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1 Introduction

Integral operators are ubiquitous in all areas of pure and applied mathematics, as
well as in modeling in population biology, wave propagation theory, mechanical engi-
neering, and image compression and deblurring. The simplest argument explaining
the omnipresence of integral operators is that an ordinary differential equation is
equivalent to an integral equation, and this provides the basis for the classic proof
of the Picard-Lindelof theorem for existence and uniqueness of solutions. Regarding
partial differential equations, integral operators appear as fundamental solutions [3].
Integral operators are also instrumental in applications such as image compression
and deblurring [9, 6] and other more general inverse problems [10].

The decay rate of the singular values of integral operators is crucial to building
computational inversions. Indeed, this decay rate is intimately related to the dilation
parameter in Tykhonov regularization and truncations of singular vector expansions
[10, 11, 12]. This decay rate is intimately related to the regularity properties of the
integration kernel. In dimension one, this relation is well understood and can be
analyzed using relatively elementary integral operator theory tools [5, 7, 2]. In this
thesis, we revisit the convergence rate proofs given in [7] (their work is also based
on [8]). We found that some arguments in [7, 8] are too succinct and hard to grasp
for a graduate student or just someone with limited familiarity in this field. We
provide additional explanations and a few more lemmas to make these arguments
more accessible. In addition, we explore how these arguments could be extended
to higher dimensions. We explain why this is a non-trivial endeavor; it will be the
subject of future work.

2 Fundamental functional analysis results involved

in this thesis

We state and prove a few functional analysis results that we will use to prove our
main result. The first two propositions pertain to the separability of classic func-
tional spaces. Next results show how given a separable Hilbert space, some continu-
ous linear operators can be defined using a Hilbert basis. We also show that in some
cases, simple criteria ensuring compactness can be found. Finally we state three
results on singular values of a compact operator on a separable Hilbert space. The
first result expresses the n-th singular value as the infimum over operator norms on
restrictions to subspaces of codimension n− 1. The other two results state general
estimates on singular values that will be essential in the rest of this thesis.

Proposition 2.1. Let E be a separable metric space and F ⊂ E. Then F is also
separable.

Proof. [Adapted from 1, p. 73] Let {un} be a countable dense subset of E and {rm}
a sequence of positive numbers such that rm → 0. Choose an,m ∈ B(un, rm) ∩ F
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whenever this intersection is non-empty. Clearly, the set {an,m} is countable. Fix
ϵ > 0 and let x ∈ F . Then there exist n,m ≥ 1 such that d(x, un) < rm < ϵ

2
in E.

Notice that B(un, rm) ∩ F is non-empty, since x is in this intersection. Therefore
an,m exists, and d(x, an,m) ≤ d(x, un) + d(un, an,m) < 2rm < ϵ. Thus the set {an,m}
is dense in F .

Theorem 2.1. Let Ω be an open set in Rd, 1 ≤ d <∞. L2(Ω) is separable.

Proof. [Adapted from 1, pp. 98–99] Let

R = {(a1, b1)× · · · × (ad, bd) | ai, bi ∈ Q, 1 ≤ i ≤ d}.

Set

E =

{
n∑

i=1

αi1Ri
| n ∈ N, αi ∈ Q, Ri ∈ R, 1 ≤ i ≤ n

}
.

Notice that R is countable, and thus E is also countable.
We claim that E is dense in L2(Rd). Let f ∈ L2(Rd) and ϵ > 0. We know that

CC(Rd) is dense in L2(Rd), so there exists f1 ∈ CC(Rd) such that ∥f − f1∥2 < ϵ
2
.

Choose R ∈ R such that supp(f1) ⊂ R. Since f1 ∈ CC(Rd), f1 is uniformly
continuous, that is, ∀ϵ1 > 0, ∃δ > 0 such that

∀x, y ∈ Rd, ∥x− y∥2 < δ =⇒ |f1(x)− f1(y)| < ϵ1.

We can divide R into finitely many smaller intervals Ri ∈ R with ∥x− y∥2 < δ for
all x, y ∈ Ri and choose rational αi ∈ (infx∈Ri

f1(x), infx∈Ri
f1(x) + ϵ1). Define

f2 =
n∑

i=1

αi1Ri
.

Clearly f2 ∈ E , and ∥f1 − f2∥∞ < ϵ1.
As all norms are equivalent, ∥f1 − f2∥2 ≤ c∥f1 − f2∥∞ for some constant c > 0.

If we choose ϵ1 =
ϵ
2c
, then ∥f1 − f2∥2 ≤ c∥f1 − f2∥∞ < cϵ1 =

ϵ
2
Finally, we have

∥f − f2∥2 ≤ ∥f − f1∥2 + ∥f1 − f2∥2 <
ϵ

2
+
ϵ

2
= ϵ.

Thus E is dense in L2(Rd), and thus L2(Rd) is separable.
For a subset Ω of Rd, the extension by 0 outside Ω defines an isometry from

L2(Ω) to a subset of L2(Rd). As L2(Rd) is separable, so is this subset, and therefore
L2(Ω) is separable.

Proposition 2.2 (Bessel’s inequality). Let H be a Hilbert space, and let {ek} be an
orthonormal sequence in H. Then for any x ∈ H,

∑∞
k=1 |⟨x, ek⟩|2 ≤ ∥x∥2.
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Proof. For any n ∈ N, we have that

0 ≤

∥∥∥∥∥x−
n∑

k=1

⟨x, ek⟩ek

∥∥∥∥∥
2

= ∥x∥2 − 2
n∑

k=1

⟨x, ⟨x, ek⟩ek⟩+
n∑

k=1

|⟨x, ek⟩|2

= ∥x∥2 − 2
n∑

k=1

|⟨x, ek⟩|2 +
n∑

k=1

|⟨x, ek⟩|2

= ∥x∥2 −
n∑

k=1

|⟨x, ek⟩|2.

Therefore
n∑

k=1

|⟨x, ek⟩|2 ≤ ∥x∥2,

and as this holds for all n ∈ N, the statement is proved.

Theorem 2.2. Consider the sequence {vj} in H. Define A : V → H by setting
Aej = vj, where {ej} is an orthonormal basis for V and V = H. Assume that the
vj are pairwise orthogonal, that is, ⟨vi, vj⟩ = 0 for i ̸= j. A is continuous if and
only if ∥vj∥ is bounded. In this case, extend A to H. A is compact if and only if
limj→∞ ∥vj∥ = 0.

Proof. Suppose ∥vj∥ is bounded. Then there exists c > 0 such that ∥vj∥ < c for all
j ≥ 1. Then for all x, y ∈ V ,

∥Ax− Ay∥ =

(
∞∑
j=1

(xj − yj)
2∥vj∥2

)1/2

≤ c

(
∞∑
j=1

(xj − yj)
2

)1/2

= c∥x− y∥.

Thus given ϵ > 0,
∥x− y∥ < ϵ/c =⇒ ∥Ax− Ay∥ < ϵ.

Hence A is uniformly continuous.
Suppose instead that ∥vj∥ is not bounded. Fix x0 ∈ V and let ϵ = 1/2. Given

δ > 0, we can choose c > 0 such that c > 1/δ. Since ∥vj∥ is not bounded, we have
that ∥vk∥ > c for some k ≥ 1. Choose x = x0 +

δ
2
ek. Then

∥x− x0∥ =
δ

2
∥ek∥ =

δ

2
< δ

and

∥Ax− Ax0∥ =
δ

2
∥vk∥ >

δ

2
c >

1

2
= ϵ.

We can construct such an x in this way for any δ > 0. Hence A is not continuous.
If A is continuous, then we can extend A to H. Suppose that limj→∞ ∥vj∥ = 0.

Then given ϵ > 0, there exists an integer N such that ∥vj∥ < ϵ for all j > N . Define
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Ak : V → H by Akej = vj for 1 ≤ j ≤ k and Akej = 0 for j ≥ k + 1. Each Ak is
continuous, and so can be extended to H. Additionally, dim ImAk = k, so each Ak

is of finite rank. For k > N , we have that for all x ∈ H,

∥Ax− Akx∥ =

(
∞∑

j=k+1

x2j∥vj∥2
)1/2

< ϵ

(
∞∑

j=k+1

x2j

)1/2

≤ ϵ∥x∥.

Thus ∥A− Ak∥ < ϵ for k > N , so ∥A− Ak∥ → 0. As each Ak is of finite rank, this
shows that A is compact.

Conversely, suppose A is compact. Note that the sequence {ej} converges weakly
to zero since for all x in H, limj→∞⟨x, ej⟩ = 0, as

∑∞
j=1 |⟨x, ej⟩|2 converges. Since A

is compact, the sequence Aej converges strongly to zero.

Theorem 2.3. Consider the sequence {vj} in H. Define A : V → H by setting
Aej = vj, where {ej} is an orthonormal basis for V and V = H. If

∑∞
j=1 ∥vj∥2 <∞,

then A is continuous and compact.

Proof. Let c2 =
∑∞

j=1 ∥vj∥2. For all x, y ∈ V ,

∥Ax− Ay∥ ≤
∞∑
j=1

(xj − yj)∥vj∥ ≤

(
∞∑
j=1

(xj − yj)
2

)1/2( ∞∑
j=1

∥vj∥2
)1/2

= ∥x− y∥c.

Thus given ϵ > 0,
∥x− y∥ < ϵ/c =⇒ ∥Ax− Ay∥ < ϵ.

Hence A is uniformly continuous. Define Ak : V → H by Akej = vj for 1 ≤ j ≤ k
and Akej = 0 for j ≥ k + 1. Then dim ImAk ≤ k, so each Ak is of finite rank. Fix
ϵ > 0. Since

∑∞
j=1 ∥vj∥2 < ∞, there exists an integer N such that for all k > N ,∑∞

j=k+1 ∥vj∥2 < ϵ. Thus for k > N , we have that for all x ∈ H,

∥Ax− Akx∥ ≤
∞∑

j=k+1

xj∥vj∥ ≤

(
∞∑

j=k+1

x2j

)1/2( ∞∑
j=k+1

∥vj∥2
)1/2

< ∥x∥ϵ.

Thus ∥A− Ak∥ < ϵ for k > N , so ∥A− Ak∥ → 0. As each Ak is of finite rank, this
shows that A is compact.

Theorem 2.4. Let ak be a sequence such that
∑∞

k=1 a
2
k diverges. There exists an

operator A : V → H, where V = H, such that ∥Aek∥ = ak for k ≥ 1 and A is not
continuous.

Proof. Define A : V → H by setting Aek = ake1. Clearly ∥Aek∥ = ak. Set

sn = (
∑n

k=1 a
2
k)

−1/2
and un = sn

∑n
k=1 akek. Notice that ∥un∥ = 1 for each n ≥ 1.

But

∥Aun∥ =

∥∥∥∥∥sn
n∑

k=1

akAek

∥∥∥∥∥ =

∥∥∥∥∥sn
n∑

k=1

a2ke1

∥∥∥∥∥ =

(
n∑

k=1

a2k

)1/2

Thus ∥Aun∥ → ∞ as n→ ∞, so A is not continuous.
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Theorem 2.5. Suppose T is a compact operator on L2(Ω). The singular values of
T have the characterization that

sn(T ) = inf{∥T |H∥ : H is a vector subspace, codimH ≤ n− 1},

where T |H denotes the restriction of T to H. The infimum is attained when H is
the vector subspace formed by f ∈ L2(Ω) which are orthogonal to the first n − 1
eigenfunctions ϕ1, . . . , ϕn−1 of T ∗T .

Proof. Let {ϕk}, {λk} be a basic system of eigenvectors and eigenvalues of T ∗T , and
let H be a subspace of codimension ≤ n − 1. Then H⊥ is a subspace of dimension
≤ n − 1, so there exists f0 ∈ span{ϕ1, . . . , ϕn} such that ∥f0∥ = 1 and f0 ⊥ H⊥,
that is, f0 ∈ H. Write f0 =

∑n
k=1 akϕk. Therefore

∥T |H∥2 ≥ ∥Tf0∥2 = ⟨Tf0, T f0⟩ = ⟨T ∗Tf0, f0⟩ =
n∑

k=1

λka
2
k ≥ λn

n∑
k=1

a2k

= λn∥f0∥2 = λn = s2n(T ),

so we have that

inf{∥T |H∥ : H is a vector subspace, codimH ≤ n− 1} ≥ sn(T ).

Suppose H = span{ϕ1, . . . , ϕn−1}⊥ and let f ∈ H with ∥f∥ = 1. We can write
f =

∑∞
k=n akϕk. Therefore

∥Tf∥2 = ⟨Tf, Tf⟩ = ⟨T ∗Tf, f⟩ =
∞∑
k=n

λka
2
k ≤ λn

∞∑
k=n

a2k = λn∥f∥2 = λn.

But ϕn ∈ H and

∥Tϕn∥2 = ⟨Tϕn, Tϕn⟩ = ⟨T ∗Tϕn, ϕn⟩ = λn∥ϕn∥2 = λn,

so we have that
∥T |H∥2 = max

f∈H
∥f∥=1

∥Tf∥2 = λn = s2n(T ).

Hence

sn(T ) = inf{∥T |H∥ : H is a vector subspace, codimH ≤ n− 1}.

Corollary 2.1. Suppose T is a compact operator on a Hilbert space H. If r ≥ 1
and G is a vector subspace of codimension ≤ r, then

sn+r(T ) ≤ sn(T |G). (2.1)
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Proof. Since codimG = m ≤ r, there exist f1, . . . , fm ∈ H such that

G = {f ∈ H : ⟨f, fj⟩ = 0, 1 ≤ j ≤ m}.

Let {ψk} be a basic system of eigenvectors of T |G and

G1 = {g ∈ G : ⟨g, ψk⟩ = 0, 1 ≤ k ≤ n− 1}.

Then
sn(T |G) = max

∥g∥=1
g∈G1

∥Tg∥.

But G1 is the vector subspace orthogonal to the n + m − 1 functions f1, . . . , fm,
ψ1, . . . , ψn−1, so codimG1 ≤ n+m− 1 ≤ n+ r − 1, and thus

sn+r(T ) ≤ max
∥g∥=1
g∈G1

∥Tg∥ = sn(T |G).

Proposition 2.3. If A : H → H is a compact operator and B,C : H → H are
bounded linear operators, then for n ≥ 1,

sn(BAC) ≤ ∥B∥∥C∥sn(A)

Proof. From the characterization of the singular values in Theorem 2.5, we have
that

sn(BA) = min
dimH=n−1

max
∥x∥=1
x⊥H

∥BAx∥ ≤ ∥B∥ min
dimH=n−1

max
∥x∥=1
x⊥H

∥Ax∥ = ∥B∥sn(A).

Since an operator and its adjoint have the same norm and the same singular values,
it follows that

sn(BAC) = sn((BAC)
∗) = sn(C

∗(BA)∗) ≤ ∥C∗∥sn((BA)∗) = ∥C∥sn(BA)
≤ ∥B∥∥C∥sn(A).

Proposition 2.4. Suppose T is a compact operator on L2(Ω). If K is positive
definite Hermitian, then

λm+n−1(T
∗KT ) = sm+n−1(T

∗KT ) ≤ sm(K)s2n(T ) = λm(K)λn(T
∗T ). (2.2)

Proof. SinceK is positive definite Hermitian, we can write T ∗KT = (K1/2T )∗(K1/2T ),
where K1/2 denotes the positive square root of K. So we have that

λm+n−1(T
∗KT ) = sm+n−1(T

∗KT ) = sm+n−1((K
1/2T )∗(K1/2T )) = s2m+n−1(K

1/2T ).
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Let ϕ1, . . . , ϕn−1 be the first n−1 eigenvectors of T ∗KT , and letH = span{ϕ1, . . . , ϕn−1}⊥.
By Theorem 2.5, Corollary 2.1, and Proposition 2.3,

sm+n−1(K
1/2T ) ≤ sm(K

1/2T |H) ≤ sm(K
1/2)∥T |H∥ = sm(K

1/2)sn(T ).

Hence

sm+n−1(T
∗KT ) = s2m+n−1(K

1/2T ) ≤ s2m(K
1/2)s2n(T ) = sm(K)s2n(T ).

3 Application to integral operator theory, Mer-

cer’s theorem, and regular integration kernels

We first show that integral operators are compact. It follows easily that if λn is
the sequence of singular values of such an operator then

∑∞
n=1 λ

2
n converges due to

Proposition 5.1. In case of continuous kernels over compact sets, Mercer’s theorem
asserts that even

∑∞
n=1 λn converges. Next we show that additional smoothness

of integration kernels implies a Mercer type expansion for derivatives. The proof
is adapted from [8] with a crucial additional argument that is lacking in Kadota’s
paper.

Proposition 3.1. Let Ω be a compact subset of Rd, and fix n > 0. Then Ω has a
finite cover {Si}1≤i≤m such that the Si are pairwise disjoint and diamSi < 1/n for
each 1 ≤ i ≤ m.

Proof. Set
C = {B(x, 1/2n) | x ∈ Ω} .

Clearly C is a cover of Ω. But Ω is compact, so there exists a finite subcover A ⊂ C
of Ω. Set m = |A|, and label the elements of A as S1, . . . , Sm. For 1 ≤ i ≤ m, set
S ′
i = Si \ ∪i−1

j=1Sj. The S
′
i are pairwise disjoint and form a cover of Ω. Furthermore,

since each S ′
i ⊂ B

(
xi,

1
2n

)
for some xi ∈ Ω, diamSi < 1/n.

Theorem 3.1. Let Ω be a subset of Rd and k ∈ L2(Ω×Ω). We write k(x, t), where
x, t ∈ Ω. The integral operator K defined by

Kf(x) =

∫
Ω

k(x, t)f(t)dt

is a compact operator on L2(Ω).

Proof. Assume k ∈ CC(Ω × Ω). As k has compact support, k(x, t) is zero outside
some compact set S ⊂ Ω. For any given n ∈ Z+, since S is compact, it has a finite
cover {Si,n}1≤i≤an such that the Si,n are pairwise disjoint and diamSi,n < 1/n for

7



each 1 ≤ i ≤ an. Choose a representative point ti,n from each Si,n ∩ Ω if this set is
non-empty, and let Kn be the sequence of integral operators defined by

Knf(x) =
an∑
i=1

k(x, ti,n)

∫
Si,n

f(t)dt.

Since dim ImKn ≤ an, each Kn is of finite rank, and since k ∈ CC(Ω × Ω), k
is uniformly continuous. Fix ϵ > 0. Then there exists δ > 0 such that for all
x, s, t ∈ Ω,

∥s− t∥ < δ =⇒ |k(x, s)− k(x, t)| < ϵ.

Hence for n > 1/δ, for each 1 ≤ i ≤ an,

|k(x, t)− k(x, ti,n)| < ϵ for all t ∈ Si,n.

Therefore

∥Kf −Knf∥2 =
∫
Ω

∣∣∣∣∣
∫
Ω

k(x, t)f(t)dt−
an∑
i=1

k(x, ti,n)

∫
Si,n

f(t)dt

∣∣∣∣∣
2

dx

=

∫
Ω

∣∣∣∣∣
∫
S

k(x, t)f(t)dt−
an∑
i=1

k(x, ti,n)

∫
Si,n

f(t)dt

∣∣∣∣∣
2

dx

=

∫
Ω

∣∣∣∣∣
an∑
i=1

∫
Si,n

[k(x, t)− k(x, ti,n)]f(t)dt

∣∣∣∣∣
2

dx

≤
∫
Ω

(
an∑
i=1

∫
Si,n

|k(x, t)− k(x, ti,n)||f(t)|dt

)2

dx

< ϵ2
∫
Ω

(∫
S

|f(t)|
)2

dx

≤ ϵ2
∫
Ω

∫
S

|f(t)|2dt dx

= ϵ2
∫
S

∫
Ω

|f(t)|2dx dt

= ϵ2∥f∥2.

Thus ∥K −Kn∥ < ϵ. This shows that ∥K −Kn∥ → 0, so K is compact.
Now let k ∈ L2(Ω×Ω). Then there exists a sequence of functions kn ∈ CC(Ω×Ω)

such that ∥k − kn∥L2(Ω×Ω) → 0. Define the sequence of integral operators K ′
n by

K ′
nf(x) =

∫
Ω

kn(x, t)f(t)dt.

8



We know that each K ′
n is compact. Fix ϵ > 0. Then for n large enough,

∥Kf −K ′
nf∥2 =

∫
Ω

∣∣∣∣∫
Ω

[k(x, t)− kn(x, t)]f(t)dt

∣∣∣∣2 dx
≤
∫
Ω

(∫
Ω

|k(x, t)− kn(x, t)||f(t)|dt
)2

dx

≤
∫
Ω

(∫
Ω

|k(x, t)− kn(x, t)|2dt
)
∥f∥2dx

= ∥f∥2
∫
Ω

∫
Ω

|k(x, t)− kn(x, t)|2dx dt

= ∥f∥2∥k − kn∥2L2(Ω×Ω)

< ∥f∥2ϵ2.

Hence ∥K −K ′
n∥ → 0, so K is compact.

Theorem 3.2. Let K be an integral operator with kernel function k ∈ L2(Ω2). Then
K∗K is also an integral operator with kernel function l(x, t) =

∫
Ω
k(s, x)k(s, t)ds,

and l ∈ L2(Ω2)

Proof. Let K’ be the integral operator defined by

K ′f(x) =

∫
Ω

k(t, x)f(t)dt.

Notice that for all f, g ∈ L2(Ω),

⟨Kf, g⟩ =
∫
Ω

(∫
Ω

k(x, t)f(t)dt

)
g(x)dx

=

∫
Ω

f(t)

(∫
Ω

k(x, t)g(x)dx

)
dt

= ⟨f,K ′g⟩.

Hence K ′ = K∗. Therefore

K∗Kf(x) =

∫
Ω

k(s, x)

(∫
Ω

k(s, t)f(t)dt

)
ds

=

∫
Ω

(∫
Ω

k(s, x)k(s, t)ds

)
f(t)dt

=

∫
Ω

l(x, t)f(t)dt

9



Moreover,∫
Ω

∫
Ω

|l(x, y)|2dx dy =

∫
Ω

∫
Ω

∣∣∣∣∫
Ω

k(t, x)k(t, y)dt

∣∣∣∣2 dx dy
≤
∫
Ω

∫
Ω

[(∫
Ω

|k(t, x)|2dt
)1/2(∫

Ω

|k(t, y)|2dt
)1/2

]2
dx dy

=

(∫
Ω

∫
Ω

|k(t, x)|2dt dx
)(∫

Ω

∫
Ω

|k(t, y)|2dt dy
)
<∞.

Thus l ∈ L2(Ω2)

Theorem 3.3 (Hilbert-Schmidt theorem). Let k be a Lebesgue measurable function

on [a, b]× [a, b] such that k(t, s) = k(s, t) a.e. and supt∈[a,b]
∫ b

a
|k(t, s)|2ds < ∞. Let

{ϕn}, {λn} be a basic system of eigenvectors and eigenvalues of K, where K is the
integral operator with kernel function k. Then for all f ∈ L2([a, b]),∫ b

a

k(t, s)f(s)ds =
∞∑
k=1

λk⟨f, ϕk⟩ϕk(t) a.e.

The series converges absolutely and uniformly on [a, b].

Proof. [Adapted from 5, pp. 132–133] By the Cauchy-Schwarz inequality,

n∑
j=m

|λj⟨f, ϕj⟩ϕj(t)| ≤

(
n∑

j=m

|λjϕj(t)|2
)1/2( n∑

j=m

|⟨f, ϕj⟩|2
)1/2

.

We have that

λjϕj(t) = Kϕj(t) =

∫ b

a

k(t, s)ϕj(s)ds = ⟨kt, ϕj⟩,

where kt(s) = k(t, s). Since kt ∈ L2([a, b]), it follows from Bessel’s inequality that

∞∑
j=1

|λjϕj(t)|2 =
∞∑
j=1

|⟨kt, ϕj⟩|2 ≤ ∥kt∥2 =
∫ b

a

|k(t, s)|2ds ≤ sup
t∈[a,b]

∫ b

a

|k(t, s)|2ds

= C2 <∞.

Let ϵ > 0. Since
∑∞

j=1 |⟨f, ϕj⟩|2 ≤ ∥f∥2, there exists N ∈ N such that for all
n > m > N ,

n∑
j=m

|⟨f, ϕj⟩|2 ≤ ϵ2.

10



Putting together the previous three inequalities, we obtain that for all n > m > N
and t ∈ [a, b],

n∑
j=m

|λj⟨f, ϕj⟩ϕj(t)| ≤ Cϵ.

Hence
∑∞

j=1 λj⟨f, ϕj⟩ϕj(t) converges absolutely and uniformly on [a, b]. Since this
series also converges to Kf(t), it follows that Kf(t) is the limit of the series for
almost every t.

Lemma 3.1. If k is continuous on [a, b] × [a, b] and
∫ b

a

∫ b

a
k(t, s)f(s)f(t)ds dt ≥ 0

for all f ∈ L2([a, b]), then k(t, t) ≥ 0 for all t ∈ [a, b].

Proof. [Adapted from 5, pp. 134–135] The function k(t, t) is real valued. Hence
k(t, t) = k(t, t). Suppose k(t0, t0) < 0 for some t0 ∈ [a, b]. It follows from the
continuity of k that Re k(t, s) < 0 for all (t, s) in some square [c, d]× [c, d] containing
(t0, t0). Let g(s) = 1[c,d](s). Then

0 ≤
∫ b

a

∫ b

a

k(t, s)g(s)g(t)ds dt = Re

∫ d

c

∫ d

c

k(t, s)ds dt < 0

which is a contradiction. Hence k(t, t) ≥ 0 for all t ∈ [a, b].

Lemma 3.2. If k is a continuous complex-valued function on [a, b]× [a, b], then for

any ϕ ∈ L2([a, b]), h(t) =
∫ b

a
k(t, s)ϕ(s)ds is continuous on [a, b].

Proof. [Adapted from 5, p. 135] Fix t0 ∈ [a, b] and ϵ > 0. As k is uniformly
continuous on [a, b]× [a, b], there exists δ > 0 such that for all t ∈ [a, b],

|t− t0| < δ =⇒ |k(t, s)− k(t0, s)| < ϵ ∀s ∈ [a, b].

By the Cauchy-Schwarz inequality,

|h(t)− h(t0)| ≤
∫ b

a

|k(t, s)− k(t0, s)||ϕ(s)|ds ≤ ∥ϕ∥
(∫ b

a

|k(t, s)− k(t0, s)|2ds
)1/2

≤ ∥ϕ∥ϵ(b− a)1/2.

Hence h is continuous on [a, b].

Proposition 3.2 (Cantor’s intersection theorem). Let {Cn} be a sequence of non-
empty compact, closed sets such that Cn+1 ⊂ Cn for all n ∈ N. Then ∩∞

n=1Cn ̸= ∅.

Proof. Choose a point xi ∈ Ci for i = 1, 2, . . . . Then xi ∈ Ci ⊂ C1 for each i. Since
C1 is compact, there exists a subsequence xij converging to a point x ∈ C1. Notice
that for any n, there exists an integer N for which iN > n, so the subsequence
{xij}∞j=N is in Cn. Since Cn is also compact, it follows that x ∈ Cn. Since x ∈ Cn

for all n, we have that x ∈ ∩∞
n=1Cn.

11



Theorem 3.4 (Dini’s theorem). Let {fn} be a sequence of real-valued continu-
ous functions on [a, b]. Suppose f1(t) ≤ f2(t) ≤ · · · for all t ∈ [a, b] and f(t) =
limn→∞ fn(t) is continuous on [a, b]. Then {fn} converges uniformly to f on [a, b].

Proof. [Adapted from 5, pp. 135–136] Given ϵ > 0, let Fn = {t : f(t) − fn(t) ≥ ϵ}
for n ∈ N. Clearly Fn+1 ⊂ Fn.

Let t0 ∈ Fn. Arguing by contradiction, suppose t0 /∈ Fn, that is, f(t0)− fn(t0) =
c < ϵ. Define ϵ1 = ϵ− c. As f − fn is continuous at t0, there exists δ > 0 such that
for all t ∈ (t0 − δ, t0 + δ),

|f(t)− fn(t)− c| = |(f(t)− fn(t))− (f(t0)− fn(t0))| < ϵ1,

But (t0 − δ, t0 + δ) ∩ Fn ̸= ∅, that is, there exists t1 ∈ Fn such that

|f(t1)− fn(t1)− c| = |(f(t1)− fn(t1))− (f(t0)− fn(t0))| < ϵ1,

so
ϵ1 = ϵ− c ≤ |f(t1)− fn(t1)| − c = |f(t1)− fn(t1)− c| < ϵ1.

This is the desired contradiction. Thus t0 ∈ Fn, and hence Fn is a closed set.
Since fn converges pointwise to f , it follows that ∩∞

n=1Fn = ∅. Suppose Fn ̸= ∅
for all n ∈ N. Then since each Fn is closed, ∩∞

n=1Fn ̸= ∅ by Cantor’s intersection
theorem. This is a contradiction, so there must exist N ∈ N such that Fn =
∩N

n=1Fn = ∅. Thus for all n ≥ N and t ∈ [a, b],

|f(t)− fn(t)| = f(t)− fn(t) ≤ f(t)− fN(t) < ϵ,

so {fn} converges uniformly to f on [a, b].

Theorem 3.5 (Mercer’s theorem). Let k be continuous on [a, b] × [a, b]. Suppose

that for all f ∈ L2([a, b]),
∫ b

a

∫ b

a
k(t, s)f(s)f(t)ds dt ≥ 0. If {ϕn}, {λn} is a basic

system of eigenvectors and eigenvalues of the integral operator with kernel function
k, then for all (t, s) ∈ [a, b]× [a, b],

k(t, s) =
∞∑
j=1

λjϕj(t)ϕj(s).

The series converges absolutely and uniformly on [a, b]× [a, b].

Proof. [Adapted from 5, pp. 136–138] Let K be the integral operator with kernel
function k. It follows from the assumptions that K is compact and positive and
λj = ⟨Kϕj, ϕj⟩ ≥ 0. Let

kn(t, s) = k(t, s)−
n∑

j=1

λjϕj(t)ϕj(s).
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Since each ϕj is an eigenvector ofK, it follows from Lemma 3.2 that ϕj is continuous,
implying that kn is continuous. Also, we can verify that for all f ∈ L2([a, b]),∫ b

a

(∫ b

a

kn(t, s)f(s)ds

)
f(t)dt =

∫ b

a

(∫ b

a

k(t, s)f(s)ds−
n∑

j=1

λj⟨f, ϕj⟩ϕj(t)

)
f(t)dt

= ⟨Kf, f⟩ −
n∑

j=1

λj|⟨f, ϕj⟩|2 =
∞∑

j=n+1

λj|⟨f, ϕj⟩|2 ≥ 0,

so by Lemma 3.1 we have that for each t ∈ [a, b],

0 ≤ kn(t, t) = k(t, t)−
n∑

j=1

λj|ϕj(t)|2.

As n is arbitrary, it follows that

∞∑
j=1

λj|ϕj(t)|2 ≤ k(t, t) ≤ max
s∈[a,b]

|k(s, s)| = C2. (3.1)

Applying the Cauchy-Schwarz inequality to the sequences {
√
λjϕj(t)} and {

√
λjϕj(s)}

yields
n∑

j=m

λj|ϕj(t)ϕj(s)| ≤

(
n∑

j=m

λj|ϕj(t)|2
)1/2( n∑

j=m

λj|ϕj(s)|2
)1/2

. (3.2)

Fix t ∈ [a, b] and ϵ > 0. There exists an integer N(t) such that for n > m > N(t),

n∑
j=m

λj|ϕj(t)|2 < ϵ2. (3.3)

From (3.1), (3.2), and (3.3), we have that for n > m > N(t),

n∑
j=m

λj|ϕj(t)ϕj(s)| ≤ Cϵ.

Therefore
∑∞

j=1 λjϕj(t)ϕj(s) converges absolutely and uniformly in s for each t. Let

k̃(t, s) =
∞∑
j=1

λjϕj(t)ϕj(s).

For f ∈ L2([a, b]) and fixed t ∈ [a, b], the uniform convergence of the series in s and
the continuity of each ϕj imply that k̃(t, s) is continuous as a function of s, and∫ b

a

[k(t, s)− k̃(t, s)]f(s)ds = Kf(t)−
∞∑
j=1

λj⟨f, ϕj⟩ϕj(t).
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If f ∈ kerK = (ImK)⊥, then Kf = 0 and ⟨f, ϕj⟩ = 1
λj
⟨f,Kϕj⟩ = 0, so

∫ b

a
[k(t, s)−

k̃(t, s)]f(s)ds = 0. If f = ϕi for some i, then

(Kf)(t)−
∞∑
j=1

λj⟨f, ϕj⟩ϕj(t) = λiϕi(t)− λiϕi(t) = 0,

so again
∫ b

a
[k(t, s)− k̃(t, s)]f(s)ds = 0. Thus for each t, k(t, s)− k̃(t, s) is orthogonal

to L2([a, b]). Hence k̃(t, s) = k(t, s) for every t and almost every s. But k(t, s) and
k̃(t, s) are continuous, so

k(t, s) = k̃(t, s) =
∞∑
j=1

λjϕj(t)ϕj(s) ∀(t, s) ∈ [a, b]× [a, b].

In particular,

k(t, t) =
∞∑
j=1

λj|ϕj(t)|2.

The partial sums of this series form an increasing sequence of continuous func-
tions which converges pointwise to k(t, t), which is also continuous. By Dini’s the-
orem, this series converges uniformly to k(t, t). Thus given ϵ > 0, there exists an
integer N such that for n > m > N ,

n∑
j=m

λj|ϕj(t)|2 < ϵ ∀t ∈ [a, b].

This implies that for all n > m > N and (t, s) ∈ [a, b]× [a, b],

n∑
j=m

λj|ϕj(t)ϕj(s)| < ϵ

Hence
∑∞

j=1 λjϕj(t)ϕj(s) converges absolutely and uniformly on [a, b]× [a, b].

Theorem 3.6 (Trace formula for integral operators). Let k be continuous on [a, b]×
[a, b]. Suppose that for all f ∈ L2([a, b]),∫ b

a

∫ b

a

k(t, s)f(s)f(t)ds dt ≥ 0.

If K is the integral operator with kernel function k and {λj} is the basic system of
eigenvalues of K, then

∞∑
j=1

λj =

∫ b

a

k(t, t)dt.

14



Proof. [5, p. 139] Let {ϕj} be a basic system of eigenvectors of K corresponding to
{λj}. By Mercer’s theorem, the series

k(t, t) =
∞∑
j=1

λj|ϕj(t)|2

converges uniformly on [a, b]. Hence∫ b

a

k(t, t)dt =
∞∑
j=1

λj∥ϕj∥2 =
∞∑
j=1

λj.

Theorem 3.7. Let K(x, t) be a real, symmetric, continuous, non-negative definite
kernel on [0, 1]2. Let {ϕj}, {λj} be a basic system of eigenvectors and eigenvalues of
the integral operator generated by K. If

Kr(x, t) =
∂2r

∂xr∂tr
K(x, t)

exists and is continuous on [0, 1]2, then ϕ
(r)
j exists and is continuous on [0, 1] for

j ≥ 1 and

Kr(x, t) =
∞∑
k=1

λjϕ
(r)
j (x)ϕ

(r)
j (t)

uniformly on [0, 1]2.

Proof. [Adapted from 8] As ϕj is an eigenvector of the integral operator generated
by K, we have that

ϕj(x) =
1

λj

∫ 1

0

K(x, t)ϕj(t)dt

for j ≥ 1. Since Kr exists and is continuous on [0, 1]2, we can differentiate both
sides r times to obtain

ϕ
(r)
j (x) =

1

λj

∫ 1

0

∂r

∂xr
K(x, t)ϕj(t)dt.

Hence ϕ
(r)
j exists and is continuous on [0, 1]. Define

Rr,k(x, t) = Kr(x, t)−
k∑

j=1

λjϕ
(r)
j (x)ϕ

(r)
j (t).
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Suppose R1,k(x0, x0) < 0 for some x0 ∈ [0, 1]. Then, since R1,k is continuous, there
exists δ > 0 such that R1,k(x, y) < 0 for all x, y ∈ [x0− δ, x0+ δ]. Write x−0 = x0− δ
and x+0 = x0 + δ. Then

0 >

∫ x+
0

x−
0

∫ x+
0

x−
0

R1,k(x, t)dx dt

=

∫ x+
0

x−
0

∫ x+
0

x−
0

[
K1(x, t)−

k∑
j=1

λjϕ
′
j(x)ϕ

′
j(t)

]
dx dt

= K(x+0 , x
+
0 )−K(x+0 , x

−
0 )−K(x−0 , x

+
0 ) +K(x−0 , x

−
0 )

−
k∑

j=1

λj

∫ x+
0

x−
0

ϕ′
j(x)dx

∫ x+
0

x−
0

ϕ′
j(t)dt

=
∞∑
j=1

λj
[
ϕj(x

+
0 )ϕj(x

+
0 )− ϕj(x

+
0 )ϕj(x

−
0 )− ϕj(x

−
0 )ϕj(x

+
0 ) + ϕj(x

−
0 )ϕj(x

−
0 )
]

−
k∑

j=1

λj

∫ x+
0

x−
0

ϕ′
j(x)dx

∫ x+
0

x−
0

ϕ′
j(t)dt

=
∞∑
k+1

λj

∫ x+
0

x−
0

ϕ′
j(x)dx

∫ x+
0

x−
0

ϕ′
j(t)dt > 0.

This is a contradiction. Thus R1,k(x, x) ≥ 0 for all x ∈ [0, 1]. Hence

R1,k(x, x) = K1(x, x)−
k∑

j=1

λj|ϕ′
j|2 ≥ 0,

and therefore

K1(x, x) ≥
k∑

j=1

λj|ϕ′
j(x)|2

for all x ∈ [0, 1], for all k ≥ 1. Since the partial sums of this series form a non-
decreasing sequence which is bounded above by K1(x, x), the sum

∞∑
j=1

λj|ϕ′
j(x)|2

converges. Fix t ∈ [0, 1] and define M = maxx∈[0,1]K1(x, x). Then, given ϵ > 0,
there exists an integer N such that for all n > m > N ,

n∑
j=m

λj|ϕ′
j(t)|2 < ϵ.
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By the Cauchy-Schwarz inequality, for n > m > N ,∣∣∣∣∣
n∑

j=m

λjϕ
′
j(x)ϕ

′
j(t)

∣∣∣∣∣
2

≤

(
n∑

j=m

λj|ϕ′
j(x)|2

)(
n∑

j=m

λj|ϕ′
j(t)|2

)
≤M

n∑
j=m

λj|ϕ′
j(t)|2 < Mϵ.

Therefore

K ′
1(x, t) =

∞∑
j=1

λjϕ
′
j(x)ϕ

′
j(t)

converges absolutely and uniformly in x for every fixed t. Similarly, it converges
absolutely and uniformly in t for every fixed x.

Note that K1 and K ′
1 are both measurable. Additionally,∫ t

0

∫ x

0

[K1(u, v)−K ′
1(u, v)]du dv

=

∫ t

0

∫ x

0

K1(u, v)du dv −
∞∑
j=1

λj

∫ x

0

ϕ′
j(u)du

∫ t

0

ϕ′
j(v)dv

=

∫ t

0

∫ x

0

K1(u, v)du dv − [K(x, t)−K(x, 0)−K(0, t) +K(0, 0)] = 0

Hence K1(x, t) = K ′
1(x, t) a.e. Thus for fixed x, K1(x, t) = K ′

1(x, t) for almost every
t. But for any fixed x, both K1 and K ′

1 are continuous in t, so this equality holds
for every t. Thus for every t, K1(x, t) = K ′

1(x, t) for almost every x. But for any
fixed t, K1 and K

′
1 are also continuous in x, so the equality holds for every x and t.

We now have that

K1(x, x) =
∞∑
j=1

λj|ϕ′
j(x)|2.

The partial sums of this series form a non-decreasing sequence of continuous func-
tions converging to another continuous function. Therefore by Dini’s theorem, this
convergence is uniform. In particular, given ϵ > 0, there exists an integer N such
that for all n > m > N , for all t,

n∑
j=m

λk|ϕ′
j(t)|2 < ϵ

Hence by the Cauchy-Schwarz inequality,∣∣∣∣∣
n∑

j=m

λjϕ
′
j(x)ϕ

′
j(t)

∣∣∣∣∣
2

≤

(
n∑

j=m

λj|ϕ′
j(x)|2

)(
n∑

j=m

λj|ϕ′
j(t)|2

)
≤M

n∑
j=m

λj|ϕ′
j(t)|2 < Mϵ,

and thus the series converges uniformly in both x and t simultaneously.
Replacing ϕj, K, ϕ′

j, K1, K
∗
1 , and R1,j in the above proof by ϕ

(s)
j , Ks, ϕ

(s+1)
j ,

Ks+1, K
∗
s+1, and Rs+1,j, respectively, where s + 1 ≤ r, we establish that the result

holds for s+ 1 if it holds for s. Therefore, by induction, the result holds for r.
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4 Singular Values of Integral Operators

The proof of the following proposition is adapted from [7]. However, we provide more
details at two crucial stages of the proof. Specifically, we show the full calculations
for the characterization of J∗ and for finding the eigenvalues of J∗J .

Proposition 4.1. Let J be the operator on L2([0, 1]) defined by

Jf(x) =

∫ 1

x

f(t)dt.

Then J∗ is characterized by

J∗f(x) =

∫ x

0

f(t)dt

and the singular values of J are given by

sn(J) =
2

(2n− 1)π
, n ≥ 1. (4.1)

Proof. Let J ′ be the integral operator defined by

J ′f(x) =

∫ x

0

f(t)dt.

Notice that for all f, g ∈ L2([0, 1]),

⟨Jf, g⟩ =
∫ 1

0

(∫ 1

t

f(s)ds

)
g(t)dt

=

[∫ 1

t

f(s)ds

∫ t

0

g(s)ds

]1
t=0

+

∫ 1

0

f(t)

(∫ t

0

g(s)ds

)
dt

=

∫ 1

0

f(t)

(∫ t

0

g(s)ds

)
dt = ⟨f, J ′g⟩.

Hence J ′ = J∗. Let ϕn, n ≥ 1 be the eigenfunctions of J∗J . Then

ϕn(x) =
1

sn(J)2
J∗Jϕn(x) =

1

sn(J)2

∫ x

0

(∫ 1

t

ϕn(s)ds

)
dt. (4.2)

Notice that
∫ t

1
ϕn(s)ds is continuous in t, so ϕn(x) =

1
sn(J)2

∫ x

0

(∫ t

1
ϕn(s)ds

)
dt is in

C1[0, 1]. But if ϕn ∈ Ck[0, 1], then
∫ t

1
ϕn(s)ds is in Ck+1[0, 1], and it follows that

ϕn ∈ Ck+2[0, 1]. Hence, by induction, ϕn ∈ C∞[0, 1]. In particular, ϕn ∈ C2([0, 1]),
and so from (4.2) we obtain

ϕ′′
n(x) +

1

sn(J)2
ϕn(x) = 0, ϕn(0) = ϕ′

n(1) = 0.
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Solving this ODE yields

ϕn(x) = c1 sin

(
x

sn(J)

)
.

We cannot have c = 0, since then ϕn(x) ≡ 0. Therefore to satisfy ϕ′
n(1) = 0, we

must have that

cos

(
1

sn(J)

)
= 0 =⇒ sn(J) =

2

(2n− 1)π
.

The main result of this section is a theorem from [7]. The proof uses the result
of Proposition 4.2, and in Ha’s paper, they refer to a proof of this proposition from
[4, p. 122]. We believe that Gohberg’s proof of that proposition is unnecessarily
complicated and hard to follow. We present here a simple proof that only uses
elementary results on series.

Lemma 4.1. Let bk be a sequence in N such that bk < bk+1 for all k ≥ 1. Then

∞∑
k=1

(
1−

(
bk
bk+1

)p)
diverges.

Proof. Arguing by contradiction, assume

∞∑
k=1

(
1−

(
bk
bk+1

)p)
converges. Then

lim
k→∞

(
1−

(
bk
bk+1

)p)
= 0.

Set ak = 1−
(

bk
bk+1

)p
. Then limk→∞ ak = 0, so

lim
k→∞

− ln(1− ak)

ak
= 1

Since ak > 0 and − ln(1−ak) > 0 for all k and
∑∞

k=1 ak converges,
∑∞

k=1[− ln(1−ak)]
converges by the limit comparison test. Also,

− ln(1− ak) = ln

((
bk+1

bk

)p)
= p ln(bk+1)− p ln(bk),

so
n∑

k=1

[− ln(1− ak)] =
n∑

k=1

(p ln(bk+1)− p ln(bk)) = p ln(bn+1)− p ln(b1).
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But bn ≥ n, so
∞∑
k=1

[− ln(1− ak)] = lim
n→∞

n∑
k=1

− ln(1− ak) = lim
n→∞

p ln(bn+1)− p ln(b1)

≥ lim
k→∞

p ln(n)− p ln(b1)

diverges, a contradiction.

Proposition 4.2. Let p > 0, and let an > 0 be a decreasing sequence such that
∞∑
n=1

npan

converges. Then
lim
n→∞

np+1an = 0.

Proof. Arguing by contradiction, suppose

lim
n→∞

np+1an ̸= 0.

Then there exists ϵ > 0 and a subsequence ank
such that

np+1
k ank

≥ ϵ =⇒ ank
≥ ϵ

np+1
k

for all k ≥ 1. Therefore
nk+1∑

j=nk+1

jpaj ≥ ank+1

nk+1∑
j=nk+1

jp ≥ ϵ

np+1
k+1

nk+1∑
j=nk+1

jp ≥ ϵ

np+1
k+1

∫ nk+1

nk

xpdx

=
ϵ

p+ 1

(
1−

(
nk

nk+1

)p+1
)
.

But then
∞∑
j=1

jpaj ≥
∞∑

j=n1

jpaj ≥
ϵ

p+ 1

∞∑
k=1

(
1−

(
nk

nk+1

)p+1
)

diverges by the previous lemma, a contradiction.

Theorem 4.1. If K(x, t) is positive definite Hermitian and the symmetric derivative

Kr(x, t) =
∂2r

∂xr∂tr
K(x, t)

exists and is continuous on [0, 1]2, then

∞∑
n=1

n2rλn(K) <∞.

Consequently,
lim
n→∞

n2r+1λn(K) = 0.
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Proof. [Adapted from 7] Define the operator J by

Jf(x) =

∫ 1

x

f(t)dt.

Let H1 be the vector subspace formed by f ∈ L2([0, 1]) which are orthogonal to the
constant function e(t) ≡ 1 and the function K(t, 0). Then H1 is of codimension ≤ 2.
If f ∈ H1, then ∫ 1

0

f(t)dt = 0 and

∫ 1

0

K(0, t)f(t)dt = 0,

and so we have

Kf(x) =

∫ 1

0

K(x, t)f(t)dt

=

∫ x

0

∂

∂y

[∫ 1

0

K(y, t)f(t)dt

]
dy +

∫ 1

0

K(0, t)f(t)dt

=

∫ x

0

([
∂

∂y
K(y, t)

∫ t

1

f(s)ds

]1
t=0

−
∫ 1

0

K1(y, t)

(∫ t

1

f(s)ds

)
dt

)
dy

=

∫ x

0

[∫ 1

0

K1(y, t)

(∫ 1

t

f(s)ds

)
dt

]
dy = J∗K1Jf(x).

(4.3)

Let G be the vector subspace formed by g ∈ L2([0, 1]) which are orthogonal to the
functions e(t) and K(t, 1). Then for g ∈ G,∫ 1

0

g(t)dt = 0 and

∫ 1

0

K(1, t)g(t)dt = 0,

and so we have

Kg(x) =

∫ 1

0

K(x, t)g(t)dt

=

∫ x

1

∂

∂y

[∫ 1

0

K(y, t)g(t)dt

]
dy +

∫ 1

0

K(1, t)g(t)dt

=

∫ x

1

([
∂

∂y
K(y, t)

∫ t

0

g(s)ds

]1
t=0

−
∫ 1

0

K1(y, t)

(∫ t

0

g(s)ds

)
dt

)
dy

=

∫ 1

x

[∫ 1

0

K1(y, t)

(∫ t

0

g(s)ds

)
dt

]
dy = JK1J

∗g(x).

(4.4)

For r = 2, let H2 be the vector subspace formed by f ∈ H1 which are orthogonal
to the functions J∗e(t) and J∗K1(t, 1). Then H2 is of codimension ≤ 4. If f ∈ H2,
then in addition to the above, f also satisfies∫ 1

0

Jf(t)dt = 0 and

∫ 1

0

K1(1, t)Jf(t)dt = 0.
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Applying (4.4) with K1 and Jf(x) in place of K and g(x), respectively yields

K1Jf(x) = JK2J
∗Jf(x).

Substituting this into (4.3), we have

Kf(x) = J∗JK2J
∗Jf(x).

For r ≥ 3, we can continue to iterate. Let T0 be the identity operator and for
1 ≤ j ≤ r, let

Tj =

{
J(J∗J)(j−1)/2 if j is odd

(J∗J)j/2 if j is even

Let Hr be the vector subspace formed by f ∈ L2([0, 1]) which are orthogonal to the
2r functions T ∗

j e(t) and T
∗
j Kj(t, aj) for 0 ≤ j ≤ r− 1, where aj = 0 if j is even and

aj = 1 if j is odd. Then Hr is of codimension ≤ 2r and for f ∈ Hr,

Kf(x) = T ∗
rKrTrf(x).

Since T ∗
r Tr = (J∗J)r and is positive definite hermitian, λn(T

∗
r Tr) = [λn(J

∗J)]r. By
(2.1), (2.2), and (4.1) for n ≥ 2r + 1,

λ2n(K) ≤ λ2n−1(K) ≤ λ2n−2r−1(T
∗
rKrTr)

≤ λn−2r(T
∗
r Tr)λn(Kr) = [λn−2r(J

∗J)]r λn(Kr)

≤ 4r

(2n− 2r − 1)2rπ2r
λn(Kr) ≤

1

n2r
λn(Kr).

(4.5)

Hence

∞∑
n=2r+1

n2rλn(K) =
∞∑

n=r+1

(2n)2rλ2n(K) +
∞∑

n=r+1

(2n− 1)2rλ2n−1(K)

≤ 22r
∞∑

n=2r+1

λn(Kr) ≤ ∞,

and thus
∞∑
n=1

n2rλn(K) <∞.

Consequently, by Proposition 4.2,

lim
n→∞

n2r+1λn(K) = 0.
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Theorem 4.2. If K ∈ Cp([0, 1]2) is positive definite Hermitian, then

λn(K) = o

(
1

np+1

)
as n→ ∞.

Proof. [Adapted from 7] If p is even, then p = 2r for some integer r ≥ 1, so we have
from the previous theorem that

lim
n→∞

np+1λn(K) = 0.

If p is odd, set r = (p− 1)/2. Since Kr ∈ C1([0, 1]2) is positive definite Hermitian,

lim
n→∞

n2λn(Kr) = 0,

so from (4.5),

0 ≤ lim
n→∞

np+1λn(K) = lim
n→∞

(2n)2r+2λ2n(K) ≤ 22r+2 lim
n→∞

n2λn(Kr) = 0.

4.1 MATLAB Code

The following MATLAB code uses three different methods to approximate the first
n singular values of the integral operator with kernel function k(x, t) = (x−t)p ·1x>t.
We expect

sn ∼ Cnα =⇒ ln sn ∼ lnC + α lnn

If p = 1.5, k is C1 regular, so according to Theorem 4.1 we expect that α < −2. In
the plots below, we take n = 100 and perform a linear regression to approximate the
decay rate α using the first 80 computed singular values, as the last several values
are subject to high numerical error.

close all

n = 100; % dimension of subspace

p = 1; % number of continuous derivatives

[A1 ,s1] = singular(p,n);

[A2 ,s2] = singular2(p,n);

[A3 ,s3] = singularFFT(p,n);

log_singular = log([s1 ,s2,s3]);

X = [ones (80 ,1), log (1:80) '];
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beta = X\log_singular (1:80 ,:);

alpha = beta (2,:);

% plot the approximated singular values of K

plot(log (1:80) , log_singular (1:80 , :))

legend (" Explicitly Computed Integral \alpha \approx " +

alpha (1), ...

"Numerical Integration \alpha \approx " + alpha (2),

...

"FFT \alpha \approx " + alpha (3))

title(" Approximated Singular Values for p = " + p)

xlabel('ln(n)')
ylabel('ln(s_n(K))')

% Using explicitly computed integral with kernel function

% k(x,t) = (x-t)^p * (x > t) and f_j(x) = n * ((j-1)/n <=

x < j/n)

function[A,s] = singular(p,n)

pow = p + 2;

denom = pow .* (p+1) .* n.^(p+1);

A = zeros(n);

for j = 1:n

% <Kf_j , f_j >

A(j,j) = 1./ denom;

% <Kf_j , f_k > for k > j. If k < j, this is 0

for k = j+1:n

numer = (k-j+1).^pow - 2.*(k-j).^pow + (k-j

-1).^pow;

A(j,k) = numer./denom;

end

end

s = svd(A);

end

% Using numerical integration

function[A,s] = singular2(p,n)

% Numerically approximates the matrix A, where A_jk =

<Kf_j , f_k >

% and f_j(x) = n * ((j-1)/n <= x < j/n)

24



% kernel function

K = @(x,t) (x-t).^p .* (x > t);

A = zeros(n);

for j = 1:n

for k = 1:n

A(j,k) = n .* integral2(K, (k-1)./n, k./n, (j

-1)./n, j./n);

end

end

s = svd(A);

end

% Using FFT

function[A,s] = singularFFT(p,n)

% Numerically approximates the matrix A, where A_jk =

<Kf_j , f_k >

% and f_j(x) = exp(2pi*ijx)

% kernel function

K = @(x,t) (x-t).^p .* (x > t);

K_eval = zeros(n);

for j = 1:n

for k = 1:n

% K(x,t) evaluated at a grid ofdiscrete

points (j/n, k/n)

K_eval(j,k) = K(j./n, k./n);

end

end

% Kf_eval(j,k) is an approximation of Kf_j(k/n)

Kf_eval = ifft(K_eval , n).';

A = ifft(Kf_eval , n);

s = svd(A);

end
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Figure 1: Approximations of the first 100 singular values for the integral operator
K with kernel function k(x, t) = (x− t)p ·1x>t, computed for several different values
of p.

5 The Two-Dimensional Case

Proposition 5.1. If ϕn, n ≥ 1 form a Hilbert basis for L2([0, 1]), then ϕm,n(x, y) =
ϕn(x)ϕm(y), m,n ≥ 1 form a Hilbert basis for L2([0, 1]2).

Proof. It is simple to show that the functions {ϕm,n}m,n≥1 are pairwise orthogonal:∫ 1

0

∫ 1

0

ϕm,n(x, y)ϕk,l(x, y)dx dy =

∫ 1

0

∫ 1

0

ϕm(x)ϕn(y)ϕk(x)ϕl(y)dx dy

=

(∫ 1

0

ϕm(x)ϕk(x)dx

)(∫ 1

0

ϕn(y)ϕl(y)dy

)
=

{
1, if m = k and n = l

0, otherwise
.

Let f ∈ L2([0, 1]2). Fix x ∈ [0, 1]. For almost all x, the function y → f(x, y) is
in L2([0, 1]), and thus

f(x, y) =
∞∑
n=1

(∫ 1

0

f(x, y)ϕn(y)dy

)
ϕn(y).
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It follows that ∫ 1

0

f(x, y)2dy =
∞∑
n=1

∣∣∣∣∫ 1

0

f(x, y)ϕn(y)dy

∣∣∣∣2
for almost all x ∈ [0, 1]. Denote

gm(x) =

∫ 1

0

f(x, y)ϕm(y)dy.

Then clearly

[gm(x)]
2 ≤

∞∑
n=1

∣∣∣∣∫ 1

0

f(x, y)ϕn(y)dy

∣∣∣∣2 = ∫ 1

0

f(x, y)2dy,

so we have that ∫ 1

0

[gm(x)]
2dx ≤

∫ 1

0

∫ 1

0

f(x, y)2dx dy,

and therefore gm ∈ L2([0, 1]). Thus∫ 1

0

[gm(x)]
2dx =

∞∑
n=1

∣∣∣∣∫ 1

0

gm(x)ϕn(x)dx

∣∣∣∣2 .
Hence

⟨f, f⟩ =
∫ 1

0

∫ 1

0

f(x, y)2dy dx =

∫ 1

0

∞∑
m=1

∣∣∣∣∫ 1

0

f(x, y)ϕ(y)dy

∣∣∣∣2 dx
=

∫ 1

0

∞∑
m=1

[gm(x)]
2dx =

∞∑
m=1

∫ 1

0

[gm(x)]
2dx =

∞∑
m=1

∞∑
n=1

∣∣∣∣∫ 1

0

gm(x)ϕn(x)dx

∣∣∣∣2
=

∞∑
m=1

∞∑
n=1

∣∣∣∣∫ 1

0

∫ 1

0

f(x, y)ϕm(y)ϕn(x)dy dx

∣∣∣∣2 = ∞∑
m=1

∞∑
n=1

|⟨f, ϕm,n⟩|2.

Suppose ⟨f, ϕm,n⟩ = 0 for all ϕm,n, m,n ≥ 1. Then

⟨f, f⟩ =
∞∑

m=1

∞∑
n=1

|⟨f, ϕm,n⟩|2 = 0 =⇒ f = 0.

Thus span{ϕm,n}m,n≥1 is dense in L2([0, 1]2).

Proposition 5.2. Let J be the integral operator on L2([0, 1]2) defined by

Jf(x, y) =

∫ 1

y

∫ 1

x

f(s, t)ds dt.
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Then J∗ is characterized by

J∗f(x, y) =

∫ y

0

∫ x

0

f(s, t)ds dt.

and the singular values of J are given by

sm,n(J) =
4

(2m− 1)(2n− 1)π2
, m, n ≥ 1.

Proof. Let J ′ be the integral operator defined by

J ′f(x, y) =

∫ y

0

∫ x

0

f(s, t)ds dt.

Then for all f, g ∈ L2([0, 1]2), we have that

⟨Jf, g⟩ =
∫ 1

0

∫ 1

0

(∫ 1

y

∫ 1

x

f(s, t)ds dt

)
g(x, y)dx dy

=

∫ 1

0

∫ 1

y

([∫ 1

x

f(s, t)ds

∫ x

0

g(s, y)ds

]1
x=0

+

∫ 1

0

f(x, t)

(∫ x

0

g(s, y)ds

)
dx

)
dt dy

=

∫ 1

0

∫ 1

0

∫ 1

y

∫ x

0

f(x, t) g(s, y) ds dt dy dx

=

∫ 1

0

∫ x

0

([∫ 1

y

f(x, t)dt

∫ y

0

g(s, t)dt

]1
y=0

+

∫ 1

0

f(x, y)

(∫ y

0

g(s, t)dt

)
dy

)
ds dx

=

∫ 1

0

∫ 1

0

f(x, y)

(∫ y

0

∫ x

0

g(s, t)ds dt

)
dx dy = ⟨f, J ′g⟩.

Hence J ′ = J∗. Let ϕ be an eigenfunction of J∗J with corresponding eigenvalue λ2,
so that λ is a singular value of J . Then

ϕ(x, y) =
1

λ2
J∗Jϕ(x, y) =

1

λ2

∫ y

0

∫ x

0

(∫ 1

t

∫ 1

s

ϕ(u, v)du dv

)
ds dt. (5.1)

Notice that
∫ t

1

∫ s

1
ϕ(u, v)du dv is continuous in s and t, so we have that ϕ(x, y) =

1
λ2

∫ y

0

∫ x

0

(∫ 1

t

∫ 1

s
ϕ(u, v)du dv

)
ds dt is in C1([0, 1]2). But if ϕ ∈ Ck([0, 1]2), then∫ t

1

∫ s

1
ϕ(u, v)du dv is in Ck+1([0, 1]2), and it follows that ϕ ∈ Ck+2(0, 1]2). Hence,

by induction, ϕ ∈ C∞([0, 1]2). In particular, ϕ ∈ C4([0, 1]2), and so from (5.1) we
obtain

∂4

∂x2∂y2
ϕ(x, y)− 1

λ2
ϕ(x, y) = 0 (5.2)

with

ϕ(0, y) = ϕ(x, 0) =
∂

∂x
ϕ(1, y) =

∂

∂y
ϕ(x, 1) = 0.
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Assume ϕ is of the form ϕ(x, y) = f(x)g(y) for some functions f, g ∈ L2([0, 1]).
Then (5.2) becomes

f ′′(x)g′′(y)− 1

λ2
f(x)g(y) = 0

with
f(0) = f ′(1) = g(0) = g′(1) = 0.

Thus we have that

f ′′(x)− g(y)

λ2g′′(y)
f(x) = 0

for all x, y ∈ [0, 1]. Hence it must be that −g(y)/g′′(y) = c for some constant c ∈ R
for all y ∈ [0, 1]. We now have

f ′′(x) +
c

λ2
f(x) = 0

and

g′′(y) +
1

c
g(y) = 0.

Solving these ODEs yields

f(x) = c1 sin

(
x
√
c

λ

)
and g(y) = c2 sin

(
y√
c

)
.

Moreover, from the conditions f ′(1) = 0 and g′(1) = 0 we find that

λ√
c
=

2

(2n− 1)π
and

√
c =

2

(2m− 1)π
,

for some m,n ∈ Z+. Thus we have that

sm,n(J) = λ =
4

(2m− 1)(2n− 1)π2

is a singular value of J with corresponding singular function

ϕm,n(x, y) = sin

(
(2n− 1)πx

2

)
sin

(
(2m− 1)πy

2

)
.

By Proposition 5.1, the functions {ϕm,n}m,n≥1 form a Hilbert basis for L2([0, 1]2),
and therefore these are the only singular functions, and thus the only singular values,
of J .

Proposition 5.3. Let J be the integral operator on L2([0, 1]2) defined by

Jf(x, y) =

∫ 1

y

∫ 1

x

f(s, t)ds dt

and let sn(J), n ≥ 1 be the singular values of J in decreasing order. Define f :
[1,∞) → [1,∞) by f(x) = x+ x lnx. Then

sn(J) ≤
4

π2f−1(x)
.
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Proof. By Proposition 5.2, the singular values of J are given by

s′j,k(J) =
4

π2(2j − 1)(2k − 1)
,

so we have that

s′j,k(J) ≥
4

π2m
=⇒ (2j − 1)(2k − 1) ≤ m =⇒ jk ≤ m =⇒ k ≤ m

j
.

It follows that∣∣∣∣{(j, k) : s′j,k(J) ≥ 4

π2m

}∣∣∣∣ = m∑
j=1

∣∣∣∣{k : s′j,k(J) ≥
4

π2m

}∣∣∣∣ ≤ m∑
j=1

m

j
≤ m+

∫ m

1

m

x
dx

= m+m lnm,

that is, the number of singular values of J which are greater than or equal to 4
π2m

is at most f(m) = m + m lnm. Therefore if n > f(m), then sn(J) <
4

π2m
. Since

sn(J) =
4
π2l

for some integer l ≥ 1, it follows that sn(J) ≤ 4
π2(m+1)

. Notice that f
is a strictly increasing function, and is therefore invertible. Moreover, its inverse is
also strictly increasing. Hence if f(m) < n ≤ f(m+ 1), then

sn(J) ≤
4

π2(m+ 1)
=

4

π2f−1(f(m+ 1))
≤ 4

π2f−1(n)
.

As this inequality holds for all m, we obtain the desired result that

sn(J) ≤
4

π2f−1(n)
for all n ≥ 1.

6 Conclusion

Although we found the eigenfunctions of J in the two-dimensional case and an upper
bound on its eigenvalues, we were unable to generalize calculations (4.3) and (4.4).
In the one-dimensional case, we considered a subspace of finite codimension, but the
higher dimensional case would require subspaces that do not have finite codimen-
sion. All in all, we believe that there is no straightforward generalization of Ha’s
arguments [7], unless the integration kernel k(x, y) is compactly supported in the
y variable. In that case, integration by parts are more easily manipulated since no
boundary terms appear. In future work, we will examine the case of general smooth
kernels k over general compact domains Ω. We believe that using the Dirichlet and
Neumann eigenvalues for the Laplacian in combination with Weyl’s Theorem for
their decay rate will be relevant.
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