
Abstract

The language and constructions of category theory have proven useful in unifying
disparate fields of study and bridging formal gaps between approaches, so it is natural
that a categorial eye should be turned to the theory of probability and its relation
to formal logic. [1] Continuing from the foundational work of Lawvere and Giry [2]
in developing a functorial theory of probability, Stuartz and Culbertson [3] detail the
central importance of and connection between deterministic processes and stochastic
processes. Fong expanded this theory to give a categorical account of Bayesian causal-
ity. Here we collect and summarize the rich body of research in categorical probability
theory, and further develop mathematical machinery for applications in algorithmic
Bayesian statistics. Particularly showing that stochastic networks of a certain type
satisfy the structural properties of a framed 2-category.
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1 Introduction

“Much more interesting than the
question of what is real is the question
of what is causal, i.e. what leads to
what.”

Daniel M. Ingram

Probability theory has broad applications in nearly every scientific and computational
field of research and application. Originally formulated for the study of games of chance, as
early as the sixteenth century, probability theory has been continuously developed by such
classic mathematicians as Cardano, Fermat, Pascal, and Laplace, until the advent of so called
“Modern probability theory”, frequently attributed to Kolmogorov [4]. While the first study
of probability theory emerged from the analysis combinatorial games of chance, probability
theory has expanded to encompass such diverse examples of stochastic processes as coding
theory, actuarial mathematics, biological and physical modeling, and decision theory.

One particular usage that has gained prominence in the last few decades with the increas-
ing centrality of computers in modern society is the use of probability theory as a tool for
rational automated decision making and knowledge discovery. The majority of information
processed by the human mind deals with some degree of uncertainty, and while the the-
ory of discrete logic has been developed extensively, a strong understanding of efficient and
effective stochastic reasoning remains illusive. Such studies are deeply connected with the
advancement of artificial intelligence, and the fields of formal logic and theoretical computer
science.

The language and constructions of category theory have proven useful in unifying dis-
parate fields of study and bridging formal gaps between approaches, so it is natural that a
categorial eye should be turned to the theory of probability and its relation to formal logic. [1]
Continuing from the foundational work of Lawvere and Giry [2] in developing a functorial
theory of probability, Stuartz and Culbertson [3] detail the central importance of and con-
nection between deterministic processes and stochastic processes. Fong expanded this theory
to give a categorical account of Bayesian causality. Here we collect and summarize the rich
body of research in categorical probability theory, and further develop mathematical machin-
ery for applications in algorithmic Bayesian statistics. Particularly showing that stochastic
networks of a certain type satisfy the structural properties of a framed 2-category.
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2 A Brief Introduction to Bayesian Probability

As soon as we recognize that
probabilities do not describe reality
only our information about reality –
the gates are wide open to the optimal
solution of problems of reasoning from
that information.

E. T. Jaynes

While probability theory has proved widely useful for the quantitative sciences in dealing
with uncertainty, the epistemic interpretation of probabilities is not entirely obvious. There
are many different interpretations and approaches to probability theory, the most prominent
of which are the Frequentist and Bayesian perspectives. Despite their differences, nearly all
approaches to probability theory are rooted in a fundamental theory, which we review here.

2.1 Random Variables and Stochastic Systems

Random Variables are the main object of study in probability theory. A random variable
is a collection of outcomes with a probability (a real number taking values on the interval
[0, 1] associated with each outcome, and so that the sum of probabilities is always 1. We
will give a rigorous treatment to random processes in section 4, so here it is best to proceed
by example, as the nature of simple random variables is quite intuitive. A system that
exhibit randomness and so whose components may be modeled by random variables is called
a stochastic system.

Example 2.1. The simplest example of a random variable is the uniform distribution on two
events, best embodied as a coin flip. Our collection of events are {Heads,Tails}, and if we are
considering a fairly weighted coin, then our probabilities are {(Heads,0.5),(Tails,05)}. This
simple example illustrates many of the key properties of random variables. Notice that the
possible events {Heads,Tails} of the random variable are disjoint; a coin cannot land both
heads and tails. It is clear from intuition that if we are considering the logical disjunction
of disjoint events (“the probability that the coin lands heads or tails”) , we should add the
probabilities. Further, it is clear that the probability the disjunction of all events is 1 (The
coin always lands either heads or tails). One may take this further to consider events with
probability 1 as those which occur “almost definitely”, and those with probability 0 occur
“almost never”.

Example 2.2. A slightly less trivial but still common example is the results of the roll of a
common six-sided die. We may label the faces {1,2,3,4,5,6}, and if the die is fair then they
have probability 1

6
each. Whereas a coin has only two events, we may consider here more

general groupings of events. It is clear that the probability of a roll of 1, 2, or 3, is the sum
of those probabilities, but it should also be clear that the probabilities of (1 or 2) or (2 or 3)
should not be the sum of their probabilities, or else we would double count 2. In the general
case, so long as the sets of events are disjoint, the probability of either collection of events
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occurring is the sum of that of each collection, but not so when the collections overlap. In
this particular case, we can easily count the probabilities of individual events, but as we will
see in the next example, probabilities are most naturally assigned to collections of events
rather than individual events.

Not all random variables can be fully described by considering the probabilities of in-
dividual events. In systems with an incalculably vast event set it is unfeasible to consider
individual events, so it becomes prudent to consider the limit in R of discrete probabilities.
If the distribution follows some smoothness conditions, then the probability of any given
event in the limit goes to 0, so we cannot compute the probability of a disjoint collection
of events simply based on their individual probabilities as in the discrete case. Indeed the
problem becomes much worse when not simply dealing with real approximations of discrete
systems but physically continuous variables such as the complex amplitudes of quantum
physics, which truly have no discrete analogue. In such cases it becomes necessary to define
a probability density function, where infinitesimal probabilities are assigned to infinitesimal
ranges of possible outcomes. The probability that our random variable takes a value in some
interval is then computed by integrating the density function over that interval. Because
we are integrating over an interval, this method is clearly easier when working with random
variables containing a natural order. In practice, most uncountable random variables do
have a natural order, but there are cases where they do not, and tools for computing the
calculation (e.g. Integrating over possible histories with Feynman diagrams).

While determining a proper probability density function of a continuous system is in
general more difficult than for a discrete system, maximum entropy methods have proven
widely useful in practice. The intuition behind maximum entropy is fundamentally Bayesian,
mandating that the probability density be the most general one that produces the observed
results. Formally, if the probability of an event is p(x), maximum entropy distributions are
those which fit the observed data and maximize the entropy∫ ∞

−∞
p(x) log(p(x))dx

which can be thought of as “unpredictability” in this instance. The simplest and most
widely used maximum entropy distribution is the “Gaussian” or “Normal” distribution,
which maximizes entropy given an observed mean and standard deviation. The normal
distribution for mean µ and standard deviation σ is given by

e−1
(x−µ)2

2σ2

σ
√

2π

Maximum entropy methods can also be useful for variables with merely countably infinite
events. In statistical thermodynamics, Boltzmann distributions are commonly used because
they maximize entropy subject to the physical constraints on the system.

Example 2.3. For example, the height of a human male in the united states as a continuous
random variable. We know that the average (mean) male height is about 70 inches and that
about 70% of males are between 67 and 73 inches. Suppose further that we may assume
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human height to follow a roughly normal distribution. Then we have a probability density
function given by the normal distribution with standard deviation about 3 inches.

D(x) =
1

3
√

2π
e−

(x−70)2

18

This is a probability density function, so to calculate the actual probability that a male is
between 70 and 71 inches we compute∫ 71

70

D(x)dx ≈ 13%

But the probability that someone is exactly 70 inches is∫ 70

70

D(x)dx = 0

This may not seem to connect with real experience (“of course there are people at exactly 70
inches!”), but consider that in performing height measurements, we are implicitly measuring
an interval by rounding to the nearest inch, 10th of an inch, etc.

It is this drive for generality that will drive us to consider more abstract definitions,
though most cases of interest can be extrapolated from the finite case via standard means.

Definition 2.1 (Conditional Probability). When studying an unknown stochastic system,
an attempt to characterize such a system is an attempt to give structure to the underlying
probability distribution and infer relations between stochastic events in the system. As we
recall from elementary probability theory, the probability of two unrelated stochastic events
occurring simultaneously is simply the product of their probabilities P (A∧B) = P (A)P (B).
However, in more complex systems there may be relations between probabilities, a flow of
information between them. We infer these relations when the joint probability P (A ∧B) is
not simply the product of independent probabilities. In these cases, we may speak of the
probability of an event given a context. The Conditional Probability of a random variable A
given some context C, is written P (A|C), and defined to be P (A|C) = P (A∧C)

P (C)
. The context

C is a collection of known information about the system, a collection of known outcomes
of other random variables in the system. In the simple case of discrete outcomes, we write
P (A|B = b) for the probability distribution on A given that we know the outcome of variable
B was b. In the general case, P (A|B) represents the total distribution for all A = a and
B = b.

Example 2.4. Conditional probabilities are used frequently in interpreting medical data.
One such example is the heated case of the early 1990s to determine if smoking really caused
lung cancer. In this simplified example let us say that 20 From the definition of conditional
probability, we readily obtain the celebrated inversion formula

P (A|B) =
P (A ∧B)

P (B)
=
P (B|A)P (A)

P (B)
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2.2 Bayesianism

There are technical differences in the two approaches, but these differences arise from a
difference in philosophy between Frequentist and Bayesian approaches in the interpreted
meaning of “probability”, and more practically, “conditional probability”. Frequentists view
probability as the fraction of experiments giving a particular outcome in the limit of infinite
experiments, using the “law of large numbers”. For example, when we flip a fair coin a
large number of times, we expect the fraction of heads to approach one half. In this case,
the probability is considered a property of the system to be measured. On the other hand,
the Bayesian view takes probability as a measure of uncertainty introduced by incomplete
information. We may consider again the flip of a fair coin. A coin flip is still subject to
the laws of physics, and in principle the exact trajectory of the coin could be determined
each time. Yet, if the trajectory is not measured, the coin is still subject to the laws of
probability, reflecting an uncertainty about the result of a (predetermined) process. From a
practical standpoint, Bayesian inference is born from Bayes’ Rule:

P (a|b) =
P (b|a) ∗ P (a)

P (b)
(1)

Where P (b|a) can be read as “the conditional probability of b given a”. Bayes’ Rule is

derived from the identity P (a|b) = P (a∧b)
P (b)

defining the conditional probability in terms of
the joint probability of a ∧ b. This gives a universal method for updating beliefs based
on new information. These conditional probabilities are taken as the fundamental unit of
Bayesian probability, allowing the construction of probabilistic models. A model takes some
conditionals as given (ex. computed via experimentation) and infers all other probabilities
using a chaining of Bayes’ Rule. This method of imagining probabilities as states of knowl-
edge elevates conditional probabilities to the “most natural” object of study, representing
our expectations based on previous knowledge of the system. In this case, it makes sense
to “update” our probabilities, without invoking philosophical issues of what it means for a
probability to “change”, we simply change our hypothesis based on new information.

2.3 Probabilistic Graphical Models

Definition 2.2 (Independence). While determining causality is tricky, characterizing con-
ditional probabilities is a powerful tool in understanding stochastic systems. In general it
is highly valuable to classify variables in two ways, those that have some conditional rela-
tionship P (A ∧ B) 6= P (A)P (B) we call dependent, whereas those whose joint probabilities
are the product P (A∧B) = P (A)P (B) we call independent. An equivalent characterization
that makes the dependence relation more clear is using conditional probabilities to say that
variables A and B are independent if P (A|B) = P (A) (Or equivalently, P (B|A) = P (B)).
We may denote that two variables are independent by writing A ⊥ B

Definition 2.3 (Conditional Independence). Since conditional probabilities cannot directly
characterize causality, what exactly do they suggest? Judea Pearl et al suggest that causal
influence is the primitive unit of connectivity, but that we may only directly measure con-
ditional probability as the transitive flow of causal information between variables. That is,
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if a conditional probability does not represent a direct causal influence, then the conditional
is mediated by a chain of direct causation of intermediate variables. To make this precise,
we introduce the notion of Conditional Independence. We say that two variables A,B are
conditionally independent given some context (i.e. a collection of random variables) C if the
following equivalent conditions hold

1. P (A|B,C) = P (A|C)

2. P (B|A,C) = P (B|C)

3. P (A ∧B|C) = P (A|C)P (B|C)

We denote that A,B are conditionally independent given a context C by writing A ⊥ B|C

Conditional independence says that causal influence between A,B is mediated by the
context C. If there exists no mediating context C (that is, A,B are conditionally dependent
given every context C), then we say there is Potential Cause between them. To determine
the direction of causality (i.e. A causes B or B causes A), we must find an asymmetry in
conditionality between some third variable X.

Definition 2.4 (Potential Cause). A random variable A is said to be a Potential Cause of
B if A,B are dependent in every context (∀C,A 6⊥ B|C) and there is a third variable X and
a context C so that A ⊥ X|C and B 6⊥ X|C. Intuitively this says that there is some other
variable X that varies independently of A, but influences B, while A also influences B; then
there is no other way for A to influence B other than through direct causation.

While this case seems strong, we can only say that A is a potential cause of B because
we are performing the independence calculation with a chosen set of variables included in
our model. In reality, there may be additional factors not yet considered. In practice it is
impossible to design a model that includes all possible factors as variables for a sufficiently
complex system, such as a biological organism, economic system, or many particle physical
system. Despite this, we may in many cases determine Direct Causal Influence without
explicitly considering all possible mediating factors.

Definition 2.5 (Genuine Cause). A random variable A is said to be a Genuine Cause of a
random variableB ifA,B are the transitive closure of the following conditions: ∀ contexts C,A 6⊥
B|C and there exists a variable X and context C so that

1. X is a potential cause of A

2. X 6⊥ B|C

3. X ⊥ B|A,C

These conditions can become difficult to keep track of as the number of variables and po-
tential causal influences increases. Bayesian Networks were invented as a graphical language
to keep track of conditional independence relations.
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Figure 1: A simple Bayesian Network
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Definition 2.6 (Bayesian Network). A Bayesian Network is a directed acyclic graph (DAG)
with nodes labeled by random variables and edges a→ b denoting potential causal influence
from a to b.

The graphical nature of Bayesian Networks makes them natural tools to facilitate rea-
soning about stochastic systems. As an example, consider a simple model for determining if
it is raining as seen in figure 1

Rain, Sprinkler and Grass Wet are all binary variables, true or false. Intuitively, this
model states that Rain causally affects the grass, as well as the sprinkler state (one wouldn’t
often leave the sprinkler on in the rain). Likewise, the sprinkler can also cause the grass
to be wet.We augment this graph to a proper probabilistic model by including proba-
bility distributions obtained via experimentation. For example the following tables for
P (SPRINKLER|RAIN), P (SPRINKLER), and P (WET |SPRINKLER,RAIN) respec-
tively:

Sprinkler
Rain T F

F 0.4 0.6
T 0.01 0.99

Rain
T F

0.2 0.8

Grass wet
Sprinkler Rain T F

F F 0.4 0.6
F T 0.01 0.99
T F 0.01 0.99
T T 0.01 0.99

These probability tables may be regarded as simple matrices and multiplied for the pur-
pose of composition. Bayesian networks may be augmented in a number of subtly different
ways. We shall still call all such modifications Bayesian Networks where the augmentation
is clear from context. One such augmentation we will consider here also considers potential
ambiguity between cause and effect. In this form of network, an undirected edge a− b rep-
resents a conditional dependence between a and b, whereas a directed edge a→ b represents
a potential causal influence form a to b.
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Using this formalization, Verma and Pearl [5] developed an algorithm (Inductive Cau-
sation, or IC algorithm) for inferring potential causal influence from a joint probability
distribution.
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IC algorithm

Data: P̂ , a stable distribution on a set V of variables.
Result: A pattern H(P̂ ) compatible with P̂ .
Start with an empty graph;
foreach variable a do

add a vertex labeled a to the graph
end
foreach pair of variables a, b in V do

search for a set Sab such that P (a|Sab, b) = P (a|Sab) (a ⊥ b|Sab) ;
if no such Sab exists then

add an (undirected) edge a− b
end

end
foreach pair of nonadjacent variables a, b in V do

foreach common neighbor c, of a and b in V do
if c ∈ Sab then continue
else add directed arcs pointing at c i.e. (a→ c← b)

end

end
repeat

foreach undirected edge a− b do
if there is an arc c→ a then

orient the edge as a→ b
end
else if there are arcs a→ c and c→ b then

orient the edge as a→ b
end
else if there are undirected edges a− c, a− b, and directed arcs c→ b, d→ b
with c, d nonadjacent then

orient the edge as a→ b
end
else if there is an undirected edge a− c and directed arcs c→ d and d→ b
with c, b nonadjacent and a, d adjacent then

orient the edge as a→ b
end

end

until there are no orientable edges ;
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The conditions for orienting undirected edges in the IC algorithm ensures that any alter-
native orientation would yield a new v-structure1 or a directed cycle. These conditions can
be visually described by the (complete) subgraphs below.

a

b

c ⇒

a

b

c

a

b

c ⇒

a

b

c

a

bc d ⇒

a

bc d

a

bc

d ⇒

a

bc

d

The first two rules preserve v-structures and the last two prevent directed cycles. This
algorithm provides (equivalence classes of) an underlying causal structure to a probability
distribution.

This algorithm does not consider the distinction between potential cause and direct cause.
Verma and Pearl also developed an augmented graphical language and algorithm for inferring
information about direct causation between variables. A reasonable hypothesis of Verma and
Pearl is that all conditional dependence relations are induced by direct causal influence of
observed or unobserved variables. In this model, we have four types of edges

1. Marked directed arrows a
∗→ b representing genuine direct causation of b via a

2. directed edges a → b representing a as a potential cause of b. This represents either
underlying causality a

∗→ b or some mediating unobserved variable a← c→ b

3. undirected edges a − b representing dependence between a and b in all contexts. As-
suming that all relations are given by direct causality, this edge represents either direct
causation a→ b, b→ a or causation by a mediating unobserved variable a← c→ b

4. bidirected edges a↔ b representing some hidden common cause a← c→ b

Using this formalization, Verma and Pearl developed an extension of the IC algorithm
to incorporate direct causal information.

1Chains of the form a→ b→ c, a→ b← c, a← b→ c are distinct v-structures
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IC* algorithm

Data: P̂ , a distribution on a set V of variables.
Result: A pattern H(P̂ ) compatible with P̂ .
Start with an empty graph;
foreach variable a do

add a vertex labeled a to the graph
end
foreach pair of variables a, b in V do

search for a set Sab such that P (a|Sab, b) = P (a|Sab) (a ⊥ b|Sab) ;
if no such Sab exists then

add an (undirected) edge a− b
end

end
foreach pair of nonadjacent variables a, b in V do

foreach common neighbor c, of a and b in V do
if c ∈ Sab then continue
else add directed arcs pointing at c i.e. (a→ c← b)

end

end
repeat

foreach nonadjacent pair a, b do

foreach common neighbor c of a, b with (a
∗→ c or a→ c) and b− c do

orient the edge b− c as b
∗→ c

end

end
foreach undirected edge a− b do

if there is a marked directed path a
∗→ x1

∗→ x2...
∗→ b then

orient the edge as a→ b
end

end

until there are no orientable edges ;
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The graphical language of Bayesian networks has proven quite useful for reasoning about
complex stochastic systems, by allowing researchers to express and quickly infer dependencies
between variables without calculating conditional independencies directly each time. Fully
marked and directed Bayesian networks may also be used as a tool for stating hypotheses
about causation, and suggest further experimentation where the current data suggests only
undirected or bidirected edges. In addition to the obvious dependencies of direct causation,
Bayesian networks also implicitly depict more complex induced relations between variables,
where the relationships change depending on observed variables within the network. In
general, determining all such induced relations is difficult, but many useful cases my be
inferred by the rules of d-separation.

Definition 2.7 (d-separation). Collections of variables A,B are considered d-separated by
a an observed set X if for every (bidirected) path P between variables of A and variables of
B, at least one of the following holds.

1. The path P contains a chain a→ x→ b where x ∈ X

2. The path P contains a span a← x→ b where x ∈ X

3. The path P contains a collider a→ y ← b where x 6∈ X

Under these conditions, one can infer a wide range of induced independence relations
and suggest variables to observe in experiment to determine genuine cause or to manipulate
to most efficiently induce a desired result from a stochastic system. The intuition behind
the first condition is that a acts on b through some chain of events (for example, smoking
causes tar accumulation in the lungs which cases lung cancer). If the one of the intermediate
variables is observed and thus rendered independent of its parent (the probability of it being
in the state it was, in fact, observed to be in becomes simply 1), then the chain is broken
and b is no longer dependent on a. Following our example, this means that if we observe
a patient to smoke heavily, but to happen to have a low level of tar in their lungs, then it
does not matter that they have been smoking, only the level of tar is relevant once its value
is known). Similarly for the second case, observation or manipulation of a mutual cause
renders its children independent. For example, if a predisposition to both smoking and lung
cancer were caused by a particular gene, then if one knew that they had the gene, it would
not matter how much they smoked, their probability of lung cancer is already fixed by their
genetics, though without already knowing their genetics, smoking would indicate a higher
chance of the cancer gene.

The final condition is better interpreted as an induced dependence. Under normal cir-
cumstances, if there is a collider a → x ← b, then a ⊥ b, we can infer no relation just
because they have a common effect. However, if we know the result of their common cause,
then the parents become causally related through their common effect, by explaining away
the cause. For example, both smoking and radon exposure cause lung cancer, but it is clear
that smoking does not increase exposure to radon, or radon increase ones desire to smoke, so
normally they would be independent. However, if we know that a patient has lung cancer,
then if we find that they are also a smoker, then it is much more likely that their lung cancer
was caused by smoking, and so, because probabilities of disjoint events must sum to 1, it
follows that the probability of radon exposure must decrease. Since the probabilities of all
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possible events sum to 1, one can think of “probability mass” as a conserved resource, and
explaining away a cause as “pulling probability mass” away from an alternative cause.

A critical feature of Bayesian networks as a graphical language for representing a proba-
bility distribution is the Markov property, which says that any two variables are conditionally
independent given the context consisting of their immediate parents parents (including undi-
rected and bidirected neighbors). Indeed, close observation of the IC and IC* algorithms
shows (and has been proven by Verma and Pearl) that any model constructed from this
algorithm must have the Markov property. The additional assumption implicit in Bayesian
networks is that every conditional relationship emerges from some direct, asymmetric cau-
sation of (observed or hidden) variables. This additional assumption makes Bayesian net-
works a powerful tool for reasoning about temporal relationships and potential interventions.
Among other things, the causal assumption requires that there be no directed cycles in the
network, as mutually causation is logically unsound.

There exist other graphical models capable of modeling symmetric conditional relation-
ships, and thus cyclic dependencies. One such example is the often used Markov Random
Fields

Definition 2.8. A Markov Random Field is an undirected graph with vertices labeled by
random variables and edges representing conditional dependencies between variables in all
contexts, such that all variables obey the Markov property regarding their neighbors.

Markov Random Fields are useful for representing ensembles of mutually interacting vari-
ables. For example, the physical laws governing particle interaction are mainly symmetric,
so the states of many interacting particles can be modeled by a Markov random field in the
shape of a grid, where neighboring particles can interact (and thus obey a dependence rela-
tion). Such symmetric relationships of interacting particles are impossible to correctly model
in Bayesian networks, because there is (as far as the current physical theories suggests) no
mutual cause of the symmetric force of field interactions (ex. magnetism), the mutual in-
teraction occurs simultaneously. On the other hand, Markov random fields cannot represent
such complex causal relationships as induced dependencies. Markov random fields are also
useful in thermodynamics because they represent exactly the stochastic systems that can be
represented by a Gibbs (Boltzmann) distribution. This allows a Markov random field once
specified to be generalized to an arbitrary number of interacting particles via transition to
a continuous Gibbs distribution.

Both Bayesian networks and Markov random fields represent special cases of a more
general principle, a factorization of a joint probability distribution. Recall that the joint
probability of independent collections of variables is simply the product of their individual
probabilities, but dependent variables may be related by more complex relationships. We
may express these more complex relationships as functions on the joint variables. For exam-
ple, if A,B are dependent, then we cannot simply write P (A ∧ B) = P (A)P (B), we must
say P (A ∧B) = f(A,B) for some function f : A×B → R

Definition 2.9. A Factorization of a joint probability distribution P (xi...) is a decomposition
into factor functions fj({xi|i ∈ Ij} taking values in the index set Ij, so that

P (xi...) =
∏
j

fj({xi|i ∈ Ij})
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For example, for a system with variables A,B,C and A ⊥ C, we have P (A,B,C) =
f1(A,B)f2(B,C) for some smaller joint functions f1, f2. As a causal model, this represents
the graph

A B C
f1 f2

Such a factorization must be represented by a Markov random field because the factorization
is given by independent pairwise joint distributions. If the graph above represented an
augmented Bayesian network, then we could only say that a, b, c are dependent, and that
the distribution cannot factor into an independent product. Thus, we could only say that
it is represented by some joint function f1(a, b, c). This is an example of a case where
Markov random fields may be more expressive than Bayesian networks in representing certain
factorizations.

If instead of simply a conditional relationship, we have a causal relationship a→ b, then
we are saying that a is causally independent of b, so for a Bayesian network

A B C
f1 f2

we can say that b is in fact a function of a and c, so that the probability distribution
factors as P (a)P (c)f1(a, a), where f1(a, a) represents the value of b given its parents a, c.
Such a causal factorization of a joint distribution is one that cannot be represented by
Markov random fields, but can be captured by Bayesian networks.

The factorizing captured by Bayesian networks and Markov random fields can be merged
into a generalization of both called factor graphs, representing arbitrary factorizations of
probability distributions.

Definition 2.10 (Factor Graph). In the classic formulation, a Factor Graph for a joint
distribution P (x1, ..., xn) is an undirected bipartite graph with one bipartite part of nodes
uniquely labeled by the variables xi and the other part uniquely labeled by functions gk :
xk → R where {x}k ⊆ {xi} simply denotes the domain of gk. As their name implies, factor
graphs represent a factorization of the joint distribution with P (x1, ..., xn) =

∏K
k=1 gk({x}k).

Factor graphs can be augmented into directed factor graphs to convey direct causal structure
[6]
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3 Overview of Category Theory

By relieving the brain of all
unnecessary work, a good notation sets
it free to concentrate on more
advanced problems, and in effect
increases the mental power of the race.

Alfred Whitehead

3.1 Besic Definitions

The functional quality, proximity to formal logic, and naturally graphical presentation of
probability networks all point towards category theory as a potential tool for further analy-
sis. Category theory is a natural setting for unifying diverse concepts in mathematics, and
studying higher order relationships. In this manuscript we mainly follow Mac Lane’s classic
formalism [7] but refer to some more modern works where noted.

Definition 3.1 (Category). A Category C is a collection (class) of objects c ∈ C, together
with a collection of morphisms or arrows f : X → Y between objects of C. In addition, we
have the following two constructions

1. (Identity) For each object a ∈ C, a unique identity morphism ida = 1a : a→ a

2. (Composition) For each pair of morphisms (f : a→ b, g : b→ c), a composite morphism
g ◦ f : a→ c

We may represent functional equations as a labeled directed graph called a Diagram such as

b

a c

f g

g ◦ f

We say that a diagram Commutes, and so call it a Commutative Diagram, if we additionally
hold that all paths in the diagram are equal as functions, and dotted arrows represent
necessary morphisms given the others. For example, the above is a commutative diagram
for the composition law.
The identity and composition constructions additionally satisfy two laws:

1. (Associativity.) For objects and and arrows like a
f−→ b

g−→ c
k−→ d it is always the case

that k ◦ (g ◦ f) = (k ◦ g) ◦ f . This property can be represented by the commutative

17



diagram

a

b

d

c

k ◦ (g ◦ f)

(k ◦ g) ◦ f

f

g

k
g ◦ fk ◦ g

2. (Unit Law.) For all arrows f : a→ b and g : b→ c, idb ◦ f = f and g ◦ idb = g. This
can be represented by the commutative diagram

a b

b c

f

f
idb

g

g

In many cases it is a useful intuition to consider morphisms as “generalized homomor-
phisms”, though they they can represent much more.

Definition 3.2. Dealing with categories defined over proper classes can run into similar
problems encountered in set theory, thus, we typically like to work with “smaller” categories.
A category is Small if the class of objects is a set, and Large if it is a proper class. In many
cases, we can get away with a weaker condition. A Locally Small category is one such that
for any two objects a, b ∈ C, the set of morphisms a→ b is a set.

Definition 3.3 (Functor). A factor F : C → C ′ is a map on objects and morphisms. T
maps each object c to an object Tc of C ′, and each morphism f to a morphism Tf of C ′ to
an object of C ′ subject to the morphism constraints

T (1c) = 1Tc, T (g ◦ f) = Tg ◦ Tf

Example 3.1. We may construct the category Cat of small categories with functors between
them as morphisms in the category. While Cat is not small, it is locally small.

Definition 3.4 (Diagram). We have informally discussed commutative diagrams already.
Formally, a Diagram in C of type J is a (covariant) functor D : J → C. We call J the index
category, and sometimes refer to D as a J-shaped diagram in C. Intuitively, the objects
and morphisms of J do not matter much, we only care about their relative interconnection
as it maps into C. This definition gives strength to our informal definition of commutative
diagrams. Commutative diagrams simply represent diagrams with the identity arrows un-
drawn. Note however that not all diagrams defined in this way commute; asserting that a
diagram commutes is an additional property that we posit as mathematicians.
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Definition 3.5 (Natural Transformation). For any two categories C,B the Functor Cate-
gory, written BC has functors C → B as objects. The morphisms in BC are called Natural
Transformations. For two functors S, T : C → B, a Natural Transformation τ : S

•−→ T maps
each object c ∈ C to an arrow τc : Sc → Tc of B so that for each arrow f : c → c′ in C,
τc′ ◦ F (f) = G(f) ◦ τc. Diagrammatically, the follow diagram commutes

c

c′

Sc

Sc′

Tc

Tc′

f Sf Tf

τc

τc′

Intuitively, a natural transformation is a map between functors with the same domain and
codomain, giving a way to transform the image of S into the image of T by pointwise
“transport” of the objects. Considering S and T as C shaped diagrams in D, we are taking
the diagram S and “pulling” it into the diagram T and creating a “3D” diagram.

3.2 Constructions

Example 3.2 (Arrow Category). The idea of natural transformations being morphisms
between functors can be generalized to the notion of an Arrow Category C ↑ for any category
C. The arrow category has objects the morphisms of C, and morphisms α : (m : A→ B)→
(n : C → D) are the pairs of functions (f, g) forming the commuting squares

A
m

B

C D
n

f gα

Equivalently, we may formally construct this category as the category CI where I is
the category with two objects 0, 1 and a single non-identity morphism 0 → 1.The effect
of such a functor F ∈ CI is to pick out an arrow F (0) → F (1) in C, and a natural
transformation F → G is then a pair of arrows F (0) → G(0), F (1) → G(1) so that the
natural transformation laws hold.

Definition 3.6. A particular functor if interest is the functor op : C → Cop that makes
each category to its opposite category, or dual category, the category with all arrows reversed.
op is used so frequently that we call a functor F : Cop → D contravariant to call attention
to the fact that such a functor precomposes arrows in reverse, by analogy to tensor anal-
ysis. A “normal” functor is then called covariant. Since duality is an isomorphism, every
construction on a category gives us an equivalent dual construction on its opposite category.

Definition 3.7 (Product Category). For any two categories C,D we may construct their
product category C×D with objects as pairs 〈c, d〉 c ∈ C, d ∈ D and arrows 〈f, g〉 : 〈c, d〉 →
〈c′, d′〉 f : c→ c′, g : d→ d′. For each product category C ×D we have projection functors
ΠC : C ×D → C and ΠD : C ×D → D which simply select the corresponding component
in the objects or arrows.
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Definition 3.8 (Multifunctor). A Multifunctor is a functor from product categories, or may
be thought of as functors in multiple arguments. If the functor is from a single product
F : B × C → D we call it a Bifunctor. Such functors are quite common, for example the
Cartesian product bifunctor × : Set×Set → Set, or more generally the product functor
: Cat×Cat → Cat mapping a pair of categories to its product category. We may have
multifunctors from dual categories such as F : B × Cop × D → X. In this case, we call F
contravariant in C and covariant in B and D.

Definition 3.9 (Hom-functor). One of the most common bifunctors is the Hom-functor
for a category C, hom : Cop × C → Set, mapping a pair of objects in C to the set of
morphisms between them, and each pair of arrows f : a → a′, g : b → b′ to the set function
hom(f, g) : hom(a′, b)→ hom(a, b′) by the action g ◦h ◦ f for h ∈ hom(a′, b). We often write
the hom map as C(−,−) for the category C. Note that hom is contravariant in its first
argument because the application involves precomposition: it maps an arrow f : a→ a′ to a
function in the opposite direction. This can be illustrated by fixing g = Id and considering,
for f : a → a′, C(f, Id) : C(a′, b) → C(a, b). We say that a property holds Locally in a
category C if it is true for all hom-sets C(a, b) ∀a, b ∈ C

3.3 Enriched and Higher Catgories

Definition 3.10 (Enriched Category). In many cases, the collection of arrows between
objects in a category has more structure than a simple set, and in fact has the structure of
some category V . In this case we may replace the notion of the hom functor with a similar
functor Cop×C → V . Here we say that C is Enriched over V , or simply a V-Category. Note
that in order for such a replacement to make sense, the category V must have additional
properties analogous to hom-set composition and the identity arrow, namely, it must be a
Monoidal Category

Definition 3.11 (Strict Monoidal Category). As the name suggests, a monoidal category
is a category that is also a monoid. Formally, a (Strict) Monoidal Category is a category C
together with

• A bifunctor ⊗ : C × C → C called the tensor product

• An identity object I

Satisfying
(A⊗B)⊗ C = A⊗ (B ⊗ C) (Associativity)

A⊗ I = I ⊗ A = A (Unit)

Notice that the associativity and unit property of a monoidal category are exactly the
properties required of arrows in a category. Indeed, this structure is sufficient to allow objects
of a monoidal category V to act as “Arrow objects” for some category enriched in V

Definition 3.12 (Strict 2-Category). The notion of a category may be generalized to provide
for morphisms between morphisms, by way of 2-categories. There are many equivalent and
isomorphic definitions of 2-categories but often their construction Because we are dealing
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only with strict 2-categories here (where associativity and identity laws are equalities, rather
than only holding up to natural isomorphism), we may simply sat that a (Strict) 2-Category
C is a category enriched over Cat. That is, the collection of morphisms from any object
a ∈ C to any other b ∈ C in a 2-category are themselves objects in their own category
C(a, b). To avoid confusion in higher categories, we call the objects 0-cells, the morphisms
1-cells, and the morphisms between morphisms 2-cells. We can draw the 0-cell A,B, 1-cells
f, g : A→ B, and 2-cell α : f ⇒ g as

A

f

g

Bα

The study of 2-categories and more general n-categories is an enormous field and repre-
sents a great expansion of category theory since the classic work of Maclane. Many concepts
of classic category theory are elucidated or simplified extensively by a transition to a higher
category perspective. We will need only very basic 2-categorical machinery here, but the
interested reader is referred to [8], [9] and [10] for a more general definition, extensive study
of 2-categories, and higher categories respectively.

Example 3.3. The prototypical example of a 2-category is Cat considered as a 2-category
with 0-cells objects, 1-cells functors, and 2-cells natural transformations. This follows readily
from enriching 1-Cat over the disjoint union of all functor categories BA ∀A,B ∈ Cat
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4 Categorical Probability Theory

Category Theory is the subject where
you can leave the definitions as
exercises.

John C. Baez

Here we develop two categories Meas and Stoch to give a formal categorical basis for
probability theory and then show that these two categories can be unified into a single
construction, the framed 2-category Prob. The categories Meas and Stoch were originally
characterized by Lawvere2 and Giry [2], but here we follow the more modern interpretation
of Culbertson & Sturtz [3] and Fong [11]. The basics of probability and measure theory
discussed here may be found in any introductory text on the subject and the reader is
referred to the texts of Ash [12] and Dudley [13] for a deeper coverage of these topics.

4.1 Measurable Sets and Functions

Definition 4.1 (Measurable Space). A σ-algebra over a set X is a subset ΣX ⊆ 2X of the
powerset of X satisfying:

1. Nonempty: ΣX 6= ∅

2. Complements: A ∈ ΣX =⇒ X − A ∈ ΣX

3. Unions: A,B ∈ ΣX =⇒ A ∪B ∈ ΣX

We call the elements S ∈ ΣX Measurable Sets, and the pair (X,ΣX) a Measurable Space,
and a function f : (X,ΣX) → (Y,ΣY ) between measurable spaces a Measurable Function if
f−1(y ∈ ΣY ) ∈ ΣX . For simplicity we refer to a measurable space simply as X if the context
is clear, ΣX is the σ-algebra on X, and σX is an element of ΣX

Definition 4.2 (Meas). Measurable spaces form a categoryMeas, with objects as measur-
able spaces and morphisms as measurable functions. [3].

In addition, this category forms a monoidal category where the identity object is any sin-

gleton measurable space 1
def≡({∗}, {∅, {}}) and the tensor product acts on objects (A,ΣA)×

(B,ΣB) 7→ (A × B,ΣA × ΣB) sending pairs of measurable spaces to the measurable spaces
defined by their Cartesian product.

Note that the Cartesian product is not strictly associative, nor is the Cartesian product
A⊗ 1 exactly equal to A, but merely isomorphic (by the map (a, ∗)↔ a). Such a category
whose coherence conditions only hold up to isomorphism are called weak monoidal categories.
The more general definition is given in the appendix, but we will not concern ourselves with
the technicalities here, as every weak monoidal category is equivalent to a strict one by
Mac Lane’s coherence theorem [7]. So we may proceed by simply remembering to use the
appropriate coherence isomorphisms when necessary.

2Unpublished, Lawvere was Giry’s advisor in the following work
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Example 4.1 (Countably Generated σ-Algebra). An important subclass of σ-algebras are
those that are Countably Generated. That is, those that are constructed as the closure
under complements and unions of a countable collection of “generating sets”. Notably, this
excludes the standard σ-algebra on R (the Lebesgue sets or the Borel sets).

Example 4.2 (Borel σ-algebra). A particularly interesting class of measurable spaces are
those generated by a topological space, called the Borel σ-algebra. Recall that a topological
space is a set X and a collection τ of “open” subsets of X called a topologoy on X where τ
satisfies the following properties

1. ∅, X ∈ τX

2. τ is closed under arbitrary unions

3. τ is closed under finite unions

The borel closure B(τX) is given by completing τX with complements i.e. by including also
the closed sets. Typically we just write τ for B(τ) or refer to the whole induced measurable
space as simply X when the context is clear.

Example 4.3 (Discrete σ-algebra). One example of a Borel algebra the we will use exten-
siviely is that of the discrete σ-algebra. The discrete algebra on a finite set X is simply the
powerset of X i.e. the set of all subsets of X, {σX |σX ⊆ X}

Definition 4.3 (Measure). A Measure on a σ-algebra ΣX is a map µ : ΣX → R satisfying:

1. Non-negative: ∀A ∈ ΣX : µ(A) ≥ 0

2. Null empty set: µ(∅) = 0

3. σ-additivity: For σX =
⋃
iAi for (countably many) mutually disjoint Ai then µ(σX) =∑

i µx(Ai)

If in addition µ(X) = 1 then we further call µ a Probability Measure

Definition 4.4 (Measure Space). A Measure Space is a measurable space equiped with a
measure. Formally, it is a triple (X,ΣX , µX) with X a set, ΣX a σ-algebra over X and µX a
measure on X. If µ is a probability measure then we further call it a Probability Space. We
will mainly concern ourselves with probability spaces here. When there is no ambiguity we
refere to a measure space simply by its set (ex: X), and always refer to its measure by µX .

Measure spaces also form a category Rand with objects as perfect3 measure spaces
(X,ΣX , µX) and morphisms φ : (X,ΣX , µX) → (Y,ΣY , µY ) measurable functions on the

3A measure space X is perfect if for any measurable function f : X → R, there exists a Borel set
E ⊂ f(X) such that µX(f−1(E)) = µ(X). This stipulation ensures that, among other things, we end up
with “optimal” conditionals in the sense that we use as much information as possible to formulate conditional
probabilities, and never “forget” information along the way. The formalization is tedious, and the results
match standard intuition for classic Bayesian probability from section 2, so the interested reader is referred
to [14] for a complete exposition. The intuition is that when performing Bayesian inference, we speak of
“The” probability of some variable X, or “The” conditional probability between variables. This restricts
our category to unique morphisms between any two objects representing the “optimal” probability given the
data
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underlying measurable space such that φ preserves the measure

∀σ ∈ ΣY . φ∗µX(σ)
def≡ µX(φ−1(σ)) = µY (σ) (2)

We need only show that the composition of measure preserving maps is also measure pre-

serving because associativity and the identity are inherited from Set. Let X
φ→ Y

ψ→ Z
for X, Y, Z measure spaces. Then µX((ψ ◦ φ)−1(σZ) = µX(φ−1(ψ−1(σZ))) = µY (ψ−1(σZ)) =
µZ(σZ) by simply applying the measure preserving properties of φ and ψ in sequence.

Example 4.4 (Characteristic Function). Define χ : X × ΣX → R be the characteristic

function χ(x, σX) =

{
1, if x ∈ σX
0, otherwise

It is easy to check that χ(x, ·) for a fixed x is a proba-

bility measure. Similarly, χ(·, σX) for a fixed σX is a measurable function when considering
R as a measure space equipped with its standard borel σ-algebra.For simplicity we write

χx
def≡ χ(x, ·) and χσX

def≡ χ(·, σX)

Definition 4.5 (Atomic). Given a measure space X, a set σ ∈ ΣX is an atom if

∀(ε ∈ ΣX) ⊂ σ. µX(σ) > µ(ε) = 0

A measure space is said to be atomic if it has at least one atom.

Remark 4.1. Every countably generated σ-algebra is atomic, and the atoms are given by
the intersection over generating sets containing a given point. For a family of generating sets
CX , the atoms are

Atoms = {A|x ∈ X,A =
⋂

C∈CX ,x∈C

C, µX(A) > 0} (3)

The proof follows readily from the well known theorem of Sierpiński [15] that if a measure
space X is non-atomic then

∀b ∈ R, A ∈ ΣX , s.t. µX(A) ≥ b ≥ 0. ∃(B ∈ ΣX) ⊆ A. s.t. µ(B) = b

Most importantly, the measure µ of a countably generated space is uniquely determined
by its values on the atoms. To see this take the intersection of some set Further, the atoms
of a countably generated σ-algebra themselves form a generating family for the algebra. It
follows that the measure is uniquely determined by its values on atoms, since every set is
formed through complement and countable union of atoms, and remembering σ-additivity

4.2 Categories of Stochastic Maps

Maps between measure spaces may alternatively be thought of as “measures parameterized
by a set” as follows.

Definition 4.6 (Stochastic Map). A Stochastic Map k : (X,ΣX) 9 (Y,ΣY ) between mea-
surable spaces is a function k : X×ΣY → [0, 1] such that k(x, ·) : ΣY → [0, 1] is a probability
measure on Y and k(·, σ) : X → [0, 1] is measurable

24



The category Stoch has objects as measurable spaces and morphisms stochastic maps.

Composition of Stochastic maps f ◦ g : (X,ΣX)
f→ (Y,ΣY )

g→ (Z,ΣZ) is via the integral:

f ◦ g(x, σZ)
def≡
∫
y∈Y

f(y, σZ)g(x, dy) (4)

Definition 4.7 (Product Measure). Stoch is also a monoidal category with the same

monoidal unit as Meas (I = 1
def≡({∗}, {∅, {∗}})). The tensor product acts on objects

in the same way as Meas, that is, it sends pairs of measurable spaces to their product
measurable space given by the Cartesian product of their σ-algebras. On morphisms, the
tensor product sends pairs of stochastic maps (M : A 9 B,N : C 9 D) to the product
M × N : A × C 9 B ×D defined by M × N((a, c), (σB, σD) = M(a, σB) ∗ N(c, σD). Thus
the tensor product represents the joint measure where the two objects are independent.

Example 4.5 (Countably Generated Measure Spaces). If we restrict ourselves to countably
generated measure spaces, then the integral takes a particularly simple form since we have
a surjective mapping from the points y ∈ Y to the atomic sets on Y . Since a measure is
uniquely determined by its value on atoms, we may take our dy to range over the atoms Ay
corresponding to the point y, so the integral reduces to

f ◦ g(x, σZ) =
∑
z∈σZ

∑
y∈Y

f(y, Az)g(x,Ay) (5)

Example 4.6. In the case of finite sets X with the discrete σ-algebra ΣX = 2X (powerset),
the atoms further reduce to be a singleton sets. Then the composition of stochastic maps
simplifies to

f ◦ g(x, σZ) ≡
∑
z∈σZ

∑
y∈Y

f(y, {z})g(x, {y}) = [σZ ]TFG[{x}]

where F,G are matrices indexed by set elements (regarded to have some arbitrary fixed
ordering) with Gy,x, Fz,y the measures on g(x, {y}), f(y, {z}) and [σZ ] regarded as the length
|Z| characteristic row vector with elements [σZ ]z = χ(z, σZ)

Remark 4.2. The integral in equation (4) is taken to be the appropriate Lebesgue integral
on the space. For reasons to become clear shortly, we limit ourselves to countably generated
measure spaces for the majority of this paper, where such integrals take this particularly
simple form. All integration results hering are valid in the more general context so long as
one checks well definedness and convergence conditions for the corresponding integrals.

Definition 4.8 (Deterministic Maps). There is a special case of stochastic maps which may
be called deterministic. These are the stochastic maps having values in only {0, 1}. Such
maps are called deterministic because their input/output pair happen almost surely (1) or
never (0).

The characteristic function is one example of a deterministic stochastic map, but we will
now classify the more general cases
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Definition 4.9 (Point Measure). For a measurable function f : (X,ΣX) → (Y,ΣY ) define
the point measure

δf (x, σY )
def≡(χσY ◦ f)(x) ≡

{
1, if x ∈ Y
0, if x /∈ Y

Proposition 4.1. For measurable functions f, g : (X,ΣX)
f→ (Y,ΣY )

g→ (Z,ΣZ), the com-
position of their point measures is the point measure of their composition δg ◦ δf = δg◦f .

Proof: Expanding the definition of composition and point measure:

(δg ◦ δf )(x, σZ) ≡
∫
y∈Y

χ(g(y), σZ)χ(f(x), dy)

Since χ takes values 0, 1, we may look at each component individually. χ(f(x), ·) is equivalent
to the statement f(x) ∈ dy, but since dy is an infinitesimal, this is only true if f(x) = y ∈ Y .
Similarly χ(g(y), σZ) but y = f(x) so we have the integral over g(f(x)) ∈ σZ �

In fact, for countably generated measurable spaces, the point measures completely char-
acterize deterministic maps. More precisely, [3] (Proposition 2.1) showed that

Proposition 4.2. If (Y,ΣY ) is a countably generated measurable space, then a stochastic

map X
M9 Y is deterministic if and only if M = δf for some measurable function f : X → Y .

another important property, also from [3] is that

Proposition 4.3. If (X,ΣX)
M= (Y,Σy) is an isomorphism in Stoch then M is determin-

istic.

Remark 4.3. Probability measures µX on a measurable space X may be viewed as mor-
phisms µ̂ : 1 9 X in Stoch, where 1 is any (necessarily equivalent) single object measure

space. To see this, recognized that such a morphism is a function ∗× σX
µ̂X9 [0, 1] where ∗ is

the unique object of the measurable space 1. This extra ∗ provides no additional information

to the function, so we can reduce it to σX
µ̂X9 [0, 1] which is just a measure on X.

We can also convert measures on X into arrows from X to the object 2 with objects

(WOLOG) {0, 1}. Evidently any X
M9 2 is a measurable function in the left argument by

definition. But if we are dealing with countably generated spaces,then the measures are
generated by their values on singletons. Since M(x, ·) is a probability measure, we have
that M(x, 0) + M(x, 1) = 1; that is, x is either true or not, prob(x) = 1− prob(x). These
properties are not enough to ensure that M builds a probability measure over X. We must
explicitly construct µX : X 9 2 so that µX(x, 1) = µ({x}) and hence

∫
X
µX(x, 1) = 1. Then

µX can be interpreted as a probability measure.
So for a measure µ on X we have a correspondence between morphisms µ̂ : 1 9 X and

µ : X 9 2. This gives us a choice of two embeddings. Using µ, composition proceeds in the
normal order as in equation (2). However, the construction of µ is messy, and moreover, µ̂
has the nice property that every morphisms 1 9 X is a probability measure on X. So we
will proceed with µ̂
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Note however that the order of composition for µ̂ is reversed from that of µ. More
generally, it can be seen that any morphisms x× σY → [0, 1] is actually contravariant in its
right argument. This is an important property, and fits with the generalization of profunctors
(φ : A 9 B ≡ A × Bop → V where A,B are both enriched over V) to proarrows, which we
shall see in the next section.

Based on this interpretation of measures in Stoch, we see that the condition (2) is just
the requirement that for measurable function f : X → Y , we have

δf ◦ µ̂X ≡
∫
X

χ(f(x), σY )µ̂X(∗, dx) ≡
∫
x∈f−1(σY )

µ̂X(∗, {x}) ≡ µ̂X(∗, f−1(σY )) = µ̂Y (∗, σY )

Which is ensured by X, Y having perfect measures. The intuition here is that if we were
performing Bayesian inference, we could not choose our PX , PY , and PY |X freely, at any
single point in time we’d have PY = PY |X ∗ PX or our probabilities would be inconsistent.

So we have that

Proposition 4.4. There is an equivalence of categories between the subcategory of Stoch,
restricted to countably generated measurable spaces, with deterministic non-terminal mor-
phisms, and the category Rand.

From here on, we will restrict ourselves to the subcategories with countably generated
measurable spaces, referred to as CGStoch, CGMeas and CGRand as the subcategories
of Stoch,Meas, and Rand respectively, following [11].

5 The Framed 2-Category of Probabilistic Mappings

It is important to distinguish the
difficulty of describing and learning a
piece of notation from the difficulty of
mastering its implications. [...] Indeed,
the very suggestiveness of a notation
may make it seem harder to learn
because of the many properties it
suggests for exploration.

Kenneth E. Iverson

CGRand may be though of as “CGMeas lifted into CGStoch plus basic probabilities”.
Indeed the point measure forms an adjoint “free construction” functor lifting CGMeas into
CGStoch as shown in [?]. The meaning of the “plus basic probabilities” will be made clear
in this chapter. First, we will take time to expand on the relationship between CGMeas and
CGStoch. We will see that the characteristic function forms a bridge between measurable
functions and stochastic maps. Precisely, CGMeas may be merged with CGStoch in a
particular way to form a category with two distinct types of morphisms between objects,
called a framed category, which we discuss in the next section.
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5.1 Framed Categories

Framed 2-Categories centralize the notion of a 2-category with two distinct types of in-
teracting 1-cells.For a rich exposition of framed categories and related theory, the author
recommends [16].

We start by defining a category with two types of 1-cells (a double category). Next
we introduce framed categories properly by giving additional structure allowing one type of
1-cell to be “pulled back” or “base changed” along another. We show that the category of
probabilistic maps is an example of a framed category, and develop useful constructions in
this category through the machinery of framed categories.

Definition 5.1 (Double Category). A double category D consists of a category D0 of
objects with “vertical arrows” and a category D1 of “horizontal arrows” with natural trans-
formations related by the following functors

U : D0 → D1 (Identity)

L,R : D0 → D1 (Source,Target)

� : D1 ×D0 D1 → D1 (Composition)

Where D1 ×D0 D1 is the pullback D1
R→ D0

L← D1. The pairs of horizontal arrows with the
source of the second matching the target of the first, and such that:

L(UA) = R(UA) = A

L(M �N) = L(M)

R(M �N) = R(N)

and equipped with natural isomorphisms (iso arrows in D1)

a : (M �N)� P
∼=→M � (N � P ) (Associator)

l : UA �M
∼=→M (Left Unitor)

r : M � UB
∼=→M (Right Unitor)

such that L and R of the above natural isomorphisms are identities in D0

Intuitively, we may think of a double category as a bicategory with two different types
of 1-cells. We do this by considering the objects of D0 as 0-cells of D, the arrows of D0

as “vertical 1-cells” of D, and the objects of D1 as “horizontal 1-cells” of D. As suggested
by their names, we draw vertical 1-cells vertically and horizontal 1-cells horizontally with a
slash to avoid confusion.

The arrows of D1 as the 2-cells of D. 2-cells α may be visualized by the square formed by
the image of L and R on α as in figure 2. Note that the horizontal composition operation
� is in the reverse order of typical arrow composition. We choose this notation following
[16] because it simplifies many expositions, allowing M � N to correspond to left-to-right
juxtaposition of arrows M,N in a diagram. Another way to think about a double category
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A /

M

B

C D/

N

L(α) R(α)α

Figure 2: Relation between 2-cells and vertical/horizontal 1-cells in a double category

D is as a tuple consisting of a category D0 of objects and vertical 1-cells, (as above) and a
bicategory D with the objects, horizontal 1-cells and 2-cells and a compatibility between the
two types of 1-cells. This is often the most natural way to form a double category, whenever
a set may be made into a (bi)category in two compatible ways.

Example 5.1. The motivating example of a double category is the category Prof with
0-cells (small) categories, vertical 1-cells functors, horizontal 1-cells profunctors, and 2-cells
natural transformations between profunctors. Equivalently, Prof may be considered as the
augmentation of the bicategory of profunctors with the usual Cat arrows.

Example 5.2. Perhaps of more interest to us is the double category Mod with 0-cells
as rings, vertical 1-cells as ring homomorphisms, horizontal 1-cells M : A 9 B as an
(A,B)-bimodule, and 2-cells as (L(α), R(α))-bilinear maps (module homomorphisms). An
(f, g)-bilinear map M → N is an abelian group homomorphism α : M → N such that
α(amb) = f(a)α(m)g(b). Composition of modules is given by the tensor product of modules
M �N = M ⊗B N . It is then easy to check that the coherence conditions hold.

Definition 5.2 (Prob). Let us define the (conjectural) double category Prob of probabilistic
mappings.
The 0-cells of Prob are measurable spaces (X,ΣX).
The vertical 1-cells of Prob are measurable functions f : (X,ΣX)→ (Y,ΣY ).
The horizontal 1-cells of Prob are stochastic maps M : X × ΣY → [0, 1].
The 2-cells α : (M : X 9 Y ) ⇒ (N : A 9 B) are triples (f, α, g) of measurable func-
tions where f : X → A, g : Y → B and group endomorphism α(M(·, ·)) 7→ N(f(·), g(·)).
Notice that this definition of 2-cells is contravariant, in that an α : M ⇒ N actually lets
us construct an (endomorphism of) M from an N by retraction along (f, g) as depicted below.

(X,ΣX) /

M

(Y,ΣY )

(A,ΣA) /

N

(B,ΣB)

f gα

Remark 5.1. . More generally, if we don’t require that our measures be probability mea-
sures, the 2-cells consist of triples (f, α, g) where α maps M(x, σY ) 7→ Mα(f(x), g(σY ))
and α(M) is a continuous group endomorphism of M on R+.The only such endomorphisms
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on R+ are those of the form f(x) = cx by the well known solution to the Cauchy equa-
tion f(x + y) = f(x) + f(y) (equivalent to an endomorphism on R+. Since we require all
probability measures to sum to 1, in that case the c is uniquely fixed as determined by
the normalization requirements of α given (f, g) and the only allowable endomorphisms are
inclusions and projections with normalization.

Theorem 5.1. Prob forms a double category with suitable structure maps U,L,R

Proof: The 0-cells and vertical 1-cells of Prob may be considered as the category CGMeas
previously defined. Likewise, the horizontal 1-cells and 2-cells may be considered as the arrow
category CGStoch ↑. Giving D0 = CGMeas,D1 = CGStoch ↑

We further equip Prob with the necessary functors to define a double category. A
functor U : CGMeas → CGStoch ↑ sending objects the the characteristic function
U((X,ΣX))(x, σX) = χσX (x) 4 and sending measurable functions f : A → B to the 2-
cell fUf : U(A) → U(B) defined by U(f)(x, σX) = (χf(σX) ◦ f). In general for a stochastic
maps M : A→ B and measurable functions f : X → A, g : Y → B, we define

fMg(x, σY )
def≡M(f(x), g(σY )) (6)

This notation is very convenient, and we will find later that it exhibits many important
properties in this category.

Functors L,R : CGStoch ↑→ CGMeas sending stochastic maps to their source and
target respectively and 2-cells (f, α, g) to f, g respectively.

Composition of stochastic maps is given as above, for stochastic maps M(x, σY ), N(y, σZ),
the composition is given by

(M �N)(x, σZ)
def≡
∫
Y

N(y, σZ)M(x, dy) (7)

Note that in this case the structure maps a, l, r are the identity 2-cell. So we call this a
strict double category. Observe:

(M � UY )(x, σY ) ≡
∫
Y

χ(y, σY )M(x, dy) =
∑
y∈Y

{
M(x, dy), if y ∈ σY
0, otherwise

But this is just M(x, σY ) as seen from example 4.1 that the value of a measure is
constructed pointwise over the atoms around a point. Similarly for (UX � M)(x, σY ) ≡∫
Y
M(y, σY )χ(x, dy). Associativity is given by the associativity of integration.

Example 5.3. As a practical example of a diagram in the category Prob, consider finite
measure spaces A = {a, b, c} and X = {x, y} imbued with the discrete σ-algebra. and mea-
sures generated represented by the measures µA(a) = 0.1, µA(b) = 0.2, µA(c) = 0.7, µX(x) =
0.25, µX(y) = 0.75, or alternatively as vectors

µA =

0.1
0.2
0.7

 µX =

[
0.25
0.74

]
4Note that the matrix representation of χσX

(x) for finite discrete ΣX is exactly the identity matrix of
dimension |X|
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Then this subcategory of Prob, we have objects A,X, ∗, [0, 1] the underlying measurable
spaces, ∗ the terminal measurable space with a single object, and [0, 1] the measurable space
with two objects. The unconditional probabilities of µ are represented by horizontal 1-cells
PA : ∗ 9 A and PB : ∗ 9 B. Equivalently, these are functions ∗ × A → [0, 1] ∼= A → [0, 1]
and ∗ ×X → [0, 1] ∼= X → [0, 1] where the latter two are probability measures (our original
µ). Now, assume that we have additionally two more variables B = {1, 2, 3}, Y = {1′, 2′},
and conditional probabilities given by

P (B|A) =

a1 b1 c1
a2 b2 c2
a3 b3 c3

 P (Y |X) =

[
x1′ y1′

x2′ y2′

]

Then we have horizontal 1-cells PB|A : A9 B and PY |X : X 9 Y with PB|A(a, σB), PY |X(x, σY )
given by (sums over the elements of σ) the elements of their corresponding matrix. So for
example, the joint probability A ∧B composition

PA � PB|A =

a1 b1 c1
a2 b2 c2
a3 b3 c3

0.1
0.2
0.7


Suppose further that we have measurable functions

f : A→ X =


a 7→ x

b 7→ x

c 7→ y

g : B → Y =


1 7→ 1′

2 7→ 2′

3 7→ 1′

There is a convenient factorization fMg = f (U �M � U)g = fU �M � Ug of which we
will get into more detail in the next section. But for now consider for our f, g, the matrix
representations

[fU ] =

[
1 1 0
0 0 1

]
[Ug] =

1 0
0 1
1 0


Then we have a 2-cell α : PB|A ⇒ PY |X with a new horizontal 1-cell, the normalization of
the following matrix so that all columns sum to 1

[f (PY |X)g] =

x1′ x1′ y1′

x2′ x2′ y2′

x1′ x1′ y1′

 = [Ug][PB|A][fU ]

The homomorphism maps PB|A(a, σB) 7→ PY |X(f(a), g(σB)) where (−) is the normaliza-

tion M(a, σB) = M(a,σB)∫
BM(a,db)

= M(a,σB)
M(a,B)

Prob is essentially CGStoch lifted into a double category by including the arrows of
CGMeas. By lifting CGStoch, we make clear the relation between measurable functions
and measures, solidifying the fact that a measure space is defined over a collection of mea-
surable spaces, in the same way that a vector space is defined over a field. Indeed, vector
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spaces over fields (or more generally, bimodules over rings) form a natural double category
as seen in example 5.2. But bimodules also exhibit a more interesting property that modules
can be extended along ring homomorphisms. This extension or “base change” operation
of horizontal 1-cells along vertical 1-cells can be generalized to a Framed Category, and we
will see that Prob also exhibits this property. There are many equivalent definitions of a
framed 2-category. Along with the traditional definition (a double category where the L,R
functors are fibrations), it has been shown equivalent to a proarrow equipment and a dou-
ble category with a connection pair for every vertical 1-cell. The machinery of the classic
definition is perhaps to heavyweight for our discussion here, so we give only the latter two
definitions. For completeness we show that Prob satisfies both of these conditions, though
they each imply each other. Nevertheless, the fibrational definition of framed categories is
highly elucidating, so the interested reader is referred to [16] for a deeper exploration. The
first equivalent definition (See [16]. Thm 4.1) is given below.

Definition 5.3 (Framed 2-Category). A double category D is a Framed 2-Category if addi-
tionally For every vertical 1-cell f : A→ B, we have the pair of horizontal 1-cells fB : A9 B
and Bf : B 9 A with 2-cells

A /

fB

B

B /

UB

B

f Idα

B /

Bf

A

B /

UB

B

Id fβ
(8)

A /

UA

A

B /

Bf

A

f Idγ

A /

UA

A

A /

fB

B

Id fε
(9)

Such that for α, β, γ, ε defined in equations (8) and (9), the following conditions hold.

αε = Uf = βγ (10)

Id
fB = (ε� α : UA � fB → fB � UB) (11)

IdBf = (β � γ : Bf � UA → UB �Bf ) (12)

5

5There is a misprint in [16] equation (4.4) where Bf is rendered as fB. Our definition here is correct, as
the types involved do not match up with fB
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Remark 5.2. Note the similarity between our Bf and the fMg notation from equation (6).
This similarity is intentional, as we will see them coincide shortly, but to avoid confusion,
remember that if B is a 0-cell of a framed category then Bf is as defined here. If M is a
horizontal 1-cell, then Mf is M(·, f(·))

5.1.1 Characterizing Prob

Theorem 5.2 (Major Result). The double category Prob is also a framed category with
suitable fB,Bf , α, β, γ, ε

First introduce fB,Bf for our framed category

fB(x, σY ) = χ(f(x), σY ) Bf (y, σX) = χ(y, f(σX)) (13)

And our α, β, γ, ε
α : fB(a, σB) 7→ χ(f(x), σB)

β : Bf (b, σA) 7→ χ(b, f(σA))

γ : χ(a, σA) 7→ Bf (f(a), σA)

ε : χ(a, σA) 7→ fB(a, f(σA))

For the α, β we have that the homomorphism component of α is just the identity, since
already by definition fB(a, σB) = χ(f(a), σB) and Bf (b, σA) = χ(b, f(σA)).
For γ and ε, Bf (f(a), σA) and fB(a, f(σA)) both reduce to χ(f(a), f(σA)) = U(f) = fUf so
the homomorphism components of γ and ε are just the restriction of χ = UB to the image
of f or could be taken as simply the identity.

To satisfy coherence law (10), see that

αε(UA)(a, σA) = α(χ)(f(a), f(σA)) = χ(f(a), f(σA)) = Uf

Uf = χ(f(a), f(σA)) = β(χ)(f(a), f(σA)) = βγ(UA)(a, σA)

It is easy to see that coherence laws (11) and (12) hold because we have already seen in
theorem 5.1 that UA �M = M � UB = M for any M : A 9 B, so it must hold for specific
instances. Particularly even if U has its domain or range restricted, if its restricted range
is no larger than the domain of some M , then U �M = M , and similarly if its restricted
domain is no smaller than the range of some N then N � U = N . Now observe

ε(UA)� α(fB) = U(f)� fB = fB

Because U(f) is just UB with its domain restricted to the image of f , and α is already the
identity. A mirror argument may be used for coherence law (12). �

Now let us take this framed category structure and lift it up into CGRand
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5.2 The Framed 2-Category CGRand

There is a rich theory of profunctors and related constructs as detailed in [17]. Interesting
point is that every profunctor can be reformulated as a particular span

Definition 5.4. A span for objects A,B is a diagram of the form

A

M

B

s t

The names of the morphisms s, t have been chosen to suggest that M represents some
“object of morphisms” and the morphisms s, t represent the source and target maps, but
this is in no way a requirement of spans, which are much more general.

We often see that other “proarrows” have a similar formulation, such as bimodules [16].
Indeed, the spans in any category form “proarrow-like” morphisms, but it is not always
meaningful to do so. Thus, it is interesting to see if there is any way we can reformulate
our framed category Prob as a category of spans. Here we do just that, generalizing and
strengthening our model of Bayesian probability along the way.

One useful type of spans are products in a category.

Definition 5.5. A product A⊗B in a category is a span

A

A⊗B

B

πA πB

such that every other span on A and B factor through πA or πB. A⊗B may be considered
as pairs of elements of A,B if the category is suitably “setlike”. The morphisms πA, πB
are called the projections of the product. The factorization property says that the π are
“universal” in the sense that they encode all the combined information about A and B

A particularly compelling view of this possibility is to recognize that in practice, we
obtain marginal probabilities PA and conditional probabilities PB|A from some measured
joint distribution PA∧B. The category CGMeas has a product object for every pair of
objects, simply represented by the Cartesian product on the underlying set (This is exactly
the monoidal tensor product structure onMeas). On the other hand, the category CGStoch
does not have all products. Indeed, CGStoch has only weak products, given by the monoidal
tensor product. These “product measures” fail to satisfy the uniqueness condition of a
categorical product.

However, CGStoch still has product measurable spaces as objects, because we have an
identity-on-objects functor δ : CGMeas→ CGStoch, but these objects no longer have the
universal properties of products in CGStoch. Notice that when we talk about a conditional
probability PB|A, we actually mean the probability of A ∧ B given A, from which the
probability of B can be readily recovered. This is apparent in the definition of conditional

probability P (B|A)
def≡ P (A∧B)

P (A)
. This suggests that every morphism A9 B “factors through”
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the joint object A∧B in some sense. In fact, there are two types of morphisms at play here,
the deterministic maps which do not factor (or factor trivially), and the non-deterministic
maps defined through measures on the joint objects. We make this notion clear by elevating
CGRand to a framed category.

Since probability measures may be regarded as morphisms from the terminal object in
CGStoch, we can consider a reformulation of this category as the under category 1/CGStoch
consisting of the morphisms out of the terminal object. We can formalize this as a double
category as follows:

Definition 5.6. CGRand has

1. 0-cells as countably generated perfect probability measure spaces (X,µX) where X is
a measurable space. The measure µX is regarded as a stochastic map 1 9 X so that
it can be composed with the 1-cells.

2. vertical 1-cells deterministic stochastic maps δf : A 9 B for a measurable function f
so that µB = δf ◦ µA. Vertical 1-cells may be visualized as the commutative diagram

1

A B

µA µB

δf

3. horizontal 1-cells M : A B as spans of vertical 1-cells (A, µA)
L8 (F, µF )

R9 (B, µB).
By the nature of vertical 1-cells, we have that µA = L ◦ µF and µB = R ◦ µF . This
property may be visualized by the commutative diagram

1

FA B

µA µB
µF

L R

4. 2-cells α : (F : A  B) ⇒ (G : C  D) as triples (l, α, r) of deterministic maps with
l : A 9 C, r : B 9 D,α : F 9 G so that. In pictorial form, the following diagram
commutes

F

G

A B

C D

LF RF

LG RG

l rα

It is easy to check that CGRand with the following additional structure functors is a
double category.
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• The identity U as the span

A

AA

χ χ

• Source and target functors L,R mapping a span to its left and right targets respectively.

• Composition F � G of spans F : A  B and G : B  C is given by the following
pullback

F �G

F ∧G

F G

A B C

δπF δπG

δ∼

LF

RF LG

RG

LetRF = δf for some measurable f , and similarly LG = δg
6 , then the pullback is given

by (F ∧B G, ν where F ∧B G is the quotient subspace of the product measurable space
F ∧ G subject to the quotient f(a) = g(b). The measure ν is simply the projection
of the product measure, given by ν = δ∼ ◦ µF∧G, where ∼: F ∧ G → F � G is the
measurable function (a, b) 7→ (a, b)/f(a) = g(b) sending F ∧ G to its quotient defined
above.

Clearly the coherence laws for the L and R functors hold, as well as the left and right
unitors. Associativity holds because we are computing strict pullbacks, so the commutivity
requirement of the above diagram requires associative equality.

CGRand is also a framed category with:

• For each deterministic stochastic map f : A 9 B, “base change” horizontal 1-cells
Bf : B  A and fB : A B with Bf and fB as

A

BA

f χ
A

AB

χ f

respectively

• The 2-cells α, β, γ, ε are just the various liftings of f , α = (f, f, Id), β = (Id, f, f), γ =
(f, Id, Id), ε = (Id, Id, f) from which it is clear that the coherence laws hold strictly.

6We can do this because all deterministic stochastic maps on countably generated measurable spaces are
induced by point measures of measurable functions
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Remark 5.3. There are a particularly natural class of horizontal 1-cells A  B of the

form (A, µA)
δπA8 (A ∧ B, ν)

δπB9 (B, µB) where A ∧ B is the categorical product of the
measurable spaces A,B in the category Meas. Such measure spaces are naturally imbued
with deterministic maps πAχ : A ∧B 9 A and πBχ : A ∧B 9 B so one may take the 1-cell
to be the span given below

A

A ∧B

B

πAχ πBχ

Such horizontal morphisms are entirely characterized by the measure ν. Note that every
pair of 0-cells (A, µA), (B, µB) have a canonical horizontal 1-cell given by (A ∧ B, µA ∗ µB)
given by their product measures. In general, there are many probability measures on A∧B
that marginalize to µA and µB, so in practice we take these joint measures by experiment,
and subsequently compute the marginals. We will call such spans Primitive.

Proposition 5.1. Primitive 1-cells are universal in the sense that for every N : C  D,
there is a primitive 1-cell M : A B and 2-cell α : M ⇒ N .

Proof: Since we have base-change morphisms, every C
δf8 N

δg9 D factors into

N N N

C D

Id Id

δf δg

Since joint measurable spaces are true products in CGMeas, we can always construct
the joint measure space C ∧N ∧D so that it has Canonical projections

N N N

C DC ∧N ∧D

Id Id

δf δg

δπC δπD

δπN

But C ∧N ∧D is also a product of (C ∧D)∧N , so we project onto C ∧D to get a primitive
measure space (C ∧D, πC∧D(µC∧N∧D)) as desired.
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6 Conclusion and Further Work

Whatever evidence an act might provide
on what could have caused the act
should never be used to help one decide
on whether to choose that same act

Judea Pearl

We have extended previous work on the relation between Stoch and Meas, by showing
that they also satisfy a framed category relation. This characterizes conditional probabilities
as the “hom sets” of measurable functions, enriched over the category [0, 1]. We further this
relation to reformulate conditional probabilities as restrictions on joint measures. In this
paradigm, conditionals can be seen as “collections of deterministic maps”, parameterized by
the observed joint measure probabilities. Following the language of Fong [11], this category
CGRand is the collection of Stoch-causal models in Meas, mapped back into Stoch by
the point measure functor δ.

There is also work to be done integrating this viewpoint with the theory of categorical ma-
trix mechanics [18], detailed in the appendix. Particularly, as a corollary of proposition 5.1,
CGRand is clearly a closed category, where each map A  B is characterized by some

joint measure space (A ∧ B, µ). It is a dagger category with the dagger of (A
δf8 M

δg9 B)†

as (B
δg8M

δf9 A)†, and dagger compact with A = A∗ and η = ε† =

A

A ∧ A1

! δ∆

Where ! is the unique terminal map, and ∆ is the diagonal map A 7→ (A,A), sending A to
the perfectly entangled pair of A.

The matrix mechanics interpretation gives a particularly compelling way to compute the
marginals on a joint distribution. In this formalism, the marginals are the joint distribution
composed with the frobenius counit over each marginalized variable. Viewed in this way, the
belief propagation algorithm [19], or more generally the [20] on a tree shaped probabilistic
graphical model is equivalent to a choice of ordering of the (commutative) counit composi-
tions over a joint distribution. In the case of cyclic models, the marginals can be computed
exactly using the same counit formulation, but “entangled” variables cannot be decomposed
and computed in isolation, giving exponential asymptotic complexity in the cycle size. In
this case, the approximate loopy belief propagation algorithm [21] corresponds to a trun-
cation of the trace on this model. CGRand is a dagger compact category and so admits
a unique canonical trace [22]. Further investigation determining if these constructions are
coherent promise to be fruitful.
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7 Appendices

7.1 Appendix A: Additional Category Theory

7.1.1 Proarrows

Perhaps a more natural way to think about a framed category is as a 2-category with a
proarrow equipment. The two structures were developed separately for different purposes
but shown to be equivalent [16]

Definition 7.1 (Proarrow Equipment). A Proarrow Equipment, or 2-Category Equipped
with Proarrows is a pair of 2-categories K,M and a 2-functor P : K so that

1. P is the identity on objects

2. For every 1-cell f : A→ B in K, Pf
def≡ P (f) has a right adjoint fP meaning that there

exits a 1-cell fP : Pf (B)→ Pf (B) in M and 2-cells

• η : 1P (B) ⇒ fPPf

• ε : Pf fP ⇒ 1P (A)

3. P is locally full and faithful. Meaning that for any two objects x, y ∈ A, the hom sets
are isomorphic A(x, y) ∼= B(F (x), F (y))

The intuition behind proarrow equipments is as a generalization of the framed category
of profunctors. Indeed, when studying internal category theory, considering every object of a
category itself as some category, it is seen that most horizontal 1-cells in a framed category
are equivalent to enriched profunctors between some categories.

Proposition 7.1 (Equivalent Formulation). The categories CGMeas (considered as a 2-
category with trivial 2-cells) and CGStoch form a proarrow equipment with
Pf (x, σY ) = χ(f(x), σY ) and fP (y, σX) =

∫
x∈f−1(y)

χ(x, σX). This proarrow equipment is

equivalent to Prob

Definition 7.2 (Weak Monoidal Category). The similarity between the above two examples
× and ⊗ begs a generalization. Monoidal Category is a category C together with

• A bifunctor ⊗ : C × C → C called the tensor product

• An identity object I

• 3 natural isomorphisms assuring that ⊗ satisfies the monoid laws (up to natural iso-
morphism)

– Identity: Right and left identity maps ρA : A⊗ I ∼= A, λA : I ⊗ A→ A

– Associativity: An associator isomorphism with components αA,B,C : (A⊗B)⊗
C ∼= A⊗ (B ⊗ C)
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• The construction must satisfy the coherence conditions (commutative diagrams)

((A⊗B)⊗ C)⊗D (A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

(A⊗B)⊗ (C ⊗D) A⊗ (B ⊗ (C ⊗D))

αA,B,C ⊗ IdD αA,B⊗C,D

αA⊗B,C,D IdA⊗αB,C,D

αA,B,C⊗D

A⊗B

(A⊗ I)⊗B) A⊗ (I ⊗B))
αA,I,B

ρA ⊗ IdB IdA⊗λB

Definition 7.3 (Adjunction). Central to category theory is the notion of Adjoint Functors.
Adjunctions can be thought of as the “best approximation” to a pair of inverse functors.
Formally, an adjunction from C to D is a pair of functors F : C → D,G : D → C and a
family of natural isomorphisms φ so that for objects c ∈ C and d ∈ D,

C(Fc, d)
φc,d∼= D(c,Gd)

We denote this connection F a G and say that F is left adjoint to G, or that G is right
adjoint to F . Equivalently, we have an adjunction F a G if we have natural transformations
η : Id⇒ FG and ε : GF ⇒ Id called the unit and counit of the adjunction respectively.

Often adjunction pairs take the form of a forgetful functor and free construction. For
example, the forgetful functor mapping a group to its underlying set is right adjoint to the
functor mapping a set to the free group generated by the elements of the set. While this
intuition is useful, it does not always hold in general. A more general tool may be to consider
that the left adjoint creates structure while the right adjoint forgets structure, though this
too may not help in all cases.

Definition 7.4 (Closed Monoidal Category). A Closed Monoidal Category is a monoidal
category such that for each b ∈ C, the functor (− ⊗ b) : C → C mapping each object of C
to its monoidal product with b, has a right adjoint b( − : C → C so that

C(a⊗ b, c) ∼= C(a, b⇒ c)

. The object b( c is call the internal hom object, and “acts like” the set of morphisms from
b to c. Equivalently, we may simply say that a monoidal category C is closed-monoidal if it
can be enriched over itself, so that ·( · : Cop×C → C is exactly the enriched hom functor
on C. Note that in general, there may be non monoidal closed categories with internal hom
objects satisfying some additional properties. However, the definition of a closed monoidal
category is more natural, with all relevant properties arising from the adjunction. Further,
all relevant closed categories discussed here are also monoidal, so we omit the more general
definition.
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Definition 7.5 (Trace). [23] A Trace in a (strict) symmetric monoidal category C, is an
operator

TrXA,B : C(A⊗X,B ⊗X)→ C(A,B) (14)

For objects A,B,X ∈ C, with the conditions

TrXA′,B′((k ⊗ Id ◦f ◦ (h⊗ Id)) = k ◦ TrXA,B(f) ◦ h (Tightening)

TrXC⊗A,C⊗B(Id⊗f) = id⊗ TrXA,B(f) (Superposing)

Superposing says that the trace doesn’t interact with tensored identities. Tightening goes
further to say that the trace passes through composition on tensored identities. The objects
we take our trace over do matter and cannot be omitted in some cases. For example, the
linear trace (below) would not make sense if the superposition constraint applied for all
objects. Note that the typical Yanking and Exchange laws are trivial because we are dealing
only with strict symmetric categories. For a more general definition, see [22]

The trace operation can be thought of as “tying the knot” on the extra X, feeding its
output back to input. Indeed, in a computer science setting, traces correspond to fixed point
operations. The typical trace of a linear transformation from linear algebra is a special case
of this trace (TrL may be recovered by taking TrL(f) = Tr(Id⊗f)).

Remark 7.1. If a (strict) symmetric monoidal category is also compact closed, then it has
the unique canonical trace

TrXA,B(f) = (IdB ⊗ηX) ◦ (f ⊗ IdX∗) ◦ (IdA⊗ηX)

This formula has deep implications that we will only mention in passing. In computer science
applications, the ε, η represent turning an output into an input, giving the most natural way
to think about a trace as closing a recursive loop. In quantum physics applications, the ε, η
represent dual particle annihilation and creation operators; in the context of a trace, they
could be thought of as reversing the direction of time, turning a particle into its antiparticle.
[1, 23]

Definition 7.6 ((Co)Monoid Object). A (strict) monoid object in a monoidal category C
(with monoidal unit I) is an object A ∈ C together with morphisms m : A ⊗ A → A
and u : I → A called the multiplication and unit respectively. so that the multiplication is
associative (uA◦uA⊗IdA = uA◦IdA⊗uA) and the unit interacts well with the monoidal unit
(uA◦mA⊗IdA = uA◦IdA⊗mA). A comonoid is the dual construction, with comultiplication
w : A→ A⊗A and counit n : A→ I satisfying the dual coherence conditions to the monoid.

Example 7.1. Let ∆ be the diagonal measurable function A→ A⊗A sending a 7→ (a, a). ∆.
In the category CGMeas every object is a monoid object, by taking m as the deterministic

function χ∆ so that m((a, a′), σA) =

{
1, if (a, a′) ∈ ∆(σA)

0, otherwise
and u(∗, σA) = |σA|

|A| representing

the uniform distribution over A. Recalling that an “element” of an object A in C is simply
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a morphism from the terminal object to A, then ∆χ can be interpreted as the measure that
is 1 on objects (a, a′), a = a′ and 0 for other objects, as depicted below.

1 A⊗ A A
πA1

πA2

(a, a)

CGMeas is also a comonoid, with w = ∆χ, sending elements a to the “entangled state”
where both copies of A always take the same value. Similarly, n is the stochastic map
induced by the terminal (in CGMeas) map a 7→ ∗. So n(a, σ∗) = χ(∗, σ∗)

Definition 7.7 (Dagger Category). A Dagger Category is a category C together with a
functor † : Cop → C that is the identity on objects. For a morphism f : A→ B in C, we have

f †
def≡ †(f) : B → A. In this case, the functor laws mean that we have

1. Id† = Id

2. (g ◦ f)† = f † ◦ g†

3. f †† = f

f † is typically called the adjoint morphism of f , by analogy the the motivating example of
Hilbert spaces.

Remark 7.2. It is trivial to check that the requirement for dual pairs fB,Bf in a framed cat-
egory are exactly the requirements for a dagger category. That is, for every framed category
D, the horizontal 1-cells induced by the vertical 1-cells have a dagger structure. Particu-
larly, since CGStoch forms a framed category with vertical 1-cells measurable functions
and horizontal 1-cells stochastic maps, we have that:

Proposition 7.2. The subcategory of CGStoch restricted to deterministic stochastic maps
has a dagger structure on all horizontal 1-cells.

Proof: [3] show that every deterministic stochastic map with countably generated codomain
is induced by the point measure fχ for some measurable function f . Since fχ : A9 B has a
dual pair χf : B 9 A as proved in theorem 5.2, we have an involutive mapping fχ↔ χf and

Idχ = χId = χ, so requirements (1) and (3) for a dagger structure are obvious. The condition
(2) is guaranteed since stochastic maps A 9 B (which are really maps A × Bop → R) are
contravariant in their right argument.

Remark 7.3. Since a comonoid is the dual of a monoid (that is, a comonoid object in C is
a monoid object in Cop), we have that in a dagger category, monoid objects and comonoid
objects are equivalent. Particularly, w† = m and n† = u (and vice versa).

Definition 7.8 (Dagger Frobenius Structure). A Dagger Frobenius Structure in a dagger
category C is a monoid/comonoid object that interacts nicely with the dagger structure.
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Formally, in a dagger category C, a dagger frobenius structure is a monoid object (A,m,u) (or
equivalently a comonoid object (A,w,n) so that the following coherence diagrams commute.

A⊗ A A⊗ A⊗ A

A A⊗ A

w ⊗ IdA

m IdA⊗m

w

A⊗ A A⊗ A⊗ A

A A⊗ A

IdA⊗w

m m⊗ IdA

w

Remark 7.4. A frobenius structure may equivalently be defined as a monoidal functor
1 → C where 1 is the category with one object and its identity morphism. In this light,
the Frobenius algebras in CGStoch are a particular degenerate kind of stochastic causal
models, using the terminology of [11]
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