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Abstract: 

Candida albicans is one of the most common fungal pathogens associated with opportunistic 

and nosocomial infections. Infection is often initiated through formation of a biofilm, which is 

also drug resistant. A recently discovered small molecule called filastatin shows some promise 

as an inhibitor of biofilm formation and adhesion to polystyrene. A high-throughput screening 

assay was performed using a deletion mutant library in order to determine the functional 

pathway of filastatin. Results indicate that our drug may play a role in disrupting the iron 

metabolism pathway, particularly through genes regulated through Hap43 and Rim101. 
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Introduction: 

Mycosis caused by opportunistic fungi has been observed at increasing rates in recent 

years especially in immuno-compromised patients. Strains of the genus Candida account for 8 -

10% of all nosocomial blood stream infections acquired in the hospital setting (M. A. Pfaller, 

2007). The number of reported cases and deaths caused by nosocomial bloodstream infections 

has steadily increased by over 5,000 between 1980 and 1997 (M. A. Pfaller, 2007). In the United 

States, it has been observed that mycoses caused by species from the genus Candida are the 

fourth most common nosocomial blood stream infection. It has been estimated that between 

7,000 and 28,000 cases of invasive candidiasis occur annually and for 40% of these patients, the 

infection is deadly (M. A. Pfaller, 2007). Thus, it is of great importance to the scientific and 

medical community to better understand the virulence strategies for Candida, in order to 

mitigate or combat nosocomial infections.    

The most prevalent fungal pathogen from the Candida genus is Candida albicans (Figure 

1) (U.S. Centers for Disease Control and Prevention, 2013). C. albicans is a polymorphic, 

opportunistic fungal pathogen that can cause systemic infections with high mortality rates and 

can also cause mucosal conditions such as thrush in immunocompromised patients and 

vaginitis (Mayer, Wilson, & Hube, 2013). The fungus is present as a commensal in the human 

epithelial lining of the gastrointestinal tract, mouth, uro-genital tract without negatively 

affecting the host. However, when the patient’s immune system is compromised such as in 

neonates or infection with HIV, the fungus causes infections on the superficial region of the 



body, or in rarer cases, lead to life threatening systemic infections.  (Mayer, Wilson, & Hube, 

2013).  

 

  

  

  

 

 

 

 

 

 

 

The fungus is dimorphic, and can switch growth between yeast or hyphal growth (Figure 

1) depending on environmental conditions. The hyphae are a straight, parallel-walled 

filamenting form of C. albicans which is considered to be more invasive and is speculated to 

cause tissue penetration during infection. The yeast form of C. albicans grows at low pH and is 

characterized by oval shaped cells that typically bud off at hyphal nodes.  These planktonic cells 

are thought to be important for establishing infection at secondary locations.  This 

morphological plasticity allows C. albicans to survive in a variety of environments and 

conditions such as adverse pH within a phagocyte or serum in the blood stream (Sudbery, Gow, 

& Berman, 2004).  This also allows C. albicans to be a versatile pathogen, and is important for 

Figure 1: C. albicans, poses a significant 
public health threat due to drug-

resistance (U.S. Centers for Disease 
Control and Prevention, 2013),  



virulence. Therefore, mutants that are unable to switch between morphological states are 

avirulent.  

Another powerful virulence strategies and reason that C. albicans infections are so 

prevalent in the medical setting is the formation of biofilms (Heitman, 2012). Biofilms are the 

formation of yeast/hyphal cell matrix that gives the grouping a heightened form of protection 

from antimicrobial agents and host immune factors. To initiate the formation of a biofilm, first 

cells must adhere to the surface. Then proliferation of yeast cells occurs along with hyphae, 

which eventually escalates into an extracellular matrix (Heitman, 2012).  These factors tend to 

form on a variety of different biotic or abiotic settings alike. In the medical setting this typically 

refers to objects such as catheters and other medical equipment. Since the fungus present in 

biofilms exhibits more resilience to antimicrobials and sterilization, the possibility of infecting 

patients is high in the medical setting. In addition, these biofilms exhibit resistance to antifungal 

drugs (Zhihong Xie, 2012), making them harder to treat than other types of fungal infections in 

patients. The biofilm extracellular matrix is also been linked to the resistance to neutrophils by 

preventing activation of reactive oxygen species (ROS) in the host (Zhihong Xie, 2012). The 

release of ROS is necessary for the destruction of pathogens by phagocytes and recruiting of 

more phagocytes to the site of infection.  This study also speculates that β- glucans, an essential 

component of the extracellular matrix protects C. albicans from degradation by the immune 

system (Zhihong Xie, 2012). Therefore, biofilms are a strong virulence factor because they 

promote attachment to biotic and abiotic surfaces and render the microbial community drug 

resistant.  



Many studies have been done to understand how to prevent and neutralize 

opportunistic Candida albicans infections. One issue that is prevalent when developing 

antifungal agents is that because of its eukaryotic characteristics, it is hard to find specific 

targets that do not exhibit a homolog with humans. The main target that most antifungal drugs 

utilize today targets the cell membrane (Azole class of drugs and amphotericin B) or cell wall 

(caspofungin) of the fungus. The two main targets are ergosterol or β-D-glucan, which are both 

key components for C. albicans. Ergosterol is targeted because it is considered a main 

component of fungal membranes, although its similarities to cholesterol make some antifungals 

toxic at high concentrations. The advantage to β-D-glucan is that it is essential to the cell wall of 

C. albicans but is not present in humans, lowering the risk of toxicity (Cowen & Steinbach, 

2008). It has been the human immune system recognizes β-glucan via Dectin-1 receptors on the 

surface of macrophages (Brown, et al., 2002). Though β-glucan is usually expressed in high 

quantities in Candida, it is hidden by a layer mannoprotein that shields the molecule from 

Dectin-1 receptors. It has been shown that subinhibitory concentrations of capsofungin, a 

common anti-fungal drug, are capable of exposing Candida’s β-glucan layer. This is turn is 

capable of producing a stronger immune response so it is possible that this method may be 

considered as a novel treatment for C. albicans infections (Wheeler & Fink, 2006).       

Potential Vaccine Strategies 
Researchers have also begun targeting the adhesion system of C. albicans in hopes of 

preventing many nosocomial C. albicans infections. The adhesion system of C. albicans is based 

on two different tactics known as induced endocytosis and active penetration. Induced 

endocytosis operates by the expression of proteins on the surface of the C. albicans that cause 



the host’s ligands to engulf the fungal cell, thereby bringing it into the host cell. It has been 

demonstrated that even dead hyphae cells are engulfed, indicating that induced endocytosis of 

fungus does not need viable cells, but is linked to proteins created before death (Dalle, et al., 

2010). It is speculated that induced endocytosis is mediated by Als3 and Ssa1.  The other form 

of adhesion, active penetration, is not a fully understood mechanism. However, it is postulated 

to operate by physical force of the hyphae in order to digest part of the hosts’ cellular 

membrane and use the hole created as an entry way into the system (Mayer, Wilson, & Hube, 

2013). It has been shown that vaccination with the recombinant N-terminus of the Als3 and 

related Als1 proteins protects mice against oropharyngeal, vaginal and disseminated candidiasis 

(Spellberg, et al., 2006). These vaccines also appear to induce both broad antibody and cell-

mediated immune responses and thereby appear to provide adequate protection against 

Candida infections. Therefore, targeting adhesion proteins of Candida may be a viable target 

for vaccines and therapeutics (Spellberg, et al., 2006).  

The value of a prophylactic drug in preventing nosocomial infections has already been 

seen in earlier studies that have examined whether antifungal treatment reduces the risk of 

Candida infection in patients. In patients suffering recurrent gastrointestinal leakages, for 

example, only 8% of patients treated with fluconazole developed a Candida infection while as 

many as 31% of placebo-treated patients became infected. In addition, a study on patients 

intentionally colonized with Candida showed that infection only persisted in approximately 30% 

of fluconazole-treated patients while 70% of placebo treated patients developed infections. 

Lastly, it was shown that Candida colonization rates in liver transplant patients receiving 

prophylactic fluconazole decreased from 70% to 28% in comparison to those that received a 



placebo. Most importantly, it was observed that mortality rate greatly decreases from 13% to 

2% with prophylactic treatment (Snydman, 2003). Therefore, this study suggests that antifungal 

drugs have the capability to prevent Candida infections when administered prophylactically.  

Drug Resistance  
Though the use of antifungal agents as prophylactics has been shown to be effective, 

there is concern among some researchers that the overuse of azole drugs may lead to an 

increase in prevalence of other Candida species. For example, the use of fluconazole as a 

prophylactic has been correlated with a decrease in the incidence of C. albicans and C. 

tropicalis. However, this decrease coincided with an increase in prevalence of C. glabrata and C. 

krusei, which are more difficult to treat. Therefore, it is feared that the continued use of 

fluconazole as a prophylactic will lead to more-resistant and pathogenic strains becoming more 

prevalent. To prevent this, it has become necessary for health care workers to administer 

antifungals only to patients that stand to benefit the most from prophylactic treatment. 

Regardless, there is a growing need for the development of new antifungal agents in order to 

stem the proliferation of azole resistant fungi (Snydman, 2003). 

 

Functional Drug Screen to Identify Small Molecules that Prevent Attachment to Plastics 

Previous research has been done on the inhibition of C. albicans binding to plastics, 

which is a major cause of biofilm formation in health care settings. C. albicans has been shown 

to bind very strongly to polystyrene plastics (Mitchell & Nobile, 2006). Our laboratory recently 

reported identification of filastatin, which inhibits adhesion of C. albicans to polystyrene 

surfaces, surgical silicone mesh, and also to cultured human epithelial cells (Fazly, et al., 2013). 

As can be seen in Figure 2 below, C. albicans is capable of binding to silicone elastomers in the 



presence of DMSO. However, in the presence of filastatin, C. albicans loses its ability to bind to 

the mesh. The strain edt1 was used as a positive control in this experiment due to the fact that 

it lacks an adhesion protein needed for the fungi to bind to surfaces.  

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

Filastatin has the potential to be widely used as a prophylactic coating material for 

medical devices because abiotic surfaces coated with filastatin are resistant to colonization by 

fungal biofilm (Fazly, et al., 2013).  

Figure 2: Adhesion 
of C. albicans to 

Silicone Elastomers 
(Fazly, et al., 2013) 



Filastatin was identified from a library of 30,000 small molecules for inhibition of 

adhesion of C. albicans (strain SC5314) to polystyrene. The strain edt1-/-, which lacks a cell wall 

adhesion protein served as a positive control while SC5314 cells in the presence of DMSO alone 

served as a negative control. The research group then tested the ability of the filastatin to 

inhibit the binding of a GFP-expressing Candida strain to monolayers of human epithelial A549 

cells. Of all of the compounds tested, it was found that filastatin was the best inhibitor of 

adhesion to human epithelia based on its ability to inhibit the filamentation of Candida 

albicans. Additionally, it was found that filastatin was not significantly toxic to human cells, 

even at concentrations as high as 250 μM. Therefore, this compound shows promise as a drug 

or prophylactic to fight Candida infections due to its ability to inhibit the fungi’s adhesion to 

both polystyrene and human cells. The chemical structure of filastatin can be seen below in 

Figure 3 (Fazly, et al., 2013).  

  
 

  

 

 

 

 

 

 

 

 

Figure 3: Chemical Structure 
of Filastatin (Fazly, et al., 

2013). 



Because of these potential clinical applications, the effect that filastatin had on Candida 

that was already bound to polystyrene was tested. It was found that filastatin did, in fact, 

reduce the number of Candida cells bound to polystyrene; however, it was more effective in 

this capacity when the drug and fungi were added at the same time and coincubated. 

Regardless of when the drug is added, these results indicated that filastatin could be effective 

against biofilms. Furthermore, additional experiments showed that filastatin was effective at 

inhibiting adhesion of three other pathogenic Candida strains: C. dubliniensis C. tropicalis, and 

C. parapsilosis (Fazly, et al., 2013).  

The drug’s potential use as a prophylactic against the formation of Candida biofilms on 

implanted medical devices was then tested by measuring colony formation on surgical silicone 

elastomers. It was observed that wild type Candida failed to form biofilms and instead 

remained dispersed in media in the presence of filastatin in both carbon-deficient Spider media 

and mammalian serum at low concentrations. These facts could have major clinical 

implications; fungal biofilms on medical devices lead to thousands of systemic and potentially 

life-threatening fungal infections per year. Therefore, a prophylactic drug that prevents biofilm 

and hyphal formation is capable of greatly reducing nosocomial Candida infections (Fazly, et al., 

2013).  

Lastly, this paper demonstrated that our drug of interest is capable of inhibiting fungal 

growth and infection in a variety of systems in vivo. When treated with filastatin, it was found 

that the number of C. elegans nematodes exhibiting the DAR phenotype caused by C. albicans 

infection decreased by approximately thirty percent. Furthermore, filastatin treatment was 

found to extend the life-span of C. elegans that had been previously infected. In addition, the 



researchers found that individual yeast cells predominated in vulvovaginal candidiasis in mice 

that had been treated with filastatin. Therefore, this suggests that filastatin is capable of 

preventing hyphae and biofilm formation ex vivo. This finding is significant because of the 

number of women infected with vulvovaginal infections; 75% of women will suffer from 

vulvovaginal candidiasis at some point in their lifetime, with as many as 95% of these infections 

being caused by C. albicans in particular (Fazly, et al., 2013).  

The focus of our project is to identify the biological target of filastatin in C. albicans, 

which would allow for a better understanding of its mechanism. We will use loss-of-function 

reverse genetics approaches to identify potential targets of filastatin by screening a C. albicans 

homozygous deletion library using the adhesion assay described previously (Noble, et al., 2010). 

In short, loss of target gene function is expected to mimic filastatin treatment and prevent 

attachment of C. albicans to plastic surfaces as shown in Error! Reference source not found. 

below. Therefore, mutants that lack the drug target will not show an altered phenotype in 

when treated with filastatin (Error! Reference source not found. green). Additionally, it was 

hypothesized that filastatin might have multiple targets (Fazly, et al., 2013).  Such genes are 

also likely to be identified in this screen as mutants that show a synergistic effect upon 

treatment with filastatin. The identity of the target gene will be confirmed by complementing 

the deletion mutant by replacing a single copy of the gene at a chromosomal location.  The 

complemented heterozygous strain is predicted to restore the ability of the mutant to adhere 

to plastic.   

The library will be tested on polystyrene plates through a crystal violet assay, to 

determine susceptibility to filastatin and how adhesion is affected by different deletion 



mutations. As shown in Error! Reference source not found., two different types of phenotype s 

would be the most ideal to discover. 

 

Figure 4: Expected Adhesion Patterns of Mutants to Filastatin 

 

Before mutants showing significance are further studied, the phenotype being observed will be 

shown to be a result of the intended deletion. To do this, reverse complementation will take 

place by replacing a single copy of the deletion gene back into the chromosomal location. The 
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complemented strain should rescue the mutant phenotype and phenocopy the wild type by 

restoring adhesion to plastic surfaces. This will allow for the mutant to be used for testing with 

model in vitro/ in vivo assays such as C. elegans or mitochondria. The end conclusion will help 

give a greater understanding of how filastatin affects C. albicans and give a greater 

understanding of the underlying mechanisms that help prevent adhesion.  

  



Materials and Methods 

Primary Screening 

 

For the primary screen, single colonies were picked and inoculated into 5 mL cultures of 

SC+ 0.15% glucose media and grown overnight in a rotating wheel. The OD of the cultures was 

then measured at OD600nm. Cultures were spun down and resuspended in fresh SC +0.15% 

glucose to a final concentration of 0.5 OD/mL. 200 uL of 0.5 OD/mL C. albicans strains were 

pipetted onto 96 well flat-bottom polystyrene plates. Filastatin or DMSO was added to cultures 

at appropriate concentrations, never exceeding 1% DMSO. Plates were covered with aluminum 

foil and incubated at 37 degrees for 4 hours. After 4 hours of incubation, plates were decanted 

and 40 uL of 0.5 % Crystal Violet Dye was added to each well. The plates were covered and left 

at room temperature to incubate for 45 minutes. Plates were then decanted and washed by 

submersion 10 times in an ice bucket filled with dH20, changing the water every 5 washes. 

Plates were tapped onto a paper towel to remove residual dH20 and 200 uL of 75% MeOH was 

added to each plate and incubated at room temperature for 30 minutes. The plates were then 

read at 590 nM to detect relative crystal violet fluorescence.  

 

Data analysis  
    The primary screening was analyzed using Microsoft Excel. All data was normalized to the 

wild type (SN250). If a mutant exploited RFU that was two times the standard deviation either 

higher or lower than that of the wild type and then did not show a change in adhesion with the 

addition of filastatin, it was considered a hit.  



 

PCR Design 

    PCR primers were designed for Hap43 and Rim101, using the IDT primer design application. In 

order to confirm full integration of gene, amplicons were designed to have 100-200 bp 

overhangs on both sides of the gene. The amplicon was also designed to complement 20 bp of 

PS105 plasmid (Hap43: F= 5’-GTAAATTACAATTGGTATTTTCAACCAATATT 

ACCACACCAACTAGCCACGTCGTTCC-3’ R= 5’-CTATCTCTCTTTTTTTTGCCCATTTGAGTTAG 

TGCATGACGATGCAGATGACGCGGATTC-3’, Rim101: F= 5’ - GTAAATTACAATTGGTAT 

TTTCAACCAATATTACCACACTGGCAATCAATTCCCAGACA03; R=5’ ATCTCTCTTTTTTTTGCCCATTTGA 

GTTAGTGCATGACAGAGACCGGTAACACTACTTTC-3’). Long amp polymerase was used for all PCR 

reactions. For confirmation of insertion back into C. albicans, primers were designed to check 

for the insertion into the genome. Primers were designed to aplify a small region of the 5’ 

region of the mutant of interest and also amplify the arginene resistant gene (Hap43: F= 5’ - 

CTACACCAAAGTGATCCCACA-3’ R= 5’ - CATCACTTGACGTGGCATTATC-3’, Rim101: F= 5’ -ATTACC 

ACACTGGCAATCAATTC-3’, R= 5’ CTCTCACTTGCACCGGTATT-3’).  

Complementation analysis 

One colony of S. cerevisiae was picked and inoculated into 3 mL of YPD media and 

incubated at 30 C overnight in a tube roller. The next morning, 1.5 mL of cultures were used to 

inoculate 50 mL of fresh YPD media and grown in a shaker at 30 C until OD600 1-1.5 was met. 

The culture was then centrifuged at 3000 rpm for 5 minutes at room temperature and washed 

with 5 mL LiOAC mix (1x TE ph 8, 100 mM lithium acetate). This mixture was then centrifuged at 

3000 rpm for 5 minutes and the pellet was resuspended in 1 mL LiOAC. 100 uL of washed cells 

was then mixed with 10 uL single strand DNA carrier and 5 uL of the PCR product being used for 



gap repair. Then 500 uL of the PEG Mix (1x TE ph 8, 100 mM lithium acetate, 40 % PEG 3350) 

was added into the solution. The mixture was mixed well by pipetting and incubated for 30 

minutes at room temperature. The mixture is then heat shocked at 42C for 5 minutes and 

centrifuged at approximately 3600 rpm for 3 minutes. The PEG mixture was decanted and the 

cells were washed with 0.5 mL YPD. The pellet was then resuspended in 100 uL of ddH20 and 

plated on selective media. The mixture was grown for 48 hours at 30 C. To confirm integration 

of gene of interest into plasmid, conformational PCR was run after plasmid purification.   

 

High Efficiency Electrotransformation of E. coli 
The competent E. coli cells were thawed on ice and then 40 uL of the cell suspension 

and 5 uL of purified plasmid from previously described gap repair transformation were placed 

into a pre-chilled 1.5 mL microfuge tube, gently mixing with pipette tip (do not mix by pipetting 

up and down). The mixture was allowed to incubate on ice for approximately one minute. The 

cells were transferred to a cold electroportion cuvette and the MicroPulser was set to “Ec2”. 

The cuvette was then placed into the chamber slide, were it is seated between the contacts in 

the base of the chamber. One pulse was administered and then 1 mL of SOC medium was 

immediately added to the cuvette and gently resuspended with a Pasteur pipette. The cells 

were then transferred to a microfuge tube and incubated at 37 C for 1.5 hours shaking at 225 

rpm. Then 100 uL of cell suspension was plated onto LB+AMP plates and incubated overnight at 

37C. The plasmid was purified using the qiagen mini-prep plasmid purification strategy and 

stored for later use at -20C.  

 



Transformation of C. albicans  
One colony of the knockout C. albicans strain of interest was grown in 5 mL of YPD 

overnight at 30 C in a rotating wheel. The following morning 1.5 mL of the overnight culture 

was inoculated into 50 mL of fresh YPD media and incubated in a 30 C shaker for 5-6 hours until 

the OD600 reaches between 0.5 -1. The culture was then centrifuged for 2 min at 1000g and the 

supernatant was discarded. The cells were then resuspended at 900 uL LiOAC/TE and 

transferred to a microcentrifuge tube. The mixture was then pelleted for 1 minute at 1000g, 

followed by two more washes with 900 uL LiOAC/TE, to be finally resuspended in 400 uL 

LiOAC/TE. In a separate microfuge tube, the following reagents were mixed. First 10 uL of 

10mg/mL Herring sperm (or Salmon sperm) DNA was administered after being denatured by 

boiling for 2 minutes and then snap cooled on ice. Then 1 ug (20-50 uL of digested plasmid) to 

be transformed into C. albicans genome was added into the solution. Followed by 200 uL 

washed cells in LiOAC/TE and 1 mL PEG mix. This mixture was incubated overnight at room 

temperature while inverting.. The mixture was then heat shocked at 42C for 1 hr the following 

morning and pelleted for 1 minute at 1000g. The supernatant was discarded and the pellet was 

washed with 1 mL sterile water. The pellet was resuspended in 150 uL ddH20 and plated on 

YNB-ARG media. The plates were allowed to incubate at 30 C for 2-3 days to allow for the 

growth of colonies. Genomic integration was confirmed by running conformational PCR analysis 

and confirmation of prospective phenotype. 

Colony morphology Assay 

    Mutants of interest and wild type (C. albicans SN250) were grown overnight in SC+ AA+ 

0.15% glucose. Culture concentrations were measured at OD600 nm. The cultures were then 

spun down at 3000 rpm and resuspended in ddH20 to give a final concentration of 1 OD. A 96 



well plate was used to make a series of 10-fold serial dilutions using ddH20. Then 5 uL of the 

dilutions were incubated at 37 C on solid Spider media for six days.  

Sensitivity Assay 

    Mutants of interest and wild type (C. albicans SN250) were grown overnight at 30 C in 

SC+AA+ 0.15% glucose. Cultures were spun down at 3000 rpm and resupsended in ddH20 to 

give a final concetration of 1 OD. A 96 well plate was then used to make a series of 10-fold 

serial dilutions using ddH20. Then 5 uL of the dilutions were incubated at 30 C on SC+ 1 mM 

CuSO4 + AA+ glucose agar plates and incubated overnight at 30 C.  

 

  



Results: 

Primary Screening 
           In this MQP, a reverse genetic screen was performed using a knockout mutant library 

(Noble, et al., 2010). To gain a better understanding of how the anti-adhesion compound 

filastatin decreases the ability of the pathogen Candida albicans to adhere to plastic surfaces, 

mutants were allowed to form biofilms on a polystyrene surface of a 96 well plate.  Biofilms 

were treated with filastatin or the carrier DMSO and stained with crystal violet to visualize 

adhesion.  

Data Analysis 

    The mutants were analyzed with the use of Microsoft excel and normalized to the wild type, 

which was present on every plate. After normalization took place, the mutant was compared to 

the wild type and if it was greater or less than 2 times the standard deviation, it went onto the 

next round of analysis. If the change in adhesion was less than 10%, the mutant was added as a 

hit. An example of a non hit v. both versions of a hit (more adhesive and less adhesive) can be 

seen below in figure 5.  



 

              Figure 5: Example of hit for lower and higher adhesion in Crystal Violet assay 

 

Out of the ~650 mutants surveyed, 42 of the mutants were identified as potential 

targets, or pathways that regulate targets of filastatin. This list of 42 hits constituted to be 

approximately 6% of all total mutants screened.  Out of the forty two putative mutants, fifteen 

resulted from mutants that showed higher adherence to the polystyrene plates than the wild 

type and twenty seven of the hits resulted in mutants that showed a lower adherence than that 

of the wild type. These hits were organized according to their adherence patterns in Error! 

Reference source not found. below.  
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Table 1: List of Hits from Primary Screen with Descriptions, Organized According to Higher or Lower 
Adherence 

Adheres More Than WT 
PRN4 protein with similarity to pirins, flow model biofilm repressed 

CSA2 

Extracellular-associated protein; repressed by Rim101 at pH 8; regulated by Tsa1, 
Tsa1B in minimal media at 37 deg; induced by ketoconazole, nitric oxide, Hap43; 
required for normal RPMI biofilm formation; Bcr1 induced in RPMI 

ORF19.3919 RNI-like superfamily domain-containing protein; early-stage flow model biofilm 
induced; Spider biofilm induced 

LIP2 Secreted lipase; member of a differentially expressed lipase gene family; expressed 
in alimentary tract, but not oral tissue, during mouse oral infection; may have a role 
in nutrition and/or in creating an acidic microenvironment 

RBT5 

GPI-linked cell wall protein; hemoglobin utilization; Rfg1, Rim101, Tbf1, Fe 
regulated; Sfu1, Hog1, Tup1, serum, alkaline pH, antifungal drugs, geldamycin 
repressed; Hap43 induced; required for RPMI biofilms; Spider biofilm induced 

HAK1 

Putative potassium transporter; similar to Schwanniomyces occidentalis Hak1p; 
amphotericin B induced; induced upon phagocytosis by macrophage; Hap43-
repressed; rat catheter biofilm repressed 

HET1 
Putative sphingolipid transfer protein; involved in localization of glucosylceramide 
which is important for virulence; Spider biofilm repressed 

ORF19.6637 Predicted glycosyl hydrolase; hypoxia induced; flow model biofilm induced 
HEX1 Beta-N-acetylhexosaminidase/chitobiase, highly glycosylated enzyme that is 

secreted to the periplasm and culture medium; required for full virulence; may 
have role in carbon or nitrogen scavenging; possibly an essential gene (UAU1 
method) 

NPR2 Putative urea transporter; induced during infection of murine kidney, compared to 
growth in vitro; has murine homolog 

ORF19.587 Ortholog(s) have transcription export complex localization 
ORF19.649  

CFL11 

Protein similar to ferric reduc (Inglis DO, 2012)tase Fre10p; flucytosine repressed; 
possibly adherence-induced; possibly an essential gene, disruptants not obtained 
by UAU1 method; rat catheter biofilm repressed 

ORF19.2726 Putative plasma membrane protein; Plc1-regulated; Spider biofilm induced 

HYR1 

GPI-anchored hyphal cell wall protein; macrophage-induced; repressed by 
neutrophils; resistance to killing by neutrophils, azoles; regulated by Rfg1, Efg1, 
Nrg1, Tup1, Cyr1, Bcr1, Hap43; Spider and flow model biofilm induced 

Adheres Less than WT 
ORF19.380 Protein of unknown function; induced by alpha pheromone in SpiderM medium 
BTA1 Betaine lipid synthase  

ORF19.1365 
Putative monooxygenase; mutation confers hypersensitivity to toxic ergosterol 
analog; constitutive expression independent of MTL or white-opaque status 

HWP2 GPI-anchored, glycosylated cell wall protein; required for biofilm formation, 
adhesion, filamentous growth on some media; expressed in hyphae; mutant 
delayed in virulence; regulated by Efg1, Tup1; similar to Hwp1 and Rbt1 domains 

MTS1 Sphingolipid C9-methyltransferase; catalyzes methylation of the 9th carbon in the 



long chain base component of glucosylceramides; glucosylceramide biosynthesis 
is important for virulence; Spider biofilm repressed 

FLO9 Putative adhesin-like cell wall mannoprotein; repressed during the mating 
process; mutation confers hypersensitivity to toxic ergosterol analog; decreased 
transcription is observed upon fluphenazine treatment 

ORF19.5449 Predicted integral membrane protein; Spider biofilm induced 

PGA10 

GPI anchored membrane protein; utilization of hemin and hemoglobin for Fe in 
host; Rim101 at ph8/hypoxia/ketoconazole/ciclopirox/hypha-induced; required 
for RPMI biofilm formation, Bcr1-induced in a/a biofilm; rat catheter biofilm 
repressed 

KRE5 

UDP-glucose:glycoprotein glucosyltransferase; 1,6-beta-D-glucan biosynthesis, 
hyphal growth, virulence in mouse IV model; partially complements S. cerevisiae 
kre5 mutant defects; flow biofilm repressed, Bcr1-repressed in RPMI a/a biofilms 

ORF19.2484 Has domain(s) with predicted peptidase activity and role in proteolysis 

GZF3 

GATA-type transcription factor; oxidative stress-induced via Cap1; mutant has 
abnormal colony morphology and altered sensitivity to fluconazole, LiCl, and 
copper; Spider biofilm induced 

ORF19.3108 
Putative DNA repair methyltransferase; induced by nitric oxide independent of 
Yhb1; Spider biofilm induced 

ORF19.3226 
Ortholog(s) have role in intracellular sterol transport and extracellular region, 
fungal-type vacuole lumen localization 

HYR4 
Putative GPI-anchored adhesin-like protein; Rim101-repressed; constitutive 
expression independent of MTL or white-opaque status 

ORF19.3404 Protein of unknown function; transcription repressed by fluphenazine treatment 
ORF19.3763 Has domain(s) with predicted serine-type endopeptidase activity and integral to 

membrane localization 
GYP1 Putative Cis-golgi GTPase-activating protein; transcript regulated by Nrg1, Mig1, 

and Tup1 

KIS1 

Snf1p complex scaffold protein; similar to S. cerevisiae Gal83p and Sip2p with 
regions of similarity to Sip1p (ASC and KIS domain); interacts with Snf4p; mutants 
are hypersensitive to caspofungin and hydrogen peroxide; Hap43p-repressed 
gene 

ORF19.4195 

Ortholog of C. dubliniensis CD36 : Cd36_60540, C. parapsilosis CDC317 : 
CPAR2_602830, Candida tenuis NRRL Y-1498 : CANTEDRAFT_108530 and 
Debaryomyces hansenii CBS767 : DEHA2F15532g 

CAS5 

Transcription factor; cell wall damage response; required for adherence, 
response/resistance to caspofungin; repressed in core stress response; mutants 
have reduced CFU in mice, hyphal defect in C. elegans infection; Spider biofilm 
induced 

ORF19.4805 
Putative membrane protein; induced by alpha pheromone in SpiderM medium; 
Hap43-induced gene; Spider biofilm induced 

IFF11  
ORF19.5406  

PTC7 

Protein phosphatase, type 2C; has S/T phosphatase activity, Mn2+/Mg2+ 
dependent; predicted membrane-spanning segment and mitochondrion-targeting 
signal 

MBP1 

Putative component of the MBF transcription complex involved in G1/S cell-cycle 
progression; non-periodic mRNA expression; predicted, conserved MBF binding 
sites upstream of G1/S-regulated genes 



 

Analysis of Pathways that Regulate Filastatin Action 

 

To identify genes and cellular components that regulate biological function of filastatin 

Gene Ontology (GO) analysis was performed (Inglis et al, 2012).This analysis showed that 

several genes were related in regards to the biological functions (such as metabolism, biofilm 

formation, etc) that they regulate. 7 of the 42 mutant genes identified were defined by the 

category “single species biofilm formation”, giving significance between 1E-4 and 0.5. 2 out of 

the 42 mutants fall under the category hemoglobin import, also showing the significance of 

1.0E-4 to 0.5. The results of this analysis can be viewed in Table 2 below.    

 

 

 

 

 

 

 

ORF19.6318 Ortholog(s) have endoplasmic reticulum, mitochondrion localization 
ORF19.6449  
ORF19.6654 Predicted membrane transporter, member of the L-amino acid transporter-3 

(LAT3) family, major facilitator superfamily (MFS) 



Table 2: CGD GO analysis results for Process Ontology (Inglis et al, 2012) 

Terms from the Process Ontology 

Gene 

Ontology 

term 

Cluster 

frequency 

Background 

frequency 

Corrected 

P-value 

False 

discovery 

rate 

Genes 

annotated to 

the term 

Hemoglobin 

import  

2 out of 42 

genes, 4.7% 

2 out of 6517 

background genes, 

0.0% 

0.00769 4.00% PGA10, RBT5 

Single-

species 

biofilm 

formation 

6 out of 42  

genes, 

14.0% 

132 out of 6517 

background genes, 

2.0% 

0.03674 6.00% CAS5, CSA2, 

HWP2, HYR1, 

PGA10, RBT5 

Biofilm 

formation  

6 out of 42 

genes, 

14.0% 

141 out of 6517 

background genes, 

2.2% 

0.05262 5.33% CAS5, CSA2, 

HWP2, HYR1, 

PGA10, RBT5 

 

GO analysis was also used to compare the cellular components of the genes of interest. 

Out of the 42 genes that were run through the Go analysis, six of the genes fell under external 

encapsulating structures with a significance of 1.0E-4 to 0.5. Another cellular component that 

showed a similar level of significance were genes that fell into the extracellular region, which 

encompassed seven of the forty two genes. The results of this analysis are shown in Table 3 

below.  

 

 

http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=20028&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=20028&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=PGA10&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=RBT5&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=44010&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=44010&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=44010&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=44010&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=CAS5&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=CSA2&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=HWP2&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=HYR1&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=PGA10&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=RBT5&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=42710&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=42710&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=CAS5&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=CSA2&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=HWP2&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=HYR1&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=PGA10&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=RBT5&organism=C_albicans_SC5314


Table 3: CGD GO analysis results for Component Ontology (Inglis et al, 2012) 

Terms from the Component Ontology 

Gene 

Ontology 

term 

Cluster 

frequency 

Background 

frequency 

Corrected 

P-value 

False 

discovery 

rate 

Genes annotated to the 

term 

Extracellular 

region  

7 out of 42 

genes, 

16.3% 

133 out of 

6517 

background 

genes, 2.0% 

0.00105 2.00% CSA2, HEX1, HYR1, 

IFF11, LIP2, RBT5, 

orf19.3226 

Cell wall  6 out of 42 

genes, 

14.0% 

142 out of 

6517 

background 

genes, 2.2% 

0.01450 14.00% HWP2, HYR1, HYR4, 

IFF11, PGA10, RBT5 

Fungal-type 

cell wall  

6 out of 42 

genes, 

14.0% 

142 out of 

6517 

background 

genes, 2.2% 

0.01450 9.33% HWP2, HYR1, HYR4, 

IFF11, PGA10, RBT5 

External 

encapsulating 

structure  

6 out of 42 

genes, 

14.0% 

144 out of 

6517 

background 

genes, 2.2% 

0.01563 7.00% HWP2, HYR1, HYR4, 

IFF11, PGA10, RBT5 

 

Of the forty two hits that were found, 24% or 10 mutants were regulated by the 

transcription factor Hap43 and 12% were regulated by Rim101.  There is an overlap of 7% 

between these genes and which are thought to be regulated by both Hap43 and Rim101. These 

genes are organized graphically in the Venn diagram in Figure 6 below.  

 

http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=5576&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=5576&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=CSA2&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=HEX1&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=HYR1&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=IFF11&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=LIP2&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=RBT5&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=orf19.3226&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=5618&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=HWP2&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=HYR1&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=HYR4&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=IFF11&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=PGA10&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=RBT5&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=9277&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=9277&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=HWP2&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=HYR1&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=HYR4&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=IFF11&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=PGA10&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=RBT5&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=30312&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=30312&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/GO/go.pl?goid=30312&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=HWP2&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=HYR1&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=HYR4&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=IFF11&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=PGA10&organism=C_albicans_SC5314
http://www.candidagenome.org/cgi-bin/locus.pl?locus=RBT5&organism=C_albicans_SC5314


 

Figure 6: Genes Regulated by Hap43 and/or Rim101 

 

Validation of mutants identified 

Since a high number of hits were associated with both Hap43, a CCAAT-binding factor-

dependent transcription factor that is required for survival for low iron response, and Rim101, a 

transcription factor needed for alkaline-induced hyphal growth (Inglis et al, 2012), these two 

transcription factors were chosen for further analysis.  The knock out mutants of Hap43 and 

Rim 101 were selected for complementation to confirm that they play a role in the biological 

function of filastatin. The Rim101 knock out mutant (taken from the Noble Library) does not 

show the presence of filamentation when put through the Hyphal growth profiling experiments 

with the use of spider inducing media, when compared to the wild type SN250.  

The transcription factor knockout Hap43 has previously shown to have higher copper 

metal resistance than that of the wild type (Homann et al, 2009) and was chosen to test if the 
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complementation was successful. The Rim101 and Hap43 genes were then complemented back 

into their respective knockout mutants using the previously described method. Rim101 

complementation was checked using PCR and phenotypic analysis.  

  



Discussion: 

Our results have identified two pathways that may regulate filastatin activity. In our 

assay, we considered mutants that showed little to no decrease in adhesion in the presence of 

filastatin relative to the negative control to be ‘hits’ as described in Error! Reference source not 

found. above. The rationale was that if the mutant lacks a target of filastatin, then adding 

filastatin will have no effect on how well the fungi can adhere to the plastic. Therefore, the 

differences in absorbance between wells that have filastatin and those that do not will be 

statistically insignificant. If these values were within 10% of each other during the primary 

screen, we selected that strain for retesting in our secondary screen. Conversely, ‘non-hits’ 

were strains which showed significantly lower binding in the presence of filastatin in 

comparison to the negative control. In theory, these strains have deletions in genes that are 

unrelated to the targets of filastatin; as a result, filastatin is still capable of being effective and 

reducing adhesion and biofilm formation. Our screening produced 42 potential genes of 

interest, of which we focus on three: Rim101, Hap43 and PGA10.  

One gene that we believe may be a target of filastatin is Rim101 or one of the several 

pathways which it regulates. Rim101 has been previously shown to regulate gene expression 

responses to extracellular changes in pH. Specifically, Rim101 has been shown to induce hyphal 

formation in response to neutral or alkaline pH conditions. In addition, this gene is known to be 

a member of the Rim101/PacC family of C2H2 zinc finger transcription factors, which play a 

number of different roles in regulating the virulence of different fungal pathogens (Penalva and 

Arst, 2004). A number of studies have been performed showing the role of Rim101 in hyphal 

formation and the fungal virulence. One study found that Rim101 mutants formed shorter and 



fewer true hyphae but more pseudohyphae in comparison to the wild type. The same study 

also looked at the ability of a Rim101 mutant to invade oropharyngeal epithelial cells. It has 

been previously known that Candida albicans invades this particular type of epithelial cell by 

damaging them and inducing their own endocytosis. However, mutants lacking Rim101 have a 

significantly decreased capability of being endocytosed by epithelial cells, which suggests that 

Rim101 plays an important role in initiating infections of the epithelia. Lastly, mice infected 

with Rim101 mutants had significantly lower fungal burden levels than mice infected with the 

wild type or with strain in which the Rim101 gene was complemented. Therefore, these studies 

show that this gene plays an important role in the initiation of infection by C. albicans in 

epithelial cells. One current hypothesis regarding the exact role of Rim101 in virulence is that it 

is responsible for activating and regulating hyphae-specific genes.  In fact, it has been found 

that many of the most Rim101-dependent genes, such as SOD5, CSA2, PGA7/RBT6, ECE1, CSA1, 

SAP5, HYR1 and RBT5 are specific to hyphae formation. Our drug filastatin has been previously 

shown to inhibit hyphal formation in C. albicans in both biotic and abiotic environments. 

Therefore, one hypothesis explaining the effects of filastatin is that it could interact with 

Rim101 or one of the hyphal-specific genes that it regulates, thereby inhibiting the formation of 

hyphae. Furthermore, Rim101 is known to also regulate genes that play a role in biofilm 

adherence, such as Pga10 and Csa1. Therefore, it is also possible that filastatin may inhibit the 

formation of biofilms by disrupting one of these pathways as well. Currently, more tests are 

needed to determine whether or not filastatin has an effect on Rim101 or any of its pathways 

(Nobile, et al., 2008). 



Of all of the genes of interest identified in the screen, a significant portion of them were 

found to be regulated by a transcription factor known as Hap43. Hap43 has previously been 

indicated in iron-metabolism due to the fact that mutants lacking Hap43 were unable to survive 

on iron-deficient media. However, Hap43 mutants displayed a normal ability to uptake iron in 

various assays, suggesting that Hap43 does not play a major role in iron acquisition but rather 

iron utilization. Quantitative gene analysis revealed that Hap43 is actually responsible for 

repressing genes that utilize iron under iron deprivation and upregulating iron acquisition 

genes. Most significantly, however, Hap43 mutants were shown to be considerably less virulent 

in comparison to the wild-type or heterozygotes in a mouse model of disseminated candidiasis. 

It has been long known that the human body (and mice) has extremely low concentrations of 

free-ionic iron in order to promote proper functioning of the immune system and to inhibit the 

growth of pathogens. Therefore, this suggests that the iron metabolism pathways regulated by 

Hap43 also play a critical role in fungal virulence. Because Hap43 has been shown to regulate 

many of our genes of interest, this seems to suggest that filastatin may play a role in disrupting 

the fungi’s ability to survive and switch to its virulent form in low iron conditions (Hsu, et al., 

2011).  

By focusing on our hypothesis that filastatin affects adhesion and virulence via 

disruption of C. albicans’ iron metabolism pathways, we identified PGA10 (which is also known 

as RBT51) as a particular gene of interest. During our screening process, we found that PGA10 

was one of three genes that were regulated by Hap43 and Rim101 that was known to play a 

role in iron-acquisition and metabolism. In particular, PGA10 has been found to be especially 

important in hemin and hemoglobin-iron acquisition. C. albicans mutants containing a deletion 



of PGA10 showed no growth on media in which hemoglobin was the only available iron source; 

however, when the PGA10 gene was complemented back into the mutant, the wild type 

phenotype was fully restored. In addition, heterozygotes for this gene demonstrated a reduced 

growth pattern on this type of media, suggesting a haploinsufficiency of strains possessing a 

single copy of the gene. PGA10 has also been shown to be induced in conditions of iron-

starvation; considering that several of the genes we found in our screening played a role in iron 

acquisition, this finding further strengthens our hypothesis that filastatin disrupts one or more 

iron metabolism pathways in the cell. Lastly, PGA10 has been shown to be a glycoprotein that 

localizes at the cellular envelope due to the presence of a GPI consensus sequence at its C-

termini and a predicted signal sequence at its N-termini (Weissman and Kornitzer, 2004). By 

utilizing this knowledge, we were able to suggest a potential hypothesis as to how filastatin 

works, which is summarized below in Figure 99. We suggest that filastatin and hemoglobin 

compete for binding sites on PGA10 at the surface of cells. In low-iron conditions, PGA10 is 

upregulated and expressed via Rim101 and Hap43 in order to acquire hemoglobin from its 

surroundings. Binding triggers the endocytosis of hemoglobin and PGA10 into the cell along 

with initiating signal transduction pathways (which are currently unknown to us) that induce 

hyphal growth and other virulence factors. In addition, several PGA10 receptors from different 

C.albicans cells can bind to a single molecule of hemoglobin. Therefore, a relatively large 

number of yeast cells are capable of binding to a small number of hemoglobin complexes. As a 

result, the cells begin to aggregate and form sheets as they begin to create an extracellular 

matrix. We speculate that filastatin disrupts the binding of PGA10 to hemoglobin. If this were 

the case, the presence of filastatin would prevent C. albicans from agglomerating into biofilms. 



We hypothesize that filastatin disrupts the binding of hemoglobin to PGA10, thereby inhibiting 

iron-acquisition, biofilm formation and other virulence factors. However, additional evidence is 

required before this hypothesis can be supported. A number of different assays that can be 

performed in the future in order to better understand the mechanism of filastatin will be 

discussed in detail later in this report. 

 

 

 

 

 

 

 

Though this proposed mechanism would explain how filastatin disrupts the formation of 

biofilms in vivo, it does not explain how filastatin can prevent and reverse biofilm on abiotic 

surfaces such as polystyrene. It is possible that this may not be the exact mechanism that 

filastatin utilizes or that filastatin may perform its function through a number of different 

pathways. Therefore, a number of different experiments should be performed to thoroughly 

elucidate the mechanism of action of filastatin in both biotic and abiotic environments. In 

addition, it may be necessary to perform a screen using another deletion library to study the 

effect of filastatin on non-transcription factor mutants. 

Figure 7: Example of a possible single target interaction with PGA10, which is regulated by Hap43 



There a number of experiments that should be performed in the future to better 

understand the mechanism of filastatin. To test our PGA10 hypothesis mentioned earlier, it 

may be beneficial to observe whether or not adding varying concentrations of hemoglobin in 

the presence of filastatin would be able to restore adhesion and biofilm formation capability to 

the wild type, SN250. Our hypothesis states that filastatin disrupts binding of PGA10 to 

hemoglobin, which in turn prevents cells from adhering to each other and forming biofilms. If 

this were true, adding hemoglobin should, in theory, lower the probability of filastatin binding 

to PGA10. As a result, this would restore the ability of Candida to agglomerate and form 

biofilms. One potential experimental model would be to use a double gradient; for example the 

concentration of filastatin could be varied down a single row on a 96 well plate while 

hemoglobin concentration could be varied down a single column. This set up would make it 

possible to study the effect of both hemoglobin and filastatin at a number of different 

concentrations. If our hypothesis is true, we would predict that as the concentration of 

hemoglobin is increased at a particular concentration of filastatin, binding of Candida to 

polystyrene should increase. Conversely, at low levels of hemoglobin and high levels of 

filastatin we would expect adhesion levels to be very low. This assay alone would not be able to 

strongly support our hypothesis; a number of additional experiments would also be needed 

improve our understanding of the relationship between PGA10, filastatin and hemoglobin. For 

example, a similar assay could be performed using iron (II) or iron (III) to determine if filastatin 

disrupts the interaction between PGA10 and the entire hemoglobin complex or only the central 

iron atom. 



In order to better understand and further validate the hits of interest that were found 

through our primary screening, it will be important to compliment and rescue the phenotypes 

that have been seen through the screening. This will involve taking some of the more promising 

candidates and using the previously described complementation protocol to place the gene of 

interest back into the genome at a highly expressed region. Then, the adhesion assay would 

need to be revisited, to show that to a degree of upmost certainty, the mutants that we are 

interested in are causing the phenotype exhibited. 

            After the knocked out gene has been replaced in the mutant’s genome, further testing 

can be done to help further validate the authenticity of our results. There are a variety of tests 

and possibilities for future testing, ranging from in vivo and in vitro.  One possible test at the in 

vivo level could be the use of a C. elegans survival assay with the use of our complimented 

strains and knockouts. This type of testing would be helpful in gaining a better understanding of 

how our knockouts and complemented strains affect a multi-cellular organism.  Another 

possible experiment set to explore would be the use of an in vitro biofilm growth assay to gain a 

better understanding of how our knockouts adhere to silicone, which is similar to the material 

of implanted medical devices (Fazly, et al., 2013). This MQP has shown much promise into 

gaining a further understanding of how filastatin functions; with further testing these promising 

leads can be further validated. 
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