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Abstract

The energy degeneracies of charge carriers in cubic GaAs/GaAlAs quan-
tum dots are analyzed and contrasted with the degeneracies of solutions to
the infinite potential well problem. Accurate energy eigenvalues for realistic
systems are computed by the finite element method and group theoretic ar-
guments are applied to explain the removal of degeneracies only present in
the infinite well case.
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1 Introduction

While the rules of quantum mechanics produce good testable results, many
problems in its scope do not admit analytical solutions. In order to get
around this, physicists and engineers often turn to solving an approximate
form of their problems. Although the solutions to these approximate systems
may mimic the solution of the exact system in a certain sense, the solutions
often possess a fundamentally different structure. It is only through careful
theoretical considerations and the use of robust techniques for the develop-
ment of approximate solutions that accurate results may be derived.

Considered in this article is the case of the eigenenergies of charge carriers
in cubic GaAs/GaAlAs quantum dots. The system, in the envelope function
approximation, is modeled by a particle in the finite well potential

V =

{
0 0 ≤ x ≤ L and 0 ≤ y ≤ L and 0 ≤ z ≤ L

V0 Otherwise
. (1)

The eigenergies of these charge carriers are governed by the solutions of the
Schrodinger equation

− }2

2m
∇2ψ + V ψ = Eψ. (2)

There are, however, no analytical solutions for our problem.
Instead, one may turn to an approximate version of the system by taking

V0 →∞. The infinite potential well is a system familiar to anyone who has
studied quantum mechanics at an undergraduate level and has well known
analytical solutions.[1] To review, the eigenenergies of a particle in the infinite
potential well are

Eαβγ =
}2π2

2mL2
(α2 + β2 + γ2), (3)

for the positive integers α, β, γ. In the position space representation, their
associated eigenfunctions are

ψαβγ =

√
8

L
sin
(xπα
L

)
sin

(
yπβ

L

)
sin
(zπγ
L

)
. (4)

It is well known that the eigenstates of the infinite potential well are
highly degenerate. Any two sets of three integers whose squares sum to the
same value will correspond to two different states with the same energy in the
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Degeneracy Level Example

1 {(1,1,1)}
3 {(1,2,2), (2,1,2), (2,2,1)}
6 {(1,2,3), (3,1,2), (2,3,1), (2,1,3), (3,2,1), (1,3,2)}

Table 1: Infinite Potential Well Degeneracies Due to Interchange of Quantum
Numbers

problem. One way to visualize the solution space of the problem is as a three
dimensional lattice where each point on the lattice of points in the positive
octant is an eigenstate. The energy associated with each state is then just
the square of its distance from the origin and sets of degenerate eigenstates
are just those at the same distance from the origin. A representation of this
is shown in Figure 1.

Symmetries in the Hamiltonian are one reason for the degeneracies found
in the solutions of the infinite potential well. However, there are also degen-
eracies due to the fact that the energies of states are simply related to the
quantum numbers describing that state. Three types of degeneracy from the
interchange of quantum numbers are listed in Table 1. However, there are
even more degeneracies from Pythagorean triplets such as

72 + 242 = 152 + 202,

or examples containing the product of three squares such as

32 + 32 + 32 = 52 + 12 + 12.

This leads to the existence of a much greater number of degenerate states
than expected from the symmetries of the problem. These extra degeneracies
are known as accidental degeneracies.

It has previously been shown that these accidental degeneracies are re-
moved in the transition to the finite case in two dimensions.[2] Therefore,
it is expected that solutions to the finite well problem in three dimensions
will not have the same degeneracy structure as the infinite well case. On
the other hand, the problem still has a highly symmetric Hamiltonian which
should induce certain degeneracies into the set of solutions. Our goal, there-
fore is to study the degeneracies of the solutions to the infinite potential well
in realistic circumstances. These results will then be contrasted with the
known degeneracies of the infinite potential well.
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2 Methodology

Two methods were used to explore the degeneracies of solutions to the fi-
nite potential well problem. The first was by using numerical techniques to
develop highly accurate approximate solutions for the first few eigenstates.
The development and ubiquity of high speed computers has led to the in-
creased usage of numerical techniques by physicists and have put problems
such as ours within the reach of certain algorithms. Degeneracy was also
studied by using group theory to investigate the solutions to the infinite well
problem. By distinguishing the so-called accidental degneracies from those
caused by symmetries in the problem’s Hamiltonian, one can predict what
the degeneracy structure of solutions to the finite case will look like.

2.1 Numerical Techniques

The Finite Element Method (FEM) was used to generate high quality approx-
imate solutions to the Schrodinger equation. Partial differential equations are
actually unable to be solved directly with the FEM as it solves a variational
problem instead. Schrodinger’s equation, however, may be reformulated to
work with the FEM. Consider the action defined by

S =

∫
Ω

dr3

[
}2

2m
∇ψ∗ · ∇ψ + ψ∗(V − E)ψ

]
. (5)

Setting its variation to zero, denoted as

δS = 0, (6)

leads to the Schrodinger equation.
The domain is now split into may small regions which are called elements.

Solutions on each domain may be represented as a linear combination of basis
functions

u =
∑
i

Aiui. (7)

By directly performing the integration in Equation 5 the action on any given
element may be expressed as a bilinear form as

Slocal =
∑
i,j

[ψ∗
iAijψj + ψ∗

iBijψj] , (8)
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where Aij and Bij are matrices.
Globally, the action is also bilinear and the A and B matrices are formed

by overlaying each of the local matrices, being careful to consider continuity
over the elements. Minimization of the action is now as simple as setting the
various derivatives of the bilinear form to zero. This turns our entire problem
into the generalized eigenvalue problem

Aψ = EBψ. (9)

Solutions may be readily acquired through a number of numerical solver
packages.

No software of the quality needed for the project existed at the time of
this writing. The author wrote a library for the development of FEM software
as well as several pieces of software for developing the results of this MQP.
The library which now measures over 25,000 lines of c++ code implements
new algorithms for handling the integration, interpolation and mesh handling
requirements of efficient FEM software.

One significant problem that was encountered early in the project was
that the amount of computation required to achieve solutions of a reasonable
accuracy exceeded the capabilities of even the fastest computers available.
Displayed in Figure 2 is a representation of the computational complexity of
the two problems used in the FEM: matrix generation and eigensolving. It
was necessary to turn to parallel computing to get data in a sensible amount
of time. Matrix generation was not difficult to parallelize as it involves a loop
over each element in the mesh. This may be divided amongst the processors
performing the calculation and each may perform its work and collect the
results together at the end.

Eigensolving was a more difficult issue and is an area of active research.
However, there already existed a suitable solver package available under an
open source license. The package SLEPc was used and, as indicated in Figure
3 showed near ideal speedup under sufficient constraints.[3]

With a toolkit now assembled to retrieve accurate approximate solutions
to the Schrodinger equation in three dimensions, it was time to validate the
software. The solutions to the infinite potential well formed an excellent
test as the energies and eigenfunctions are known analytically and could be
compared to the approximate results from the solver. Trials were run using
progressively finer and finer meshes and using linear basis functions. This
is, for historical reasons, known as h-refinement. Energies for different states
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were collected and a relative error computed by comparing them with the
analytical values for the energies of their respective states. These were then
plotted against the number of degrees of freedom in the problem. The result
is shown in Figure 4.

It was now time to generate solutions to the finite potential well problem.
A mesh was constructed to contain the well and a region twice the width of
the well on either side. This allowed sufficient space for the eigenfunctions
to die off before encountering the boundary. The mesh was constrained to
prevent elements from crossing the barrier into the well. That is, the elements
near the barrier were configured such that their faces lay against the surface
without penetrating.

The trials shown in Figure 4 provided a lower bound for the size of the
mesh in order provide a given accuracy. From that point, trials were run with
progressively finer and finer meshes. A sense of the tolerance of the results
could be gained by looking at the differences between approximate energy
values between two successive trials. This was continued until an estimated
relative error of 10−5 was achieved.

2.2 Group Theory

The infinite potential well and the finite potential well both possess a highly
symmetric Hamiltonian. In the case of the infinite potential well, however,
its separable potential gives rise to a much larger number of degeneracies
than in the case of the finite well. Group theory allows us to categorize
the degenerate states of the infinite case into classes of functions that are
related by symmetry transformations. The cubic wells have Oh symmetry
which itself has 10 conjugacy classes. Any function on the cube, such as our
wavefunction, may be split into components that transform as the various
conjugacy classes and irreducible representations by a projection operator.[4]
The dimension of each representation will then give an indication of the
degeneracy that that component possesses.

3 Results

The states that were looked at in this project were the (1, 1, 3), (1, 3, 1), and
(3, 1, 1) states of the infinite potential well. Applying the above group theory
methodology to the state showed that these states are actually linear com-
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Finite Well (meV) Infinite Well (meV)

31.271 42.409
62.349 84.819
62.354 84.819
62.355 84.819

... ...
113.568 155.501
113.655 155.501
113.658 155.501

Table 2: Eigenenergies of the Infinite and Finite Potential Wells

binations of functions that transform as the irreducible representations A1g

and Eg. Therefore, theory predicts that in the absence of greater symmetry,
the states will exist as a singlet and two doublets.

The numerical results provided by the finite element method are shown
in Table 2. A width of 200 Å, effective mass of 0.0665me inside the well and
0.0858me outside the well, and barrier height of 276.0 meV was used in the
trial. Wavefunctions were plotted as well by considering surfaces of constant
value for the returned solutions. These are shown in Figures 5, 6, and 7. It
can be clearly seen that the three fold degeneracy of the (1, 1, 3), (1, 3, 1),
and (3, 1, 1) states of the infinite potential well have now been broken into a
singlet and doublet state. This is exactly as theory predicts.

4 Conclusion

Our results indicate a fundamental difference in the structure of the solutions
to the infinite and finite potential wells. Approximations to our model of
charge carriers in cubic GaAs/GaAlAs quantum dots such as that given by
the infinite potential well give theorists an incorrect picture of the system.
In this case, a biased understanding of the degeneracies of solutions.

Instead, one must use a variety of methods for the development of ro-
bust approximate solutions. Discussed here was the Finite Element Method
which was shown to produce highly accurate solutions in three dimensions
for problems that have no analytical solution. Frameworks such as the FEM
are extremely important to our understanding of nature as they produce
testable predictions for otherwise unworkable theories. Going forward, the
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lessons learned from this case will help prevent misunderstanding of systems
in the study of physics.
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(a) Three Dimensional Lattice of Eigenstates

(b) Surfaces of Constant Energy

Figure 1: Degeneracy of States in Infinite Potential Well
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Figure 4: h-convergence of Solution to Infinite Potential Well Problem

14



Figure 5: Singlet Eigenstate of Finite Potential Well
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Figure 6: Doublet Eigenstate of Finite Potential Well
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Figure 7: Doublet Eigenstate of Finite Potential Well
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