlier detection problem. This is due to

the fact that inroducing outliers as by-products of clustering has already been shown not

to be effective in capturing abnormal phenomena [18]. Furthermore, density-based clus-

tering has been shown to be more expensive than distance-based outlier detection [48],

because the cluster structure is more complex to detect and update than the individual

outlier points due to the inter-dependence among data points. Therefore applying the

density-based clustering algorithm to detect outliers is neither effective nor efficient.

In particular the BoW method [14] supports density-based clustering over MapRe-

duce. It focuses on minimizing the I/O and networking cost among all processing nodes.

In order to reduce the network traffic cost, a specific sample phase is introduced to gen-

erate initial clusters. Our proposed methods share this idea. However in our work the

sampling is only utilized to to estimate the cost of each partition in the pre-processing

phase.
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Part IV

Distributed Outlier Detection: LOF
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The Distributed LOF Approach

As shown in Sec. 2.2 computing LOF requires a number of steps. The intermediate

k−distance and LRD values must be determine for all points before the LOF score can

be calculated.

In the centralized LOF implementation[67], first the k-nearest neighbors (kNN) of

each point are computed using an index structure to achieve O(nlogn) complexity for

this step. The neighbors and k − distance of each point are then materialized in an n ∗ k

global database table. Two passes are made over the database to compute the LRD and

LOF values. In each of these passes the intermediate values for the neighbors of each

point are updated, maintained in the global data table, and then utilized in the next step of

the computation.

Applying the above centralized approach in the shared nothing distributed architec-

ture is not practical. First, when computing the (kNN) of one given point the centralized

approach assumes it has the access to all data points. However in the distributed set-

ting the points in the dataset are distributed among different machines according to some

partitioning plan. Within each node in the compute cluster, only part of the data can be

accessed. Therefore very possibly the kNN of one point is located in other machines.
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Therefore a distributed kNN search approach must be designed.

Second, even if the kNN of each point can be computed, it is not feasible to store the

neighbors and k − distance of all points in one single compute node as a database table

considering the size of the big dataset. Therefore such intermediate values have to be

stored in different compute nodes. This inevitably complicates the next two steps of LOF

computation, namely the computation of LRD and LOF values. For example given a point

p when computing its LRD value, we have to first locate the compute nodes that store its

kNN and then retrieve such information back from the corresponding tables. Therefore

distributed mechanism has to be designed for the efficient maintenance and retrieval of

intermediate results. This is challenging, since the shared nothing architecture does allow

data exchange at will.

To solve these problems in this section we propose the first distributed LOF approach

or in short DLOF that conducts each step of LOF computation in a highly distributed

fashion. DLOF features two key strategies, namely the supporting area partitioning and

localized intermediate data maintenance.

Supporting Area Partitioning. As shown above the design of a partitioning plan

which facilitates a kNN search is a key element in the distributed LOF approach. In-

tuitively, a good partitioning plan must take the locality of each data point into consid-

eration. In other words the data points close to each other should be grouped together.

Therefore as a first step, we can partition the entire domain space of a dataset D into n

disjoint cellsCi such that C1 ∪ C2 ∪ ... ∪ Cn =D. Then points are grouped based on their

membership in a cell. However, even with nearby points grouped together, the neighbors

of some points, particularly those that lie along the boundary of each partition, may have

nearest neighbors mapped to another partition. For instance, in Figure 18.1 the point p1

in cell C2 may be the neighbor of points in cell C1.

To solve this boundary problem we introduce the concept of supporting area parti-
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Point p1 will be mapped to both cell C1 as a supporting point, and cell C2 as a core point.

Figure 18.1: DLOF: Supporting Area of Partition C1 .

tioning, as formally defined in Def. 18.1. The points inside a cell Ci, referred to as the

Ci’s core points, are denoted as Ci .core = {pj | pj ∈ Ci}. The data points within the

supporting area of cell Ci may affect the kNN decision of at least one core point of Ci.

Definition 18.1 Supporting Area. The supporting area of a grid cell Ci, denoted as

Ci.suppArea, is an extension of the boundaries of Ci in each dimension of D. All data

points pj (also called support points)∈ Ci .suppArea satisfy the following two conditions:

(1) pj 6∈ Ci .core, and (2) there exists at least one point pk ∈ Ci .core such that dist(pj , pk)

≤ k − distance(pk).

This strategy categorizes data points into two classes, namely core points and support

points, ensuring that each point pwill have all information within its local partition needed

to find it’s nearest neighbors. Figure 18.1 highlights in grey the supporting areas of cell

C1. Each cell Ci will be augmented with its support points in addition to its core points.

For example, C1 will be extended to contain support points along with its circle-shaped

core points. Given a point it will only be the core point of one

Clearly the key of the supporting area partitioning strategy is to define the boundary of

the supporting area for each cell. In the next two sections we will discuss two alternative

solutions in depth. In the rest of this section, we treat the partitioning solution as a black

box for the simplicity of presentation.
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Figure 18.2: DLOF: Data Point Close to the Partition Boundary.

Localized Intermediate Data Maintenance Given a solution to the partitioning prob-

lem, the k − distance of each point in the dataset can be determined as a first step in the

distributed LOF algorithm. Figure 18.2 shows how the partitioning plan is used in the

execution of a single MapReduce job.

Initially, data points may be scattered among different HDFS data blocks. These

blocks are input to mappers, which assign the points to cells, and label each point as

either a core point or support point. Then, each reducer receives one cell as input. Within

that cell the kNN of each core point is found and used to determine its k− distance. The

k − distance value is then used in the next step of the algorithm to compute the Local

Reachability Density (LRD). For each point p, computing the LRD depends not only on

the k − distance of p, but also the k − distance of each neighbor of p.

Herein lies another challenge. Although the supporting area strategy allows us to

identify the neighbors of each core point within a given partition, some of these neigh-

bors may be support points, which have their k− distance computed in a different parti-
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tion. Therefore, the information necessary to compute the LRD of the core points is not

available because of lacking global information about the dataset.

To resolve this problem we introduce our localized intermediate data maintenance

strategy. First, each point is assigned a unique ID as its identity. Then each reducer

writes back its core points along with the IDs of their kNN and k − distances to its

local HDFS. Furthermore, at the same time given a core point, its partitioning related

information will also be written out such as which partition it is assigned to as core point

and in what partitions it is classified as support point.

Then in the next step for the computation of LRD, mappers read in the new points

and assign them to the corresponding partitions based on the partitioning information

embedded in each point. Each reducer then map the received points (both core points and

support points) to a hash table with the ID as key and k−distance as value. Now for each

core point p, we have sufficient information to calculate its LRD even if its neighbors are

support points, since each support point now also has the k− distance associated with it.

Furthermore, the k − distances of p’s neighbors can be located in constant time utilizing

the hash table.

Therefore this localized intermediate data maintenance strategy, although intuitive,

successfully solves the problems caused by the lack of global information about the

dataset in the distributed setting.

This process of calculating values for each point and localized maintenance of in-

termediate results must be repeated again, because the LRD value is required for each

neighbor of a core point to finally compute the LOF score.

Algorithm 8 gives a general approach to distributed LOF , comprised of the three

steps outlined above corresponding to three separate MapReduce jobs, where the output

of each is the input to the next. Figure 18.3 illustrates this framework. The approach cor-

rectly discovers outliers, and represents the solid foundation upon which key optimization
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Figure 18.3: DLOF: Overall Process With Multiple MapReduce Jobs.

strategies are then introduced.

Algorithm 8 Baseline Distributed LOF Algorithm
1: s← partitioning strategy
2: k ← number of nearest neighbors
3: Function {Map1(key k, value p) }
4: output: (s(p), p)

map each point to partition
5: Function {Reduce1(key part-id, val-list [p1,. . . , pm]) }
6: for each point p ∈ val-list do
7: find k neighbors
8: output: (p, {n1, . . . , nk, k − dist})

9: Function {Map2(key p, value {n1, . . . , nk, k − distance}) }
10: output: (s(p), {p, n1, . . . , nk, k − dist}))

partition
11: Function{Reduce2(key part-id, val-list [p1,. . . , pm]) }
12: for each point p ∈ val-list do
13: find k neighbors
14: compute LRD(p)
15: output: (p, {n1, . . . , nk, LRD(p)})

16: Function{Map3(key p, value {n1, . . . , nk, LRD(p)}) }
17: output: (s(p), {p, n1, . . . , nk, LRD(p)}))

partition
18: Function{Reduce3(key part-id, value-list [p1,. . . , pm]) }
19: for each point p ∈ val-list do
20: find k neighbors
21: compute LOF (p)
22: output: (p, LOF (p))
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Pivot-Based Distributed LOF

As shown in Chapter 18 the key of the DLOF approach is to design an effective partition-

ing method that divides the data set into cells (containing core points), and then define the

supporting area for each cell (support points) such that each compute node can find the

kNN for the core points assigned to it, independent of other nodes.

Before presenting our partitioning method, we first introduce the duplication rate met-

ric that is used to measure the efficiency of the generated partitioning plan.

The cost of a typical MapReduce algorithm is usually determined by two factors,

namely communication and computation costs. The communication costs correspond

to the costs of transmitting data from mappers to reducers. Often, if not always, the

communication costs are the dominant costs of a MapReduce job [60]. Similar to the

communication costs, the computation costs (especially those of the reducers) are also

directly related to the number of the data points transmitted from mappers to reducers,

i.e., the more data points that are received by the reducers, the more computational work

is performed by them.

Definition 19.1 Duplication Rate (dr). For a dataset D and a MapReduce algorithm

A for computing LOF for all points in D, the “duplication rate” dr(D, A) ∈ [1,∞]
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represents the average number of duplicates that the mapper phases of A generate per

data point pi ∈ D.

Using the supporting area partitioning strategy, each data point has to be transmitted at

least once from mappers to reducers, as a core point of one cell, and possibly many more

times, as a support point of other cells. Therefore, the efficiency of a partitioning method

can be modeled using the notion of “Duplication Rate”, which refers to the average

number of duplicates mappers need to create for each input data point. The larger the

duplication rate, the more data points must be transmitted from mappers to reducers, and

thus the higher the communication and computation costs. The duplication rate is defined

next.

Obviously if we assign the whole data set to each partition as its supporting area,

each reducer is able to independently discover the kNN for its core points. However the

duplication rate will be extremely high. Therefore this is not a practical solution. Next

we present our pivot-based partitioning method that yields a lower duplication rate than

this naive approach by only including support points that have the potential to be in the

kNN of the core points in a given cell. Applying this partitioning method in our DLOF

approach, our pivot-based partitioning based LOF approach (PDLOF) provides the first

full-fledged distributed LOF solution.

19.1 Pivot-Based Partitioning

The central idea of pivot-based partitioning is to divide the dataset by choosing a small

set of n initial points, or pivots, from the domain space in a pre-processing step. Each

input point in the dataset is then assigned to its closest pivot. Grouping data according

to their proximity to these n pivots results in a division of the data space into n disjoint

Voronoi cells. This division comprises a unique partitioning of the domain space known as
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19.1 PIVOT-BASED PARTITIONING

a Voronoi diagram, which is depicted in Figure 19.1 for n = 5 pivots. A formal definition

of a Voronoi cell is as follows:

Definition 19.2 Voronoi Cell Given a dataset D and a set of pivots P = {p1, p2, . . . , pn}

we have n corresponding Voronoi cells V1 . . . Vn where V1 ∪ V2 ∪ ... ∪ Vn = D. If i 6= j,

Vi ∩ Vj = ∅ and

Vi = {q | distance(q, pi) ≤ distance(q, pj)} ∀q ∈ D, i 6= j

Figure 19.1: DLOF: Voronoi Diagram-Based Partitioning

By partitioning data into Voronoi cells, nearby data points are grouped together. There-

fore the locality of the data points are preserved. However still the nearest neighbors of

some points may fall in other partitions such as the points at the edge of each Voronoi

cell. A supporting area is required to determine the kNN of such points as shown in Fig.

19.1.

A major benefit of using a pivot-based strategy is that in the process of partitioning

the data we can learn information about each cell, namely, the distance from each point

to the pivots. This information can be utilized to derive bounds on the possible distance

from any point in a partition to it’s neighbors, and therefore a bound on the k − distance

of all points in the cell. This bound can then can be utilized to determine which points

must be included in the supporting area of the cell.
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19.1 PIVOT-BASED PARTITIONING

To establish this bound we first introduce the upper bound on the distance from one

point in a Voronoi cell Vj to any point in a Voronoi cell Vi.

Definition 19.3 Given a Voronoi cell Vi with pivot pi, the upper bound on the distance

from one point s ∈ Vj, i 6= j to any point ∈ Vi denoted as ub(s, Vi):

ub(s, Vi) = maxdist(Vi) + distance(pi, pj) + distance(pj, s)

where maxdist(Vi) is the greatest distance from the pivot of pi to any point within its cell

Vi.

Figure 19.2: DLOF: Upper Bound On K-distance For Points in Partition Vi

The geometric meaning of this bound is illustrated in Figure 19.2. Intuitively given

one point t in a Voronoi cell Vi, in the worst case its distance to one point s in another

Voronoi cell Vj ub(t , s) is the distance between the pivot pi of Vi and the pivot pj of Vj

plus the distance between t and its pivot pi and the distance between s and its pivot pj .

This worst case happens only when: (1) the t, pi,pj , and s can be connected by one straight

line and t,s; (2) s and t are located at the opposite side of their corresponding pivots. Then

the upper bound on the distance from s ∈ Vj to any point in Vi ub(s ,Vi) is ub(tmax , s)

where tmax is the furthest point to pivot pi in Voronoi cell Vi. The formal proof can be

found in [68].

Calculating this upper bound is straightforward if for each Voronoi cell we track and

maintain the point which is furthest to its pivot during the processing of pivot partitioning.
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Utilizing this bound, we can derive an upper bound φ of the k-distance for all points

in a Voronoi cell Vi.

First, we find a set of k points Sj in each Voronoi cell Vj with the smallest upper

bound distances to all points in Voronoi cell Vi. By definition 19.3 these k points in fact

corresponds to the kNN of pivot pj . Similar to the furthest point to pj , these k points can

be discovered and maintained in the partitioning process.

Second, after we acquire the k * (n-1) points S from the n -1 Voronoi cells (excluding

Vi itself), we find the k points from S {s1 . . . sk}with the smallest ub(si, Vi) as the kNN of

all points in Vi denoted as KNN (Vi). Then the upper bound k-distance can be determined

by Lemma 19.1

Lemma 19.1 Upper Bound k-distance For each Voronoi cell Vi, the upper bound k-

distance φi for all points t ∈ Vi is given as:

φi = max
∀s∈kNN(Vi)

‖ub(s, Vi)‖

Intuitively for any point t in Pi we can find at least k points around t within distance

range φi, since in this range it includes at least the k points in KNN (Vi). Naturally the

actual kNN of t would not be out of this scope. Thus the distance by which each cell must

be extended to include support points can be safely bounded by φi. φi can be calculated

almost for free if the furthest point and the kNN of each pivot pi are maintained in the

partitioning process as discussed above.

Note in step (1) in fact the k points Sj found in one Voronoi cell Vj is already sufficient

to bound the kNN of all points of Voronoi Vj , since utilizing the largest ub(s ∈ Sj, Vi) is

also able to cover at least k points around any point t in Vi. However in step (2) we further

tighten this bound by defining KNN (Vi).
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Next we show how to utilize φi to determine whether a point t in Voronoi cell Vj is

a supporting point of a given Voronoi cell Vi. The evaluation rule is defined in Lemma

19.2.

Lemma 19.2 Given a Voronoi cell Vi, the necessary condition that a point s ∈ Vj be

assigned to the supporting area of Vi is:

distance(s, pi)−maxdist(Vi) ≤ φi

Here we give an intuitive proof of Lemma 19.2. The distance between point t and

any point in Vi is guaranteed to be larger than dist(s , pi)−maxdist(Vi) (1). If (1) is

larger than φi, then s would not be the kNN of any point in Vi by Lemma 19.1. Therefore

Lemma 19.2 holds.

Overall Approach. In the pre-processing phase each point in HDFS is assigned

to a Voronoi cell as a core point. In this phase some statistics information including

maxdis(Vi) and kNN of pi is also collected and utilized to compute φi, namely the upper

bound on the k − distance of all points in each Voronoi cell Vi. In the map phase of

the second mapReduce job Lemma 19.2 is applied to evaluate whether a core point in Vi

should be mapped to one or more supporting areas of other cells. This ensures that at the

reduce phase each voronoi cell is self-sufficient to discover the kNN of all its core points.

The kNN search is then conducted independent of other reducers.

19.2 Pivot-Based kNN search

Finding kNNs in each partition is a quite expensive process. Although the kNN search

is completely parallelized in our PDLOF approach, it is still shown as the bottleneck of the

whole LOF computation process. To mitigate this problem here we propose a novel kNN
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19.2 PIVOT-BASED KNN SEARCH

search algorithm that fully utilizing the information collected during the Voronoi-based

partitioning process.

Figure 19.3: DLOF: Pivot-Based Index.

In each partition, we rearrange data points according to their distance to the pivot

R. Figure 19.3 shows the index for a dataset. The left part shows the original dataset.

The green circle at the center is the pivot point. The right part of the figure shows the

index. The index is simply a one dimensional list of ordered points where the ordering

is determined by the distance of all the points in the dataset to the pivot point(highest to

lowest). Instead of traversing through the data in the original order, we test the points

along this index order(up and down). With this index, we can discover the kNN for

the testing point without traversing through the whole data set by utilizing the following

termination criterion.

Lemma 19.3 [stopping rule] Let R be the pivot points used to build index. Let T be

the test point that we want to calculate its kNN and Tk be the k-distance(k-th nearest
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19.2 PIVOT-BASED KNN SEARCH

neightbor of T currently). Li is the point that currently checked. If

∣∣∣‖ T −R ‖ − ‖ Li −R ‖∣∣∣ > Tk

then we can terminate the search immediately, where ‖ . ‖ denotes the distance measure-

ment and | . | denotes the absolute value.

Proof: By applying triangle inequality for the testing point T and Li, it follows that,

‖ T, Li ‖>
∣∣∣‖ Li −R ‖ − ‖ T −R ‖∣∣∣

Therefore, it is obvious that if

∣∣∣‖ T −R ‖ − ‖ Li −R ‖∣∣∣ > Tk, then ‖ T, Li ‖> Tk

Therefore, we cannot find any point that is closer to T than the current kth nearest neigh-

bor of T . Therefore the kNNs of T can be terminated immediately.
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Data Driven Distributed LOF

Although the pivot-based partitioning method introduced in Chapter 19 ensures that each

compute node can perform the kNN search in parallel independent of other nodes, it still

has fundamental drawback. Using the worst case estimation to compute the kNN upper

bound for each Voronoi cell leads to a rate of data duplication that is still quite high. This

is also confirmed by our experimental evaluation. Due to the prohibitive duplication rate,

the pivot-based method cannot scale to handle really large datasets.

To overcome the high duplication rate drawback of the above PDLOF approach utiliz-

ing the pivot based partitioning, in this section we propose a further optimized distributed

LOF approach based on a novel data driven partitioning method so called DDLOF. The

key idea of DDLOF is to dynamically determine the boundary of the supporting area for

each partition during the kNN search process rather than deciding the supporting area

beforehand based on the worst case estimation using the triangle inequality.

Convergence Property. The effectiveness of the DDLOF approach is originated from

our crucial observation on the property of kNN, namely the convergence property. More

specifically, given a data set D suppose the points in D are divided into a set of disjoint

data partitions based on their domain values. Each partition P contains similar number of
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data points. Then given any partition P most of the points in P named DP are the kNNs of

each other. In other words, although theoretically the kNNs of DP named kNN (P) could

be far away from P and spread into the entire domain space of D, in reality kNN (P)

tends to converge and be located in P itself.

Leveraging this property DDLOF significantly outperforms PDLOF in duplication

rate and in turn the overall end to end execution time as confirmed in our experiments

(Chapter 21).

Figure 20.1: DDLOF: Data-Driven Distributed LOF.

As shown in Fig. 20.1 overall the DDLOF approach is composed of the following

three steps:

• (1) Data Driven Partitioning;

• (2) Inner Partition kNN Search;

• (3) Outer Partition kNN Search;

In step (1) data driven partitioning partitions the input data set D into a set of partitions

P. Each partition contains similar number of points. This not only ensures the load

balancing across different reducers, but also guarantees that each partition has more than

k + 1 points.

In step (2) inner Partition kNN search since each partitionP contains at least k + 1

points, each point pi can locate k points in P that are closest to pi so called local kNN of
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20.1 DATA DRIVEN PARTITIONING

pi. This local kNN is then attached to point pi and spilled out to HDFS. The k-distances

of such local kNNs then can be utilized to bound the supporting area of P;

In step (3) outer partition kNN search first extends each partition P to include the

supporting area defined in step (2) and then discover for each point pi in P the actual kNN

by searching through the points in supporting area.

Next we discuss each step in detail.

20.1 Data Driven Partitioning

In this section, we introduce our data-driven partitioning method or in short DDriven.

DDriven partitions the entire domain space of a dataset D Domain(D) into n disjoint

grid cells Ci such that C1 ∪ C2 ∪ ... ∪ Cn = Domain(D). A grid cell is formally defined

below:

Definition 20.1 Grid Cell. A grid cell Ci in a d-dimensional domain space is a hyper

rectangle Ci = 〈(low1i , high1i), (low2i , high2i), ..., (lowdi , highdi)〉, where (lowxi , highxi)

are the boundaries of Ci in the xth dimension, where 1 ≤ x ≤ d .

The areas of the domain space covered by each grid cell may or may not be of equal

size. In general, any partitioning strategy could be utilized to produce such grid cells.

DDriven generates grid cells that, in spite of having different grid sizes, contain a simi-

lar number of data points (equi-cardinality cells). Figure 20.1 depicts a two-dimensional

space partitioned into grid cells using DDriven. Points are grouped based on their mem-

bership in a particular grid cell. Fig. 20.1 shows such a grouping by representing the

points in each grid cell with the same shape.

DDriven relies on a lightweight pre-processing strategy to determine a plan for par-

titioning the domain space into grid cells, henceforth called the partitioning plan. This
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20.1 DATA DRIVEN PARTITIONING

new pre-processing phase is composed of two steps, namely distribution estimation and

partitioning-plan generation. These two steps can be performed in one MapReduce job.

In the first step, DDriven estimates the distribution of the data by drawing a sample

from the input dataset. We opt for random sampling since it preserves the distribution

of the underlying dataset [62]. Since we only need to roughly estimate the distribution,

the sampling rate Υ as an input parameter by default is set to a small value, e.g., 0.5 %.

Considering the size of big datasets, the sample is generated in a distributed fashion, for

example by drawing samples within the map phase of a MapReduce job. Then, the map-

pers’ output is passed to a centralized node, i.e., a single reducer, for the plan generation

step. Since drawing the random sample at the map phase is intuitive [62], we ignore the

details here.

Map 1

Map 2

Map N

Reduce

HDFS Data 
Blocks

Generate a sample given 
a sample rateϒ

Single reducer 
generating an 

equi-depth
partitioning plan

Step 1:
- Consider the dimension having the 

closest-to-uniform distribution (di)
- Generate equi-depth di.numBuckets

partitions on di

Step 2:
- Consider the next dimension having the closest-

to-uniform distribution (dj)
- For each of the existing partitions, divide into 

equi-depth dj.numBuckets partitions

Figure 20.2: DDLOF: Data-Driven Partitioning Strategy (DDriven).

In the next step, the partitioning plan is generated by the single reducer (Figure 20.2).

In addition to the sample data, the reducer receives a list that specifies the number of de-

sired partitions in each dimension. For instance, di .numBuckets is the number of desired

partitions for dimension di. This list is calculated based on the number of reducers n as-

signed to the outlier detection task. By default, each dimension has the same number of
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20.2 INNER PARTITION KNN SEARCH

partitions, with di .numBuckets set as d
√
n for a d-dimensional dataset.

The reducer computes for each dimension di a uniformity score, i.e., a chi-square test

score that measures whether or not the values on di are close to a uniform distribution. The

smaller the score di .score, the more uniformly the points are distributed over di. Hence

the better it is to start with this dimension in partitioning the dataset. The dimensions are

sorted in an ascending order according to their chi-square test score. The 1st dimension is

selected to be partitioned first. Then the subsequent dimension having the next-smallest

score, say dx, is selected for further partitioning (lines 7-11). This is performed by con-

sidering each of the existing cells, and dividing that cell over dx into dx .numBuckets .

Using this strategy, although the distribution of the dataset as a whole may be skewed, the

subsets falling into each grid cell tend to be relatively uniform.

Figure 20.2 illustrates an example of the partitioning process. We assume that the x-

axis is the 1st selected dimension. Thus, the points are divided vertically into dx .numBuckets

equi-cardinality cells. The next selected dimension is the y-axis. Each of the existing ver-

tical partitions will be further divided into dy .numBuckets equi-cardinality cells. This

process proceeds until all dimensions are partitioned.

20.2 Inner Partition kNN Search

The partitioning plan generated at the pre-processing phase is then passed to the inner

partition kNN search step which corresponds to another MapReduce job. Its map phase

utilizes the partitioning plan to divide the complete input dataset into multiple grid cells.

The grid cells are then assigned and transmitted to the reducers. At the reduce phase each

reducer calculates the local kNNs for each point assigned to this reducer.

For the point located at the edge of each cell such as p1 in cellC1 there might be points

in its adjacent cells such as C5 that are closer to p1 than the points in C1. Therefore the
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Figure 20.3: DDLOF: Inner Partition KNN Search.

kNN of p1 found in C1 (the local kNN) might not be the actual kNN of p1. However such

local kNN can be utilized to bound the supporting area of each cell.

Lemma 20.1 Given a cell Ci = 〈(low1i , high1i), (low2i , high2i), ..., (lowdi , highdi)〉 of

data set D with domain space Domain(D) = 〈(min1 ,max1 ), (min2 ,max2 ), ..., (mind ,maxd),

suppose the k-distance of pj ∈ Ci is r. The vertical distance between pj and any bound-

ary of cell Ci is denoted as dist(pj , lowxi) or dist(pj , highxi). Then the actual kNN of pj

kNN (pj ) is guaranteed to be discovered in cell Ĉi = 〈(max{min1 , low1i − Ext(low1i)},

min{max1 , high1i + Ext(high1i)}), (max{min2 , low2i − Ext(low2i)},min{max2 , high2i

+Ext(high2i)}), ..., (max{mind , lowdi − Ext(lowdi)},min{maxd , highdi + Ext(highdi)})〉,

where Ext(lowxi) = max{0 , r − dist(pj , lowxi)} and Ext(highxi) = max{0 , r − dist(pj , highxi)}.

Proof: We prove Lemma 20.1 by proving that for any given point po 6∈ Ĉi the distance

between po and pj dist(po , pj ) ≥ r .

Here we denote the domain value of po as po(p1
o , p

2
o , ..., p

d
o ). If po 6∈ Ĉi , then px

o

> min{maxx , highxi + Ext(highxi)}) or px
o < (max{minx , lowxi − Ext(lowxi).

Suppose px
o > min{maxx , highxi + Ext(highxi)}). Since px

o ≤ maxx then min{maxx , highxi

+Ext(highxi)} = highxi + Ext(highxi). Otherwise px
o cannot be larger than min{maxx , highxi
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20.2 INNER PARTITION KNN SEARCH

+Ext(highxi)}). Since dist(po , pj ) ≥ px
o − px

j > highxi + Ext(highxi)− px
j = (highxi − px

j )

+Ext(highxi) = dist(pj , highxi) + Ext(highxi) = dist(pj , highxi) + max{0 , r − dist(pj , highxi)}

.

If dist(pj , highxi) ≥ r then max{0 , r − dist(pj , highxi)} = 0. On the other hand if

dist(pj , highxi) < r then max{0 , r − dist(pj , highxi)} = r − dist(pj , highxi). In either

case dist(pj , highxi) + max{0 , r − dist(pj , highxi)} ≥ r . Since dist(po , pj )> dist(pj , highxi)

+ max{0 , r − dist(pj , highxi)}, we get dist(po , pj ) > r .

The condition of px
o < (max{minx , lowxi − Ext(lowxi) can be proven in the similar

way. Due to space restriction, we omit the proof here.

Since for any given point po 6∈ Ĉi dist(po , pj ) ≥ r , then any point out of Ĉi will not

be kNN of pj . Lemma 20.1 is proven. �
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Figure 20.4: DDLOF: supporting area.

Fig. 20.4 (a) shows a two dimensional supporting area example. The kNNs of point

pj are bounded in the red circle with radius as r. Clearly cell Ĉi covers the whole area of

the red circle. Therefore the kNNs of pj is guaranteed to be discovered in Ĉi . In Ĉi the

area filled by the backslash pattern is the supporting area with respect to point pj .

Once acquiring the supporting area for each point pj in cell Ci, it is intuitive to derive
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20.3 OUTER PARTITION KNN SEARCH

the supporting area of cell Ci that covers all possible kNNs for all points in Ci. More

specifically, it adopts the maximum highxi of each Ĉi as the final highxi and the minimum

lowxi of each Ĉi as the final lowxi as shown in Fig. 20.4 (b).

During the reduce phase the “local” kNNs is attached to each point and written out to

HDFS. For each cellCi the boundaries of its supporting area (Ĉi ) as well as the boundaries

of Ci itself together forms the partition plan of the next MapReduce job corresponding to

outer partition kNN search.

20.3 Outer Partition kNN Search
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Figure 20.5: DDLOF: Outer Partition KNN Search.

Unlike the inner partition kNN search, now in the partition plan passed to the outer

partition kNN search MapReduce job each cell is augmented with the supporting area.

The points in the original cell Ci are the points that we have to calculate their kNNs so

cored core points, while the points in the supporting area, namely the points within Ĉi but

out of Ci are only utilized to support the kNN search of the core points so called support

points. Therefore at the map phase each mapper retrieves one data block as well as the

space partitioning strategy (Figure 20.5). Then for each data point pi, the map function
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20.3 OUTER PARTITION KNN SEARCH

produces two types of output records, i.e., core- and supporting-related records.

The core-related record is one key-value pair record in the form of (K = Ci, V =“0-

pi”), where the key is the ID of the grid cell for which pi is a core point, i.e., pi ∈ Ci.

The prefixed flag “0” in the value component indicates that pi is a core point for Ci. For

example, referring to Figure 20.5, the mapper Map 1 generates output record (K = C1, V

=“0-p1”) for data point p1.

Mappers also create zero or more supporting-related records for an input data point pi

in the form of (K = Cj , V =“1-pi”), where the key pi ∈ Cj is the ID of the grid cell for

which pi is a support point. The prefixed flag “1” in the value component indicates that

pi is a support point for Cj . For example, in Fig. 20.5, the mapper Map 1 generates one

output record (K = C1, V =“1-p2”) for point p2 since it is a support point for C1.

After the internal shuffling and sorting phase based on the cell ID, each group received

by a reducer will correspond to a specific grid cell, say Ci, and will consist of the union

of the core and support points belonging to Ci (See Figure 20.5. The reducer function

categorizes the data points according to their attached flag encoded in the value. Lastly, it

executes a kNN search algorithm on each core point.

In this step the local kNNs attached to each core point will be fully utilized. Given a

core point pj , first the local kNNs of pj will be parsed and stored in a list tempKNN (p).

The points in this list are sorted in the ascendent order by their distances to pj . Then its

kNN will only be searched within the support points. If one support point ps is closer to pj

than at least one point in tempKNN (p), ps is inserted into tempKNN (p). The point at the

tail will then be removed. This process proceeds until all support points are examined.

Then the remaining points in tempKNN (p) will be the actual kNN of pj . Therefore

the duplicate kNN search between inner partition kNN search and outlier partition kNN

search is completely avoided.
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21

Performance Evaluation

21.1 Experimental Setup & Methodologies

Experimental Infrastructure. All experiments are conducted on a shared-nothing clus-

ter with one master node and 40 slave nodes. Each node consists of 16 core AMD 3.0GHz

processors, 32GB RAM, 250GB disk, and nodes are interconnected with 1Gbps Ether-

net. Each server runs CentOS Linux (kernel version 2.6.32), Java 1.6, Hadoop 1.0.1. Each

node is configured to run up to 8 map and 8 reduce tasks concurrently. The sort buffer size

is set to 512MB. Speculative execution is disabled to boost performance. The replication

factor is set to 3.

Dataset. We evaluated the performance of our proposed distributed local outlier de-

tection algorithms (PDLOF and DDLOF) on the open data set: OpenStreetMap(OSM:

http : //wiki.openstreetmap.org/wiki/MainPage). OSM contains points with geo-

graphic position, stored as coordinates (pairs of a latitude and a longitude). The raw data

was stored in a 500G XML file. Each row in the dataset represents a building. 3 attributes

are utilized in the experiments, namely ID, longitude and latitude. In order to adjust pa-

rameters and evaluate the basic properties of our proposed algorithms, we extracted from
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OpenStreetMap the Massachusetts data (3,000,000 records), about 750M in size.

Methodology. We used the following measures in our evaluation. First, we measured

the total end to end time elapsed between launching the program and receiving the results.

To provide more insight into the potential bottlenecks, we also broke down the total time

into time spent at map phase and reduce phase. Since these phases are overlapping in

MapReduce, we report the average time spent by each phase. Second, we measured

the total number of records emitted and received by mappers in the MapReduce job that

produces the supporting area for each partition. The number of records then is utilized to

measure the duplicate rate of each partitioning method.

21.2 Evaluation Results

21.2.1 Evaluation of Duplication Rate

75M 750M
DDLOF 0.24 0.97
PDLOF 21.3 NULL

Table 21.1: DLOF: Duplication Rate

First we measure the duplication rate of PDLOF and DDLOF. The duplication rate

of PDLOF is measured by the ratio of the number of output records and the number of

the input records at the map phase of the second mapreduce job when assigning support

points to each partition. Similarly the duplication rate of DDLOF is measured at the

map phase of map-reduce job corresponding to the outerkNN search. We measure the

duplication rate using the 750M whole Massachusetts building data and a 75M subset of

the Massachusetts building data. As shown in Table 21.1, the duplication rate of DDLOF

is only about 1 percent of PDLOF at the 75M data case. Due to the high duplication

rate, PDLOF cannot even handle the 750M dataset. The duplication of DDLOF increases
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a little when the size of the data set increases. However it is still smaller than 1. This

indicates that DDLOF is very stable on duplication rate and scalable to big dataset.

This is expected, since as shown in Chapter 19 PDLOF utilizes the distances between

the points and the pivots to estimate the largest possible k-distance for each partition. This

worst case estimation, although theoretically correct, inevitably includes huge amount of

support points that in fact far away from the core points and hence have no chance to be

the kNN of any core point. On the other hand the two steps kNN strategy of DDLOF

utilizes the “local” k-distance generated in the inner kNN search to bound the supporting

area of the outer kNN search. This bound is much tighter than the worst case upper

bound of the PDLOF. This is based on the convergence property of kNN. Namely the

close points tend to be kNN with each other. Therefore the most of the points in one

partition P can locate their kNNs in P itself.

21.2.2 Evaluation of CPU Time
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Figure 21.1: DLOF CPU Time Comparison: PDLOF VS DDLOF
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In this experiment we evaluate the CPU time of PDLOF and DDLOF. As shown in

Figure 21.1 DDLOF is 10 times faster than PDLOF even when handling the relatively

small 75M data set. The performance gain of DDLOF is from the small duplication rate

of its partitioning method as we have discussed in Section 21.2.1. The small duplication

rate ensures each reducer only searches the kNNs for the core points in a small area and

therefore significantly reduce the cost of kNN search, while kNN search is the bottleneck

of the whole LOF computation process.

Since PDLOF cannot handle the 750M dataset, we only evaluate DDLOF using this

larger dataset. As shown in Figure 21.2, the most time consuming step is the second

MapReduce job corresponding the outer kNN search. In this job, mappers decide the

supporting area for each partition. Reducers generate the kNNs for all core points that

have not found their kNNs in the inner kNN search. Overall the two kNN search jobs

consumes most of the time of the whole LOF computation. This also further confirms our

analysis that kNN search is the bottleneck of LOF computation.
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Related Work

Breunig et al. proposed the notion of local outliers in opposition to that of distance-

based outliers proposed by Knorr and Ng in [69]. Another distance-based outlier method

also had been proposed in [70] to rank outliers using nearest neighbor relationships. To

overcome what they saw as shortcomings of a binary definition of outliers, they sought

to define a degree of outlierness by looking at the density of the point relative to its

neighbors. Inspiration for LOF came from density-based clustering algorithms including

DBSCAN [71] and BIRCH[72]. These methods can identify outlying points, however

they classify them as noise.

Parallel versions of distance-based outlier detection can serve as a model for a dis-

tributed solution for LOF. A distributed detection algorithm is presented in [73] which

uses the idea of a solving set of points sampled from the original dataset. A data point

can be approximated as an outlier by comparison only to the elements in this set. This

method only provides an approximate result, however it serves as inspiration for the use

of sample points to understand areas of the dataset. In [74] another distributed approach

is taken where data blocks are passed around a ring overlay network, and neighbors are

computed in parallel. In-lying points are pruned along the way. This strategy can be ap-
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plied to our work, since MapReduce does not allow communications among mappers or

reducers.

The idea of the detection of top-n local outliers only was proposed in [75]. This

method uses micro clustering of points to prune the points that are guaranteed not to

be outliers. However this method is highly coupled with an expensive pre-processing

strategy. Hence it is not scalable to big data.

The data partitioning method introduced in [76] can be utilized for KNN computation

on map-reduce. In general it partitions the data into n partitions. Then each distinct pair

of partitions will be assigned to one reducer on which the kNNs are computed using the

local data. One additional machine is utilized to derive the global kNN by collecting

and summarizing the local kNNs. The duplicate rate of this approach is linear to the

number of partitions. Therefore it is not scalable to big data set. The Voronoi diagram-

based partitioning scheme is first introduced in [68]. However unlike our work, this work

focuses on supporting KNN join utilizing MapReduce instead of local outlier detection.

Furthermore, as shown in their experiments, this method cannot support data set larger

than hundred megabyte.

Finally, data sampling has been well studied in databases and data mining. Uniform

random sampling [77] is utilized in our work for data distribution estimation due to its

simplicity. Density Biased Sampling [78] and Stratified Sampling [79] are well known in

the literature. To relieve the problems caused by skewed data they either probabilistically

under-sample dense regions and over-sample sparse regions or select sample size of each

stratum proportional to the size of the stratum. Such methods may also be considered in

the future.
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Part V

Interactive Outlier Exploration
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ONION Model

We propose the online outlier exploration model or in short ONION for modeling and

exploring the characteristics of distance-based outliers in a dataset D.

Fig. 23.1 sketches a high-level view of the ONION model. It is composed of the

multi-space abstraction capturing the key characteristics and interrelationships of outliers

and a rich set of outlier exploration operations.

O-Space

D-Space P-Space

ONION

Operations

ONION

Operations

Figure 23.1: ONION Model

23.1 Multi-Space Abstraction

Our multi-space abstraction is composed of three interlinked spaces that we will now

define below.
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ONION Space. ONION space or in short O-Space is a three-dimensional space that

models the distribution of the outliers with respect to their associated parameter settings.

Definition 23.1 O-Space denoted as OS (Dimk ,Dimr , Dimd) is a three-dimensional

space with the possible settings of parameters r, k and data points p in dataset D be-

ing its three dimensions. The dimension Dimk ranges over the values that the parameter

k can take in the universe of natural number Uk : [kmin , kmax ], where kmin and kmax are

the user-specified lower and upper bounds of the k values. Similarly the dimension Dimr

corresponds to the domain of real numbers Ur : [rmin , rmax ] with rmin and rmax the lower

and upper bounds of the values of parameter r. Lastly the dimension Dimd represents all

points p ∈ D randomly organized into a linear order. Each point is assigned a position in

[1,| D |]. Each coordinate (ki , ri , pi) ∈ OS maps to a boolean value v ∈ {0,1} indicating

whether point pi is an outlier with respect to parameter values ki and ri.

In this O-Space any combination of k and r values on the dimensionsDimk andDimr

forms a parameter setting psi denoted by psi(ki , ri). Conceptually O-Space encodes the

outlier status of all points in D with respect to all possible parameter settings.

Since dimension Dimd represents all data points in dataset D, Dimd corresponds

to a discrete domain of positions. In other words the three-dimensional O-Space can

be thought as a sequence of two dimensional slices as shown in Fig. 23.2. Each slice

models the outlier status distribution with respect to all possible parameter settings for

one particular point pi in dataset D.

Based on this O-Space, we further design two additional higher level abstractions

called parameter space and data space respectively as shown below.

Parameter Space. Parameter space or in short P-Space is based on the observation that

despite the infinite number of possible parameter settings, a large range of continuous

parameter settings often generate the same set of outliers.
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Figure 23.2: ONION Space
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Definition 23.2 P-Space P = P1

⋃
P2 ...

⋃
Pm, such that:

(1) given any two parameter setting subsets Pi and Pj of P (1 ≤ i, j ≤ m), Pi
⋂

Pj =

∅;

(2) given any two parameter settings psj and psl in the same Pi (1 ≤ i ≤ m), psj and

psl generate the same set of outliers.

In other words P-Space divides the two-dimensional space formed by the set of all

possible values on the Dimk , Dimr axes into a set of disjoint regions. Within each region

no matter how the parameter settings are adjusted, the set of outliers generated from

dataset D remains unchanged. Each such region is called a stable region.

P-Space, partitioning the infinite number of parameter settings into finite number of

stable regions, explicitly reveals the influence of the parameter setting adjustment. This

offers the analysts an opportunity to determine the appropriate parameter settings using a

systematic methodology instead of a random trial and error process.

Data Space. Data space or in short D-Space leverages the key abnormality properties

demonstrated in the points of dataset D, namely outlier candidacy and domination rela-

tionship.

Outlier Candidacy. Despite the infinite cardinality of P-Space P, given a point pi in

dataset D, its outlier status might be constant with respect to all parameter settings in P.

In other words, some points are guaranteed to be outliers in the entire P-Space so called

const outliers, while some other points are guaranteed to be permanent inliers through the

entire P-Space so called const inliers. In our O-Space these points would thus correspond

to a slice that is all 1’s for constant outlier or all 0’s for constant inlier. For example, as

shown in Fig. 23.2 p1 is a const inlier, while p3 is a const outlier.

Any point pi in D, that is neither a const outlier nor const inlier, is called an outlier

candidate oc with respect to P, meaning pi has opportunity to be classified as outlier for

at least some of the parameter setting psi in P. In O-Space, an outlier candidate would
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have at least one cell in its corresponding slice that is 0 (white) and one that is 1 (black).

In Fig. 23.2 p2 is an outlier candidate.

In practice as confirmed by our experiments (Sec. 25.2), outlier candidates tend to

be a strict minority among all points in D. This important outlier candidacy observation

allows us to significantly reduce the number of data points to be maintained in D-Space.

By this, ONION can concentrate the resource utilization on strictly serving these minority

outlier candidates, rather than on computing and recording neighborhoods for the general

and much larger data population when exploring outliers. Therefore ONION is able to

efficiently explore outliers over even big datasets.

Domination Relationship. In dataset D some outlier candidates demonstrate a much

stronger abnormality than others independent of any particular parameter setting in P. In

other words, some data points dominate others in abnormality as defined below.

Definition 23.3 Given a P-Space P, outlier candidate oci in dataset D dominates ocj if

for all parameter settings in P ocj is guaranteed to be outlier when oci is classified as

outlier.

By Def. 23.3 if outlier candidate oci dominates ocj , we say that the abnormality of oci

is stronger than ocj .

Revealing the domination relationships among outlier candidates ONION offers the

analysts an opportunity to better understand several characteristics of the detected outliers

from sensitivity to stability. Without such understanding the detected outliers might only

be some abstract points indistinguishable from each other for the analysts instead of some

true unique abnormal phenomena.

Now we are ready to define our data space or in short D-Space.

Definition 23.4 D-Space D = D1

⋃
D2 ...

⋃
Dm, such that:

(1) ∀ oci ∈ D, oci is an outlier candidate;
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(2) given any two outlier candidate subsets Di and Dj of D (1 ≤ i , j ≤ m), Di

⋂
Dj

= ∅.

(3) the outlier candidates in the same group Di are sorted into a linear structure.

Given two points ocj and ocl with j, l representing their positions in Di, ocj dominates ocl

if j < l .

In general, leveraging the outlier candidacy and domination relationship properties,

D-Space partitions all outlier candidates into multiple disjoint groups. Within each group

the domination relationship holds among all members of the group, so called domination

group. Furthermore the outlier candidates falling in the same domination group are or-

dered based on the strongness of their abnormality. For example, in Fig. 23.3, D-Space D

contains three subspaces D1, D2, and D3. In D1 candidates oc1 to oc6 are ordered by the

domination relationship. That is, oc1 dominates other members in D1. oc2 is dominated

by oc1, but dominates oc3 to oc6.

Linkage between P-Space and D-Space. Furthermore as shown in Fig. 23.3, our

ONION model explicitly establishes linkages between P-Space and D-Space, or in short

PD-linkage.

Definition 23.5 PD-Linkage. Given a stable region Pi in P-Space P and a domination

group Dj in D-Space D, there exists a link l(i , j ) connecting Pi to an outlier candidate

oct ∈ Dj such that:

(1) ∀ parameter setting psi in Pi, oct is classified as outlier;

(2) ∀ parameter setting psi in Pi, oct−1 is classified as inlier.

By the domination relationship definition in Def. 23.3, if oct is an outlier with respect

to psi, then any outlier candidates listed behind oct in Dj (oct+1, oct+2, ...) are guaranteed

to be outliers. Therefore the PD-Linkage explicitly connects the stable regions with their

generated outliers. In Fig. 23.3, stable region P1 is linked to oc1 of D1, oc8 of D2, and
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oc14 of D3. Based on the links we immediately get the outlier set O1 generated by P1, that

is {oc1 , ..., oc6 , oc8 , ..., oc11 , oc14 , oc15}.

Overall the multi-space abstraction explicitly models the distribution of the outliers

over all parameter settings, the relationships among the parameter settings, the stabil-

ity and uniqueness of the outlier candidates. It establishes an innovative “outlier-centric

panorama” into the outliers within dataset D.

23.2 ONION Operations

Based on the multi-space abstraction we further envision a rich classes of outlier explo-

ration operations that allow users to explore and interpret outliers as well as pinpoint

appropriate parameters.

Definition 23.6 Comparative Outlier Analytics (CO). Given an outlier set Oin as input,

we report set of outliers OD from dataset D, such that:

(1) ∀ point pi ∈ Oin, pi ∈ OD; and

(3) ∀ point pi ∈ OD −Oin, if any pj ∈ Oin is classified as outlier with respect to one

psl ∈ P, pi is guaranteed to be classified as outlier by psl.

Leveraging the domination relationship in D-Space, CO operation returns all outliers

dominated by the outliers specified in the input set Oin. CO offers users a “parameter-

free” approach to identify outliers based on their domain knowledge about the dataset.

More specifically this CO operation helps analysts to identify outliers in a dataset based

on sampling some typical outliers.

Definition 23.7 Outlier-Centric Parameter Space Exploration (PSE). Given an outlier

set Oin and a δ (−1 < δ < 1 ) as input, report all parameter settings psj ∈ P-Space P,

such that:
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(1) if δ ≥ 0, psj identifies an outlier set Oj ⊆ Oin where | Oj | = (1 - δ) | Oin |;

(2) if δ ≤ 0, psj identifies an outlier set Oj ⊇ Oin where | Oj | = (1 - δ) | Oin |.

PSE leverages the stable region property of P-Space and allows analysts to conve-

niently evaluate the stability of a given outlier set Oin. This is one important indicator

of how significant the observed abnormal phenomena is. For example, if we set the δ as

0, PSE will return all the parameter settings that are guaranteed to generate the outliers

identical to Oin, namely a stable region of P. The scope of the returned parameter settings

(the size of the stable region) represents how stable the outlier set is across P-Space.

Furthermore PSE provides a tool for analysts to examine how changes in parameter

settings may impact the resulting outliers. PSE achieves this, for example, by allowing

the analysts to apply PSE to ask for the parameter settings that would return around (1

- δ)% of Oin as the results and then compare them against the parameter settings that

generate Oin.

Definition 23.8 Outlier Detection (OD). Given a dataset D and a parameter setting psi

as input, outlier detection returns:

(1) all outliers pj ∈ D with respect to psi if psi ∈ P-Space P; or

(2) all points pj ∈ D that are classified as outliers with respect to any parameter

setting ∈ P if psi = NULL.

As shown in Def. 23.8 unlike the traditional distance-based outlier definition, OD

leverages the outlier candidacy observation of D-Space to allow the input parameter set

as NULL. This will return all points that are guaranteed to be outliers with respect to the

entire P-Space, that is, the constant outliers.

Use Case. Those operations in combination provide a powerful tool for analysts to

quickly approach the parameter settings appropriate for her application. For example,

when facing a new dataset recording stock market transactions, an analyst may not have
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any experience to be able to appropriately determine values for parameters k and r. How-

ever, given her domain expertise, she may be aware that certain records are abnormal

(outliers). Then a CO operation can be applied to help her identify all outliers satisfying

her intuition. If the analyst finds the volume of the outliers O returned by the CO request

too overwhelming, then she could apply PSE to ask for the parameter settings that would

return, for example, around 60% of O as the result by setting δ as 0.4. Eventually the OD

operation is applied to catch the true outliers to her interest.

Note that the above running example we gave here is just one of many combinative

usages of our proposed operations. Those operations can be used individually or in other

combinations to serve the ever changing outlier analysis demands.
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ONION Framework

To achieve the ONION model we designed the novel ONION framework. As shown

in Fig. 24.1 ONION framework consists of two phases (a) offline multi-space abstrac-

tion construction and (b) online exploration operation processing using the corresponding

ONION spaces.

O-Space Construction

Algorithm

O-Space

D-Space 

Construction

Algorithm

P-Space 

Construction

Algorithm

D-Space P-Space

O-Space P-Space D-Space

OD

O-Space
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O-Space
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O-Space
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P-Space

CO

P-Space
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D-Space
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D-Space
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P-Space
OD

D-Space

Offline ONION Spaces Construction Online Outlier Exploration

Figure 24.1: ONION Framework
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24.1 O-Space

24.1.1 Offline O-Space Construction

As shown in Fig. 23.2, the three-dimensional O-Space can be decomposed into a set

of two dimensional slices. Each slice corresponds to the outlier status of one point pi in

dataset D with respect to all parameter settings psi in the two-dimensional space P formed

by the dimensions Dimk and Dimr. Therefore O-Space can be established by modeling

the outlier status distribution in P for each point pi in dataset D, called O-Space(pi).

The key insight here is that given a point pi in dataset D, it is not necessary to establish

O-Space(pi) by evaluating pi for each possible psi in P. In fact the outlier status of pi with

respect to any psi in P can be correctly determined by collecting only a small amount of

meta information.

We first introduce our k-distance observation. Generally speaking given a set of outlier

detection requests with the same parameter value k for Dimk, but random values for

Dimr, the outlier status of any point pi for any of those requests can be determined by

checking the distance of pi towards one single point in D. This observation is formally

defined in Lemma 24.1.

Lemma 24.1 Given a set of parameter settings Pk ⊂ P, where ∀ two parameter settings

psx(kx, rx), psy(ky, ry) ∈ Pk, kx = ky = k , then the outlier status of pi with respect to

any psx in Pk is determined by the distance between pi and its kth-nearest neighbor pj

denoted as Dk
pi

.

Proof. Given any parameter setting psx (k , rx ) ∈ Pk, if Dk
pi
> rx, then by the definition

of the kth-nearest neighbor, there are at most k-1 other points pj ∈ D whose distance

towards pi is not larger than rx. In other words, pi has at most k-1 neighbors. By Def.

2.1, pi is an outlier. On the other hand, if Dk
pi
≤ rx, then there are at least k points pj with
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d(pi , pj ) ≤ rx, namely pj are all neighbors of pi. pi is then classified as an inlier by Def.

2.1. Therefore ∀ psx (k , rx ) ∈ Pk, the outlier status of pi can be correctly determined by

comparing rx against Dk
pi

. Lemma 24.1 is proven. �

Now we are ready to introduce the space delimiter insight as the foundation for build-

ing O-Space.

Lemma 24.2 Given a dataset D and parameter setting space P, ∀ pi ∈ D the distance set

DS(pi) = {Dkx
pi
|kmin ≤ kx ≤ kmax} is sufficient to determine the outlier status of pi with

respect to any parameter setting ps ∈ P.

Proof. P = Pkmin
∪ Pkmin+1

∪ Pkmin+2
... ∪ Pkj ... ∪ Pkmax−1 ∪ Pkmax , where Pkj is

composed by any psx(kx, rx) ∈ P with kx = kj (kmin ≤ kj ≤ kmax ). Therefore given any

ps ∈ P ps is guaranteed to be covered by some Pkj . By Lemma 24.1, ∀ps ∈ Pkj the

status of pi can be determined by examining Dkj
pi . Since Dkj

pi ∈ DS(pi), therefore DS(pi)

is sufficient to determine the status of pi with respect to any ps ∈ P. Lemma 24.2 is

proven.�

As shown in Fig. 24.2 this distance set DS(pi) delimits P into two segments. The

parameter settings in different segments will classify pi to different outlier status. There-

fore DS(pi) is called space delimiter of pi. The set of space delimiters { DS(pi) |pi ∈ D}

effectively represents the three dimensional O-Space.

Furthermore the space delimiter structure also provides us an approach to quickly

discover constant inliers and constant outliers.

Lemma 24.3 A point pi is a const inlier if Dkmax
pi
≤ rmin.

Proof. If the distance to pi’s kmaxth nearest neighbor is ≤ rmin, then pi has at least

kmax neighbors or more even under most restricted neighbor criteria, namely Dimr =

rmin. Then pi is an inlier for ps(kmax ,rmin) that is the most restricted parameter setting in
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Figure 24.2: ONION: Space Delimiter

P in terms of recognizing outlier. If pi is not an outlier in the most restricted setting, then

of course it cannot be outlier in any part of P. Therefore pi is a const inlier. �

Lemma 24.4 A point pi is a const outlier if Dkmin
pi

> rmax.

Lemma 24.4 can be proven in the similar way of proving Lemma 24.3. Due to space

limitation, the proof is omitted.

Naturally any point that is not a const outlier nor a const inlier, is an outlier candidate

oc. Among all points only for oc it is necessary to maintain its space delimiter.

Therefore constructing O-Space has two tasks, namely: (1) discovering all ocs and

(2) collecting the space delimiter DS(oc) for each oc. Intuitively this can be done by

first collecting DS(pi) for each point pi, then locating the constant inliers and outliers by

applying Lemmas 24.3 and 24.4. Collecting DS(pi) is straightforward. We can acquire the

k nearest neighbors (kNN) of pi by applying any kNN algorithm with k set as kmax . Since

we only care for the range kmin to kmax, we then discard the kmin−1 nearest neighbors.
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However to discover const inliers it is not necessary to acquire the actual kmax nearest

neighbors. Once pi acquires kmax neighbors whose distance to pi is not larger than rmin ,

pi is guaranteed to be const inlier. Then the kNN search can be terminated immediately.

Since const inliers are typically the majority of the dataset, this optimization significantly

speeds up the preprocessing process.

Space Complexity. The O-Space data structure is composed of a set of arrays. Each of

the arrays contains (kmax − kmin + 1 ) float values (distance) corresponding to the space

delimiter of one outlier candidate. Therefore the space complexity is linear in the number

of outlier candidates | OC |. More precisely it is O(| OC | (kmax− kmin + 1 )).

As confirmed by our experiments (Fig. 25.1(c), Sec. 25.3.1), only a small fraction

of points is classified as outlier candidates. Most of the points are recognized as const

inliers. Therefore L is much smaller than the actual cardinality n of the input dataset.

Hence the O-Space structure is found to be rather compact and in fact small enough to be

accommodated in the main memory of a standard PC even when handling a fairly large

dataset in order of 10GB.

Time Complexity. The time complexity of constructing O-Space is O(n2 ) because of

the potential KNN search on each point. Here n represents the cardinality of the input

dataset D. Furthermore it is worth to emphasize that in fact the cost of building O-Space

is similar to the cost of answering one single outlier detection request as confirmed in

our experiments (Figures 25.1(a), 25.1(b), Sec. 25.2.1). In ONION, the expensive exact

KNN search is only conducted on outlier candidates. This significantly speeds up the

construction of O-Space.

24.1.2 Online Outlier Exploration

O-Space is sufficient to support all three classes of outlier exploration operations. In par-

ticular by intelligently maintaining the space delimiter information of each outlier candi-
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date, we are able to drive down the time complexity of supporting online outlier detection

(OD) operation from quadratic to linear.

Outlier Detection (OD). For each outlier candidate ocwe maintain its space delimiter

DS in an array structure by the order of its kminth neighbor at the head and the kmaxth

neighbor at the end. Then for any parameter ps ∈ P, the outlier status of oc can be

immediately determined by applying the following examination rule.

Definition 24.1 Given an outlier candidate oc and its DS structure, ∀ parameter setting

ps(kx , rx ) in P, oc is an outlier if DS[kx− kmin ] > rx . Otherwise pi is an inlier.

Therefore to answer OD we only need to perform one scan on the outlier candidate

set OC and sequentially apply the examination rule in Def. 24.1 on each oc. Hence the

time complexity is linear to the cardinality of OC.

Outlier-Centric Parameter Space Exploration (PSE). Given an outlier set Oin, the

parameter settings that recognize Oin as outliers is the intersection of a set of parameter

space segments Si with respect to each point pi in Oin. All parameter settings in Si with

respect to pi will classify pi as outlier. By Lemma 24.2 this can be done by checking

and comparing the space delimiters DS of all points in Oin. The time complexity is

O(| Oin |(kmax - kmin)).

Comparative Outlier Analytics (CO). Similar to PSE, given an outlier set Oin, CO

can be answered by checking the parameter space segment Si with respect to each outlier

candidate oci in OC - Oin. Point oci is dominated by all points oj in Oin if Si ⊇ Sj for all

ocj . The time complexity is O(| OC |(kmax - kmin)).
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24.2 P-Space

24.2.1 Offline P-Space Construction

To construct the P-Space we first introduce the concept of k-domination between two

outlier candidates.

Definition 24.2 Given two outlier candidates oci and ocj and a k value of Dimk ∈ [kmin , kmax ],

if Dk
oci
6 Dk

ocj
, then oci k-dominates ocj .

The following monotonic property holds if the k-domination relationship holds be-

tween oci and ocj .

Lemma 24.5 Given two outlier candidates oci and ocj with oci k-dominating ocj , then

for any parameter setting ps(k , rx ) ∈ P (rmin ≤ rx ≤ rmax ), if oci is classified as outlier

by ps, then ocj is guaranteed to be outlier with respect to ps.

Proof. If oci is an outlier with respect to ps(k , rx ), Dk
oci
> rx . Since Dk

ocj
≥ Dk

oci
by the

k-domination definition in Def. 24.2, Dk
ocj

> rx . Therefore ocj is an outlier with respect

to ps. �

In other words, if one parameter setting ps(k , rx ) classifies pi as an outlier, then any

point k-dominated by pi is guaranteed to also be an outlier. On the other hand, if one

parameter setting classifies pi as an inlier, then any point that k-dominates pi is also

guaranteed to be an inlier as well.

It is straightforward to prove that the k-domination relationship also satisfies the tran-

sitive property.

Lemma 24.6 Given three candidates och, oci, and ocj , if och k-dominates oci and oci

k-dominates ocj , then och k-dominates ocj .
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The above properties of the k-domination relationship now enable us to divide the

infinite parameter setting space P into a finite number of stable parameter regions.

Lemma 24.7 Given the outlier candidate set OC⊂ dataset D and Pki ⊂ P, where | OC |

= n and Pki is composed by any parameter setting ps in P sharing the same Dimk value

ki, then Pki can be divided into n+1 stable regions Pjki , where Dimr of P1
ki
∈ [rmin ,D

ki
oc1

),

Dimr of P2
ki
∈ [Dki

oc1
,Dki

oc2
), ..., Dimr of Pj+1

ki
∈ [Dki

ocj
,Dki

ocj+1
) ,...., Dimr of Pn+1

ki
∈

[Dki
ocn , rmax ] (Dki

oc1
< Dki

oc2
, ..., < Dki

ocj
< Dki

ocj+1
, ..., < Dki

ocn ). The identical set of outliers

are guaranteed to be generated for all ps ∈ Pjki .

Proof. ∀ ps(ki , rx ) ∈ Pjki , since Dki
ocj−1

≤ rx < Dki
ocj

, ps(kj , rx ) will classify ocj−1 as in-

lier, while ocj would be classified as outlier. Since Dki
ocj−2

< Dki
ocj−1

and Dki
ocj

< Dki
ocj+1

,

we get ocj−2 k-dominates ocj−1 and ocj dominates ocj+1. Based on the monotonic prop-

erty of k-domination, ocj−2 will also be classified as an inlier, while ocj+1 remains as

outlier. Furthermore by the transitive property of k-domination, ∀ ps(ki , rx ) ∈ P
j+1
ki

,

oc1 , oc2 , ..., ocj−2 , ocj−1 are guaranteed to be inliers, while ocj , ocj+1 , ..., ocn are guar-

anteed to be outliers. Therefore the identical set of outliers will be generated for any ps ∈

Pj+1
ki

. Lemma 24.7 has thus been proven.�

Leveraging Lemma 24.7 we design an light-weight algorithm (Alg. 9) to build P-

Space P. We first define the parameter node structure.

Definition 24.3 A parameter node, or in short pn, is a data structure composed of the

following three elements:

-pn.obj: an outlier candidate oc in OC;

-pn.k: k parameter value (k ∈ [kmin , kmax ]);

-pn.r. r parameter value, pn.r = Dpn.k
oc ;

By Def. 24.3, each outlier candidate oc in OC will be mapped to m nodes, where m

= kmax − kmin + 1 . Each of the nodes corresponds to one element in the space delimiter
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DS of oc, that is Dki
oc (kmin ≤ ki ≤ kmax ). Then we organize the parameter nodes based

on pn.k into m array lists. Each array list called kthList contains the nodes with the same

pn.k value. Therefore each outlier candidate oc is represented by exactly one node pn in

each kthList .

The key idea behind Alg. 9 is to sort the parameter nodes in each kthList in ascending

order based on their pn.r values. By this each subspace Pki (kmin ≤ ki ≤ kmax ) of P is

divided into multiple stable regions Pjki by Dki
oc in DS(oc) with respect to each oc in OC.

For example as shown in Fig. 24.3, P2
kmax

is a stable region of Pkmax bounded by Dkmax
oc1

of oc1 and Dkmax
oc2

of oc2 ([Dkmax
oc1

,Dkmax
oc2

)). All parameter settings in P2
kmax

classify oc2, ...,

oc5 as outliers.

P-Space then is represented by a hash map with pn.k as the key and the corresponding

kthList as value.
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Algorithm 9 constructPSpace

1: P-Space = ∅;
2: for each k from kmin to kmax do
3: kthList = ∅;
4: for each oc ∈ ocs do
5: kthList.add(new pn(oc, oc.DS, k));
6: kthList.sort();
7: P-Space.put(k, kthList);
8: return P-Space;

24.2.2 Online Outlier Exploration

Outlier Detection (OD). Given a parameter setting psi(ki , ri) to detect the outliers we

only need to locate a particular parameter node pnmin in P-Space where pnmin .k = ki

and pnmin .r = min({pn.r | pn.r > ri}). Then the outliers for psi will be the outlier

candidates corresponding to the parameter nodes in the ki thList of P-Space and listed

behind pnmin .

Complexity Analysis. Since each array list is sorted by the pn.r value, pnmin can be

located in O(log(| OC |)) time using a binary search style algorithm [80].

Outlier-Centric Parameter Space Exploration (PSE). Utilizing P-Space to support

PSE operation is straightforward. We can traverse through each kthList of P-Space to

locate the stable regions that return the outlier set Oin specified in the input. Given one

particular array list ki thList , we first locate the parameter node pn1st of ocj corresponding

to the first outlier in Oin. Then we compare the outliers in Oin with the objects listed

behind pn1st in ki thList one by one. If all objects match, one stable region Pjki: [Dki
ocj−1

,

Dki
ocj

) will be returned.

Complexity Analysis. The cost of supporting PSE relies on the number of kthList

and the outliers in Oin. Therefore the time complexity is O(m | Oin |), where m =

kmax − kmin + 1 .

Comparative Outlier Analytics (CO). Given an outlier set Oin, CO operation can
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be answered by checking each outlier candidate oci in OC - OCin. oci is dominated by

all points oj in Oin if oci is listed behind all oj in every kthList .

Complexity Analysis. The time complexity is O(m | OC |), where m = kmax − kmin + 1 .

24.3 D-Space

24.3.1 Offline D-Space Construction

By Def. 23.4, to construct D-Space D, we have to divide all outlier candidates oc into

multiple domination groups Di. The domination relationship holds among all ocs falling

in the same group Di.

Next we introduce the domination rule in Lemma 24.8 to evaluate whether the domi-

nation relationship holds between two outlier candidates based on their space delimiters

in O-Space.

Lemma 24.8 Given two outlier candidates oci and ocj , oci dominates ocj if ∀ kl ∈

[kmin , kmax ], Dkl
oci
≤ Dkl

ocj

Proof. By Def. 24.2, given one k ∈ [kmin , kmax ], if Dk
oci
≤ Dk

ocj
, then oci k-dominates.

By Lemma 24.5 given any parameter setting ps ∈ parameter subspace Pk ⊂ P, ocj is

guaranteed to be outlier if oci is classified as outlier by ps. Since Dkl
oci
≤ Dkl

ocj
holds for

any kl ∈ [kmin , kmax ], then oci kl-dominates ocj for any kl. Therefore if oci is classified as

an outlier by any parameter setting ps in P, then ocj is guaranteed to be an outlier. By the

definition of domination relation in Def. 23.3, Lemma 24.8 is proven. �

As shown in Fig. 24.3, oc1 dominates oc2, because Dk
oc1

< Dk
oc2

for any k ∈ [kmin,

kmax].

It is straightforward to prove that domination relationship satisfies the transitivity

property.
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Lemma 24.9 Given three outlier candidates och, oci, and ocj , if och dominates oci and

oci dominates ocj , then och dominates ocj .

Next we propose a graph-based solution that successfully constructs D-Space. First

we construct an undirected graph based on the domination relationships among all outlier

candidates.

Definition 24.4 Domination Graph. The domination graph of the outlier candidate set

OC is a graph G(V,E), such that (1) a node vi exists in V to represent a point oci in OC,

and (2) an edge eij = (vi, vj) exists in E if domination relationship does not hold between

oci and ocj ∈ OC corresponding to nodes vi and vj in V.

This domination graph G(V,E) tends to be a sparse graph, because the domination

relationship tends to hold among most points in OC. This is the case because the distance

of oci towards its kNN usually does not dramatically change. If Dki
oci

is smaller than Dki
ocj

,

then D
ki+1
oci also tends to be smaller than D

ki+1
ocj .

Given a domination graph G, a completely disjointed graph with zero edge can always

be derived by removing some nodes and the corresponding edges. This indicates by re-

moving a small number of points corresponding to these nodes, we can get a subset of

OC such that the domination relationship holds among all points in it. If we could deter-

mine the minimal number of nodes whose removal will completely isolate the remaining

nodes, then we could build the largest domination group out of OC. We now note that the

problem of finding the minimal number of nodes to remove so that no edge remains in G

can be mapped to the minimum vertex cover problem− a classical NP-complete problem.

Clearly any minimum vertex cover algorithm can be applied here. Then D-Space can

be built by recursively applying the minimum vertex cover algorithm on the removed

nodes as shown in Alg. 10. The domination group built in each iteration is guaranteed to
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24.3 D-SPACE

be the largest at that round. Therefore this process concurrently also minimizes the num-

ber of the domination groups. Since the domination graph tends to be a sparse graph, the

number of the domination groups generated is small. As confirmed in our experiments,

usually two or three trees are sufficient to cover all outlier candidates.

Algorithm 10 construct DForest

Input: OC // outlier candidates
Output: domination forest // constructed domination forest;

1: if (OC == ∅) then
2: return ∅;
3: else
4: domination tree = ∅;
5: removed = minVertexCover(OC);
6: OC = OC - removed;
7: domination tree = buildDtree(OC);
8: return domination forest + domination tree + Construct DForest(removed);

Given a domination group Di a domination tree treei can be constructed by sorting

the outlier candidates in the ascending order based on the distance to their kth nearest

neighbors, where k can be any element in [kmin , kmax ]. In this domination tree, each oc

will dominate the points listed behind it, while it in turn will be dominated by the points

listed in front of it by the transitive property of the domination relationship. Therefore

D-Space is represented by a domination forest composed of multiple domination trees.

Furthermore domination forest also incorporates the stable region concept of P-Space

along its linkage to D-Space.

Lemma 24.10 Given two adjacent points oci and oci+1 in domination tree treel , any

parameter setting psx (kx, rx) with kmin ≤ kx ≤ kmax and Dkx
oci
≤ rx < Dkx

oci+1
will classify

the same set of points ocj in treel as outliers, where j > i.

Proof. Since Dkx
oci
≤ rx < Dkx

oci+1
, by Lemma 24.1 psx will classify oci+1 as outlier and

oci as inlier. Since oci+1 dominates ocj , all ocjs are outliers. Any other point och in treel

will be classified as inlier because och dominates inlier oci . Lemma 24.10 is proven.�
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24.3 D-SPACE

As shown in Fig. 24.3, the parameter settings bounded by lines of oc1 and oc2 generate

the same set of outliers: oc2, ..., oc5.

24.3.2 Online Outlier Exploration

The domination forest can efficiently support all classes of outlier exploration operations.

Comparative Outlier Analytics (CO). CO can be supported by locating the first

point p1st in each domination tree dominated by the weakest outlier oi in the outlier input

set Oin using a binary search style algorithm. Then all points listed behind p1st in each of

the domination trees are guaranteed to be outliers.

Outlier Detection (OD). Similar to CO, OD can be supported by applying the bi-

nary search style algorithm on each domination tree to locate the first outlier candidate

classified as outlier by the input parameter setting psi.

The time complexity of processing CO and OD is O(log | tree1 | + log | tree2 | +...+

log | treen |). It relies on the size of each tree and the number of the trees.

Outlier-Centric Parameter Space Exploration (PSE). By Lemma 24.10, the pa-

rameters that generate the same outliers Oin can be located by examining the strongest

outlier oc in Oi
in and the first point in front of oc in each domination tree treei. Here Oi

in

= Oin ∩ treei. The intersection of the parameters returned from each tree will be the final

result of PSE. The time complexity is O(n+ | Oin |), where n is the number of the trees.

In summary the time complexity of the online phase relies on the size of each tree and

the number of the trees. It is easy to see that the smaller the number of the trees is, the

lower the costs will be.

As for the size of each tree, suppose two forests ft1 and ft2 composed of the same

number of trees are derived from outlier candidate set OC. For forest ft1, | ft1 .tree1 |

� | ft1 .tree2 | ... � | ft1 .treen |, while for forest ft2, | ft2 .tree1 | ≈ | ft2 .tree2 | ... ≈

| ft2 .treen |. Then the cost of the binary search amounts to binary(ft1 ) < binary(ft2 ).
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24.3 D-SPACE

For example suppose OC contains 2m points. ft1 consists of two trees including the

largest possible tree | ft1 .tree1 | = 2m − 1 and the smallest tree | ft1 .tree2 | = 1, while

| ft2 .tree2 |=| ft2 .tree2 |= 2m−1 . Then binary(ft1 ) = log(2m − 1) + 1 < m +1, while

binary(ft2 ) = 2log(2m−1) = 2(m-1). Obviously when m is reasonably large, binary(ft1 )

is far smaller than binary(ft2 ). Therefore instead of making each tree equal size, the ideal

forest construction algorithm should produce the largest possible trees out of OC.

As shown in Sec. 24.3.1 our graph-based D-Space construction algorithm (Alg. 10)

not only minimizes the number of trees created, but also maximizes the size of the trees

in the forest. Therefore it effectively optimizes the performance of outlier exploration.
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Performance Evaluation

Environment. All experiments ran on a Linux Server with 8 GB memory 2.6GHz Quad-

Core CPU using Java 1.6.0 64bit runtime.

Real Datasets. We utilize the GMTI (Ground Moving Target Indicator) dataset [81]

to conduct user study. GMTI contains around 10,000 records regarding the information of

soldiers, vehicles, and helicopters deployed in a certain region. The outliers are detected

based on targets’ latitude and longitude. We use the outliers manually labeled by the

experts familiar with the data as ground truth.

We also use the geolocation data from OpenStreetMap

(http://download.geofabrik.de/) to evaluate the performance of ONION when handling

large dataset. It contains the geolocation information of 50 million buildings (10G) over

Australia and Oceania, such as houses, cafes, stations, etc.. A location on the map is

considered to be outlier based on their distances to other locations.

Methodology. We evaluate the processing time and scalability of both our offline

preprocessing and online mining algorithms by varying the sizes of the dataset D, param-

eter space P, and the number of mining requests. We compare against the state-of-the-art

DOLPHIN [44] in a rich variety of representative use cases.
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25.1 USER STUDY

In particular at the offline phase, we evaluate the processing time of constructing

O-Space that builds the foundation of ONION in comparison to the index construction

cost of DOLPHIN. At the online phase, the performance of our online algorithms associ-

ated with O-Space, P-Space, and D-Space respectively is evaluated and contrasted for all

three outlier exploration types, namely outlier detection (OD), outlier-centric parameter

space exploration (PSE), and comparative outlier analytics (CO). The algorithms associ-

ated with each ONION abstraction are named in the format of “operation type” + “ ” +

“Abstraction type”. For example the algorithm supporting OD operation on O-Space is

named as “OD OSpace”. Furthermore we also compare our ONION against DOLPHIN

on the processing time of traditional outlier detection query − the only exploration type

that Dolphin supports.

25.1 User Study

We conduct a user study to evaluate the effectiveness of ONION in recognizing outliers

contrasting against the traditional one-at-a-time query approach (TRAD) that only sup-

ports outlier detection operation. Since TRAD takes hours to process a large dataset (10G)

as confirmed in Sec. 25.3.1, it is not acceptable for interactive analytics. Therefore in this

study we adopt the relative small dataset (GMTI) − a clear bias to TRAD.

We invited 50 users from both WPI and Yantai University, China. The users are

divided into two groups. Each group only evaluates one system. Each user is allowed to

continuously submit mining requests supported by the target system until the generated

results meet the precision and recall requirement (0.9,0.9) set by us. In each round the

precision and recall are automatically calculated and feedbacked to the users. In any case

the study will terminate after 15 minutes. Users are provided a distribution plot of GMTI

dataset that assists them to initialize the parameter setting. For each user, we count the
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25.2 OFFLINE PREPROCESSING

number of trials (the submitted mining requests) on each exploration operation. Then the

trial number is averaged on the users belonging to the same group.

System Success
Rate

Overall OD CO PSE

ONION 1 5.6 1.8 2.6 1.2
TRAD 0.36 16.2 16.2 − −

Table 25.1: ONION: Success Rate Statistics

As shown in Table 25.1, only 36% of the TRAD users are able to eventually meet the

precision and recall requirement in 15 minutes, while all users using ONION succeed. In

average TRAD takes users 16.2 trials to meet the requirement, while the ONION users

only need 5.6. In particular in average the ONION users submit CO operation 1.8 times,

PSE operation 2.6 times, and the traditional outlier detection (OD) 1.2 times. This con-

firms that our new outlier exploration operations indeed save users significantly effort on

pinpointing appropriate parameter settings.

25.2 Offline Preprocessing

25.2.1 O-Space Construction

We first focus on the processing time of constructing O-Space (construct OSpace) from

raw data by varying the parameter space size, as well as the dataset size. The costs of one

time outlier detection without employing any index is used as the baseline to evaluate the

extra overhead introduced by constructing O-Space.

Varying dataset size. Fig. 25.1(a) illustrates the results when dataset size increases

from 10 million up to 50 million. We vary the dataset size by including more and more

buildings belonging to different regions in Australia. The parameter space is fixed with

kmax as 10 and rmax as 4000. Clearly constructing O-Space has ignorable overhead com-

pared to the cost of one time outlier detection when parameter setting ps specified as
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(c) OD: Varying Dataset Size
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(d) OD: Varying Number Of Requests

(kmax ,rmin). Both our O-Space construction process and one time detection process need

to detect up to kmax neighbors within rmin radius for each point pi. The additional over-

head of O-Space construction is introduced by having to track and maintain all possible

outlier candidates with respect to the entire parameter space. However as shown in Fig.

25.1(a) such overhead is small (around 10%). Furthermore constructing O-Space is sig-

nificantly faster than constructing DOLPHIN index.

Varying parameter space P. Dolphin is excluded from this case because it does

not have the parameter space concept. The influence of varying range of k is evaluated.

Fig. 25.1(b) represents the results when varying kmax from 10 to 20, while holding rmax

at 4000m and dataset size at 50 million. The overhead is still around 10% for the same

reason explained above. As kmax increases, the cost of O-Space construction grows in
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the trend similar to one time outlier detection. Varying the range of r shows the similar

influence. Due to space constraint, the results are not included.

25.3 Online Outlier Exploration

25.3.1 Online Outlier Detection

We evaluating the processing time of online outlier detection by varying the size of the

datasets and the number of the requests.

Varying dataset size. Fig. 25.1(c) shows the advantage of ONION for outlier detec-

tion. We ran 10,000 requests with randomly chosen parameter settings from the entire

parameter space and show the total processing time. P-Space and D-Space methods show
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25.3 ONLINE OUTLIER EXPLORATION

very similar performance. Therefore their lines in Fig. 25.1(c) are overlapped. In average

each request can be processed in milliseconds. Both consistently outperform DOLPHIN 5

orders of magnitude. Furthermore for D-Space and P-Space the detection cost grows only

logarithmically in the size of outlier candidates that are the strict minority of the whole

dataset (fewer than 10%), while DOLPHIN grows linearly. Therefore, ONION scales to

large dataset.

Varying number of request. We increase the number of OD requests from 10,000

up to 50,000, while holding dataset size constant at 50 million. The total detection time

is measured. Fig. 25.1(d) shows that our algorithms scale linearly in the number of

requests. Again P-Space and D-Space algorithms are at least 5 orders of magnitude faster

than DOLPHIN. Even our linear complexity O-Space method is 3 order of magnitude

faster than DOLPHIN in average.

25.3.2 Outlier-Centric Parameter Space Exploration

We evaluate the performance of processing PSE request not supported by DOLPHIN.

Each chart shows the accumulated processing time for 10,000 requests.

Varying parameter space size. Fig. 25.1(e) measures the influence to the processing

time of PSE when varying the size of the parameter space. This is achieved by increasing

kmax from 2 to 10. For P-Space and D-Space the cost of supporting PSE relies on the

number of domination trees and the parameter node lists. Therefore, the cost of P-Space

and D-Space is not sensitive to the change of kmax . On the other hand O-Space method

has to check all outlier candidates. Since the number of outlier candidates grows as kmax

increases, the cost of O-Space method will also increase lineally.

Varying dataset size: outlier set as input. Fig. 25.1(f) demonstrates the performance

of our PSE algorithms. That is, given a PSE request, we use a set of randomly selected

outlier candidates as input. The size of the datasets is varied from 10 million up to 50
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25.3 ONLINE OUTLIER EXPLORATION

million. Similar to the experiment that uses parameter settings as input, P-Space and

D-Space methods significantly outperform O-Space method 3 orders of magnitude.

25.3.3 Comparative Outlier Analytics

Next we evaluate the performance of supporting CO operation.

Varying dataset size. Fig. 25.1(g) illustrates the processing time of supporting CO

operation by varying dataset sizes. We use a randomly selected outlier set as input. The

operation returns all outlier candidates that are dominated by the input outliers. D-Space

supports CO operation by only looking at each domination tree in the domination for-

est once, while the number of the domination tree is small (at most 3 when the dataset

contains all 50 millions buildings). On the other hand, O-Space method has to scan all

candidates, while P-Space method has to search the parameter node lists for every possi-

ble k value. Therefore D-Space method is about 1 order of magnitude faster than P-Space

method, and about 3 to 4 orders of magnitude faster than O-Space method.

Varying size of input outlier set. In Fig. 25.1(h) we vary the size of the input outlier

set from 10 to 30, while keeping the sizes of dataset and parameter space stable. For each

method we only need to check the weakest outlier of the input outlier set. Since the cost

of determining the weakest outlier is negligible, all our three methods are not sensitive to

the size of the input outlier set.
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Related Work

Outlier Detection. Outlier detection has been the focus of much research in the statistics

literature for over a century [82, 83]. The most common approach is to assume that all

points follow a distribution with known distribution parameters (e.g., mean and variance).

The points that do not properly fit the model are considered to be outliers. However, such

approaches suffer from the serious limitation that the data distribution and underlying

parameters must either be explicitly known apriori or be easily inferred.

Approaches that do not rely on data distributions have also been proposed. In [63,

84, 85] all points that are not a core part of any cluster are classified as outliers. In other

words the outliers are in this case the by-products of data clustering. However we note

here that a point that is not a member of any cluster is not necessarily abnormal. This is

so because the goal of clustering is to group together points that are extremely similar to

one another. Therefore such approaches lack strong notion of what constitutes an outlier.

To address this limitation, the notion of an outlier based on density (of neighborhood)

or based on distance (of neighbors) has been defined. Density-based approaches [10, 11]

assign an outlier score to any given point by measuring the density relative to its local

neighborhood restricted by a pre-defined threshold. Therefore density-based outliers, re-
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garded as “local outliers”, are able to identify outliers often missed by other methods.

However it has been observed that such methods do not scale well to large datasets [86].

Furthermore explicit distance-based approaches, based on the well known nearest-

neighbor principle, were first proposed by Ng and Knorr [8]. They employ a well-defined

distance metric to detect outliers, that is, the greater is the distance of the point to its

neighbors, the more likely it is an outlier. The basic algorithm for such distance-based

definition, the nested loop (NL) algorithm, calculates the distance between each pair of

points and then set as outliers those that are far from most points. The NL algorithm has

quadratic complexity with respect to the number of points. Thus it is not suitable for truly

large datasets.

As a result, extensive effort has been focusing on identifying practical sub-quadratic

algorithms [36, 44, 53, 87]. Several optimization principles have been proposed such

as the use of compact data structures [87], of lightweight outlier detection oriented in-

dices [44], and of pruning and randomization [53]. In particular by indexing the possible

neighbors of each point pi in dataset D based on their distances to pi, [44] is able to ap-

proximate whether pi is an outlier in the time complexity near linear to the cardinality of

D. However, while these methods offer improved performance compared to statistical or

clustering based approaches, they still suffer from unacceptable response times such that

hours or even days for online queries. Furthermore none of these works tackles the im-

portant and hard problem of choosing proper parameter setting from the infinite number

of possible options. Our work not only successfully satisfies the real time responsive-

ness requirement, but also saves users the significant effort otherwise spent on parameter

tuning.

Parameter Space Exploration in Clustering. In [42] the OPTICS algorithm creates

an augmented ordering of the dataset to represent the clustering structure corresponding

to a set of parameter settings. However, the producing of outliers as by-products of clus-
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tering has already been shown to be not effective in capturing abnormal phenomena [18].

Furthermore the ordering information is only effective in representing the clusterings with

respect to a small range of parameter settings, that is the parameters with only the neigh-

bor range threshold variable. Our work instead supports a full range of possible parameter

settings composed of both range and neighbor count thresholds.
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Part VI

Conclusion and Future Work
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Conclusion of This Dissertation

The goal of this dissertation is to fill the void in the literature of effectively detecting

outliers over big data. Outlier detection is fundamentally important in a wide range of

applications from credit fraud prevention, network intrusion detection, stock investment

tactical planning to moving object monitoring. In this dissertation we propose novel tech-

niques and systems to address the challenges caused by the high velocity streaming data,

the big volume static data and the large cardinality of the input parameter space. The

three highlights of this dissertation can be summarized as follows.

Within this scope, we focus on three research aspects, namely techniques and systems

for continuous outlier detection over streams, distributed outlier detection over massive-

scale static data sets and interactive outlier exploration.

First, we focus on the problem of continuous outlier detection over streams. We

propose approaches to support not only single particular outlier detection request, but

also large outlier analytics workload.

For single outlier detection request we propose the LEAP technique, a general stream

outlier detection framework that achieves near real time responsiveness even when han-

dling high velocity streaming data. LEAP offers 3 key innovations. (1) We propose
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a “minimal probing” strategy, which intelligently use a light-weight operation, called

“probing”, to gather minimal evidence for outlier detection. (2) We propose a “lifespan-

aware prioritization” strategy, which leverages the temporal relationships among stream

data points to prioritize the processing sequences among them during the probing process.

Our comprehensive experimental studies, using both synthetic as well as real streaming

data from stock market and moving object domains, confirm that our methods perform up

to 3 magnitude faster than the state-of-the-art.

To support large outlier analytics workload, we propose a shared execution method-

ology called SOP that achieves minimal utilization of both computational and memory

resources. The key innovations of LEAP includes: (1) transform the problem of handling

a multi-query outlier analytics workload into a single-query skyline computation problem;

(2) design a customized skyline algorithm called K-SKY to minimize the number of data

points that must be evaluated for supporting multi-query outlier detection. Our experi-

mental study demonstrates that SOP consistently outperforms the state-of-art solutions

by three orders of magnitude in CPU time, while only consuming 5% of their memory

footprint.

Second, we target distributed outlier detection over massive-scale static data sets.

Our DOD system offers 3 key innovations: (1) an efficient cost-driven data partitioning

strategy to achieve load balancing across compute nodes; (2) a novel multi-tactic strat-

egy which adaptively selects the most appropriate algorithm for each partition based on

data characteristics; (3) theoretical results on proving the traditional frequency-based load

balancing assumption in the literature is not effective. Our comprehensive experimental

study confirms the efficiency of DOD and its scalability to TBs of data and large number

of compute nodes.

Lastly, we address the problem of interactive outlier exploration. Our ONION system

offers two key innovations. (1) ONION features an innovative interactive anomaly explo-
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ration model that offers an “outlier-centric panorama” into big datasets along with rich

classes of exploration operations. (2) To achieve this model ONION employs an online

processing framework composed of a one time offline preprocessing phase followed by

an online exploration phase that enables users to interactively explore the data. Our user

study with real data confirms the effectiveness of ONION in recognizing “true” outliers.

Furthermore as demonstrated by our extensive experiments with large datasets, ONION

supports all exploration operations within milliseconds response time.
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Future Work

28.1 Predicates in Outlier Detection

To date, predicates have not yet been considered in the outlier detection context. Yet

predicates are crucial in expressing the semantics of outliers [33]. For instance, in the

stock market investors may look for the outlier stocks whose behavior significantly differ

from that of the majority of their peer stocks to seek short-term investment opportunities.

However some analysts might only be interested in energy related stocks, while others

might be seeking for opportunities in high tech stocks. Therefore outliers have to be

detected in a certain subset of the data instead of the whole data set. It is not only because

of the saving of the detection time. Moreover, it will significantly influence the accuracy

of the generated results. Taking the distance-based outlier concept as example, certainly

Apple will get more neighbors (stocks with similar stocks) in the whole stock market than

in the high tech sector and be classified as inliers, although it might perform significantly

different from other high tech stocks and therefore should be classified as outliers.

Furthermore, in light of the demands from the real world, outliers to be detected some-

times are not only being confirmed as abnormal from dataset they belong to. Instead, their
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identification of the outlier status depends on some other correlated dataset. Therefore

datasets can be categorized into target and scope based on their roles in outlier detection.

Target is the dataset where data reside to be evaluated if they are outliers or not. Scope

is the stream that all target data probe into to find neighbors. Therefore the traditional

outlier detection semantics have to be enhanced to support predicates and Target/Scope

datasets.

Therefore a system that supports hundreds of outlier detection queries with different

predicate conditions has to be designed. We plan to design a sharing-aware approach to

avoid applying outlier detection algorithm over and over for different outlier detection

requests.

The main intuition of how to tackle the sharing problem for varying Target predicate

is as follows. Namely, we utilize the predicates p1, p2, p3, ..., pn to partition the data

points in a dataset into disjoint subsets, called fragments. For each data point in each

fragment, neighbors searching would be applied. In other words, a set of data points are

partitioned into F0, F1, ..., Fk, a set of k + 1 disjoint fragments: D = F0∪F1∪ ... ∪Fk.

Each fragment Fi is associated with a subset of the workload WLi where every data point

in the fragment Fi satisfies the predicates of every query in WLi . Then outlier detection

algorithm can be applied to individual fragment to detect outliers. By this each fragment

is processed only once even if it is included by multiple outlier detection queries.

In the arbitrary Scope predicate case, the same intuition can be applied to avoid the

duplicate probing on each fragment. However in the arbitrary Target predicate case, it

does not matter which fragment is looked at first and which one is examined later. This is

so because all fragments have to be examined no matter in what order they are processed.

However in the arbitrary Scope case, the processing order should be prioritized, since

possibly only evaluating a subset of the Target fragments is sufficient to prove the inlier

status of one target point with respect to all queries. Given a Scope fragment, the larger
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number of queries it is involved in, the higher priority it should be assigned to. The

intuition here is that a Target fragment involved in more queries potentially can satisfy

the inlier criteria of more queries for a given Target point.

28.2 Approximation in Outlier Detection

Approximation forms another category of strategy that can speed up the outlier detection

process [14]. Various approximation approaches can be leveraged such as dimension

reduction, sampling, etc. The key of such approach is to quickly approximate outliers,

while still guarantee the accuracy of the detected results. Here we roughly sketch several

possible approaches. We use LOF as example, because LOF is one of the most expensive

techniques in unsupervised outlier detection.

Approximate KNN on the one dimensional distance space. We first map all data

points in a given dataset D to a one dimension space using their distances to one reference

point. Then the KNN of each data point p in D can be approximated using its KNN in

the one dimensional distance space. Multiple reference points, therefore multiple one

dimensional distance space can be utilized to reduce the approximation error. Since KNN

search is the bottleneck of LOF calculation, this approach will significantly speed up the

LOF calculation process.

Approximate LOF values using sampling. Since the LOF value of one given point

p is calculated based on the relative density relative to its neighbors, utilizing a sample

data set to approximate the density of p and in turn its LOF value might not significantly

deviate from its actual value. More specifically given a large input data set D, we first

acquire a small data set D′ by randomly sampling D. Then the KNN of each data point

p ∈ D will be searched in the small sample data set D′. This is much more efficient

compared to the KNN search conducted on the original large data set D.
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Distributed approximation approach. First, the input data set D is divided into

multiple data partitions Di. Each partition is processed by one compute node. Then the

LOF values of each point p ∈ Di will be calculated based on the data in the same node.

If the LOF value of point p is smaller than a pre-defined threshold t, p is considered as an

inlier and discarded immediately. On the other hand if the LOF value of p is larger than

t, p has to be processed in the next round to confirm whether it is indeed an outlier. Since

the number of such points tend to be small, it is practical to broadcast them to all other

partitions and then calculate their actual KNNs and LOF values.

28.3 The Management of Outliers

Although outliers are considered to be the absolute minority of the input data, the sheer

number of outliers detected in a big data set still can be overwhelming. Therefore manu-

ally managing and analyzing the large number of outliers is not feasible anymore in this

big data era. Therefore an outlier management system must be designed to help users

effectively maintain and analyze the detected outliers.

However designing such an outlier management system is challenging. First, a pop-

ular approach of managing a large dataset is to group the data points with the similar

characteristics together and manage the data at the group level instead of the individual

point level, in other words managing data by clustering. However since outliers by defi-

nition are the individual anomalous phenomenon detected in the data, not many of them

will share the same characteristics. Otherwise they would not be recognized as outliers.

Therefore clustering outliers is difficult if not impossible.

Furthermore, to the best of our knowledge all outlier detection models require users to

set input parameters as outlier specification. An appropriate input parameter setting is the

key to discover the “true” outliers to the interest of the users. Very possibly users have to
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successively submit a lot of mining requests with different input parameter settings until

a good parameter is eventually located. During this process the intermediate detection

results have to be maintained such that the users can easily contrast and compare the

outliers generated in different rounds. This further complicates the outlier management

system, since each data point will be associated with multiple outlier status with respect

to different outlier specifications.

Next we roughly sketch several possible approaches for this outlier management prob-

lem.

First, given a data point p, its outlier status can be modeled as a time series with

the parameter setting as the “time” and the outlierness score as the “value”. Then outliers

showing similar evolving patterns along the parameter settings can be grouped together by

applying time series clustering algorithms. In other words this approach clusters outliers

based on the evolvement trend of their outlierness score such as the LOF value.

Second, given a data set D, the points in D and their outlierness scores corresponding

to various parameter settings can be modeled as one matrix. More specifically in this

matrix one dimension represents the data points in D. The other dimension represents the

input parameter settings. The value of each element in this matrix represent the outlier-

ness score of one particular data point corresponding to one particular parameter setting.

Then a bi-clustering [88] algorithm can be applied to this matrix. Both the data points

and the input parameters will be clustered into multiple groups. Furthermore, this bi-

clustering based approach also explicitly models the linkage between the data points and

the input parameter settings. This provides users a powerful yet simplistic tool to analyze

and contrast the generated outliers across different parameters and therefore would sig-

nificantly speed up the process of locating an appropriate input parameter setting. By this

we solve two critical problems with one single approach , namely the management of the

detected outliers and the recommendation of the input parameter settings.
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28.4 Continuous Detection of Local Outliers

In Part II we present the solution of detecting distance-based outliers over data streams.

Supporting the continuous detection of density-based outliers in particular LOF will be

one important direction of our future research, since LOF is able to discover “local out-

liers” which cannot be captured by distance-based outlier models as discussed in Chapter

2.

Since the time complexity of LOF calculation is quadratic to the number of the input

data points, periodically applying static LOF outlier detection algorithm to the continu-

ously evolving streaming data would be extremely computationally inefficient. To satisfy

the stringent response time requirement of stream applications incremental solutions must

be designed.

The high computation cost of LOF in fact is introduced by the expensive kNN search

conducted on each data point. Therefore an incremental streaming kNN algorithm will

significantly improve the performance of LOF calculation if it is able to effectively main-

tain and update the kNN of a given point as the streaming data evolves. The intuition here

is that given a point p usually only a very small fraction of the data points arriving from

a data stream is relevant to the kNN of p. For high throughput streams also only a small

fraction of the points can be stored in the system. These general conditions require a de-

cision strategy to discard irrelevant points. In other words we need to develop a criterion

to decide upon arrival of a new object from the stream if it may become the nearest neigh-

bor in future, or can definitely not. Among the stored potential relevant points pruning is

performed. The basic idea is that a new point arriving from the stream can often exclude

many other points which can not become nearest neighbors until the new arrived point

expires.

Assume k in kNN search is equal to 1. That is, we are looking at the nearest neighbor
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of point p. To decide whether or not an point pi may become the nearest neighbor of a

point p we consider the 2-dimensional space of the distance and the time of expiry. Note

that this space is always 2-d, regardless of the dimensionality of the feature space of the

data. An point pi may become the nearest neighbor, unless there exists another point pj

which at the same time (1) is closer to point p than pi and which (2) expires later than pi.

If both conditions hold, then pi cannot be the nearest neighbor now (because at least one

closer point pj is known.) Moreover, it cannot become the nearest neighbor later, because

the point pj lives longer. A set of points which are maximal (minimal) with respect to

two (or more) different conditions (such as, in this case, distance and expiry) is called a

skyline. It can be proven that the points of the skyline in the distance-expiry space (and

only these points) need to be stored as potential nearest neighbors. The current nearest

neighbor is also in the skyline at all times. This immediately indicates an incremental

streaming kNN search algorithm. That is, by maintaining the skyline, we only need to

search the new arrivals to update the kNN of p.

Moreover, the arrival of the new point as well as the expiration of the old point in-

fluences only limited number of their closest neighbors. Thus the number of LOF value

updates per such insertion/deletion does not depend on the total number of points in the

data set. To quickly locate the points being influenced by for example the arrival of a

new point p, we have to track the points that have p as their kNNs, in other words the

reverse kNN of p or in short RKNN . Therefore to quickly exclude the points whose are

influenced by the arrival of the new point or the expiration of the old point p, the RKNN

should be maintained instead of the kNN of p.

The observation here is that in fact the streaming RKNN problem is similar to the

stream distance-based outlier detection problem. This is so because given a RKNN query

with the query point set as q, most of the points in the data set are not the RKNN of

q. In other words similar to outliers, the RKNN points are also the absolute minority
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of the entire data set. Furthermore, given a point p, if it has k succeeding neighbors

whose distances to p is smaller than the distance between p and q, p will never be in the

RKNN of q. Therefore the minimal probing and lifespan-aware prioritization optimization

principles introduced in Chapter 3 could be equally applied to support streaming RKNN .

In summary, it would be interesting and promising to explore these four directions. We

hope the experimental evaluation can confirm the superiority of the approaches/models

above. Eventually, future work in this direction will significantly enhance the applicability

of our next generation outlier analytics system to a wider spectrum.
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