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Abstract 

A technical examination of the Calculus from two directions: how the past has led 
to present methodologies and how present methodology has automated the methods from 
the past. Presented is a discussion of the mathematics and people responsible for 
inventing the Calculus and an introduction to the inner workings of Computer Algebra 
Systems. 
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0. Introduction 

In most modern Calculus courses, the history behind the useful mathematical 

results are often left ignored. Though the pragmatic uses for Calculus are numerous, 

without a fundamental understanding of the origins of its methods, the student is left 

applying memorized techniques--often lacking an understanding of why those techniques 

work. It is our intent to explore the historical path, in significant mathematical detail, to 

the elementary methods of the Calculus. 

We have grown accustomed to utilizing calculators and mathematical software to 

aid in solving Calculus problems. Increases in raw computational power have led to 

incredible savings in the amount of time required by mathematicians to perform laborious 

tasks. In addition, computational improvements have made solvable problems that were 

previously thought unsolvable. Many of the uses for computational systems in 

mathematics seemed obvious applications of such power. However, an area that struck us 

as a particularly interesting use for computers in mathematics is Computer Algebra 

Systems. The symbolic capabilities of programs such as Maple and Mathematica 

mysteriously simulate human problem-solving techniques. We will explore the methods 

behind such Computer Algebra Systems, and in order to truly understand the complexity 

of such methods, write our own system that mimics some of the elementary capabilities of 

these robust packages. 

The project consists, then, of exploring two basic ideas. First, we believe that in 

order to truly understand any science, it is necessary to study the path that led to its 

creation. In this case, we have chosen to research the history of the mathematics from the 
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17th  century that led to the basic methods of Calculus. In doing so, we hope to both 

improve our own understanding of Calculus and provide a comprehensible guide to others 

who wish to improve their understanding. Second, technology--specifically the computer- 

-has had a large effect on the way mathematics is taught and used. We are taught to rely 

on Computer Algebra Systems and Graphing Calculators as an aid to solving problems. 

Rather than briefly describe the many ways that computer have influenced mathematics, 

we have chosen to explore one area in-depth. We will provide a discussion of the 

methods behind Computer Algebra Systems, a description of our own approach to writing 

a Computer Algebra System, and a Web accessible version of our software for those 

interested in seeing first-hand how the system works. It is our opinion that the best way 

for us to understand how computers have influenced mathematics is to ourselves develop 

a breed of software that has significantly influenced our own education in mathematics. 

The project consists of two major portions that are intended for those with an 

introductory background in Calculus. The paper is written in such a way that anyone who 

has taken the usual introductory Calculus sequence should be able to understand the 

mathematics involved. In addition to examining the mathematics, we will explore the 

people that were pivotal in developing the Calculus. Though we believe understanding 

their mathematics is crucial, it is of equal importance to study the personal characteristics 

of the revolutionary thinkers that enhanced our understanding of nature. 

The intent is to provide a look at Calculus from two directions: examining the 

technicalities of how the past has led to present methodologies and how present 

technology has automated the methods from the past. 
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1. History of the Integral from the 17 th  Century 

1.1 Introduction 

The path to the development of the integral is a branching one, where similar 

discoveries were made simultaneously by different people. The history of the technique 

that is currently known as integration began with attempts to find the area underneath 

curves. The foundations for the discovery of the integral were first laid by Cavalieri, an 

Italian Mathematician, in around 1635. Cavalieri's work centered around the observation 

that a curve can be considered to be sketched by a moving point and an area to be 

sketched by a moving line. 

1.2 Cavalieri's Method of Indivisbles 

In order to deal with the geometrical notion of a moving point, Cavalieri worked 

with what he called "indivisibles". That is, if a moving point can be considered to sketch a 

curve, then Cavalieri viewed the curve as the sum of its points. By this notion, each curve 

is made up of an infinite number of points, or "indivisibles". Likewise, the "indivisibles" 

that composed an area were an infinite number of lines. Though Cavalieri was not the first 

person to consider geometric figures in terms of the infinitesimal (Kepler had done so 

before him), he was the first to use such a notion in the computation of areas (Hooper 

248-250). 

In order to introduce Cavalieri's method, consider finding the area of a triangle. 

For many years, it had been known that the area of a triangle was 1/2 the area of a rectangle 

which has the same base and height. 

3 



6 

Figure 1.1 

In Figure 1.1, the rectangle has a base of 6 units and a height of 5 units (A = bh, so 

the total area is 30 units). The total area of the inner rectangular regions can easily be 

computed by taking the sum of all the inner rectangles. Comparing the two areas: 

Area of shaded region = 0 +1+2 + 3 + 4 + 5 = 15 = 1 
Area of entire rectangle 	 5*6 	 30 2 

Using the same methodology, the ratio for a larger rectangle with a greater number 

of inner subdivisions is computed: 

Area of shaded region 0+1+2+3+...+10 55 1 
Area of entire rectangle 	 10*11 	 110 2 

The total area of the inner regions is always one-half the area of the total rectangle. 

This can be shown formally by using the closed form of the summation for the numerator: 

Ei= 0+1+2+...+n—
n(n+1) 

1=0 	 2 

Using the closed form, it can be seen that: 

Ei 	 _1 
n(n +1) 

Area of shaded region 	 i=0 	  2 	  1 	 = 	 = 	 = — 
Area of entire rectangle n(n +1) n(n + 1) 2 

Cavalieri now took a step of great importance to the formation of the integral 

calculus. He utilized his notion of "indivisibles" to imagine that there were an infinite 

number of shaded regions. He saw that as the individual shaded regions became small 
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enough to simply be lines, the jagged steps would gradually define a line. As the jagged 

steps became a line, the shaded region would form a triangle. As the number of shaded 

regions increases, the ratio remains simply one-half. 

Cavalieri's methodology agreed with the long-held result that the area of a triangle 

was one-half the product of the base and height. He had also shown that his notion of 

"indivisibles" can be used to successfully describe the area underneath the curve. That is, 

as the areas of the rectangles turn into lines, their sum does indeed produce the area 

underneath the curve (in this case, a line). Cavalieri went on to use his method of 

"indivisibles" to find the area underneath many different curves. However, he was never 

able to formulate his techniques into a logically consistent foundation that others accepted. 

Though Cavalieri's techniques clearly worked, it was not until Sir John Wallis of England 

that the limit was formally introduced in 1656 and the foundation for the integral calculus 

was solidified (Hooper 249-253). 

In order to fully understand Wallis' contributions to the integral calculus, it is first 

necessary to see how Cavalieri's theoretical techniques can be applied to find the area 

underneath a curve more complicated than a line. In order to do so, this technique will be 

applied to find the area underneath the parabola y = x 2 . 
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Each rectangular region has a base of 1 unit along the x-axis and height of x2  

(obtained from the definition of the parabola). The number of rectangular regions will be 

defined to be m. Cavalieri again attempted to express the area underneath the curve as the 

ratio of an area that was already known. He considered the area enclosing all of the m 

rectangles. It can easily be seen from the diagram that the base of this rectangle will be 

m+ 1 (there are m rectangles, the first starting at '/2 and the last one ending at m + '/2). The 

height of the enclosing rectangle will be m2, from the definition of the parabola. The ratio 

can now be expressed with the following equation: 

Total area of m rectangles 12 + 22 + 32 +...+m 2 

Area of bounding rectangle 	 (m +1)m 2  

Recall that the area of a rectangle is defined by the product of its base and height. 

It was stated that the bounding rectangle had a base of m+/ and a height of m2, which 

accounts for the denominator. The numerator is easily explained as well: each of the m 

rectangles has a base of 1 and a height of its x value squared. Cavalieri now proceeded to 

calculate the ratio for different values of m. In doing so, he noticed a pattern and was able 

to establish a closed form for the ratio of the areas: 

Total area of m rectangles =  1 1 
Area of bounding rectangle 3 6m 

Cavalieri then utilized his important principle of "indivisibles" to make another 

important leap in the development of the calculus. He noticed that as he let m grow 
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larger, the term 1 6m  had less influence on the outcome of the result. In modern terms, 

he noticed that 

(-1 + 	
3 

16m ) _1 
11111 30,1  

That is, as he lets the number of rectangles grow to infinity, the ratio of the areas 

will become closer to 
1  —
3 . Though Cavalieri did not formally introduce the notation for 

limits, he did utilize the idea in the computation of areas. After using the concept of 

infinity to describe the ratios of the area, he was able to derive an algebraic expression for 

the area underneath the parabola. For at any distance x along the x-axis, the height of the 

parabola would be x2. Therefore, the area of the rectangle enclosing the rectangular 

subdivisions at a point x was equal to x(x 2  ) or x3. From his earlier result, the area 

underneath the parabola is equal to 1/3 the area of the bounding rectangle. In other 

words: 

Area under x 2  =.1--  x 3  
3 

With this technique, Cavalieri had laid the fundamental building block for integration. 

1.3 Wallis' Law for Integration of Polynomials 

John Wallis' contribution to the integral calculus was to derive an algebraic law for 

integration that alleviated the necessity of going through such analysis for each curve. 

Through examining the relationship between a function and the function that describes its 

area (henceforth referred to as the area-function), he was able to derive an algebraic law 
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for determining area-functions. Rather than simply present the algebraic relationship 

(which the reader is doubtless familiar with if (s)he has studied a minimal amount of 

calculus), we will perform a similar analysis as to what led Wallis to derive his law. 

First, consider the graph of the function y = k ory = kx °  : 

x 

Figure 1.3 

Clearly, it can be seen from the diagram, that the area underneath the line at any 

point along the x-axis will be kx or A= 
1 
— kx . 
1 

Next, consider the graph of the function y = kx : 

8 



At any point x along the x-axis, the height will be equal to loc. Since the area 

forms a triangle, the area underneath the curve can be expressed as '/2 the base times the 

height or A= 
1 

 —
2 

loc 2 . As was already shown above, the area underneath a parabola 

1 
y = kx2, can be expressed as A = 31ce . Wallis noticed an algebraic relationship between 

a function and its associated area-function. That is, the area-function of y = kxn is 

A — 	
1 

n +1
ke+ 1  . Wallis went on to show that not only does this hold true where n is a 

natural number (which had been the extent of Cavalieri's work), but that it also worked 

for negative and fractional exponents. Wallis also showed that the area underneath a 

polynomial composed of terms with different exponents (e.g. y = 4x 3  + 3x2  + x + 1) can 

be computed by using his law on each of the terms independently (Hooper 255 - 260). 

1.4 Fermat's Approach to Integration 

One of the first major uses of infinite series in the development of calculus came 

from Pierre De Fermat's method of integration. Though previous methods of integration 

had used the notion of infinite lines describing an area, Fermat was the first to use infinite 

series in his methodology. The first step in his method involved a unique way of 

describing the infinite rectangles making up the area under a curve. 

9 



0 3 eMx en3x en2x ex 

Figure 1.5 

Fermat noticed that by dividing the area underneath a curve into successively 

smaller rectangles as x became closer to zero, an infinite number of such rectangles would 

describe the area precisely. His methodology was to choose a value 0 < e < 1, such that a 

p/ 

rectangle was formed underneath the curve y = xiq at each power of e times x (see 

Figure 1.5, NOTE: e was simply Fermat's choice of variable names, not e = 2.71828...). 

Fermat then computed each area individually: 

p+q/ 

(X - ex)x/ q 
P/ 	

' q = x(1— e)x = (1— e)x q 

(ex — e 2 x)x q = ex(1 — e)(ex)i q = (1 — e)e /q x q 

(e 2  X - e 3 X)X = e 2  X(1 - e)(e 2 X) = (1 - e)e 2(P+3/41  ) x P+  qY 
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The first equation represents the area of the largest rectangle, the second equation 

the next rectangle to the left, and so on. The areas are simply found by multiplying the 

base times the height. The base is known by the power of e, and the height by evaluating 

p/ 
y = xiq at the given x value. The simplifications of each area expression are given in a 

form that will be useful when attempting to find the infinite sum. Fermat's next step was 

to compute the infinite sum of these rectangles as the power of e approached infinity. 

(1—e)x /q + 

1 term = (1— 

p+q/ p+q/ 	 P+% p+ q/ 

e)e /q x 	 + (1— e)e 2(  ) x /q  

e)x q (1) 

+ 

2 terms = (1 — 

3 terms = (1— 

p+y 	 p+q/ 

e)x 	 (1+e 	 ) 
p+q/ 	 p+q/ 	 p+q/ 

e)x 	 (1+e 7q +e 2(  /q) ) 

P -Fq/ 	 p+q/ 	
P+/ 
	 p+q/ 

= (1— e)x iq (1+e /q +e 2( ")+e 3( ") +....) 

By determining the sum of each increasing finite series, he was able to develop an 

expression for the infinite sum. 

In order to find a closed form for the expression 

P4-4/ 	 P+% ) 	 P+% ) (1+e 	 + e 2( 	 + e 3( 	 + ....) 

...note that the sum is a geometric series of the form: 

(1+ x + x 2  +x3  +....) 

1 If 0 < x < 1, the sum is — (this can be shown to be true by long dividing (1-x) 
1—x 

p+y 
into 1). Therefore, by substituting e q  back in for x and inserting into the overall 

1 1 



equation, the area can be expressed as: 

A= 
p+r1—e g 

p+r 

(1 -  e)x 1 

Fermat now wished to express the area entirely in terms of x, and in order to do so 

substituted e = Eg , which by simplification and factoring out (1-E): 

Pi-q/ 	 p+q/ 	 P- (1 

A= 	
/ 

(1—Eg)x 	 (1—E)(1+E+E2  +...+Eg-1 )x 	 (1+E+E2  +...+Eg-1 )x 7 g 
1—EP±g 	 (1—E)(1+E+E2  +...+EP+g-1 ) 	 (1+E+E2  

Fermat now made a step that with the benefit of current knowledge is explainable, 

but at that time was not properly justified. That is, Fermat said let E = 1 and since 

Eq =1g =land because Eg =e then e must also equal 1. By substituting 1 for E in the 

area expression above: 

p+q/ 
A= (1+1+12  +...+1g-1 )x q r  q 	 P+  y 

(1+1+12 +...+1P+q-1) 	
x 	 q 

p-F q  

Although this methodology yielded the appropriate result for the area underneath 

the curve, Fermat's justification of letting E = 1 was not properly formulated. What he 

actually was doing was taking the limit as E approaches 1 and as E approaches 1 so too 

will e. As e approaches 1, then e raised to any power will also approach 1, and the infinite 

sum of the areas underneath the curve has been determined. The notion of a limit was 

hinted at in Fermat's work, but it was not formally defined until later (Boyer 162 - 169). 

Wallis and Fermat's work had laid the groundwork for the modern concept of the 

integral. However, what Fermat and Wallis had failed to recognize was the relationship 
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between the differential and the integral. That idea would be developed simultaneously by 

two men: Newton and Leibniz. This would later be known as the Fundamental Theorem 

of Calculus and, as the name implies, it is a landmark discovery in the history of the 

Calculus. However, before proceeding on to describe this important theorem, it is first 

necessary to examine the development of the differential. 
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2. History of the Differential from the 17 th  Century 

2.1 Introduction 

The problem of finding the tangent to a curve has been studied by many 

mathematicians since Archimedes explored the question in Antiquity. The first attempt at 

determining the tangent to a curve that resembled the modern method of the Calculus 

came from Gilles Persone de Roberval during the 1630's and 1640's. At nearly the same 

time as Roberval was devising his method, Pierre de Fermat used the notion of maxima 

and the infinitesimal to find the tangent to a curve. Some credit Fermat with discovering 

the differential, but it was not until Leibniz and Newton rigorously defined their method of 

tangents that a generalized technique became accepted. 

2.2 Roberval's Method of Tangent Lines using Instantaneous Motion 

The primary idea behind Roberval's method of determining the tangent to a curve 

was the notion of Instantaneous Motion. That is, he considered a curve to be sketched by 

a moving point. If, at any point on a curve, the vectors making up the motion could be 

determined, then the tangent was simply the combination (sum) of those vectors. 
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Roberval applied this method to find the tangents to curves for which he was able 

to determine the constituent motion vectors at a point. For a parabola, Roberval was able 

to determine such motion vectors. 

vi 

Figure 2.1 

Figure 2.1 depicts the graph of a parabola showing the constituent motion vectors 

V1 and V2 at a point P. Roberval determined that at a point P in a parabola, there are two 

vectors accounting for its instantaneous motion. The vector V1, which is in the same 

direction as the line joining the focus of the parabola (point S) and the point on the 

parabola (point P). The other vector making up the instantaneous motion (V2) is 

perpendicular to the y-axis (which is the directrix, or the line perpendicular to the line 

bisecting the parabola). The tangent to the graph at point P is simply the vector sum 

V = V1 + V2. 

Using this methodology, Roberval was able to find the tangents to numerous other 

curves including the ellipse and cycloid. However, finding the vectors describing the 

instantaneous motion at a point proved difficult for a large number of curves. Roberval 
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was never able to generalize this method, and therefore exists historically only as a 

precursor to the method of finding tangents using infinitesimals (Edwards 133-138). 

2.3 Fermat's Maxima and Tangent 

Pierre De Fermat's method for finding a tangent was developed during the 1630's, 

and though never rigorously formulated, is almost exactly the method used by Newton and 

Leibniz. Lacking a formal concept of a limit, Fermat was unable to properly justify his 

work. However, by examining his techniques, it is obvious that he understood precisely 

the method used in differentiation today. 

In order to understand Fermat's method, it is first necessary to consider his 

technique for finding maxima. Fermat's first documented problem in differentiation 

involved finding the maxima of an equation, and it is clearly this work that led to his 

technique for finding tangents. 

The problem Fermat considered was dividing a line segment into two segments 

such that the product of the two new segments was a maximum. 

a 

a-x 

Figure 2.2 

In Figure 2.2, a line segment of length a is divided into two segments. Those two 

segments are x and (a - x) . Fermat's goal, then, was to maximize the product x (a - x). 

His approach was mysterious at the time, but with the benefit of the current knowledge of 
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limits, Fermat's method is quite simple to understand. What Fermat did was to replace 

each occurrence of x with x + E and stated that when the maximum is found, x and x + E 

will be equal. Therefore, he had the equation: 

x(a - x) = (x + E)(a - x - E) 

Through simplifying both sides of the equation and canceling like terms, Fermat 

reduced it: 

E 2  - aE -2xE = 0 

E(E - a - 2x) = 0 
E — a — 2x = 0 

At this point, Fermat said to simply let E = 0, and as such one is left with: 

4 — a  x) 
2 

This says that to maximize the product of the two lengths, each length should be 

half the total length of the line segment. Though this result is correct, Fermat's method 

contains mysterious holes that are only rectified by current knowledge. Fermat simply lets 

E = 0, then in the step where he divides through by E, he would have division by zero. 

However, though Fermat formulated his method by saying E = 0, he was actually 

considering the limit of E as it approaches zero (which explains why his algebra works 

properly). Fermat's method of extrema can be understood in modern terms as well. By 

substituting x + E for x, he is saying that f(x+E) = f(x), or that f(x+E) - f(x) = 0. Since 

f(x) is a polynomial, this expression will be divisible by E. Therefore, Fermat's method can 

be understood as the definition of the derivative (when used for finding extrema): 

lim 
f x + E) - f (x)  

= 0 
E->0 
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Although Fermat was never able to make a logically consistent formulation, his 

work can be interpreted as the definition of the differential (Edwards 122-125). 

Using his mysterious E, Fermat went on to develop a method for finding tangents 

to curves. Consider the graph of a parabola. 

G 
x x +E 

Figure 2.3 

Fermat wishes to find a general formula for the tangent to f(x) . In order to do so, 

he draws the tangent line at a point x and will consider a point a distance E away. As can 

be seen from figure 2.3, by similar triangles, the following relationship exists: 

s   	 f (x)  
s+E f(x+E) 

By isolating s, Fermat found that 

f (x)  
s = 

[f (x + E)— f (x)] I E 

Fermat again lets the quantity E = 0 (in modern term, he took the limit as E 

approached 0) and recognized that the bottom portion of the equation was identical to his 
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differential in his method of mimina. Consequently, in order to find the slope of a curve, 

all he needed to do was find f(x)/s. For example, consider the equation f (x) = x 3  : 

S = 	
f (x) 	 x 3 	 X 3 

[f(x+E)—f(x)]1E [(x+E) 3  —x 3 ]/E (3x 2  +3xE+E 2 ) 

Again, Fermat lets E=0 and finds that: 

	

x 3 	 X 
S = - = 

3x 2  3 

Now, returning to the original equation: 

f (x) x 3  f (x) =[f (x + E)— f (x) 1 E]= — = 
x/3 

= 3x 2
s 

Here the modern notation for the derivative f (x) is used, which Fermat recognized 

to be equal to [f(x+E) - f(x)FE when he let E=0. Using this method, Fermat was able to 

derive a general rule for the tangent to a function y = x" to be nx"-  . As described in the 

Integration section, Fermat had now developed a general rule for polynomial 

differentiation and integration. However, he never managed to see the inverse relationship 

between the two operations, and the logical inconsistencies in his justification left his work 

fairly unrecognized. It was not until Newton and Leibniz that this formulation became 

possible (Boyer 155-159). 

2.4 Newton and Leibniz 

Newton and Leibniz served to complete three major necessities in the development 

of the Calculus. First, though differentiation and integration techniques had already been 

researched, they were the first to explain an "algorithmic process" for each operation. 
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Second, despite the fact that differentiation and integration had already been discovered by 

Fermat, Newton and Leibniz recognized their usefulness as a general process. That is, 

those before Newton and Leibniz had considered solutions to area and tangent problems 

as specific solutions to particular problems. No one before them recognized the usefulness 

of the Calculus as a general mathematical tool. Third, though a recognition of 

differentiation and integration being inverse processes had occurred in earlier work, 

Newton and Leibniz were the first to explicitly pronounce and rigorously prove it (Dubbey 

53-54). 

Newton and Leibniz both approached the Calculus with different notations and 

different methodologies. The two men spent the latter part of their life in a dispute over 

who was responsible for inventing the Calculus and accusing each other of plagiarism. 

Though the names Newton and Leibniz are associated with the invention of the Calculus, 

it is clear that the fundamental development had already been forged by others. Though 

generalizing the techniques and explicitly showing the Fundamental Theorem of Calculus 

was no small feat, the mathematics involved in their methods are similar to those who 

came before them. Sufficiently similar are their methods that the specifics of their 

methodologies are beyond the scope of this paper. In terms of their mathematics, it is only 

their demonstration of the Fundamental Theorem of Calculus that will be discussed. 

2.5 The Ellusive Inverses — the Integral and Differential 

The notation of Leibniz most closely resembles that which is used in modern 

calculus and his approach to discovering the inverse relationship between the integral and 
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differential will be examined. Though Newton independently arrived at the same 

conclusion, his path to discovery is slightly less accessible to the modern reader. 

Leibniz defined the differential as being 

dY  = lim AY  cfr Ar-)0 Lx 

From the earlier works of Cavalieri, Leibniz was already familiar with the 

techniques of finding the area underneath a curve. Leibniz discovered the inverse 

relationship between the area and derivative by utilizing his definition of the differential. 

Consider the graph of the equation y = x2+/: 

x R S 
Ax 

Figure 2.4 

Leibniz's idea was to use his differential on the area-function of the graph. 

Consider adding a A(area) underneath the graph of the curve. The A(area) is defined by 

the lower rectangle PQRS with area is y(Ax) plus a fraction of the upper rectangle SRUT 

whose area is simply Ax(by). In other words, A(area) lies somewhere in between y(Ax) 
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and the total enclosing rectangle PQUT whose area is (y + Ay )(Ax). Leibniz then 

considered the ratio A(area)/ Ax and saw that since the A(area) is between y(Ax) and 

(y + Ay)(Ax) the ratio will be between y and (y + Ay). From the diagram, it can be seen 

that Ax and Ay are closely related to each other. That is, as Ax approaches 0 so too does 

Ay. That means that the ratio A(area)/ Ax lies between y and a value that approaches y 

(since y + Ay approaches y as Ay goes to 0). Written in terms of Leibniz's definition of 

the derivative: 

dy ,. urea
— = Ilin  	

2 , =y=x + 1 
do Ar-,0  dx 

Leibniz has shown the inverse relationship between the differential and the area- 

function. Namely that the differential of the area-function of a function y is equal to the 

function itself In this case, the derivative of the area-function ofy = x2+1 is indeed y = 

x2+1. 

Leibniz's influence in the history of the integral spreads beyond finding this 

groundbreaking relationship. He was also responsible for inventing the notation that is 

used by most students of calculus today. Leibniz used the symbol I (which was simply 

how "S" was written at the time) to denote an infinite number of sums. This was closely 

related to what he called the "integral", or the sum of a number of infinitely small areas. 

The area underneath a function y, or integral ofy, was expressed as I y (dx). 

What Leibniz's notation was really saying was to sum up all of the areas dx * y as 

dx approached 0. As dx approaches 0, there are an infinite number of such areas, hence _ 

the symbolism I representing an infinite number of sums. Integration of this kind is also 
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known as the indefinite integral or anti-derivative due to the inverse relationship found by 

Leibniz. That is, the derivative of the indefinite integral of a function yields the function 

itself . Leibniz also developed a notation for definite integrals, or integrals which 

produced the area underneath a curve between two bounding values (rather than a 

symbolic answer). His notation for the definite integral was to supply the lower and 

upper-bounding x-values with the integral symbol: 

fb 
f (x)dr = A(b) — A(a) 

Where A is the area-function produced by the anti-derivative. The area function 

A was computed by using Wallis' law. 
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3. Selected Problems from the History of the Infinite Series 

3.1 Introduction 

Mathematicians have been intrigued by Infinite Series ever since antiquity. The 

question of how an infinite sum of positive terms can yield a finite result was viewed both 

as a deep philosophical challenge and an important gap in the understanding of infinity. 

Infinite Series were used throughout the development of the calculus and it is thus difficult 

to trace their exact historical path. However, there were several problems that involved 

infinite series that were of significant historical importance. This section contains selected 

problems that represent an introduction to the historical significance of the Infinite Series. 

3.2 James Gregory's Infinite Series for arctan 

Most of Gregory's work was expressed geometrically, and was difficult to follow. 

He had all the fundamental elements needed to develop calculus by the end of 1668, but 

lacked a rigorous formulation of his ideas. The discovery of the infinite series for arctan x 

is attributed to James Gregory, though he also discovered the series for tan x and sec x. 

Here is how one can find the derivative of arctan x: 

y = arctan x 

tan y = tan(arctan x) 
tan y = x 

dY — sec 2  y =1 
dx 

dY 	 1 	 1  
dx se

- 

c 2  y ta

▪  

n 2  y +1 

dY 	 1 	 1  = 
dx x2  +1 1+x 2  
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The above is a modern proof, Gregory used the derivative of arctan from the work 

of others. The infinite series for 	
1 	

can be found by using long division. 1+ x 2  

_ 1 - x 2  +x4 _ x6 4....  
1 + X 2  

Integrating this infinite series term-by-term produces, 

X 3 x 5 x7 
arctan x = x — + T - 

which is the infinite series for arctan. 

Prior to Leibniz and Newton's formulation of the formal methods of the calculus, 

Gregory already had a solid understanding of the differential and integral, which is shown 

here. Although the solution above is in modern notation, Gregory was able to solve this 

problem with his own methods. Gregory was one of the first to relate trigonometric 

functions to their infinite series using calculus, although he is primarily only remembered 

noted for finding the infinite series for the inverse tangent. (Boyer 429) 

3.3 Leibniz's Early Infinite Series 

One of Leibniz's earlier experiences with infinite series was to find the sum of the 

reciprocals of the triangular numbers, or 	
2 

n(n + 1) 
. By using partial fraction 

decomposition, the fraction can be split so that 

of the series are: 

2 	 1 	 1  
n(n+1)

— 2(
n

— 
n+1

). The first n terms 

1 	 1) +20_  1 ) +20_  1 ) +...20 _ 1  
1+1) 	 2+1 	 3 +1) 	 n+1 

1 
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By factoring out the 2 and by rearranging the terms: 

	

1 	 1 	 1 	 1 
2 —+—+—+...+-- 

	

(1 	 2 	 3 	 n 

1 1 1 1 
n+1.) 1+1 

— 	 — 
2+1 3+1 

(1 	 1  
and 	

) 
all but the first and last term cancel, d the sum reduces to 2 

1
—

n +1 
since 

1 	 1 
limn," 2(i 

n +1) 
— 2 . Therefore, the sum of the reciprocals of the triangular numbers 

is 2. 

This problem was historically significant as it served as in inspiration for Leibniz to 

explore many more infinite series. Since he successfully solved this problem, he concluded 

that a sum could be found of almost any infinite series. (Boyer, 446-447) 

3.4 Leibniz and the Infinite Series for Trigonometric Functions 

After having already developed methods for differentiation and integration, Leibniz 

was able to find an infinite series for sin(z) and cos(z). He began the process by starting 

with the equation for a unit circle: 

x2 + = 1 where x= cos® y= sin 0 

and differentiating with respect to x: 

dO  	 1  
dx 	 sin 0 

dO = 	
1 

dx 
sin 0 
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1 = 

By the equation of the unit circle given above sin 0 = V(1– cos t  0) and cos® = x 

SO 

dO = 1  
dx

11-  

Prior to Leibniz attempting to solve this problem, Newton had discovered the 

binomial theorem. Therefore, by simple application of Newton's rule, Leibniz was able to 

expand the equation into an infinite series: 

1 	  = –(1 + x
2 + 3x4 + 

5x6 dr 	 + ...)cbc 
111 — X2 	 2 	 8 	 16 

Leibniz then integrated both sides. The right side of the equation can be integrated 

term-by-term and the left side of the equation is equal to arcsin(x). This can easily be 

shown: 

y = arcsin x 
sin y = sin(arcsin x) 
sin y = x 

cosy—dY  =1 
dx 

dY 	 1 	 1  
dx cosy Atil – sin 2  y 

Therefore, integrating both sides yields: 

arcsin x = x + —x3 + —3x' +-5x7 + ... 
6 	 40 112 

At this point, Leibniz had found the infinite series for arcsin(x), a result which 

Newton had found as well. Leibniz then used a process he and Newton both discovered 

independently: Series Reversion. That is, given the infinite series for a function, he found 

a way to calculate the infinite series for the inverse function. 
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In this case, the process worked by first taking the sin (the inverse function for 

arcsin) of both sides of the equation: 

x3 y = arcsin x = x + — 

40 
+ —3x' 5x7 + 

112 
 + 

6  
3 	 5 sin y = sin(arcsin x) = sin(x + —x + 	 + 5x7 	 + ...) 

6 	 40 112 
, 	 x3  3x5  5x7  sin y = x = sinkx + — 

6 + 40 
 + 

112 +...) 

Now Leibniz assumed that an infinite series for sin(y) exists that is of the form: 

sin y = aly l  + a2y 2 + a3y 3 + + any" +... 

Leibniz had said that sin y = x, therefore for each instance of x in 

3 	 '  

	

sin(x + —
x

+ 
3x + 5x7 	 +...) he substituted the assumed infinite series for sin y. He knew 

6 	 40 112 

that the result of substituting in the this series for x must yield y, as it was stated: 

x3 3x5 5x7 

6 
sin y = sin(x + — 	 ) 

+ 40 ± 112 *** 

Therefore, he knew the coefficient of the first term a 1=1 and all of the other 

coefficients must add up to 0. In order to further explain, the first 3 coefficients of the 

expansion will be solved for. When the series is substituted, the only possible way to have 

a y 1  term is when it is substituted for x. The first term in the expansion will therefore be 

(a1 1)y 1 . There will be no y 2  term, and the y 3  term will be obtained by both the 3n1 

 power y term being plugged into x, and the 1st  power y term being plugged into x 3  thus 

yielding (a1 3 1  —y 3  + a3 1y 3 ) where the sum of the coefficients must be 0 (because there is 6 

no y 3 term left over in the expansion). The same process yields the equation for the 5 th  
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order term which is (a5 1y 5 + al 5 3y5  + 3a, 2  a3 1  —y 5  ) . At this point the resulting 

	

40 	 6 

expansion is: 

(a1 1)y + (a1 31 
 — + a3  1)y 3 ± (a 51 + 5 -3 + 3a1 2a3  —1 )y 5 + ...  y 

6 	 40 	 6 

Now equations for each coefficient can be set up: 

a,=1 

a —+ a3 1 = 1
3 1 

6 
1 a5 1+a1 

5 -3 +3a1
2  a3 — = 

	

40 	 6 

Solving the equations using the previous results in each calculation yields: 

a =1= 1 
1 1! 

a3 = --
1 __ 1 
6 	 3! 

1 	 1 a5  = 	 = 
120 5! 

Substituting the coefficients back into the assumed infinite series for sin y, he 

determined that: 

	

1 	 3 	 1 5 +v, +... 

By simply differentiating this equation term-by-term Leibniz was also able to find 

the infinite series for cosy (Boyer and Merzbach 448 - 449). 

Leibniz not only laid the groundwork for the Taylor series, but he (and 

simultaneously Newton) was the first to discover the series for these trigonometric 

functions. He invented his own method for finding the infinite series of a function's 
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inverse. For a more thorough description of the process of Series Reversion please refer 

to Eric's Treasure Trove of Mathematics on the Web, the URL can be found in the 

Bibliography. 

3.5 Euler's Sum of the Reciprocals of the Squares of the Natural Numbers 

Much work was done with infinite series by Euler. He was able to use infinite 

series to solve problems that other mathematicians were not able to solve by any methods. 

Neither Leibniz nor Jacques Bernoulli were able to find the sum of the inverse of the 

squares - they even admitted as much. The sum was unknown until Euler found it through 

the manipulation of an infinite series: 

1 	 1 	 1 
—
12+  22

+ —
32

+... 

In order to find this sum, Euler started by examining the infinite series for sin z. 

Z
3 

Z
5 

Z
7 

sinz = z--
3! 

+-
5!

– —
7!

+... 

Equating sin z to zero gave Euler the roots of the infinite expansion 

Z
3 

Z
5 

Z
7 

sinz = 0= z – —
3! 

+-
5!

– —
7!

+.... 

That is, the roots of this equation are z = 71-,27z,371-,47r... Now, left with the equation 

Z
3 Z 5 

Z7 0 = z – —
3! 

+ —
5! 

– —
7! +... with roots z = r,271-,37z-,47r... 

dividing by z results in 

Z
2 

Z
4 

Z
6 

0=1 - T! +-
T! 

- T +... 7-
! 

 

substituting z 2  = w yields 
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W 	 2 	 W 	 ... +
3 

0 = 1 — y + W  5 — 1 	 71 	 and w = (70 2 ,  (2702 , (3702 , (4702 ... 

By using properties involving polynomials, it is known that the sum of the reciprocals of 

the roots is the negative of the coefficient of the linear term, assuming the constant term is 

1. Applying this here, we get 

1 	 1 	 1 	 1 	 1 
6 — (70 2  ± (20 2  + (370 2  ± (470 2  +. .. 

multiplying through by 7c2, we get 

1 	 1 2 	 1 1 	 - 	 + . • • + 
21- 	

_L_ 	 -, 	 A 2 
_ = 	 1 2 ± 

", ' 'I 6 	 1 2  2 	 i 

Which is the sum of the inverse of the squares. Starting with cos x instead of sin x, he 

obtained the sum for the sum of the squares of the odd natural numbers. He solved 

problems using infinite series that could not be done in any other way, and developed new 

ways to manipulate them. (Boyer 496-497) 
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4. Short Biographies 

4.1 Introduction 

The following chapter is meant to provide brief biographies of the mathematicians 

that significantly contributed to the development of the Calculus. 

4.2 Gregory of St. Vincent (1584 - 1667) 

A Jesuit teacher in Rome and Prague, he later became a tutor in the court of Philip 

IV of Spain. He tried to "square the circle" (constructing a square equal in area to circle 

using only a straight edge and compass) throughout his life, and discovered several 

interesting theorems while doing so. He discovered the expansion for log(1 + x) for 

ascending powers of x. Eventually, he thought he had squared the circle, but his method 

turned out to be equivalent to the modern method of integration. He successfully 

integrated x-1  in a geometric form which is equivalent to the natural logarithm function. 

4.3 Rene Descartes (1596 -1650) 

Rene Descartes was a philosopher of great acclaim. The idea that humans may 

make mistakes in reasoning is the foundation of his philosophy. He cast aside all 

traditional beliefs and tried to build his philosophy from the ground up, based on his 

reasoning alone. In his search for a base on which he might begin to build his 

reconstructed view of the world, he doubted the reality of his own existence. The 

existence of his doubt persuaded him to formulate the famous maxim, "I think, therefore I 

am." 

The precision and clarity of mathematics and mathematical reasoning impressed 

Descartes. He hoped to make use of it in the development of his philosophy and thereby 
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reduce the susceptibility to flaws of his own reasoning. He spent a number of years 

studying mathematics and developing systematic methods for distinguishing between truth 

and falsehood. His contribution to the field of geometry can be thought of as an example 

of how his methods can be applied to reveal new truths, but to the mathematicians to 

follow him, Descartes' analytical geometry was powerful tool in its own right. Descartes' 

work in geometry laid the foundation for the calculus that was to come after him. 

Due to his wariness of mistakes in reasoning, Descartes' tended to de-emphasize 

his formal education and instead focus on learning by first-hand experience. His 

philosophy of experience led him to travel outside of his native France, serve in the 

military, and eventually live in Holland. During his time in Holland, Descartes tutored 

Princess Elisabeth, but devoted most of his time to contemplation of his philosophy and 

his writing. He was summoned to Sweden in 1646 to tutor Queen Christine, but the 

Swedish winters were too difficult for him and Descartes died in 1650. 

4.4 Bonaventura Cavalieri (1598 -1647) 

Cavalieri became a Jesuate (not a Jesuit as is frequently stated) at an early age and 

it was because of that that he was made a professor of mathematics at Bologna in 1629. 

He held the position until his death in 1647. Cavalieri published tables of sines, tangents, 

secants, and versed sines along with their logarithms out to eight decimal places, but his 

most well known contribution is in the invention of the principle of indivisibles. His 

principle of indivisibles, developed by 1629, was first published in 1635 and was again 

published in 1653, after his death, with some corrections. The principle of indivisibles is 

based on the assumption that any line can be divided up into an infinite number of points, 
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each having no length, a surface may be divided into an infinite number of lines, and a 

volume can be divided into an infinite number of surfaces. 

4.5 Pierre de Fermat (1601 -1665) 

Pierre de Fermat was born in France, near Montauban, in 1601, and he died at 

Castres on January 12, 1665. Fermat was the son of a leather merchant, and he was 

educated at home. He became a councilor for the local parliament at Toulouse in 1631, a 

job where he spent the rest of his life. Fermat's life, except for a dispute with Descartes, 

was peaceful and unremarkable. The field of mathematics was a hobby for Fermat. He 

did not publish much during his lifetime regarding his findings. Some of his most 

important contributions to mathematics were found after his death, written in the margins 

of works he had read or contained within his notes. He did not seem to intend for any of 

his work to be published, for he rarely gave any proof with his notes of his discoveries. 

Pierre de Fermat's interests were focused in three areas of mathematics: the theory of 

numbers, the use of geometry of analysis and infinitesimals, and probability. Math was a 

hobby for Fermat — his real job was as a judge. Judges of the day were expected to be 

aloof (so as to resist bribery), so he had a lot of time for his hobby. 

4.6 Gilles Persone de Roberval (1602 -1675) 

Held chair of Ramus at the College Royale for 40 years from 1634. He developed 

a method of indivisibles similar to that of Cavalieri, but did not disclose it. Roberval 

became involved in a number of disputes about priority and credit; the worst of these 

concerned cycloids. He developed a method to find the area under a cycloid. Some of his 
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more useful discoveries were computing the definite integral of sin x, drawing the tangent 

to a curve, and computing the arc length of a spiral. Roberval called a cycloid a trochoid, 

which is Greek for wheel. 

4.7 John Wallis (1616 -1703) 

A professor of geometry at Oxford, he had several very important publications, 

which advanced the field of indivisibles. He studied the works of Cavalieri, Descartes, 

Kepler, Roberval, and Torricelli. He introduced ideas in calculus that went beyond those 

he read of. He discovered methods to evaluate integrals that were later used by Newton 

in his work on the binomial theorem. Wallis was the first to use the modern symbol for 

infinity. It is interesting to note that Wallis rejected the idea that negative numbers were 

less than nothing but accepted the notion that they were greater than infinity. 

4.8 Blaise Pascal (1623 -1662) 

Pascal was a French student of Desargues. Etienne Pascal, Blaise's father, kept 

him away from mathematical texts early in his life until Blaise was twelve, when he studied 

geometry on his own. After this, Etienne, himself a mathematician, urged Blaise to study. 

Pascal invented an adding machine, to aid in his father's job as a tax collector. Its 

development was hindered by the units of currency used in France and England at the 

time. Two hundred and forty deniers equaled one livre, which is a difficult ratio for 

conversion. 

Pascal turned to religion at the age of twenty-seven, ceasing to work on any 

mathematical problems. When he had to administer his father's estate for a time, he 
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returned to studying the pressure of gasses and liquids, which got him into many 

arguments because he believed that there is a vacuum above the atmosphere; an unpopular 

belief at the time. During this time he also founded the theory of probability with Fermat. 

Late in his life, he turned to the study of the cycloid when he had a toothache. The tooth 

ache went away immediately upon pondering a cycloid, and he took this as a sign to study 

more on the subject of cycloids. 

In Pascal's Pensees, one of his large religious papers, Pascal made a famous 

statement known as Pascal's Wager: "If God does not exist, one will lose nothing by 

believing in him, while if he does exist, one will lose everything by not believing." His 

conclusion was that "...we are compelled to gamble..." 

4.9 Christiaan Huygens (1629 -1695) 

Descartes took interest in Huygens at an early age and influenced his mathematical 

education. He developed new methods of grinding and polishing telescope lenses, and 

using a lens he made, he was able to see the first moon of Saturn. He was the one to 

discover the shape of the rings around Saturn using his improved telescopes. Huygens 

patented the first pendulum clock, which was able to keep more accurate time than current 

clocks because he needed a way to keep more accurate time for his astronomical 

observations. He was elected to the Royal Society of London and also to the Academie 

Royale des Sciences in France. Leibniz was a frequent visitor to the Academie and 

learned much of his mathematics from Huygens. Throughout his life he worked on 

pendulum clocks to determine longitude at sea. 
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In one of his books, he describes the descent of heavy bodies in a vacuum in which 

he shows that the cycloid is the tautochrone, which means it is the shortest path. He also 

shows that the force on a body moving in a circle of radius r with a constant velocity of v 

varies directly as v2  and inversely as r. 

4.10 Isaac Barrow (1630 -1677) 

An Englishman, he was ordained and later made a professor of geometry at 

Gresham College in London. Barrow developed a method for determining tangents that 

closely approached the methods of calculus. He was also the first to discover that 

differentiation and integration were inverse operations. He thought that algebra should be 

part of logic instead of mathematics, which hindered his search for analytic discoveries. 

Barrow published a method for finding tangents, which turned out to be an improvement 

on Fermat's method of tangents. He worked with Cavalieri, Huygens, Gregory of St. 

Vincent, James Gregory, Wallis, and Newton. 

4.11 James Gregory (1638-1675) 

A Scotsman, he was familiar with the mathematics of several countries. Gregory 

worked with infinite series expansion, and infinite processes in general. He sought to 

prove, through infinite processes, that one could not square the circle, but Huygens, who 

was regarded as the leading mathematician of the day, believed that pi could be expressed 

algebraically, and many questioned the validity of Gregory's methods. Two hundred years 

later, it was proved that Gregory was right. 
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Much of his work was expressed in geometric terms, which was more difficult to 

follow than if it has been expressed algebraically. Because of this, Newton was the first to 

invent Calculus, even though Gregory knew all the important elements of Calculus, they 

were not expressed in a form that was easily understandable. Gregory only has the infinite 

series for arctangent attributed to him, even though he also discovered the infinite series 

for tangent, arcsecant, cosine, arccosine, sine, and arcsine. Using his infinite series for 

arctangent, he was able to find an expansion for n/4 several years before Leibniz. 

4.12 Sir Isaac Newton (1642 - 1727) 

Newton's father was a farmer, and it was intended that he follow in the family 

business. Instead of running the farm, an uncle decided that he should attend college, 

specifically Trinity College in Cambridge, where the uncle has attended college. Newton's 

original objective was to obtain a law degree. He attended Barrow's lectures and 

originally studied geometry only as a means to understand astronomy. In 1665, Trinity 

College closed down because of the plague in England. During the year it was closed he 

made several important discoveries. He developed the foundation for his integral and 

differential calculus, his universal theory of gravitation and also some theories about color. 

Upon his return to Trinity, Barrow resigned the Lucasian chair in 1669, and recommended 

Newton for the position. He continued to work on optics and mathematical problems 

until 1693, when he had a nervous breakdown. He took up a government position in 

London, ceasing all research. In 1708, Newton was knighted by Queen Anne; he was 

honored for all his scientific work. He was elected president to the Royal Society in 1703 

and held the position until his death in 1727. 
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4.13 Gottfried Wilhelm Leibniz (1646 - 1716) 

Leibniz was a law student at the University of Leipzig and the University of 

Altdorf. In 1672, he traveled to Paris in order to try and dissuade Louis XIV from 

attacking German areas. He stayed in Paris until 1676. During this time he continued to 

study law but also studied physics and mathematics under Huygens. During this time, he 

developed the basic version of his calculus. In 1676, he moved to Hanover, where he 

spent the rest of his life. In one of his manuscripts dated November 21, 1675, he used the 

current-day notation for the integral, and also gave the product rule for differentiation. By 

1676, he had discovered the power rule for both integral and fractional powers. In 1684 

he published a paper containing the now-common d notation, the rules for computing 

derivatives of powers, products and quotients. One year later, Newton published his 

Principia. Because Newton's work was published after Leibniz's, there was a great 

dispute over who discovered the theories of calculus first which went on past their deaths. 

4.14 Leonhard Euler (1707 - 1783) 

Euler was the son of a Lutheran minister and was educated in his native town 

under the direction of John Bernoulli. He formed a life-long friendship with John 

Bernoulli's sons, Daniel and Nicholas. Euler went to the St. Petersburg Academy of 

Science in Russia with Daniel Bernoulli at the invitation of the empress. The harsh climate 

in Russia affected his eyesight; he lost the use of one eye completely in 1735. In 1741, 

Euler moved to Berlin at the command of Frederick the Great. While in Berlin, he wrote 

over 200 articles and three books on mathematical analysis. Euler did not get along well 
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with Frederick the Great, however, and he returned to Russia in 1766. Within three years, 

he had become totally blind. Even though he was blind, he continued his work and 

published even more works. Euler produced a total of 886 books and papers through his 

life. After he died, the St. Petersburg Academy continued to publish his unpublished 

papers for 50 years. Euler used the notations f(x), i for the square root of -1, TC for pi, E 

for summation, and e for the base of a natural logarithm. Euler died in 1783 of apoplexy. 
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5. Computer Algebra Systems 

5.1 Introduction - What is a Computer Algebra System? 

A Computer Algebra system is a type of software package that is used in 

manipulation of mathematical formulae. The primary goal of a Computer Algebra system 

is to automate tedious and sometimes difficult algebraic manipulation tasks. The principal 

difference between a Computer Algebra system and a traditional calculator is the ability to 

deal with equations symbolically rather than numerically. The specific uses and 

capabilities of these systems vary greatly from one system to another, yet the purpose 

remains the same: manipulation of symbolic equations. Computer Algebra systems often 

include facilities for graphing equations and provide a programming language for the user 

to define his/her own procedures. 

Computer Algebra systems have not only changed how mathematics is taught at 

many universities, but have provided a flexible tool for mathematicians worldwide. 

Examples of popular systems include Maple, Mathematica, and MathCAD. Computer 

Algebra systems can be used to simplify rational functions, factor polynomials, find the 

solutions to a system of equation, and various other manipulations. In Calculus, they can 

be used to find the limit of, symbolically integrate, and differentiate arbitrary equations. 

Attempting to expand the equation 

(x — 1 00Y" 

using the binomial theorem by hand would be a daunting task, nearly impossible to do 

without error. However, with the aid of Maple, this equation can be expanded in less than 

two seconds. Differentiating the result term-by-term can then be performed in 

milliseconds. The usefulness of such a system is obvious: not only does it act as a time 
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saving device, but problems which simply were not reasonable to perform by hand can be 

performed in seconds. 

Leibniz and Newton developed calculus in terms of algorithmic processes. 

Computer Algebra systems can now take these methods and remove the human from the 

process. However, in studying Calculus and even simple algebraic operations, it would 

seem that computers would be extraordinarily inept at performing such tasks. After all, 

most of us consider there to be a great deal of problem solving involved in the 

mathematics taught in grade school and beyond. How is it that a computer, a mindless 

composition of binary digits, is able to perform such complex tasks? It would seem that 

the computer would be unsuitable for such tasks, but the success of popular Algebra 

software packages show that this is not the case. On the contrary, Computer Algebra 

systems often know how to perform more operations on equations than the user! 

Rather than discuss the many ways that Computer Algebra systems have altered 

the education and use of Calculus, we were most intrigued by how these systems actually 

worked. Our approach was to begin by researching the theories and issues involved in 

creating a Computer Algebra system. Coinciding with our research, we began writing our 

own Computer Algebra system in C++. The rest of this section is dedicated to a summary 

of our research and the specifics of the implementation we chose. 
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5.2 Data Structures 

5.2.1 Introduction 
In order for a computer program to even begin manipulating a symbolic equation, 

it first must store that equation somewhere in memory. At the heart of any Computer 

Algebra system is a data structure (or combination of data structures) responsible for 

describing a mathematical equation. Equations can exist in several variables, contain 

references to other functions, and can themselves be rational functions. There is no 

perfect solution to a data structure representation of an equation. One representation 

might be efficient for certain mathematical operations, but poor for others. Another 

representation might be inefficient in time and space complexity, but easy to program. 

Such tradeoffs need to be considered when choosing a representation; there is no absolute 

answer to the problem. 

5.2.2 Polynomials in one variable - Coefficients 

In order to begin a discussion of the issues involved in storing a symbolic equation, 

polynomials of single-variables will be considered. That is, equations that are only of the 

form f (x)a= nx n +an_ixn-i +...+ aoxo where ak  is an integer or fractional coefficient. 

Even in storing such a simple equation, there are numerous issues involved in choosing a 

data structure. 
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The coefficient itself can not be stored as a simple data type. The amount of 

storage for an integer in most languages is typically 16 or 32-bits. In a 32-bit 

representation of an integer, only 2 32  or approximately 4.3 billion different numbers can be 

represented. Though this might seem large, for many mathematical operations (such as 

the simplification described in the Introduction), numbers of much larger size must be 

possible to represent. Therefore, a numeric data type that allows for expansive growth in 

representation (e.g. a data type that grows dynamically with the size of the number) needs 

to be used. For fractional coefficients, simply storing the numerator and denominator 

separately in two such data types is adequate. 

5.2.3 Polynomials in one variable - Terms 

Having dealt with the issue of storing coefficients, the more significant problem of 

how to actually store each term must be dealt with. The first issue to contend with is that 

of finding a canonical form. That is, consider that a user types in the following single- 

variable equations: 

x2  — x and — x + x 2  

(x + 2)(x — 2) and x 2  — 4 

In both instances, a human can easily expand and re-order the equations to 

determine equivalence. However, for a computer, this is far from a trivial task. The 

Computer Algebra system must represent these equations in a canonical form, one in 

which only one representation exists for each equation. That is, in the above examples, 
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the Computer Algebra system would simplify both pairs of equation into the same 

representation in internal memory. 

For a single-variable polynomial, once fully simplified (more on this later), finding 

a canonical form is not difficult. In the internal representation, simply sort the terms by 

degree of their exponent, and each version of the equation will correspond to the same 

representation. The next step is to determine a way to store each term in the computer's 

memory. One approach would be to create an array of the size equal to the largest 

exponent in the equation. An array is simply a collection of items of the same type, the 

size of which does not change after instantiation. For example, consider a user enters the 

equation x 5  + 2x + 1. The program would create an array of 6 elements. At each element 

in the array, it would store the coefficient of the corresponding term (and place a 0 in all 

the unused terms): 

0 1 2 3 4 5 
1 1 2 o h o 0 11 

Figure 5.1 

This representation is known as dense because it stores each of the terms, 

independent of whether the coefficient of the term is 0. An alternative representation 

would be to create a list or similar data structure that at each node stores the coefficient 

and the exponent of the term. This way, only the terms that actually are used require 

storage in memory: 
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Figure 5.2 

At each node in the list, the first number in the pair represents the coefficient and 

the second the exponent of each term. This representation is sparse: only the terms which 

have non-zero coefficients are stored in memory. 

Typically, a sparse representation is preferable to a dense one, but there are 

advantages and disadvantages to both. In a dense representation, there often can be large 

amounts of computer memory wasted. For example, the equation x 2" + x would require 

an array of 2001 elements just to store two coefficients. Comparatively, the sparse 

version would require only two nodes in a list. Additionally, from the programmer 

perspective, it is difficult to make changes to a dense representation. For example, if one 

were to add a new term to a polynomial that was not included in the range of the original 

array, the array would have to be completely recreated (in most languages, the size of an 

array can not be modified without completely recreating it). The sparse representation 

provides much more flexibility, as adding a new term is simply a matter of adding a new 

node to the list in the correct place (to maintain a canonical form). The choice between a 

sparse and dense representation is completely dependent on the task for which it will be 

used. In some cases, a system will shift between representations in order to optimize for 

specific algorithms (Davenport 59-70). 

46 



5.2.4 Polynomials in one variable - Recursive definition 

A Computer Algebra system supporting only equations of the form 

f(x)= a"x" a  n_ixn-i ... + aoxo would be quite inflexible. One enhancement, while still 

remaining in the realm of polynomials of one variable, is to allow equations with recursive 

definitions. That is, polynomials where the coefficient to a term or numerous terms can be 

a polynomial itself. Some examples of such equations would be 

(x + 1)(x + 2) , (3x 2  + 3x)x , and [(3x + 1)2x]x 5  . The sparse representation can be easily 

modified to support equations of such a form. Instead of simply storing pairs of 

coefficients and their exponents, the coefficients themselves can also point to lists of 

polynomials. In order to find the canonical form, the polynomial is simplified and all 

recursive polynomial coefficients are removed from the representation. In order to 

support rational functions, all that is needed is to store two polynomials: the numerator 

and denominator. Of course, simplification of a rational function into canonical form 

introduces a host of new issues, but these issues will be discussed later. 

5.2.5 Multivariate Polynomials 

The sparse representation can be extended into multivariate polynomials without 

too much effort in terms of representation. Rather than storing simply a coefficient and 

degree at each node in the list, the degree will be replaced with a list of variables and their 

respective degrees. The difficult issue that arises when switching to a multivariate 

representation is finding a canonical form. One approach that is commonly used is to first 

sort the terms lexicographically and then by degree. As an example, consider the equation 

y 2  +z+xy+x2 z+yz+yz 2  
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would be represented in the following manner after sorting 

xy+x 2 z+y 2 + yz 2 +yz+z 

The selection of sorting is irrelevant (whether first by lexicographic order and then 

degree or vice versa) as long as the choice is consistent (Davenport 71-74). 

5.2.6 The Syntax Tree - Our Data Structure Implementation 

In the spirit of sparse representation, we chose to use a syntax tree as the internal 

data structure for our symbolic calculator. A syntax tree is a kind of tree, which in turn is 

a kind of linked data structure. Briefly, a linked data structure is an object which contains 

references, or links, to other like objects. A simple example is a linked list, where each 

element contains the data for it list entry and a link to the next list element. A tree is a 

linked structure that starts with a single "root" node. One or more "child" nodes are 

referenced from the root node, and each of these child nodes may in turn have children of 

their own. This linking pattern produces a branching data structure, as seen 

in the following diagram; hence the name "tree". 
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Trees are acyclic, which means that nodes cannot be linked in a loop. Each node 

has exactly one "parent" node, that is, one node of which it is a child. The exception is the 

root node, which has no parent. Nodes with no children are called terminal nodes, or 

"leaf' nodes. A syntax tree is a type of tree where each non-terminal node represents an 

operator or function, and its children represent its operands or arguments. In our 

program, mathematical operators such as addition and multiplication, or mathematical 

functions such as sin or log are represented by these non-terminal nodes. Leaf nodes 

represent the terminal symbols of an expression, such as numbers, constants or variables. 

The structure of a syntax tree represents syntactic information about the data it contains. 

In our case, the syntax tree represents the syntactic steps, or order of operations involved 

in evaluating a symbolic expression. For example, the simple expression a + b* c could be 

represented by the following syntax tree: 

Figure 5.4 

The root of this tree is the addition operation, and the children are its operands. The 

hierarchy of operators and arguments establishes a clear precedence of operations. The 
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syntax tree for the expression (a + b) * c is shown below: 

Figure 5.5 

These two syntax trees are different, as are the expressions they represent. Syntax 

trees offer a clear and unambiguous way to store a wide variety of expressions. 

5.2.7 The Syntax Tree - Advantages 

The major advantage of the syntax tree is that it is flexible. It can represent a wide 

variety of different expressions that cannot be easily captured in the previously discussed 

data structures. Take, for example, an expression as simple and common as ex . The 

polynomial representations are limited to just that - simple polynomials. Perhaps the 

sparse multivariate polynomial could be extended to think of e as a kind of "special" 

variable - namely a constant. Furthermore, and more difficult, the representation would 

have to be extended to allow for non-integer exponents. Even then, what happens when 

the exponent is more complicated than a single non-terminal symbol? What if the 

exponent is itself a polynomial expression, replete with its own exponents, and so on and 

so forth? The problem quickly grows out of any attempts of reasonable management. 

This doesn't even touch on the matter of functions within expressions, as in x 2  + sin(x). 
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Granted, the representation was designed with polynomials in mind, but we wanted 

something more general. All of these expressions are easily represented in abstract syntax 

trees: 

Figure 5.6 

5.2.8 The Syntax Tree - Disadvantages 

The generality that makes the syntax tree so appealing is also its biggest problem. While 

it's possible to represent numerous different expressions with a syntax tree, it's also 

possible to represent a single expression a number of different ways. For example, the 

expression —ab can be represented in a number of different ways: 
cd 

Figure 5.7 
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All are mathematically equivalent, but to a computer, they look nothing alike. As 

mentioned before, it's important to define a canonical form. Changing an expression to 

canonical form can be a difficult task in itself, but due to the wide variety of expressions 

syntax trees can represent, it's hard to define exactly what canonical form should be. 

Certain types of expressions tend to fit some forms better than others. A polynomial fits 

nicely in a form that orders terms by their degree. What happens when the exponents are 

/2+y+i ) 	 (y2 +y+2 ) 
more complicated? Both 	 and )c 	 ) could be said to have the same 

"degree" - that is, a polynomial in y of degree 2. Defining a general algorithm for ordering 

becomes complicated. Consider, also, the example of x as compared to 1 * x or x'. The 

trees of these expressions are as follows: 

While it may be unlikely for a user to enter x1  instead of x, it is not hard to imagine that 

such an expression may be obtained in the process of manipulating the expression 

X 
3 

symbolically. For example, 	 might be simplified to x1 . The procedure to convert 

expressions to canonical form must take many factors into account. 
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5.3 Simplification 

5.3.1 General Issues in Simplification 

A very common task that any computer algebra system must perform is to simplify 

an expression. Simplifying expressions makes other tasks much easier, especially 

comparing expressions entered in different forms to see if they are equivalent. The system 

has to know how to add terms that should be added and how to add exponents together 

when the multiplicands have the same base. Computer algebra systems must always 

orders all the terms to arrive at a canonical form. There must be a consistent order that 

everything is sorted by. If exponents can be polynomials, such as xX 3 +3+X , then those 

exponents also need to be sorted. This could go on indefinitely, with each additional 

power being another complex polynomial. Sorting will need to take place on several 

levels to make it consistent. The uppermost exponents must be simplified first so that the 

lower level ones will sort properly. One can not simply sort from the lowest level first. 

Systems must also decide whether or not to perform some simplifications. 

Identities for operations must be taken into account, so adding zero and multiplying by 

one will be dealt with properly. Either strip out all such identities or add them in to every 

operation, which would probably require more work and produce a more cluttered 

display. 

There is also the decision whether or not to expand polynomials. Expanding 

(x + 2) 2  may be trivial, but expanding (6x 3  + 2x) 3°°  would require an enormous amount of 

memory and time, not to mention far too much display space on the screen to be 

impractical. The factored form is much more compact. If integers are raised to a power, 
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the limitations of the computer's number system may hinder expansion. This again shows 

why it is important to choose a number representation system that allows for arbitrarily 

large values. It may be necessary to expand simple polynomials of a very high order into 

large polynomials of a very high order in order to simplify further, but a lone value should 

probably be left as it is for simplicity in display. Expanding might be appropriate when 

there are several polynomials, and terms will cancel out when expanded, but no further 

simplification can be done otherwise. 

The systems might also want to apply trigonometric or other identities to 

expressions for simplification of functions. For example, sec' (x 2  + 1) and 

tan' (x 2  + 1) + 1 are equivalent if the trig identity tan' (x)+ 1= sec' (x) is applied. There 

are many other ways to manipulate functions, especially trigonometric ones, that could 

hinder further simplification. Sometimes the only way to simplify further is to apply these 

identities, which makes knowing when to use identities difficult. The natural logarithm 

function also has identities, which, besides being used to simplify expressions with the 

natural logarithm function, can also be used to simplify some other expressions. The 

system must know when to apply these identities and when to leave the functions as they 

are. 

Simplifying is not only used when an expression is first entered in by the user, but, 

in particular, differentiating an equation will produce an expression that will need to be 

simplified for it to look like what the user expects to see. It is important that the computer 

algebra system be able to represent everything that may happen when expressions are 

simplified and expanded, but it must also decide whether or not to simplify certain 

operations depending on the circumstances. 
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5.3.2 The Steps of Simplification - Our Approach 

In order to break up the complex task of simplification and reduction to a 

canonical form, we created a number of small algorithms that performed very simple, 

specific operations on syntax trees. By calling these simple procedures in order, and 

repeatedly, we are able to simplify many equivalent representations into a single 

deterministic form. In the following sections, we will describe the steps taken. Some of 

the steps seem to move away from simplification instead of towards it - these are 

intermediate steps that make later simplification easier. 

5.3.3 Transforming Negatives 

In this step, all negative operators (unary negative and subtraction) are 

transformed to terminal constants with negative values. For example, x becomes 1 * x and 

a - b becomes a + (-1 * b) . The trees of these expressions are as follows: 

Figure 5.9 

This step, while extremely simple, has a number of advantages in terms of defining 

a canonical form and simplifying later operations. For the canonical benefit, the above 
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pairs of expressions, and others like them can be determined to be equivalent, obviously. 

The real benefit of this operation is that it significantly reduces the syntactic complexity of 

the expression trees. Two elements, negation and subtraction, are removed from the set 

of operators that have to be dealt with in later stages. 

Subtraction is replaced by addition, a commutative operator, which allows greater 

flexibility in ordering. A subtraction node must have exactly two children, and their order 

cannot be reversed. An addition node, on the other hand, can have any number of 

children, and they can appear in any order. 

5.3.4 Leveling Operators 

When the expressions a * b * c and a + b + c are parsed by our calculator, the 

following syntax trees result: 

Figure 5.10 

This is due to the fact that our parser assumes that all operators, with the 

exception of negation, are binary - that is, they have two operands. Since the parser is 

designed to read expressions written in infix notation, this is a valid assumption. But 

there's no reason that commutative operators such as addition and multiplication have to 
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be binary in another notation. For example, a + b + c could be written as (+ a b c) in 

prefix notation. The same is true of our syntax tree. For example, the expressions a + b 

+ c + d and (a + b) + (c + d) would be parsed as follows: 

Figure 5.11 

However, after the simplification step of leveling operators, both expressions are 

represented as: 

Figure 5.12 

This operation trims unnecessary complexity from the syntax trees and resolves 

problems of associativity in canonical form. 
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5.3.5 Simplifying Rational Expressions 

Recall the various syntax trees for the expression —
ab illustrated in section 5.2.8. 
cd 

This simplification step will transform a syntax tree so that a division node cannot be the 

immediate child of either a division node or a multiplication node. The end result is that 

any expression formed of multiplicative operators (multiply and divide) will be 

transformed so that there is a single division node at the top of the tree, with only 

multiplication operators below it. This simplification takes three specific cases into 

account in order to form a general procedure for other cases. The first case is the event 

when a division node (D 1) has another division node (D2) as its numerator. In order to 

simplify this situation, the numerator of D 1  must become the numerator of D2, and the 

denominator of D 1  must become the product of the denominators of D 1  and D2. This 

transformation can be seen in the following diagram: 

Figure 5.13 
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The second case is very similar to the first. In this case, the second division node 

(D2) occurs in the denominator of the first (D i). The numerator of D 1  becomes the 

product of the numerator of D 1  and the denominator of D2. The denominator of D i 

 becomes the numerator of D2, as seen in the following illustration: 

Figure 5.14 

The final case is when a child of a multiplication node (M) is a division node (D). 

It doesn't matter how many children the multiplication node has, or how many of those 

children are division nodes. Only the first division node is considered in this simplification. 

This situation is a little more complicated than the previous two since the operation of the 

top node must be changed and its children moved, rather than just reshuffling some node 

links. To simplify this case, M is replaced by a division node whose numerator is the 

product of the numerator of D and the children of M (with the exception of D itself), and 

whose denominator is the denominator of D. This 
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transformation is shown below: 

Figure 5.15 

From repeated application of these three cases, more complicated expressions can 

be reduced: 

Figure 5.16 
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5.3.6 Collecting Like Terms 

The first step involved in collecting like terms is to explicitly represent any 

coefficients or exponents a term may possess. For example, x + 2x becomes lx + 2x and 

x * x 2  becomes x 1  * x2  . The main reason for doing this transformation is to make all the 

children of an addition or multiplication node share a common form - that is, all the 

children are either multiplication nodes or power nodes, respectively. In order to collect 

like terms below a multiplication node, one compares the base of each child power node 

(Pi) with the bases of the remaining children (P 1,). In the event that two bases are equal, 

the exponent of Pi becomes the sum of the exponents of Pi and Pi+,„ and Pi, is removed: 

Figure 5.17 

A similar operation would take place for collecting like terms under an addition 

node, but we have not actually implemented it in our calculator. 

5.3.7 Folding Constants 

Once terms have been collected together, unnecessary constants can be collected 

or removed. A constant, in this sense, is a real number in the expression, such as the three 

in 3 * e kr . The k is a mathematical constant, but for purposes of symbolic manipulation, it 
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is treated as a variable. When multiple constants occur below an addition or multiplication 

node, they can be combined (added or multiplied as the case may be) into a single 

constant. When both children of a power node are constants, it can optionally be replaced 

with a single number, although it is not always wise to do so. The number 10' is 

usually expressed as such because a 901 digit number is unwieldy. In our calculator, we 

fold a constant power term if the result is less than 1000, an arbitrary choice. 

Furthermore, a power term with a base of zero can be folded to zero, unless the exponent 

is also zero. In that case, our calculator simply leaves 0 °  alone since it has no provisions 

for indeterminate forms. Power nodes with a base of one can be reduced to one, and 

power nodes with exponents of one or zero can be reduced to the base alone or one, 

respectively, with the previously mentioned exception of 0 °  . If a multiplication node 

contains a one, that child can be eliminated; if it contains a zero, the whole multiplication 

node can be replaced with zero. Also, if a multiplication or addition node is left with a 

single child in the course of these reductions, the node can be eliminated and replaced with 

its sole child. 

5.3.8 Canonical Order 

All of these simplifications are fine and wonderful, but what's the use if they can't 

even determine that a + b and b + a are equivalent? That's why it's important to define a 

canonical ordering of terms, as discussed in section 5.2.2 and 5.3.1. In order to arrange 

our syntax trees in canonical order, all the children of a commutative node are sorted with 

a simple ordering function. The children are sorted first by their node type. In our 

calculator, there is a different node type for each operator, and one for each of the 
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following: variables, functions, and constants. After node type, the children are sorted 

lexicographically. This ordering scheme doesn't always order expressions the way one 

would expect to see it written, but it works well with syntax trees and is consistent - which 

is the important part. 

5.3.9 Full Simplification 

Sometimes a single iteration of the simplification steps is not enough to reduce an 

equation as much as it should be. To compensate for this, we keep iterating through these 

simplifications until the syntax tree ceases to change. 

5.4 Advanced Operations 

5.4.1 Introduction 

After canonically representing an equation in memory, the Computer Algebra 

system can demonstrate its true power. The advanced operations that a system is capable 

of performing are what separate one system from another. Advanced operations include 

factorization, differentiation, integration, and finding the limit of a function. 

5.4.2 Differentiation 

Mathematical operations that are defined in terms of algorithmic processes are 

rather painlessly integrated into Computer Algebra systems. Assuming that an appropriate 

representation is chosen for describing an equation, any algorithmic manipulation can be 

63 



fairly easily translated into a Computer Algebra system. Differentiation is one such 

operation that is defined algorithmically in a very general way and is therefore particularly 

well suited to a computational definition. 

Differentiation essentially consists of four basic rules (Davenport 165): 

(a ±b)' = a' ±b' 
(ab)' = a' b + ab' 
a 	 a' b — ab'  

(

b ) 

	

b 2  

f (g(x))' = f' (g(x))g' (x) 

The algorithm must only know two additional pieces of information. First, the 

- P  

algorithm must be informed that (x q )'= (—
p 

 x q ), which enables the computation of the 
q 

derivative of any function that does not contain references to other functions. Second, to 

be a completely flexible at differentiation, the algorithm must be aware of the derivatives 

of functions (e.g. sin, cos, ln, etc.). The differentiation of functions can easily be 

accomplished by storing a table of derivatives. 

The ability of a computer to perform differentiation is thus demystified. Because 

we, as human problem solvers, compute derivatives in a very algorithmic way, it is easy 

for a computer to emulate such behavior. Artificial Intelligence is the attempt at 

algorithmically modeling a human's ability to think. However, when there is no obvious 

algorithm that exists, modeling such behavior becomes extremely difficult (and, at this 

point, all attempts are nothing more than an approximation). The same is true in 

Computer Algebra systems: some mathematical computations are not clearly performed 

algorithmically. 
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5.4.3 Integration 

Integration is an example of an operation which, at first, appears to have no 

algorithmic definition. The only general rule that appears to be useable is that 

+g= sif tig. However, even this rule turns out to be unusable in certain cases. 

Consider attempting to find Sr' + (log x)xx ; breaking it up at its addition will not yield a 

solution. The two respective parts have no integral, yet the integral of the combination 

yields xx (Davenport 167). 

Integration appears to be a compendium of different techniques such as 

integration by parts, integration by substitution, and simply consulting a table of known 

integrals. Which integration problems require which technique can not be generally 

defined. The first attempts at computer integration, then, took an obvious brute force 

approach. That is, try all possible known techniques until an answer is found. 

Ultimately though, a full theory of integration in terms of an algorithmic process 

that computers can perform was developed. This theory is beyond the scope of this paper, 

but a summary of the theory is developed in Davenport, Siret, and Tournier pp. 167-186. 

5.4.3 Differentiation - Our Implementation 
The only advanced operation we chose to implement is differentiation in one 

variable. In order to differentiate a syntax tree, one must take a top-down approach. The 

differentiation procedure starts with the root node and tries to differentiate it based on 

what type of node it is. For example, if the node is an addition node, the derivative of the 

node is an addition node whose children are the derivatives of each of the original node's 
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children. Differentiation is an inherently recursive procedure, and syntax trees are well 

suited to recursive evaluation. Below is a list of how each type of node is differentiated: 

• Addition Node: As mentioned above, the derivative of an addition node is an addition 

node whose children are the derivatives of each of the original node's children. 

• Multiplication Node: If a multiplication node has n children, then by the product rule, 

the derivative of a multiplication node is an addition node with n children. Each child 

of the addition node is a multiplication node, also with n children. In the ith  

multiplication node, the ith  child is the derivative of the ith  child of the original node, 

and the other children are the same as the other children in the original node. For 

example, the derivative ofx*y*z*w is 

x'*y*z*w+x*y'*z*w+x*y*z'*w+x*y*z*w'. 

• Division Node: The derivative of a division node is simply expressed by the quotient 

rule. The only difference is that the subtraction is replaced by addition and the second 

term is multiplied by -1 (in keeping with the idea of eliminating subtraction 

operations). 

• Power Node: Though the power rule is one of the first methods of differentiation we 

learned, it wasn't very practical for our calculator. Instead we used the more general 

d (b(x) e(x) ) 	 e(x) d (e(x)* ln(b(x))) 	form 	 = b(x) 	 It makes a mess of simple things like dx 	 dr 

constant bases or powers, but if the resulting tree is simplified, everything is cleaned 

up. 

• Function Node: Our program will only try to differentiate functions of one variable, 

although it will symbolically manipulate functions of an arbitrary number of variables. 
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In fact, the only functions it knows how to differentiate at the moment are ln, because 

it occurs so much in the differentiation of power nodes, and sin and cos. If the 

program doesn't know how to differentiate a function, it will simply encase the 

function and its arguments in a Deriv(a,b) function, where a is the unknown function, 

and b is the variable with respect to which the function is differentiated. 

• Variable Node: If the variable is same as the independent variable for which we are 

differentiating, then the derivative node is the constant 1. Otherwise the variable is 

considered a symbolic constant and the derivative is the constant 0. 

• Constant Node: The derivative is always the constant 0. 
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6. Conclusions 

As a result of our research, we believe we have learned two important lessons. 

First, in studying the history of the Calculus, we became acutely aware of our own lack of 

understanding for the subject. Second, the software that automates algebraic 

manipulations requires in itself a complex set of theory, and we have gained an 

appreciation for this tribute to the accomplishment of modern technology. Despite having 

been trained and performed well in Calculus exams and courses, it is clear that our 

appreciation for the subject matter was minimal at best. We believe that studying the 

history of the subject has enhanced our understanding, yet there clearly remain numerous 

gaps in our knowledge. 

As students, we have been trained not to understand the origins and reasoning 

behind the science we study, but merely to be adept at applying memorized techniques to 

problems. Though the application of science is undoubtedly a useful skill, we wonder 

whether we ought to be brought through the development of the subjects we study. 

Calculus is merely one branch of science, is it possible to truly appreciate subjects such as 

Physics without studying the experimental processes that ultimately converted popular 

thought to heliocentricity and universal gravitation? What, after all, do we really 

understand about the knowledge we purport to have attained if we do not understand the 

process that led to its development? Though studying the history of a subject is not a 

necessity in understanding its development, it seems that merely learning science as an act 

of route memorization is inherently contradictory to the process of science. After all, the 

process of science requires that one not accept theory without evidence, that one should 
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attempt falsification within reason, and demands that one not take a theory as truth 

because it is argued from authority. 

This paper was an attempt to remedy our own lack of understanding of the origins 

of one science we had studied. Though there still remain topics in the history of Calculus 

that we were unable to research or fully comprehend, some of the holes in our 

understanding have been filled in. In addition, the development of our own Computer 

Algebra system taught us the strength in learning through experimentation. Facing the 

technical issues head-on brought us a far deeper appreciation than any amount of reading 

could have conveyed. The major lesson learned is that our best approach to understanding 

is not to simply research known methods, but to simultaneously use and understand those 

techniques. 
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Appendix B 

Web Address  

As was mentioned in the paper, we developed our own Symbolic Calculator. A 

Web accessible version of the calculator can be found at 

. 

Along with the Calculator is an HTML version of this paper. 
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