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Abstract

Choropleth maps are commonly used to visualize geospatial data, such as disease

outbreaks across various geographic regions. However, well-known biases associated

with choropleth maps, such as the effect of area in map exploration tasks and

population statistics in the interpretation of event rates, have led to extensive

research on how to overcome such biases to avoid misleading users. Two recently

developed techniques, Surprise and VSUPs (Value Suppressing Uncertainty Palettes)

may be considered as viable solutions for overcoming biases in choropleth maps,

but have yet to be empirically tested with users of visualizations. In this thesis, we

explore how well people make use of Surprise and VSUPs in map exploration tasks, by

conducting a crowdsourced experiment where n = 300 participants are assigned to one

of Choropleth, Surprise (only), and VSUP conditions (depicting rates and Surprise in

a suppressed palette). We improve participants’ exploration of each stimulus through

the use of various interaction techniques (e.g. zooming and panning), and adapt

tasks from prior studies to reduce noise from participants’ responses. Quantitative

analysis shows clear differences in the interpretation of metrics such as rate, surprise

and population, with surprise maps leading people to map locations with significantly

high population and VSUPs performing similar or better than Choropleths for rate

selection. In addition, qualitative analysis suggests that many participants may

only consider a subset of the metrics presented to them during map exploration

and decision-making. We discuss how these results generally support the use of

Surprise and VSUP techniques in practice, and opportunities for further technique

development. For replicability and reproducibility, the material for the study (data,

study results and code) is publicly available at https://osf.io/exb95/.

https://osf.io/exb95/
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Chapter 1

Introduction

Choropleth maps are widely used for visualizing trends in geo-spatial data, such as

high or low performing regions and regions that show a high degree of correlation or

disparity [44, 43]. For example, the vast amount of data gathered during pandemic

outbreaks such as Covid-19, has renewed research efforts on the need to visualize

and accurately communicate trends for vaccinations, deaths and infections [29, 31].

However, visualizing actual rates limits the trends and conclusions that may be

drawn from a choropleth map [19]. Therefore, prior research, has explored techniques

that use uncertainty metrics to highlight unexpected values, to counteract biases

associated with visualizing data that closely resembles a population distribution.

For example, using a choropleth map to visualize the percentage rates of coun-

ties or regions with low population and high variance, may result in them being

shaded using darker colors, which may be misleading for map readers (see Figure 1.1).

A number of techniques have been proposed to counteract biases in Choropleth

maps. These techniques can be broadly classified into two categories, Statistical

(e.g. Bayesian weighting, weighted regression) and Design (e.g. color, legends and

scales, map type (morphed, 3D, dot and heat maps)). Statistical techniques lead to
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the modification or supplementation of a dataset [19], whilst design techniques lead

to the implementation of various well researched design considerations that reduce

biases in choropleth maps.

The implementation of statistical techniques that result in the generation of

a supplemented dataset, may increase the complexity required to understand the

information conveyed by the visualization. For example, considering various metrics

in a visualization may result in a cognitive overload for some users, whilst providing

experts with essential information to make complex queries. Modified datasets on

the other hand, have a tendency of losing meaning especially if the metric used to

replace the actual value is not well researched or known. For example, smoothed data

generated from using a non parametric method such as Kernel Density Estimation,

may result in the loss of detail, blurring of boundaries as well as the mis-interpretation

of extremes [26].

The use of techniques that may result in a loss of detail about the actual data,

has influenced the need to understand the impact of using different metrics to offset

biases in map visualizations [40]. For example, the use of Bayesian weighting [19]

results in the visualization of an uncertainty metric that measures disbelief about the

actual data (see Figure 2.2). Such statistical techniques, may result in misleading

visualizations, therefore, it is essential to evaluate their impact on users’ perceptions.

Hullman [30] suggests that the representation of uncertainty in visualizations, requires

people to understand the metric for effective use. However, Correll [10], hypothesizes

that metrics similar to "Surprise" are more suited for people with expert statistical

knowledge. Whilst the claim by Correll may be generalized across various uncertainty

metrics, such claims may limit the intrinsic understanding of these metrics as well as

their influence on peoples’ takeaways. In addition, such generalizations suggest that

uncertainty metrics are only suitable for expert users, which may lead to diverging

2



Figure 1.1: Choropleth map showing biases asssociated with population distribution
when visualizing Covid-19 vaccination rates in the USA. Both Coconino county
(A) and Dewey county (B) are shaded dark green to show high vaccination rates.
However, Coconino county (A) has a population of 143476 with a vaccination rate of
80% and Dewey county (B) has a population of 5892 with a vaccination rate of 82%,
which may create misleading visual cues for users of the map.

opinions about the information conveyed by a visualization. Therefore, we base our

work on design considerations for the work proposed by Correll [19, 20], in order to

make such techniques, more accessible for use by non-expert people.

Researchers have examined some model-driven mapping techniques by designing

information retrieval, comparison, ranking and aggregation tasks, to understand their

impact on pattern recognition and decision making [41, 12, 15, 6]. Other approaches

for evaluating such maps include using empirically derived frameworks similar to

the one proposed by Roth [48]. Although widely applicable to map evaluation

studies, such frameworks may need to be extended when uncertainty is added as a

consideration [30]. In addition to task design, MacEachren [40] suggests that various
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Figure 1.2: Recently developed techniques that may be used to counteract biases in
Choropleth maps. The Surprise map (A), encodes surprise values whereas the (B)
Value Suppressing Uncertainty Palette (VSUP) map encodes both event rates and
surprise values.

visual arrangements such as the use of bi-variate maps, map pairs and sequential

representation, may impact users’ interpretation of uncertainty in map visualizations.

Two recently developed techniques provide a promising baseline for investigating

map debiasing techniques in user studies. Correll and Heer propose the use of “Sur-

prise”, a Bayesian weighting technique that offsets biases in map visualizations [19].

Surprise up-weights or down-weights data points that deviate from expected values,

by calculating an updated belief about the data based on prior knowledge. Correll

[20] also introduce the Value-Suppressing Uncertainty Palette, a map coloring and

legend technique which can visualize both uncertainty measures (such as Surprise)

and rates on a single map. Although plausible, using statistical techniques such as

“Surprise” to overcome biases in choropleth maps, may lead to the development of

untrustworthy visualizations [29].

In this thesis, we report a crowdsourced study, where we ask n = 300 participants

to perform map analysis tasks with one of three visualization conditions: Choropleth,

Surprise and Value Suppressing Uncertainty Palettes (VSUPs). Prior to conducting
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the main study, we conduct multiple pilot studies to refine experiment tasks and

design consideration. We improve participants’ user experience by using multiple

interaction techniques for each stimulus (e.g. zooming, panning and tooltips). In

addition, we adapt prior map tasks and task taxonomies to study techniques which

emphasize different metrics (Surprise, rates, or both). In particular, we leverage

previous research by Roth [48] and Besançon et al. [11] to design a universal task for

all map conditions, by summarizing map analyses tasks and objectives. Finally, we

develop these tasks into a sales and marketing decision making problem to reduce

noisy data (see Table 3.2). Quantitative analysis shows clear differences in map

analysis outcomes (Figure 4.3), while qualitative analysis suggests that participants

in some cases only consider a subset of the metrics available to them. We discuss

how these results tentatively support the use of Surprise and VSUP techniques for

broader visualization viewing populations, while also highlighting challenges that

might be addressed through future design and technique development.

1.1 Research Objective

In this study, we examine the strategies that both expert and non-expert users

employ when exploring and generating takeaways from Choropleth, Surprise and

VSUP maps.

1.1.1 Research Question

How do Surprise and VSUP maps influence the manner in which people explore and

generate takeaways in map reading contexts?
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1.2 Contributions

Our main contributions are as follows:

• Evidence of clear differences in map analysis results between three mapping

techniques (Choropleth, Surprise and VSUPs).

• Qualitative feedback that suggests that in some cases, participants only consider

a subset of the metrics available to them.

• Quantitative findings suggest that Surprise and VSUP maps help people in

identifying highly populous counties, which may be beneficial for offsetting

issues related to traditional Choropleth maps.
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Chapter 2

Background

The design of map visualizations using datasets that are strongly related to the

population of a geographic location may result in misleading visual signals or patterns.

The limitations of map visualizations that share such characteristics may be overcome

through the use of various statistical techniques such as Bayesian weighting, where

certain regions on a map are up-weighted or down-weighted based on some prior belief

[19]. However, it is necessary to evaluate of such techniques in order to understand

their impact on peoples’ perception [30].

Research efforts have led to the development of generic frameworks that propose

a list of tasks to be considered when evaluating map visualizations. However,

such frameworks may be ill-equipped to address the goals of studies that evaluate

uncertainty in map visualizations [30]. In addition, prior studies that leverage generic

frameworks to evaluate uncertainty in visualizations have shown the presence of

cognitive bias in decision making [54].

Whilst some research has been conducted to evaluate statistical techniques for

de-biasing map visualizations [35, 30], their findings may not be universally applicable

to other techniques.

7



Figure 2.1: Choropeth map of (A) Covid-19 total cases (B) Covid-19 cases per
capita, with darker shaded areas showing states with a high number of Covid-19
cases. The use of unnormalized data similar to A (raw counts) results misleading
patterns that mimmic the population distribution whilst ignoring the intended visual
signal (Covid-19 cases), which are better represented as percentages or per capita
rates as shown in B [21].

2.1 Biases in Maps Visualizations

Continous research has sought to understand and address the challenges associated

with effectively representing various metrics in map visualizations. However, the

representational technique of choice is highly dependant on what information the

designer intends to communicate as well as the intended audience. Therefore, it

is imperative that designers understand biases associated with map visualizations,

techniques to overcome them, as well as their impact on users’ perception. For

example, metrics such as raw counts, may be closely related to a geographic regions

population which may lead to the communication of misleading visual signals or

patterns when using only color as a visual encoding (see Figure 2.1) [21]. Such

effects may make it challenging for users to effectively rank color intensity on map

visualizations, which may result in a reduced consensus of the conveyed information

[49].

Furthermore, other design strategies such as the binning technique used to
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associate values with color encodings (e.g. Jenks, Quantile and Manual scales) [39]

and the technique used to map the earths surface to a 2-Dimensional plane (e.g.

Mercator, Robinson Conic, Azimuthal), may influence users’ perception by creating

patterns that differ from the underlying data [13]. For example, binning techniques

influence the intensity of the colors displayed on a map, whilst map projections may

influence the size, shape and boundaries that are shown on a map. Such distortions

may draw users to large geographic regions on a map whilst neglecting smaller ones,

which may result in biased map interpretations [49].

While various considerations may be made by visualization designers to overcome

biases in maps, it is important to understand their appropriate use-cases in order to

avoid the dissemination of harmful or misleading information.

2.2 Techniques for De-biasing Thematic maps

Various supplemental approaches can be applied to spatial datasets in order to reduce

the impact of noise or outliers in map visualizations. For instance, visual encodings

such as color, may be weighted based on prior beliefs in order to highlight outliers or

regions that deviate from expectations [19] (see Figure 2.2), while spatial smoothing

can be used to estimate values for a region of interest by calculating weighted averages

of neighbouring locations. In addition, normalization techniques such as decimal

scaling, logarithmic transformation and min-max normalization can be used to alter

the spatial or statistical properties of a dataset [3]. Other techniques such as VSUPs

suppress values at high levels of uncertainty by using a quantization tree to assign

values at a certain threshold of uncertainty to a root node [20]. However, when

applied to thematic map visualizations, these techniques can offset bias as well as

introduce bias. For example, the extent to which values have to be suppressed or

biased towards a mean value when using spatial smoothing, results in loss of detail

9



Figure 2.2: (A) Choropleth map of per capita unemployment rates (B) Surprise map
showing outlier counties based on prior beliefs. Comparison between a traditional
Choropleth map and a Surprise map based on a de Moivres funnel. The Surprise
map up-weights or down-weights counties based on their level of variance thereby
highlighting outliers on the map. The reduced visual search space allows users to
only focus on interesting regions on the map. Counties that have surprisingly high
or surprisingly low values are shaded darker [19].

or a distortion of values. Furthermore, altering the statistical properties of a dataset,

may change spatial relationships or trends. Therefore, by evaluating such techniques,

researchers and designers may gain a better understanding of how to interpret map

de-biasing techniques as well as their potential trade-offs.

2.3 Visualizing Uncertainty using Choropleth maps

Using choropleth maps to visualize unexpected events in a dataset, leads to the gener-

ation of different visual patterns that may result in a change of belief [19]. A number

of approaches and empirical studies exist in literature that visualize uncertainty

[18, 33, 38, 57], indicating the importance and positive impact of communicating and

applying uncertainty in data visualization [24, 25, 57, 46]. The challenges associated

with visualizing uncertainty include, the selection of appropriate representational

techniques (visual features, fuzziness, color, layout), as well as ensuring that the

information being conveyed by the visualization is not misleading [16]. MacEachren
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Figure 2.3: High-level list of map interaction user goals proposed by Roth [48].
Operands (Space alone, Attributes in space and Space in time), cater for the
comparison of both spatial and spatio-temporal maps. Such generic frameworks may
be used to develop map specific tasks, to explore their benefits or limitations.

[40] proposes the use of map pairs, bi-variate maps and sequential representation for

visualizing the uncertainty of geo-spatial values. A later study by Elmer [23] argues

against the use of bi-variate maps to represent uncertainty in favor of map pairs,

whilst recent findings by Correll et al. [20] recommend the use of either uni-variate

or bi-variate maps when representing uncertainty. The lack of a universal approach

for visualizing uncertainty promotes the need for further research.

2.4 Evaluating uncertainty in maps

Prior studies have focused their efforts on information retrieval for uni-variate or

bi-variate maps [41, 36, 6], whilst other studies have focused on the ranking, speed

and accuracy in decision making [12, 15]. A recent study by Hullman [30] proposes

a framework for the evaluation of uncertainty in visualizations. However, studies

used to evaluate uncertainty consider different statistical techniques or metrics,

restricting the possibility of generalizing the findings. This creates a knowledge gap

when we consider the implementation of Bayesian surprise for de-biasing thematic
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Figure 2.4: High-level list of map interaction user goals proposed by Roth [48].
Operands (Space alone, Attributes in space and Space in time), cater for the
comparison of both spatial and spatio-temporal maps. Such generic frameworks may
be used to develop map specific tasks, to explore their benefits or limitations.

maps. MacEachrean [42], suggests the use of two criteria for evaluating uncertainty

in visualizations, which are 1. the usability of uncertainty representations and 2.

the manner in which uncertainty information is used and how it affects decision

making. Prior studies on the usability of uncertainty visualizations have focused on

the encoding of data on a map as well their layout. Bi-variate maps that display

uncertainty have been found to be more comprehensible compared to uni-variate

maps [40, 27]. However, representing multiple variables on a single map, may result

in complex visualizations which make it difficult to identify patterns [9]. Furthermore,

the selection of which map representation technique to use (Univariate, bi-variate and

side-by-side) should be driven by the purpose of the map (bi-variate maps are more

suitable for determining relationships between variables whereas side-by-side uni-

variate maps are more suitable for comparisons), the audience, and the complexity

of the data being represented [52]. The use of uncertainty information may lead to

the discovery of much more diverse patterns in map visualizations. However, not

much research has been conducted on the use of uncertainty information therefore it

may be difficult to determine the extent to which such discoveries influence decision

making [6].

12



2.5 Map design considerations

Research efforts have led to continuous development of various map representational

techniques (e.g. necklace, surprise and VSUP maps) as well as the use of various

normalized (see Figure 2.1) or calculated metrics to represent raw geospatial data

in map visualizations [19, 20, 51]. Therefore, in order to effectively and accurately

communicate information that is not dangerous or misleading, various design con-

siderations have to be taken into account [16, 48]. These include the type of color

scheme (e.g. color brewer, viridis), the type of scale (e.g. jenks, linear, manual,

quantile) and interaction (e.g. animation, zooming, panning and tooltips)

Work by [16] suggests that various color schemes may play a pivotal role in

precise map interpretation by producing distinguishable colors that accommodate for

common visual impairments. In addition, they also contribute a concrete framework

for the generation of color schemes, suitable for pattern analysis and information

retrieval. However, while the selection of an appropriate color scheme may reduce

biases associated with the identification of extreme values in maps, it is important

for map designers to understand the influence of color schemes in map visualizations.

The correct classification of data by grouping data using a suitable scale, enhances

the readability and usefulness of maps. However, maps that do not properly classify

data by analyzing its’ distribution, may create misleading patterns. For example,

when visualizing crime rates for a geographic location using a map, some regions may

be grouped as having high crime rates by shading them using dark color, instead

of being shaded with slightly less intensity. Such effects may mislead map readers,

which may result in biased map interpretation [8, 49].

While static maps offer useful offline capabilitlies (the ability to carry out remote

map analysis), they fall short in providing users with dynamic interaction capabilities
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(e.g. zooming, panning, tooltips and dynamic map updates) suitable for modern day

communication channels (e.g. web based infrastructure and mobile devices). Such

map interaction capabilities make the accessibility of map information much easier,

which may improve map interpretation, speed and accuracy. For example, zooming

and panning interaction primitives, allow map users to explore smaller regions, which

may reduce common biases prone to choropleth maps.

2.6 Summary

In this chapter, we narrate how visual perception may be influenced by biases in map

visualizations. For example, the use of raw counts instead of percentage rates, results

in creation of non-informative map visualizations that highly resemble the underlying

population distribution. While visualizations of this nature may be potentially

harmful and misleading, various techniques may be implemented to overcome the

challenges associated with effectively and accurately communicating information

using map visualizations.
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Chapter 3

Methodology

We designed three interactive stimuli (Choropleth, Surprise, and VSUP maps) using

Covid-19 vaccination and poverty datasets. We conducted two experiments on an

online crowdsourcing platform (Prolific), where we collected data from n = 300

participants. Pilot studies with vaccine datasets alone, revealed a strong political

bias which may skew results. Therefore, we designed a scenario that “masks” the

underlying datasets as being about sales rates, using tasks adapted from Roth [48]

and Besançon [11].

3.1 Stimuli Design

Our design goal was to minimize notable differences between the stimuli to avoid map

interpretation bias, while maximizing on techniques that improve the accessibility of

information [37, 47, 7].

3.1.1 Stimuli Design considerations

For each stimulus, we make the following design considerations:
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Figure 3.1: How do surprise metrics and suppression encodings influence peoples’
takeaways in map visualizations? We use Covid-19 and Poverty datasets to generate
the experiment stimulus. We conducted two experiments and randomly assign 300
participants to three map conditions. We collected data using two categories of
tasks T1Best, T1Worst: Identify and T2: Explore. To mitigate biases for particular
dataset contexts, for example vaccination skepticism, we reframed both datasets as
a sales and marketing task. We captured participants’ exploration meta-data and
their feedback regarding the study. We visualized participants’ ranking selections
from each map to infer their takeaways.

Clicking and Hovering effects

The use of interactive map visualizations, allows users to easily access and engage

with the represented data [6]. For example, when users hover or click counties of

interest on a map, the underlying data is shown through the use of a tooltip. In

addition, the boundary of a selected county may then be highlighted to make it more

identifiable, thereby enhancing the user experience [7]. Therefore, we designed the

experiment stimulus such that, when a participant hovers over a county, we display

a tooltip showing an event rate, a surprise value and the population of the county.

In addition, we allow participants to hover over and click on the legend to highlight

all counties with a similar color encoding (see Figure 3.9).
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Figure 3.2: Distribution plots for Poverty ad Vaccination datasets. Poverty rates are
left skewed whilst vaccination rates are normally distributed with a mean of 0.53.

Zooming and panning

Research has shown that the use of interaction techniques such as zooming and

panning allows users to navigate smaller regions on a map visualization [22]. In

addition, such techniques may be used to counteract area-size biases associated

with choropleth maps. However, whilst such techniques may be beneficial for the

accessibility of information related to smaller counties, it is important to consider

best design practices for a much more refined user experience [22]. For example, the

use of controls compared to pinching or scrolling the mouse wheel may be used to

provide better precision and a consistent user experience [50]. In our study, we allow

for control based zooming (x2) and panning (up, left, down, right) for each stimulus,

to improve participants exploration capability (see Figure 3.3).
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Figure 3.3: Each stimulus is augmented with zoom controls that allow participants
to explore smaller counties on the map.

Map color scheme

Color scheme design choices such as, whether to use a diverging, sequential or quali-

tative scheme, may influence the ability to distinguish between the colors represented

(e.g. viridis, RColorBrewer). In addition, the number of colors represented in the

color palette, has been shown to influence users interpretation and accuracy in

extracting information from map visualizations [16]. For example, the use of too

many color encodings, may make a map much more difficult to interpret. In addition,

some color schemes have been found to be more effective, for representing data

related to a specific context. For example, research by [17] found that users prefer

the use of spectral color schemes, for health related data. For ecological validity,

our map design and color schemes were influenced by The New York Times (NYT)

Covid-19 vaccination map [53], and designed to be as consistent as possible between

all the stimuli (see Figure 3.1).

Map binning

An intrinsic understanding of the geospatial data to be visualized is important for

the selection of a suitable binning strategy for choropleth maps [56]. Various binning

techniques (e.g. quantile, equal interval and natural breaks) may be used to aggregate
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Figure 3.4: A) VSUP legend B) Surprise legend C) Choropleth map legend. We use
a diverging color scheme motivated by the NyTimes for ecological validity.

geospatial data. The aggregated data is split into multiple groups and associated

with a particular color encoding for visualization purposes. Therefore, it is important

for visualization designers to follow suitable guidelines when selecting an appropriate

binning technique, to avoid creating maps that are not meaningful or creating maps

with obscured visual patterns. For example, equal interval breaks, divide the range of

data into equal sized classes and are best used for continous datasets whereas natural

breaks use algorithms that specify distinct break points based on the variance of the

dataset (e.g. Jenks natural breaks). We used a discrete scale from the D3 library

(d3.scaleQuantize) to create equal interval breaks for each stimulus and thereafter,

mapped the domain values to a corresponding color.

Map domain specification

Manually specifying the domain for each stimulus scales may result in the generation

of inconsistent maps. Therefore, we calculate the Mean Absolute Distance (see

Equation 3.1), which we use to determine the lower and upper fence of the dataset

(see Equation 3.2 and Equation 3.3). The datapoints around the lower and upper
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Figure 3.5: We add interaction capability to refine participants’ user experience when
conducting the experiment. A) When participants hover over a county, a tooltip
with rate, surprise and population metrics is shown. B) Participant can click on the
legend to highlight all counties associated with a color bin. C) Selected counties are
listed alongside the experiment task. D) Whilst conducting the study, participants
can access a help section related to the task.

fence are then considered as outliers and represented as extreme values on our maps.

For each stimulus, we use the lower fence and upper fence to set the minimum and

maximum values for each scale.

MAD = median(|X i −X|) (3.1)

upperFence = q3 + (1.5 ∗MAD) (3.2)

lowerFence = q1− (1.5 ∗MAD) (3.3)
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Table 3.1: Preliminary list of tasks used for the pilot study

Qn Objective Task Narration
Q1 Identify attributes

in space
Identify a state with the highest surprise in vacci-
nations.

Q2 Compare attributes
in space

Between state X and state Y, which one has the
least surprise in vaccinations?

Q3 Rank attributes in
space

Identify the state with the third most surprise in
vaccinations

Q4 Delineate in space Which region has the highest surprise in vaccina-
tions?

Q5 Summarize Provide a short narrative about the surprise in
vaccinations as shown on the map

Map size

Research on choropleth maps has shown that map users tend to overlook smaller

areas whilst focusing on larger areas that are easy to identify (Area-size bias) [49].

Therefore, in addition to augmenting each stimulus with zooming and panning

capabilities, we set the size of each map to 950× 525 pixels to reduce the effect of

biases associated with visualizing small scale maps.

Map projection

Map projections allow visualization designers to map the 3-D earths surface onto a

2-D plane (Mercator, Azimuthal and Conic projections). However, the tradeoffs of

each map projection should be considered beforehand to avoid introducing biases

that may influence users takeaways from map visualizations [28]. For example, the

mercator projection preserves angles and is often used for navigation. However, it

distorts the shapes and size which may lead to significant inaccuracies in choropleth

maps. We use a composite map projection (d3.geoAlbersUSA) [4, 14], to overcome

the challenges associated with designing meaningful maps that preserve area.

21



Table 3.2: To mitigate biases for particular dataset contexts, for example vaccination
skepticism, we reframe both datasets as a sales and marketing task. The experiment
tasks are split into two categories T1Best, T1Worst: Identify and T2: Explore

Objective Task Narration
T1Best Identify

and Rank
Select five (5) of the best performing counties,
where you would send a team to learn about local
sales strategies.

T1Worst Identify
and Rank

Select five (5) of the worst performing counties,
where you would send a team to learn about local
sales strategies.

T2 Compare and
Delineate
(Explore)

Explore the map, then write a short narrative on
where you would focus your marketing efforts to
increase sales of the product.

Experiment restrictions

Technological advances have led to the development of multiple communication

devices which may be used to access web based visualizations (tablets, mobile phones

and personal computers). The use of multiple devices to conduct an exploratory

study, may lead to inconsistencies in participants responses as well as the visual

distortion or misinterpretation of maps [45]. Therefore, prior to conducting the

experiment, participants were asked to use either a laptop or desktop device for

consistency in map resolution.

3.2 Experiment Datasets

We adapted publicly available county level datasets of Covid-19 vaccinations [1] and

poverty rates [2] of the US. Prior to conducting the study, we replicated a Surprise

map of per-capita unemployment rates from Correll and Heer [19], that uses a model

of the deMoivre’s funnel to determine deviations from the average per-capita rate.

This method calculates the test statistic (Zs) from event rates. Bayesian methods

are then used to find the likelihood of points being Zs distant from the center of the
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Figure 3.6: A "scrollytelling" training of how to interpret the metrics shown on the
map. All trainings’ are customized by map condition, and participants are required
to go through the training section before conducting the experiment.

funnel, given:

Zs =
O(s)− x

SEs
(3.4)

and:

P (s|deMoivre) = 1− (2 ·
∫ |Zs|

0

ϕ(x)dx) (3.5)

where deMoivre represents the model and s ∈ D (Dataset). Surprise is then

calculated by finding the relative distance between the prior and posterior probability

distributions through the use of KL-divergence (see Figure 3.7). After replicating

the Surprise map of per-capita unemployment rate, we apply the same process to

our datasets of interest [1, 2]. To assess the broad relevance of our findings, we use

datasets with different distribution characteristics (see Figure 3.2).
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Figure 3.7: Flowchart highlighting how Surprise values are calculated. 1) Some
observed data which is denoted by a random variable D. 2) Assumed distribution
of the random variable (M) 3) Prior Expectation P(M) of random variable M 4)
Conditional likelihood P(D|M) 5) Prior Expectation P(M) of random variable M 6)
Posterior distribution P(M|D) 7) Signed Surprise values [19].

3.3 Pilot Study

To refine the user experience for the study, we conducted a pilot study with n = 30

participants. We designed our stimuli using a Covid-19 dataset [1] and randomly

assigned n = 10 participants to each condition. We adapted tasks by Roth [48] to

align with the characteristics of our dataset (see Table 3.1). However, our initial

spatial analysis of participants’ county selections suggest that participants highly

consider large counties on the Choropleth map which are shaded dark, compared

to the smaller ones (see Figure 3.8. We attribute this to the visual bias created

by Choropleth maps, where participants tend to be drawn to larger areas on the

map compared to smaller ones [49]. In addition, we observe more consensus on

the Choropleth map compared to the Surprise and VSUP maps. We attribute this

effect to a lack of comprehension and interpretation of the metrics presented to the

participants. Further analysis also shows a higher degree on overlap on the VSUP

and Surprise conditions.

Qualitative feedback reflected a high degree of participants’ personal beliefs and
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Figure 3.8: Pilot Analysis of participants’ county selection for conditions T1Best and
T1Worst. A) Choropleth - T1Best B) Choropleth - T1Worst C) Surprise - T1Best D)
Surprise - T1Worst E) VSUP - T1Best F) VSUP - T1Worst maps. We find selection
consensus on the Choropleth map compared to the Surprise and VSUP maps. We
also note a high degree of selection overlap between Surprise and VSUP map counties
compared to the Choropleth map.

political affiliation. Here are two examples:

Response 1: “I think it’s going okay. In the beginning everyone was reluctant
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since it’s so new, there’s hardly and research. But as time has gone on more and

more people are getting vaccinated [...] It seems like there’ll be a lot more people

vaccinated by the end of the year".

Response 2: “It’s going pretty poorly because our country is full of anti-science

[...] who still believe in Creationism [...]".

Given these results, we rephrased our tasks to a product sales and marketing

decision-making problem using both the Covid-19 vacinations and poverty datasets

(see Table 3.2). We further developed two task categories across the metrics and

conditions to be considered by summarizing map analyses tasks and objectives

used in the studies by Roth [48] and Besançon [11] (see Figure 3.9). We developed

additional “scrollytelling” training for all conditions to help reduce sources of noise

in the full experiment (see Figure 3.6). We also added legend interaction to make it

easier for participants to identify smaller counties on the map (see Figure 3.9).

3.4 Task and Procedure

We used a between subjects design across two datasets (Covid-19 vaccinations

and poverty). We designed 3 stimuli (conditions) and 3 tasks T1Best, T1Worst and

T2Explore (see Figure 3.1). We randomly assigned 25 participants to each condition.

The total number of participants for the study was therefore, 2 experiments ×3

conditions (Choropleth, VSUP and Surprise stimuli) ×2 tasks (T1Best, T1Worst) ×25

participants = 300. Of our participants, 160 identified as female, 136 identified

as male, and 4 participants chose not to disclose their gender. Participants’ age

ranged from 18 to 76 with an average of 35. The study was IRB-reviewed and we

required a consent form before participation. Participants were not constrained to a

completion time, however, we estimated an average completion time of 7 minutes,

used to calculate a payment of $1.40 to exceed US Minimum Wage. We collect
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Figure 3.9: We overcome the challenges observed in the pilot study findings by 1)
Rephrasing the task to a sales and marketing decision making problem 2) Adding
legend interactivity to highlight counties, making it easier for participants to identify
and explore smaller counties 3) Adding an interactive training section.

meta-data on counties of interest for each participant (e.g. population), as well as

feedback regarding their perception of the study.

3.5 Summary

In this chapter, we detail the experiment design considerations, task design, datasets

and, the participant demographic. We explain how we refine the user experience for

the study by analyzing results from the pilot study. In the next chapter, we discuss

the implications of our quantitative analysis based on participants’ responses.
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Chapter 4

Results

We used a Kruskal-Wallis test to detect overall effects in data across the three

different mapping techniques (see Figure 4.3 and supplemental material for full

results). For post hoc tests, we use Dunn’s test with Bonferroni correction. We also

compute and report 95% confidence intervals using bootstrapping. For geo-spatial

analysis, we create point maps of participant county selections across the three

conditions (see Figure 4.1 and Figure 4.2).

In the identify tasks, performance across conditions differed across several metrics,

including the rates, the population and Surprise values of the selected counties (see

Figure 4.3).

4.1 Identify Tasks T1Best and T1Worst - Vaccinations Dataset

Rate: While we anticipated that Choropleth maps would result in selection of

counties with higher rates, since the Choropleth map directly visualized rate, we

find that the VSUP and Surprise maps have an effect on the selection of counties

with high rates (see Figure 4.3A and C). We find overall differences between the

map conditions for vaccine best task KW = 12.75 p = 0.0017 H = 0.02749 and the
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Figure 4.1: Participants’ county selections for vaccination data tasks T1Best and
T1Worst. A) Choropleth map (T1Best) B) Choropleth map (T1Worst) C) Surprise
(T1Best) D) Surprise map (T1Worst) E) (T1Best) VSUP map F) VSUP (T1Worst).
Visual analysis shows a high degree of consensus on the VSUP maps, particularly
in F (VSUP). We see some consensus on B (Choropleth-Worst) compared to A
(Choropleth-Best). We also see a high degree of dispersion on the Surprise maps C
and D compared to both the Choropleth and VSUPs.

vaccine worst tasks KW = 122.4 p = 2.88e− 27 H = 0.3479. Post-hoc comparisons

suggest that the VSUP performs best in the vaccine best task, and the Choropleth

map performs best in the vaccine worst task. In the latter case, VSUPs appear
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Figure 4.2: Participants’ county selections for poverty data tasks T1Best and T1Worst.
A) Choropleth map (T1Best) B) Surprise map (T1Best) C) VSUP (T1Best) D)
Choropleth map (T1Worst) E) (T1Worst) Surprise map F) VSUP (T1Worst). Visual
analysis shows a high degree of consensus on the VSUP maps compared to both
the Choropleth and Surprise. The lack of consensus in Choropleth in this dataset
compared to vaccine dataset may be due to skewed rate.

to balance the differences between the Surprise and Choropleth maps. However,

the differences observed between the vaccine-best and vaccine-worst tasks may be

attributed to the variability observed among counties with high levels of surprise.
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Figure 4.3: Sup-3: Quantitative results for rate, population and surprise metrics for
both dataset and all conditions. Left column is based on vaccine dataset and right
column is based on poverty dataset. A) T1Best-Vaccine (Rate) B) T1Best-Poverty
(Rate) C) T1Worst-Vaccine (Rate) D) T1Worst-Poverty (Rate) E) T1Best-Vaccine
(Population) F) T1Best-Poverty (Population) G) T1Worst-Vaccine (Population) H)
T1Worst-Poverty (Population) I) T1Best-Vaccine (Surprise) J) T1Best-Poverty (Sur-
prise) K) T1Worst-Vaccine (Surprise) L) T1Worst-Poverty (Surprise) We use the
Kruskal-Wallis test to find differences in the significance of the data collected using
the stimuli. We calculated a 95% confidence interval using a bootstrap method.
Quantitative analyses suggests that VSUPs lead to the selection of counties with
high rates and high surprise whilst Surprise maps lead to the selection of highly
populated counties.

31



Population: In terms of selected counties, the Surprise maps tended to lead

participants towards counties of higher population (see Figure 4.3B and G). In

particular, we find in the vaccine best task an overall effect KW = 16.52 p = 0.00025

H = 0.037. However, we note that these effects tend to place Surprise maps above

Choropleth maps, but not above VSUPs, which appear to balance the effects of the

other two. Similar effects and trends are found in the vaccine worst KW = 107.4

p = 4.695e− 24 H = 0.3047, and in the poverty worst KW = 16.36 p = 0.0002798

H = 0.03861 tasks.

Surprise: Results suggest that VSUPs and Surprise maps led participants to

select counties with high surprise values for the vaccine best and low surprise values

for the vaccine worst task as shown in Figure 4.3I and K with KW = 10.94 p = 0.004

H = 0.02286 and Figure 4.3F with KW = 37.67 p = 6.615e − 09 H = 0.1031.

However, although we note significant differences in the selection of counties that are

surprisingly high or low between Choropleth and Surprise maps as well as VSUPs, we

observe insignificant differences between VSUPs and Surprise maps. We hypothesize

that a reduction in the visual search space for both maps, may lead to insignificant

differences in participants selections.

4.2 Identify Tasks T1Best and T1Worst - Poverty Dataset

Rate: We anticipated some disparity in findings between both experiments due to

the characteristics of each dataset, we note somewhat consistent results for both the

Covid and Poverty datasets which show that VSUP and Surprise maps have an effect

on the selection of counties with high event rates (see Figure 4.3B and D). We find

overall differences between the map conditions for poverty best task KW = 74.72

p = 5.942e− 17 H = 0.1955 and the poverty worst tasks KW = 3.543 p = 0.1701

H = 0.0042. Post-hoc comparisons suggest that the VSUP performs best in both the
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poverty best and worst tasks. However, we attribute our failure to realize significant

post-hoc differences for the poverty worst task to a negative skew in the dataset (see

Figure 3.2).

Population: Surprise maps tended to lead participants towards counties of

higher population (see Figure 4.3F and H). We find in the poverty best task an

overall effect KW = 11.79 p = 0.00275 H = 0.026. However, we note that these

effects tend to place Surprise maps above Choropleth maps, but not above VSUPs,

which similarly to the vaccination dataset results, appear to balance the effects of

the other two. Similar effects and trends are found in the poverty worst task with

KW = 16.36 p = 0.0002798 H = 0.03861.

Surprise: Results suggest that VSUPs led participants to select counties with

high surprise values for both the poverty best and worst tasks as shown in the

Figure 4.3J with KW = 14.23 p = 0.0008 H = 0.03288 and Figure 4.3L with

KW = 51.1 p = 8.005e − 12 H = 0.132. We realize somewhat disimilar post-hoc

comparison results between the Covid and Poverty datasets with VSUPs outperform-

ing Surprise maps maps in the selection of surprisingly high and surprisingly low

counties. However, we observe insignificant effects between VSUPs and Choropleth

maps as well as Surprise and Choropleth maps for task T1Best-Poverty. In addition,

we observe significant effects between VSUPs and Surprise maps as well as VSUPs

and Choropleth maps, whilst observing insignificant differences between Surprise

and Choropleth maps, for task T1Worst-Poverty. We also attribute these disparities

to a negative skew in the poverty dataset (see Figure 3.2.
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4.3 Explore Task T2

We considered participants’ feedback based on relevance, similarity and identified

keywords such as population, color, surprisingly high and surprisingly low. In the

Discussion we expand on our takeaways from participant responses which suggest

that:

1. Participants only consider a subset of the metrics presented (§ 5.2.1).

2. Visual encodings like color influence how people interpret surprise (§ 5.2.2).

3. County size may skew peoples’ takeaways (§ 5.2.3).

4.4 Summary

In this chapter, we explore a quantitative analysis of our findings for tasks T1Best

and T1Worst for both the vaccine and poverty datasets. We use the Kruskal-Wallis

and Dunn’s post-hoc tests with Bonferroni correction to detect effects across three

different mapping techniques (Choropleth, Surprise and VSUP maps). Our findings

show overall differences in participants’ responses for both experiments. We find

VSUP and Surprise maps leading to the selection of counties with high rates. Further

analysis suggests that Surprise maps lead to the selection of counties with high

population as well as high surprise values. We hypothesize that the characteristics

of our datasets may contribute to deviations from our expected results. In the next

chapter, we discuss our takeaways from participant responses.
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Chapter 5

Discussion

In this chapter, we analyse the implications of participants’ map exploration by

creating point maps from their geospatial metadata. Further analysis of participants’

feedback suggests that visual encodings and metrics influence participants’ takeaways

when exploring map visualizations.

5.1 Visual Saliency of High/Low performing counties

Results from participant ranking selections are aggregated by county (see Figure 4.1

and Figure 4.2). We infer the following takeaways from participants’ interactions

and selections on the maps.

5.1.1 Spatial Analysis of Identify Task T1Best and T1Worst - Covid Dataset

County selection on the Choropleth map show a high level of dissimilarity compared

to the Surprise and VSUP maps. We attribute this to the narrowed visual search

space when visualizing Surprise compared to event-rates on a Choropleth map. We

support our claim by a further analysis of the Surprise and VSUP maps, where we

see much stronger clusters and consensus of participants ranking selections. However,
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our findings show a higher degree of ranking consensus by participants’ on the VSUP

map compared to the Surprise map. We attribute this to the fact that VSUPs

further suppress highly uncertain values by combining color cells in a palette using a

tree structure [32]. To assess whether participants considered population in their

decision-making process, we conducted further analysis of the population of counties

they selected. Our findings suggest that participants consider highly populated areas

when making task based decisions using both Surprise and VSUP maps, minimizing

the effect of coincidence in our findings. This claim is further validated by our

qualitative analysis, for example:

Response 1: “I would focus our marketing efforts on counties with a large

population that have seen surprisingly low sales"

Response 2: “I would focus my efforts on areas that have both a high surprise

rate and low sales. [...] I would also look for areas that have a higher population as

that means there are more people that can be targeted."

5.1.2 Spatial Analysis of Identify Task T1Best and T1Worst - Poverty

Dataset

Spatial analysis of participants’ county selections for the poverty dataset show slighlty

polarized findings when compared to county selections for the Covid-19 vaccinations

dataset. Our findings show a high level of dissimilarity in county selections on the

Choropleth map compared to the Surprise and VSUP maps. However, our findings

suggest much stronger consensus by participants on the Surprise map compared to

the VSUP map. We attribute this not only to a narrowed visual search space when

visualizing Surprise compared to event-rates on a Choropleth map, as hypothesized

for the vaccinations dataset, but to a skewed distribution for the poverty dataset

(see Figure 3.2), as well as a suppression effect for the VSUP map. Similar to the
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Covid-19 vaccinations spatial analysis, we find that participants consider highly

populated areas when making task based decisions using both Surprise and VSUP

maps, minimizing the effect of "chance" in our findings. For example:

Response 1: “I would focus my efforts on the areas that are have surprisingly

low sales rates and high populations. Given that these areas have higher populations

I think efforts to increase sales rates could lead to overall higher sales than focusing

on low population areas."

Response 2: “I would focus marketing efforts in the most densely populated

counties that had surprising low sales in the most densely populated states in order

to increase product sales [...]"

5.2 Explore Task T2

We summarize feedback from an open-ended response task, where we ask participants

to explore the map and give insights on where they would focus their marketing

efforts to increase the sales of the product.

5.2.1 Participants only consider a subset of the metrics presented on the

maps.

Participant comments suggest that some appeared to have difficulty in making use of

all the available metrics (Surprise, Rate and Population), instead they used only 1 or

2 of the available metrics to select high or low performing counties. These findings

are supported by summarizing participants feedback on the strategies they used in

selecting counties on the maps and contribute to insights on the challenges associated

with comprehending Surprise without the consideration of other metrics (Population

and Rate).
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Figure 5.1: Geospatial analysis of participants’ county selections on A) Choropleth,
B) Surprise and C) VSUP maps. Findings suggest that participants’ are drawn to
large counties on the map shaded using darker colors.

Response 1: “I looked for areas with high Surprise metrics (or low) and consid-

ered that most areas could be converted because of their proximity to areas with good

sales"

Response 2: “I paid more attention to counties with low sales rates and popula-

tions over 100,000. I didn’t pay much attention to the surprise metric."

However, other participants effectively used interactions to explore smaller coun-

ties by hovering over the legend and counties. This allowed them to carry out more

complex queries on the maps, suggesting that they could gain more insights by

carrying out other tasks, for example:

Response 1: “I selected areas using the proportion scale/bar on the lower right.

Then, I’d hover over these areas to understand the surprise metric relative to the sales

success rate and population. Being able to compare the data helped me to understand

what the surprise metric meant, and then helped me develop a hypothesis on why

these are high success/high surprise areas."

Response 2: “Hovered over the key to get the map highlights and then focus on

areas from that. Lowest areas actually seem to also have a low population."
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5.2.2 Color influences how people interpret surprise

We observed the influence of color in how participants interpret either event-rates

or surprise. These findings suggest that some participants consider dark green and

dark brown as high or low sales rate counties respectively [49]. For example:

Response 1:“In the areas that were darker green, sales are already excellent [...]"

Response 2:“Darker green colors show positive and more response to the mar-

keting and the darker pink color is the opposite [...]"

While interpretation is true for standard choropleth maps, it is not true for

Surprise and VSUP maps which show complex values.

5.2.3 Size influences how people interpret of uncertainty

Similar to findings by Schiewe [49], both our qualitative and point pattern analysis

suggest that some participants neglect smaller counties and are drawn to larger

counties or states on the maps. For example:

Response 1: “I will look for big states and big counties that are surprisingly low”

Response 2: “looked at sizes of areas, counties, populations, etc.[...]”

However, our findings also suggest that VSUPs and Surprise maps suppress

low-population counties with high rates (e.g. unsurprising), which may help alleviate

one aspect of this bias. How to ensure small yet high population counties also receive

sufficient attention remains a challenge for maps geared towards the general public.
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5.3 Limitations and Future Work

Our analysis of the Surprise, Rate and Population metrics shows clear differences

between the mapping techniques used in this study (Choropleth, Surprise and VSUP

maps). However, we hypothesize that the use of datasets with different distributions

(normal and left skewed) may impact findings of our study. Future experiments

may investigate directly the impact of skews in rates (e.g. through simulation)

on participant exploration and takeaways. Furthermore, metrics and interaction

techniques that build on existing work like Surprise and VSUPs may further enrich

map analysis for the general public.

Another limitation is noise itself in the experiment. While the sales scenario

worked well overall by allowing us to ask the same task across Choropleth, Surprise,

and VSUP maps, one key issue arose in the “worst” tasks. We observed outlier

participants across all conditions who, when prompted to select the worst performing

counties, instead selected the best performing counties. This may be a bias with the

framing of sales, which could be addressed by experimenting with other scenarios or

by additional design or feedback mechanisms.

5.3.1 Future Work

Future work should consider:

• Collecting prior probability distributions from participants.

Prior research by [5, 34], suggests that visualization users should be able to

capture and update their prior beliefs based on new observations. However,

our current study does not provide map users with a technique that allows

them to capture or update their prior beliefs. In addition, when dealing with

large geo-spatial datasets, belief elicitation may be a daunting task. Therefore,

40



future research may focus on the design of suitable belief elicitation techniques

for Surprise or VSUP maps.

• Experimenting with other representational techniques.

For this study, we focus on the use of uni-variate and bi-variate map repre-

sentation techniques. However, future work may consider the use of other

techniques such as map pairs, which may improve the accessibility of highly

technical maps for the general public.

• The use of decision based models as suggested in work by Kay [32] and Fumeng

et al. [55].

Future work may also explore the implementation of alternative approaches for

the suppression of uncertainty such as shrinkage and perceptual VSUPs [32].

Such techniques may reduce biases associated with the inconsistent suppression

of uncertainty values inherent in tree VSUPs.
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5.4 Summary

In this chapter, we discuss the geospatial analysis findings of participants’ map

exploration metadata. Our takeaways show a high degree of ranking consensus by

participants on the VSUP map compared to the Surprise and Choropleth maps. In

addition, qualitative analysis of participants’ feedback, suggests that visual encodings

influence participants’ takeaways when exploring map visualizations. We conclude

the chapter by identifying areas that may provide further insights on participants’

takeaways from maps that encode multiple metrics such as rates, population and

Surprise.
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Chapter 6

Conclusion

Despite the pervasive use of choropleth map visualizations, especially when com-

municating critical data to the public (e.g. vaccine trends or election results), they

suffer from well-documented biases and limitations. In this study, we design an

experiment to test two recently proposed techniques, Surprise maps and VSUPs,

in a crowdsourced setting similar to how participants might encounter such maps

online. Results generally indicated that Surprise maps and VSUPs do indeed off-

set some of the issues of traditional Choropleth maps. However, close inspection

also reveals opportunities for addressing confusion and misconceptions of these new

techniques. Going forward, designers may benefit from knowing that Choropleths

perform similarly to these new techniques (i.e. reducing the risk of harm), while

results that indicate these new techniques can lead people to more surprising or

populous counties may give designers the confidence to experiment with new and

innovative ways of communicating with the general public.
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Appendix A

Appendix

A.1 Sup-1: Kruskal-Wallis test results

Table A.1: Kruskal-Wallis test results for T1Best, T1Worst - vaccination dataset and
T1Best, T1Worst - poverty dataset

Dataset Task Metric p_val K-W Effsize
Vaccine Best Rate 0.0017 12.75 0.0275
Vaccine Best Population 0.00026 16.52 0.0372
Vaccine Best Surprise 0.0042 10.94 0.0229
Vaccine Worst Rate 2.687e-27 122.4 0.348
Vaccine Worst Population 4.965e-24 107.4 0.305
Vaccine Worst Surprise 6.615e-09 37.67 0.103
Poverty Best Rate 5.942e-17 74.72 0.1955
Poverty Best Population 0.00274 11.79 0.0263
Poverty Best Surprise 0.0008 14.23 0.03287
Poverty Worst Rate 0.1701 3.543 0.004
Poverty Worst Population 0.00028 16.36 0.0386
Poverty Worst Surprise 8.005e-12 51.1 0.132
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A.2 Sup-6: Dunn’s test post-hoc results

Table A.2: Post-Hoc results for T1Best - Rate (Vaccine)

Group 1 Group 2 Statistic p p.adj p.adj.signif
chor srps 0.5779 0.5633 1.0 ns
chor vsup 3.4051 0.0006 0.0019 **
srps vsup 2.6769 0.0074 0.02228 *

Table A.3: Post-Hoc results for T1Best - Population (Vaccine)

Group 1 Group 2 Statistic p p.adj p.adj.signif
chor srps 4.0639 0.00005 0.0001 **
chor vsup 1.7556 0.079 0.2374 ns
srps vsup -2.2341 0.0254 0.0764 ns

Table A.4: Post-Hoc results for T1Best - Surprise (Vaccine)

Group 1 Group 2 Statistic p p.adj p.adj.signif
chor srps 3.0006 0.00027 0.008 **
chor vsup 2.5949 0.0094 0.0284 *
srps vsup -0.417 0.6766 1 ns
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Table A.5: Post-Hoc results for T1Worst - Rate (Vaccine)

Group 1 Group 2 Statistic p p.adj p.adj.signif
chor srps 11.06 1.9606e-28 5.88e-28 ****
chor vsup 5.9705 2.365e-09 7.095e-09 ****
srps vsup -5.376 7.613e-08 2.283e-07 ****

Table A.6: Post-Hoc results for T1Worst - Population (Vaccine)

Group 1 Group 2 Statistic p p.adj p.adj.signif
chor srps 10.307 6.536e-25 1.96e-24 ****
chor vsup 6.62 3.485e-11 1.0455e-10 ****
srps vsup -3.885 1.02e-04 3.06e-04 ***

Table A.7: Post-Hoc results for T1Worst - Surprise (Vaccine)

Group 1 Group 2 Statistic p p.adj p.adj.signif
chor srps -4.487 0.0000007 2.164e-05 ****
chor vsup -5973 0.000000002 6.998e-09 ****
srps vsup -1.584 0.11325 3.3976e-01 ns

Table A.8: Post-Hoc results for T1Best - Rate (Poverty)

Group 1 Group 2 Statistic p p.adj p.adj.signif
chor srps -6.5829 4.6136e-11 1.384e-10 ****
chor vsup 1.605 1.863e-01 3.5589e-01 ns
srps vsup 8.1434 3.8418e-16 1.1525e-15 ****

Table A.9: Post-Hoc results for T1Best - Population (Poverty)

Group 1 Group 2 Statistic p p.adj p.adj.signif
chor srps 3.4234 0.0006 0.0019 **
chor vsup 1.9489 0.0513 0.1539 ns
srps vsup -1.474 0.1404 0.421 ns

Table A.10: Post-Hoc results for T1Best - Surprise (Poverty)

Group 1 Group 2 Statistic p p.adj p.adj.signif
chor srps -1.7753 0.07585 0.22755 ns
chor vsup 1.995 0.046 0.1381 ns
srps vsup 3.77 0.00016 0.0004 ***
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Table A.11: Post-Hoc results for T1Worst - Rate (Poverty)

Group 1 Group 2 Statistic p p.adj p.adj.signif
chor srps 1.0217 0.3068 0.92065 ns
chor vsup -0.858 0.39086 1 ns
srps vsup -1.8798 0.1804 ns

Table A.12: Post-Hoc results for T1Worst - Population (Poverty)

Group 1 Group 2 Statistic p p.adj p.adj.signif
chor srps 1.84445 0.0651 0.1953 ns
chor vsup 4.04 0.00005 0.00016 ***
srps vsup 2.1956 0.0281 0.084 ns

Table A.13: Post-Hoc results for T1Worst - Surprise (Poverty)

Group 1 Group 2 Statistic p p.adj p.adj.signif
chor srps 0.645 5.189e-01 1e+00 ns
chor vsup -5.843 5.124e-09 1.5372e-09 ****
srps vsup -6.488 8.6939e-11 2.608e-10 ****
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