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Abstract

Human activity recognition (HAR) is a challenging problem that involves classifying hu-
man actions based on sensor data. Diffusion models are a promising approach for tackling
such challenges by learning underlying patterns in the data. However, traditional diffusion
models have limitations in handling discrete data, which is common in HAR datasets. To
address this, we developed a tabular diffusion model that can handle discrete data and
applied it to the UCI HAR dataset. Our tabular diffusion model achieved higher classi-
fication accuracy compared to the vanilla diffusion model and was comparable to current
state-of-the-art models. The findings have significant implications for the potential of diffu-
sion models in HAR as well as the development of intelligent systems for monitoring human
behavior in real-world scenarios.
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1 Introduction

Human Activity Recognition (HAR) refers to the process of identifying and categorizing
physical activities performed by individuals using sensor data. The identified activities can
encompass a broad spectrum ranging from basic tasks like sitting, standing, or walking,
to more specific activities like hiking or swimming. The sensor data utilized for this clas-
sification is typically collected by sensors embedded in mobile devices and other wearable
technology. This information often includes data like acceleration, orientation, and position.
With the proliferation of smartphones and advancements in high-precision sensors, a unique
opportunity has emerged to engage with large volumes of accurate sensor data. In research
and literature, public HAR datasets like the UCI, WISDM, Sussex-Huawei Locomotion
(SHL), and Extrasensory datasets are among the most commonly used and popular[1].

The practical applications of HAR data span across various fields, including health-
care, security and surveillance, intelligent environments, and entertainment[2]. Notably,
HAR data plays a significant role in advancing healthcare by facilitating the monitoring of
patients and the identification of illnesses and diseases, such as depression[3], Parkinson’s
disease[4], autism[5], heart failure[6], and numerous others. These applications are of critical
importance as they aim to enhance and preserve human life and rely on the availability of
extensive, precise, and heterogeneous datasets.

Challenges with HAR In practical scenarios, human behaviors and patterns in phys-
ical activity are diverse and complex. To construct detailed and realistic models that are
effective on real-world data, substantial annotated data that represents diverse demograph-
ics is essential. This poses two significant challenges for HAR data: the lack of data for less
common activities and targeted demographics, such as the elderly.

The process of collecting and annotating datasets is often time-consuming and costly. In
practice, the data is usually gathered passively through studies where participants label the
activities they perform throughout the day. As such, some activities, such as sleeping, may
be performed more often than other activities such as swimming or biking. This results in a
considerable class imbalance between different activities, making the data more challenging
to train high-performance models.

Several applications for HAR datasets target specific demographics, such as fall detection
among the elderly population. Consequently, studies require data from these populations
to train accurate models. This poses a challenge due to the difficulty in collecting falling
data from the elderly or even individuals with physical disabilities. This is because these
populations face challenges that most younger study participants do not encounter, such
as reduced mobility, cognitive decline, and comorbidities, which can affect the reliability
and performance of HAR models and algorithms. As such, researchers often turn to young,
able-bodied individuals to collect these rarer activity data.

To address these challenges, innovative techniques are necessary to provide high-quality,
realistic, and clean data without the limitations associated with traditional data collection
methods, which can be expensive and time-consuming. Such techniques would enable the
development of HAR models that perform optimally across a broad range of activities and
demographics, thereby improving their usefulness and applicability in real-world scenarios.

Proposed Solution This study proposed a method for generating realistic human activ-
ity recognition (HAR) data using a tabular diffusion model that can handle both continuous
and discrete data. Furthermore, we aimed to investigate the performance of the vanilla dif-
fusion model on the HAR dataset and compare it to the current industry standard, the
generative adversarial network (GAN). Currently, the state-of-the-art model in the HAR
field is the HAR-CTGAN model, which utilizes both continuous and discrete features to
generate synthetic data [7]. In a similar fashion, we developed a tabular diffusion model
that can leverage both feature types from the UCI HAR dataset. We hypothesized that
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the tabular diffusion model will be comparable to the CT-GAN model in terms of perfor-
mance and that the inclusion of discrete features in HAR problems leads to improved results
compared to using only continuous features.

Contributions Our project contributions include:

• Applying a vanilla diffusion model to the HAR domain and comparing its performance
to the current industry standard – GAN.

• Implementing a tabular diffusion model that utilizes both continuous and discrete
features to the HAR domain.

• Demonstrating supporting evidence that the inclusion of discrete features in addition
to the continuous features yields better results than using only continuous features

• Demonstrating that the tabular diffusion model outperforms the current state-of-the-
art model – CT-GAN.

2 Related Work

In recent years, the exponential growth in data collection, storage, and solicitation has
led to the widespread use of machine learning across diverse domains. However, one of the
most significant challenges faced by the machine-learning community is the development of
models that can learn and generate realistic data. Generative models, such as the generative
adversarial network (GAN) and diffusion models, offer a promising solution by generating
synthetic data that closely resembles real datasets. Originally designed for image synthe-
sis, diffusion models have evolved into versatile tools with applications in various machine
learning domains beyond just art generation applications.

2.1 Generative Adversarial Networks

A generative adversarial network (GAN) is a type of neural network consisting of two
distinct components, namely the generator and the discriminator. The two networks engage
in an adversarial learning process in which they compete against each other to minimize and
maximize their respective loss functions. The primary objective of the generator is to deceive
the discriminator by producing synthetic data that is virtually indistinguishable from real
data. On the other hand, the discriminator aims to accurately classify data as either real
or synthetic. This adversarial relationship between the generator and the discriminator is
essential for the GAN to learn and improve its generative capability over time[8].

2.1.1 Conditional Tabular GAN

One of the challenges in using generative adversarial networks (GANs) for human activity
recognition (HAR) is that GANs are typically designed to generate continuous features,
while HAR data often contain both continuous and discrete features that are crucial for
accurate activity classification. To address this challenge, recent studies have proposed
Conditional Tabular Generative Adversarial Networks (CT-GANs) as a solution. CT-GANs
are a specialized form of GANs that can generate tabular data including both continuous
and discrete features, conditioned on specific inputs.

CT-GANs operate by training a generator network to produce synthetic data that closely
resembles real-world HAR data. The generator network is fed with a set of conditioning
variables that specify the desired activity to be generated, as well as other relevant informa-
tion, such as the user’s age and gender. The generator then produces synthetic data that is
conditioned on these inputs, including both continuous and discrete features.
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Compared to traditional GANs, CT-GANs have been demonstrated to be superior. They
offer several advantages for generating HAR data, including the ability to simultaneously
generate both continuous and discrete features, which enables more precise capturing of
the intricate patterns and dependencies in the data. Furthermore, by being conditioned on
specific inputs, CT-GANs can generate synthetic data that is tailored to particular users or
scenarios, offering more personalized and flexible HAR systems.

However, CT-GANs also have some limitations. GANs, in general, can be limited by
unstable training behavior that may produce oscillating convergence or the inability to learn
due to mode collapse. CT-GANs also require a substantial amount of high-quality training
data and can be computationally expensive to train.

2.2 Evaluating Generative Models

Although the field of generative models has gained popularity in recent years, evaluating
them remains a challenging task. In image generation tasks, it is often easy to inspect the
generated images and compare them to the real images. However, these comparisons only
measure the generative model’s performance at a surface level. We still cannot explicitly
interpret how the model is sampling the real distribution to generate synthetic images. This
is especially harder with tabular data where visual confirmation is not plausible.

One essential evaluation technique is the classification performance between real and
synthetic data. If a classifier is trained exclusively on real data, it can be quantitatively
determined how the classifier performs when testing the classifier once on real data as a
baseline and again on synthetic data as a test. Likewise, the reverse of this can be done,
where a classifier is exclusively trained on synthetic data and then tested on both real data
as a test and synthetic data as a baseline. Moreover, we can employ statistical analysis such
as confusion matrix, confidence, precision, recall, accuracy scores, and F1 scores to evaluate
the generative model performance.

3 Background

In this background section, we will provide an overview of diffusion models, with a focus
on tabular diffusion and Gramian Angular Fields, and their applications in various fields.

3.1 Diffusion Models

One potential method for generating continuous data is through the application of diffu-
sion models. Diffusion models are a type of generative model that can be trained to simulate
the evolution of a probability distribution over time. This technique can be used to produce
synthetic continuous data that is comparable to authentic HAR data. The mechanics of
diffusion models involve the gradual degradation of data by adding noise, followed by the
learning process of restoring the original data through the reversal of the noising process.
This concept is akin to denoising autoencoders, a generative architecture composed of an en-
coder and decoder that is utilized for data reconstruction from noise. While diffusion models
are primarily implemented in the image domain, where they have demonstrated utility in
enhancing image quality and generating images from text, their flexibility is their greatest
asset. In comparison to other generative models, they can effectively capture the underlying
structure of the original dataset in a more efficient and stable manner. Forward diffusion
and reverse diffusion are two distinct methods for constructing diffusion models. Moreover,
unlike GANs, diffusion models exhibit significantly less unstable training behaviors, and
longer training generally yields better results.
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3.1.1 Forward Diffusion

Forward diffusion is the act of adding noise to data until the data becomes almost pure
Gaussian noise. We denote the number of steps of noise added to data as t, which allows us
to express the data in X in terms of t in the following equation:

Xt = Xt−1 +N(0, 1) (1)

The data at time step t is defined in terms of the data at the previous time step plus
some Gaussian noise. Using the Markov assumption, the equation can be written as:

q(xt|xt−1) = N(xt;
√

1− βtxt−1, βtI) (2)

Equation 3 defines the forward process and gives the data after t timesteps. However,
it requires the knowledge of the previous step. This would require numerous calculations
which can get computationally exhaustive for large enough t in order to learn and calculate
the parameters for the noise at different steps. Instead, the equation can be rearranged
using ᾱ to represent the cumulative product of 1− β.

q(xt|x0) = N(xt;
√
ᾱxt−1, (1− ᾱ)I) (3)

This new equation allows the data at any timestep to be calculated instantaneously and
is required for the reverse diffusion process for calculating loss and comparing estimated
values to the true values[9].

3.1.2 Reverse Diffusion

Reverse diffusion is a method for recovering original data from noisy data by gradually
learning the quantity of noise that was added at each stage. The model estimates the data
distribution at a specific time step t and employs Kullback-Leibler (KL) divergence in the
loss function to evaluate the divergence from the known value of Xt obtained from the
final forward diffusion equation. The model parameters are then learned through stochastic
gradient descent and backpropagation processes. This process is then repeated for various
time steps, which forms the training process for diffusion models. Through this training,
the model attempts to learn the noise added at each time step to recover the original data.
Consequently, the model can be utilized to create novel data samples that are similar to the
original data using pure Gaussian noise.

3.2 Tabular Diffusion

The work referenced so far has been prior research in the field of the vanilla diffusion
model, which exclusively accommodates continuous data. It is advantageous for the diffusion
model to be able to generate both continuous and discrete data given that large tabular
datasets are sparsely available. Furthermore, the generation of synthetic data of this nature
would not be subject to common General Data Protection Regulation (GDPR) or similar
statutes allowing synthetic data to be used for research purposes while protecting individual
data privacy.

3.2.1 Traditional Diffusion

Diffusion models employ a noise addition process that iteratively transforms a starting
distribution to a desired target distribution. In the context of HAR, we can utilize the diffu-
sion model to learn the real data distribution through training. By modeling the evolution
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of the distribution over time, diffusion models can capture the continuous dynamics of the
activity.

Although diffusion models present a promising approach for generating continuous data
in HAR, the current research in this field remains limited. While diffusion models can pro-
ficiently generate synthetic data with continuous features, they lack the inherent capability
to produce discrete features. To address this challenge, modifications to the diffusion model
architecture are required to enable both continuous and discrete feature generation. One
promising approach is to leverage a tabular diffusion model that integrates both continuous
and discrete features through a multinomial model.

3.2.2 Multinomial Diffusion

Multinomial Diffusion[10] facilitates the noising process of categorical variables by em-
ploying a closed-form and reversible solution. In the case of continuous data, traditional
diffusion involves the addition of small Gaussian noise. However, since categorical variables
can assume a finite number of classes, the addition of Gaussian noise is not applicable.
Instead, the probability distribution is treated as the data to be noised, whereby a fully
noisy categorical feature would possess an equal chance of selecting any of its classes. Con-
sequently, each time categorical noise is added, the probability for each class changes, and
the distribution can be resampled to acquire the noised data.

Hoogeboom defined the diffusion process using a one-hot encoding of the discrete data
xt ∈ {0, 1}K . They expressed the forward process with xt where t is the number of noise
steps added to the data as a categorical distribution with βt chance of resampling the
category uniformly:

q(xt|x0) = C(xt|ᾱtx0 + (1− ᾱt)/K (4)

where βt = 1− αt

and ᾱt =
∏t

τ=1 ατ .

They then computed the categorical posterior q(xt−1|xt, x0) for reverse diffusion in
closed-form:

q(xt−1|xt, x0) = C(xt−1|θpost(xt, x0)) (5)

where θpost(xt, x0) = θ̃/
∑K

k=1 θ̃k
and θ̃ = [αtxt + (1− α)/K]⊙ [ᾱt−1x0 + (1− ᾱt−1/K]

3.3 Gramian Angular Fields

Gramian Angular Field (GAF) is a powerful method for representing time series data as a
two-dimensional image that can be effectively processed by diffusion models or other image-
based neural networks. By transforming data collected from sensors – such as accelerometers
and gyroscopes – into images, machine learning models can be leveraged to upsample or
classify time series data. In addition, GAFs offer a means to display multiple channels of
data in a single image, thereby eliminating the need for multiple images and reducing model
training complexity. Given the triaxial data collected by accelerometers, different axes of
motion (axes x, y, and z) can be captured in a GAF by utilizing different color channels.

The process of creating GAFs begins by first representing time series data in polar
coordinates rather than Cartesian coordinates. A Gramian matrix is then constructed,
where each entry is the cosine of the summation of two angles formed by lines in the polar
coordinate system. The conversion of time series data into polar coordinates entails encoding
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each data point in the series as the angular cosine value with the timestamp as the radius[11].
The result is a graph akin to that shown in Figure 1, where each point represents a step
in the time series. The plot’s points that are closer to the origin of the coordinate system
correspond to the earlier time series data points, whereas those towards the outer edges are
the last data points in the series.

Figure 1: Polar plot of a sinusoidal time series

To create the Gramian Angular Different Field (GADF), the matrix can be defined as:

GADFi,j = sin(Ψi +Ψj) = tr(
√

I − TS2) · TS − tr(TS) · (
√
I − TS2) (6)

Where GADFi,j;|i−j|=k represents the correlation by the difference of directions given
time k. I represents the unit vector, and tr(X) represents the transpose of X. This formula
will result in a Gramian matrix of the size TxT .

Our team aimed to evaluate the performance of the tabular diffusion model we developed
in comparison to existing alternatives. To this end, we aimed to compare classification results
between GAF representation as input and the raw time series data. Despite the difference
in data representation, the information encoded in the original dataset theoretically should
be preserved in the transformed format.

3.3.1 Applications of GAFs

GAFs can be used as a pre-processing step to transform complex, multidimensional time-
series data into images, which can then be used as input to diffusion models. In particular,
GAFs are useful for applications that have cyclic patterns because it preserves the cyclic
nature of the time series data. It is able to do so because of the conversion of every time
point to a point on a unit circle. GAFs have many applications, including:

Time Series Classification. GAFs can serve as input to machine learning algorithms
(e.g. convolutional neural networks (CNNs) or support vector machines (SVMs)) to classify
time series data.[12] This is especially relevant to human activity recognition, as sensor data
must be classified in order to better analyze the data.

Time Series Forecasting. In addition, GAFs can be leveraged as inputs to machine
learning models to enable the prediction of future time series data. Numerous time series
data exhibit periodic patterns, especially in HAR. By integrating GAFs as inputs, machine
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learning algorithms can effectively learn to identify these recurring patterns and provide
accurate predictions. These patterns are often pivotal in forecasting future values with a
high degree of precision[13].

Feature Extraction. GAFs can effectively extract features from data. During the
conversion of time series data into GAFs, features like periodicity and symmetry can be
extracted. These features can subsequently be utilized as inputs for machine learning algo-
rithms to execute regression, clustering, or classification tasks. Since GAFs are constructed
through polar coordinate transformations, they are impervious to rotations and translations.
This distinctive characteristic renders them less vulnerable to variations within the data.

4 Methodology

In the progression of diffusion models, two distinct approaches were pursued. The first
approach centered around the adaptation of diffusion with HAR to enable the support of tab-
ular data. This required an in-depth exploration of categorical diffusion, which necessitates
an independent noising function, or a loss function that is separated from the continuous
loss function. The second approach was geared towards advancing diffusion models for
HAR through the transformation of data into GAFs. Subsequently, classifier models were
employed to train and classify the GAF images.

4.1 Process for Tabular Diffusion

Extensive research and development efforts have been undertaken to advance the field of
diffusion models for images. Nonetheless, limited progress has been made towards developing
models that can be integrated with HAR or tabular databases. To initiate work on diffusion
models, the ”Denoising Diffusion Models” GitHub repository by Siddiqui was employed as a
foundational resource[14]. The repository provides a rudimentary diffusion model for images,
along with associated mathematical tools for conducting forward and reverse computations.

4.1.1 Vanilla Diffusion with Images

The initial aim of this investigation was to gain a comprehensive understanding of the
denoising diffusion model code. The model was developed using PyTorch framework to
realize the diffusion model principles that were initially introduced by Sohl-Dickstein et al.
in 2015[15]. Accordingly, a series of experiments were conducted to simulate the diffusion
process using representative image datasets, with a view to visualizing the resultant output
in latent space.

The repository underwent a preprocessing and data cleaning step to enhance its com-
prehensibility and functionality for users. Additional visualization features were also im-
plemented as part of a bug-fixing process for both forward and reverse diffusion. The trial
tests with corrected plots are shown in Figure 2 and 3
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Figure 2: Forward Diffusion adding 100 steps of noise

Figure 3: Reverse Diffusion removing 100 steps of noise

The original image data formed an S-shaped manifold in latent space. Gaussian noise
was added in 100 increments with the fully noised image being the 100th time step com-
puted from the forward diffusion process described in Equation 2. Thereafter, the reverse
diffusion process was trained with deep unsupervised learning by the model over 10,000
reverse training steps. The training steps refer to a convention maintained by Siddiqui and
are equivalent to epochs, which are the number of iterations over the entire data set. The
result following the training is a recovered structure of the original data from pure Gaussian
noise in Figure 3.

4.1.2 Noising Categorical Data

The initial step in advancing the diffusion model for tabular diffusion was understanding
and implementing diffusion for categorical data. Hoogeboom et al. introduced a closed-form
noising process in Equation 4; however, their implementation was based on logarithms. The
preexisting mathematical models were adapted to support log-based computations, but the
resulting structural incompatibilities and challenges encountered with logarithmic functions
for discrete data differed significantly from the existing vanilla diffusion architecture. As
such, alternate approaches to noising categorical data were pursued[16] and Jonemeth[17]
before revisiting the multinomial diffusion concept and devising functional non-logarithmic
functions. This entailed the following steps:

1. Indexing the classes within each discrete feature into a one-hot encoding.

2. Calculating the probability distribution from the given dataset for each class in each
discrete feature.
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3. Resampling a new probability distribution from a uniform categorical noise as predic-
tions.

4. Computing the new probability distribution after t time steps of noise using Equation
4.

5. Normalizing and resampling from the distribution to obtain the noised categorical
data.

Once this functionality was integrated into the code, the loss function was then tested toy
data to validate its correctness. The process of noising the distributions for the probability
and categorical data itself over time is presented in Figure 4, depicting two features with
two classes each.

(a) Distribution After Resampling (b) Distribution Before Resampling

Figure 4: Noising Process with Categorical Data

Each feature is depicted in a distinct color, wherein the red feature exhibits a class dis-
tribution of [0.95, 0.05] and the blue feature displays [0.6, 0.4]. Upon introducing every
step of categorical noise, the probability of selecting a specific class for each feature grad-
ually converges toward 0.5. Once approximately 4,000 steps of noise are incorporated, the
categorical data is fully distorted, enabling both classes for each feature to have an equal
likelihood of being chosen during resampling. Post-resampling, the distribution remains rel-
atively uniform, albeit with some noise introduced in the thousand samples taken. Parallel
experiments were conducted to authenticate the procedure for any number of features and
classes.

4.1.3 Denoising Categorical Data

The denoising process must be trained and learned over time to predict the distribution
of categorical variable xt−1 given x0 and xt where x0 is the distribution with zero noise
added and xt is the distribution with t noise steps added. To accomplish this task, the
training function for reverse diffusion from the vanilla diffusion model was employed, but
with a distinct loss function designed specifically for the discrete features.

The greatest difficulty in developing tabular diffusion was engineering the discrete loss
function. Hoogeboom et al. defined the target for reverse diffusion in Equation 5, but
the obscurity in some definitions, complications with multiple features, and dimensionality
elsewhere provided the greatest challenges. Particularly, the equation defines θpost(xt, x0) =

θ̃/
∑K

k=1 θ̃k. This equation can be interpreted in two ways:

1. A way of normalizing the target θ across all time steps.
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2. A way of normalizing the target θ across each feature at every time step.

The lack of clarity in this equation posed a challenge to the implementation of the experi-
ment. To clarify this in our paper, through experimental analysis, θpost(xt, x0) = θ̃/

∑K
k=1 θ̃k

represents the normalization of target θ across each feature at every time step.
The loss function then consisted of the following algorithmic steps with all data being

encoded in one-hot format xt ∈ {0, 1}K :

1. Select a random time step t for each data entry in the batch (i.e. with a batch size of
128, an equivalent of 128 forward time steps are randomly chosen).

2. Get t− 1 for each random time step and ensure non-negative values.

3. Calculate xt for each time step using the noising process validated earlier.

4. Extract variance, probability of sampling uniformly, and other constants for diffusion.

5. Compute the expected value θt with Equation 5 at each time step.

6. Normalize each feature at every time step to get a true probability distribution for
each class.

7. Input random noise into the diffusion model to get the output.

8. Compare the output with the target and measure MSE.

Figure 5: Reverse Diffusion with One Discrete Feature and Two Classes. Target values [0.9,
0.1]

The initial verification process evaluated the reverse diffusion approach by sampling two
classes from distributions [0.9, 0.1] for a single feature. The outcome of the training is pre-
sented in Figure 5, which displays the probability of each class at each training step. Initially,
the model generated probabilities close to 0.5 for selecting either class. However, it quickly
learned the joint distribution’s shape and accurately recovered the original distribution.

For the model to handle multiple features, the one-hot encodings of each feature were
concatenated to produce a single vector of one-hot encodings. Subsequently, the model was
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modified to index over this vector and normalize the distributions across each feature before
generating a final vector of length

∑N
n=1 kn, where N denotes the number of features and kn

indicates the number of classes in a given feature. Similarly, the loss function had to iterate
through the vector to introduce noise to one feature at a time and combine the noised data
into a single vector.

Finally, full validation was conducted using experimental data, comprising multiple fea-
tures with diverse classes and probabilities. The reverse process during training is depicted
in Figure 6, which illustrates the joint probability distributions that the model learned for
each class.

(a) Reverse Diffusion with Two Discrete Fea-
tures and Four Classes. Target values [0.9,
0.1, 0.35, 0.65]

(b) Reverse Diffusion with One Discrete
Feature and Five Classes. Target values
[0.01, 0.04, 0.5, 0.3, 0.15]

Figure 6: Denoising Process with Categorical Data

As anticipated, the convergence of the model takes longer when dealing with distributions
across multiple classes. Figure 6a portrays the nearly perfect recovery of the original target
of [0.9, 0.1, 0.35, 0.65], as the model learned the distribution of two features with two
classes each, resulting in the final distribution of [0.9168, 0.0832, 0.3484, 0.6516]. However,
with each additional class present, as depicted in Figure 6b, the model’s ability to recover
the original distribution diminishes slightly due to the additional variance and noise from
other features. In this case, after 500 training iterations, the target of [0.01, 0.04, 0.5,
0.3, 0.15] was learned to be [0.0292, 0.0304, 0.4870, 0.3100, 0.1434]. In order to accurately
recover the original distribution, it is crucial that each class has sufficient data points in each
batch during resampling. Moreover, the model requires significantly more samples to model
the discrete features’ probability distribution when dealing with multiple features. Figure
6a employed 1,000 samples in the dataset, whereas Figure 6b employed 10,000 samples.
With additional discrete features with multiple classes, there are fewer instances of a class
in each training batch. This hinders the model’s ability to accurately observe the total
class distribution over the training period. Thus, given the sample batch size, Figure 6b
displays more variance in the distributions due to the imbalances between each class within
each discrete feature. With multiple discrete features, it is recommended to train the model
using larger batch sizes and longer training periods to accurately model each class probability
distribution.
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4.1.4 Tabular Diffusion Architecture

Figure 7: Tabular Diffusion Model Architecture

In our tabular diffusion model architecture, we have incorporated the aforementioned
KL divergence loss function for our continuous features and a multinomial loss function
for our discrete features. In the forward diffusion process, we utilized closed-form equa-
tions (Equations 2 and 4) to determine the data sampled at any given time step. In the
reverse diffusion process, we separated the input based on feature type – continuous and
discrete features. Subsequently, we have subjected the discrete feature to a preprocessing
step for ensuring that the features are converted to one-hot encoding. Thereafter, the two
feature types are concatenated and passed through three conditional linear layers to learn
any relationships between the continuous and discrete features in the process. Following
this, the output is duplicated into two tensors – one for continuous features and the other
for discrete features. The continuous tensors are then passed through 5 linear layers with
the ReLU activation functions. The resulting output is backpropagated with the KL diver-
gence loss function using Equation 2. On the other hand, the discrete sensors are passed
through 3 linear layers with the ReLU activation functions. To obtain the discrete value, the
discrete tensors are finally passed through the softmax activation function. The output is
subsequently backpropagated with the previously described multinomial loss function using
Equation 5.

Loss Function and Discrete Feature Distribution

(a) Walking (b) Upstairs (c) Downstairs

(d) Sitting (e) Standing (f) Laying

Figure 8: Loss function and discrete feature distribution over the training period on 15
features.

Figure 8 illustrates the training and validation loss of the tabular diffusion model along-
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side the discrete distribution over time. In this case, the discrete feature is a binary feature
with a probability distribution of [0.95, 0.05]. As depicted in Figure 8, the tabular diffusion
model works as expected given that the training and validation loss decreases over time
and the discrete distribution separates from a random distribution of 0.5 into the target
distribution of [0.95, 0.05].

4.2 Process for Gramian Angular Fields

To advance the study of GAFs in the context of HAR, we transformed the time series
sensor data into GAF images. This approach facilitates the use of diffusion models to
generate images for classifiers to train and classify data more effectively. By leveraging
GAFs, we can capture the underlying dynamics of sensor data more accurately, opening up
opportunities to use image-based techniques.

4.2.1 Generating GAFs with HAR

In our experiment, we utilized the UCI Human Activity Recognition Using Smartphones
Dataset[18], which contains a large dataset of time series data. By converting each timestep
of the accelerometer and gyroscope data into a GAF, we were able to visualize the entire
dataset in a compact visual format.

4.2.2 Generating GAFs by Axis and Class

To gain a deeper understanding of potential patterns in the HAR data, we created GAFs
by axis and class. We defined the input dataset to be a singular axis of total training data
for each GAF and differentiated the data by the six classes present in the UCI HAR dataset
(Walking, Upstairs, Downstairs, Sitting, Standing, Laying). By generating GAFs by class
and axis, we were able to observe key features that differentiate the GAFs by class, such as
the coloration and pattern of the GAFs.

Figure 9: Randomized sample of GAFs generated on Standing, Laying, Sitting HAR X-Axis
data.
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Figure 10: Randomized sample of GAFs generated on Walking, Downstairs, Upstairs HAR
X-Axis data.

(a) Example of GAF image describing
passive action (Sitting, X-Axis, Timestep:
4017).

(b) Example of GAF image describing active
action (Upstairs, X-Axis, Timestep: 2146).

Figure 11: Passive vs. Active Action

Figure 9 and 10 illustrate the GAF representation of each HAR class. This enabled
us to differentiate between passive actions (Standing, Laying, Sitting) and active actions
(Walking, Upstairs, Downstairs), where similar actions produced similar GAFs. We found
that active actions tend to have bolder coloring throughout the GAFs and a starburst
pattern, while passive actions tend to present with more muted colors.

4.2.3 Combining Individual GAFs to Create RGB GAFs

While generating GAFs by axis allowed us to uncover some patterns in the data, it did
not provide a complete picture. Therefore, we generated all X, Y, and Z-axis data into
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individual GAFs by axis. We then assign a color channel to each axis (X - red, Y - green, Z
- blue) and combine them into one singular RGB-colored GAF to better visualize all three
axes in one representation.

Figure 12: Example of combined axis GAF by RGB color.

4.2.4 Efficacy of GAFs vs. Time Series Data as Classifier Input

Before determining which input type to use for our diffusion model, we wanted to com-
pare the efficacy of GAFs as input to that of the original time series data. To do so, we
ran both time series data and GAFs through classifiers. We used a random forest model for
analyzing time series data and a convolution neural network (CNN) for analyzing GAFs.
The decision to use different models was made based on the computational requirements of
the respective models and the characteristics of the input data types. For time series data,
we used a random forest model because of its ability to handle large datasets efficiently
and identify intricate decision boundaries. RGB GAFs were used as input to a Convolution
Neural Network (CNN), which is typically used to extract higher representations for images.
By using different models for different data types, the study was able to compare the efficacy
of GAFs as input to that of the original time series data and draw conclusions about the
effectiveness of diffusion models on the UCI HAR dataset.

5 Results

5.1 HAR Data Input Classification Evaluation

The random forest model yielded an F1 score of 0.91 when applied to the raw time series
data. This is an indicator that was effective in classifying human activity based on the
original time series data. Although there were other models to experiment on raw times
series data with, random forest already yielded an F1 score of 0.91, even when we gave the
GAFs an advantage. The data was vectorized for each row of the time series, causing it
to lose its temporal information. Had we run the times series data through more complex
models, it would have most likely produced better results. GAFs did not prove to be as
effective for this dataset, resulting in an F1 score of 0.239 (± 0.023). This indicates that
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GAFs did not capture the underlying patterns in the data as effectively as the original time
series data. Because of these results, we elected to use statistical features as input for our
tabular diffusion model.

F1 Scores by Input and Model
Input Type Raw Time Series Data GAFs
Model Type Random Forest CNN

F1 Score 0.919 (± 0.007) 0.239 (± 0.023)

Table 1: Results of using raw time series data and GAFs as input to the classifier.

5.2 Generative Model Machine Evaluation

Recent research[7] indicates that GANs are the prevalent generative model for HAR.
The CT-GAN is presently considered the leading generative model for the HAR domain.
Therefore, we are assessing the performance of vanilla diffusion and tabular diffusion rel-
ative to their GAN counterpart, which serves as the current benchmark in the industry.
Four models, namely Vanilla GAN, Vanilla Diffusion, CT-GAN, and Tabular Diffusion, are
evaluated through machine performance analysis, as shown in Table 2 and Table 3. Our
machine evaluation process consists of two steps:

1. One random forest classifier is trained on real data and then evaluated on synthetic
data generated by the aforementioned models.

2. Four random forest classifiers are trained on four synthetic data generated by different
models and then evaluated on real data

The random forest classifier was chosen due to its efficient processing speed on a large
dataset as well as its ability to find complex decision boundaries, which can be critical in
classifying HAR data.

5.2.1 Machine Evaluation Performances on Different Generative Models

Table 2 and Table 3 present the classification performance of real and synthetic data using
the aforementioned machine evaluation methods. The models were trained and inferred on
20 features – 19 continuous features and 1 discrete feature. The discrete feature represents
the individual from whom the sensor data is collected. The feature consisted of 30 classes
equating to 30 different individuals.

Model Type
F1 Scores by HAR Classes (Classifier Trained on Real Data)

Walking Upstairs Downstairs Sitting Standing Laying
Baseline 0.904 (± 0.042) 0.905 (± 0.041) 0.931 (± 0.031) 0.819 (± 0.101) 0.739 (± 0.091) 0.999 (± 0.001)

Vanilla GAN 0.401 (± 0.209) 0.631 (± 0.090) 0.514 (± 0.230) 0.647 (± 0.102) 0.720 (± 0.109) 0.995 (± 0.003)
Vanilla Diffusion 0.741 (± 0.048) 0.711 (± 0.113) 0.785 (± 0.103) 0.538 (± 0.198) 0.434 (± 0.241) 0.996 (± 0.003)

CT-GAN 0.876 (± 0.055) 0.754 (± 0.010) 0.856 (± 0.011) 0.715 (± 0.105) 0.736 (± 0.093) 0.995 (± 0.002)
Tabular Diffusion 0.804 (± 0.048) 0.821 (± 0.098) 0.883 (± 0.081) 0.623 (± 0.215) 0.578 (± 0.222) 0.997 (± 0.002)

Table 2: Classifier trained on real data performance when testing on synthetic data.

Table 2 reveals that the performances of CT-GAN and tabular diffusion are similar. CT-
GAN exhibits superior performance in the walking, sitting, and standing classes, whereas the
tabular diffusion model outperforms in the upstairs, downstairs, and laying classes. However,
it is important to note that none of the models surpass the baseline, which is the classifier’s
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performance on real data. In addition, the vanilla diffusion model performs better than the
vanilla GAN model in four categories except for sitting and standing. Overall, the tabular
versions of both GAN and diffusion models perform better than their vanilla counterparts.

Model Type
F1 Scores by HAR Classes (Classifier Trained on Synthetic Data)

Walking Upstairs Downstairs Sitting Standing Laying
Vanilla GAN 0.481 (± 0.251) 0.494 (± 0.182) 0.392 (± 0.311) 0.310 (± 0.189) 0.518 (± 0.094) 0.980 (± 0.002)

Vanilla Diffusion 0.894 (± 0.102) 0.738 (± 0.194) 0.877 (± 0.130) 0.313 (± 0.233) 0.600 (± 0.253) 0.997 (± 0.003)
CT-GAN 0.785 (± 0.021) 0.791 (± 0.112) 0.805 (± 0.092) 0.479 (± 0.332) 0.543 (± 0.213) 0.989 (± 0.002)

Tabular Diffusion 0.725 (± 0.092) 0.771 (± 0.092) 0.750 (± 0.109) 0.545 (± 0.312) 0.689 (± 0.273) 0.998 (± 0.002)

Table 3: Classifier trained on synthetic data performance when testing on real data.

Based on the data in Table 3, diffusion models exhibit better performance than GAN
models in five out of six classes. The vanilla diffusion model outperforms others in the
walking and downstairs classes, whereas the tabular diffusion model outperforms others in
the sitting, standing, and laying classes. In addition, CT-GAN performs better than other
models in the upstairs class.

Overall, taking into account the results from both Table 2 and Table 3, the tabular
diffusion model outperforms others in six out of twelve metrics. The CT-GAN model out-
performs others in four out of twelve metrics, while the vanilla diffusion model outperforms
others in two out of twelve metrics.

5.3 Tabular Diffusion Model Feature Space

Multiple feature spaces were also tested on the tabular diffusion model in this project.
The following sections present the machine evaluation performances of the tabular diffusion
models with various feature sets. Additionally, we conducted principal component analysis
(PCA) on each feature set to visualize the dissimilarities between the distribution of real
data and synthetic data.

5.3.1 Machine Evaluation Performances on Tabular Diffusion Model with Dif-
ferent Feature Space

Table 4 and Table 5 present the F1 score performances in UCI HAR dataset classification
using the established machine evaluation methods. The random forest classifiers are trained
on either real or synthetic data using 4, 10, 15, or 20 features. Subsequently, the classifiers
are tested on both real and synthetic data with each of the features.

Number of Features Testing Data
F1 Scores by HAR Classes (Classifier Trained on Real Data)

Walking Upstairs Downstairs Sitting Standing Laying

4
Real 0.771 (± 0.012) 0.834 (± 0.031) 0.656 (± 0.023) 0.709 (± 0.022) 0.758 (± 0.013) 0.999 (± 0.001)

Synthetic 0.461 (± 0.312) 0.641 (± 0.213) 0.596 (± 0.221) 0.562 (± 0.254) 0.636 (± 0.144) 0.979 (± 0.002)

10
Real 0.867 (± 0.177) 0.864 (± 0.102) 0.838 (± 0.108) 0.766 (± 0.209) 0.813 (± 0.108) 0.999 (± 0.001)

Synthetic 0.641 (± 0.273) 0.769 (± 0.219) 0.736 (± 0.172) 0.663 (± 0.222) 0.644 (± 0.146) 0.998 (± 0.002)

15
Real 0.933 (± 0.007) 0.930 (± 0.021) 0.923 (± 0.012) 0.748 (± 0.055) 0.810 (± 0.019) 0.999 (± 0.001)

Synthetic 0.804 (± 0.106) 0.821 (± 0.107) 0.883 (± 0.114) 0.623 (± 0.311) 0.578 (± 0.351) 0.997 (± 0.002)

20
Real 0.940 (± 0.013) 0.912 (± 0.044) 0.873 (± 0.072) 0.821 (± 0.078) 0.832 (± 0.130) 0.999 (± 0.001)

Synthetic 0.802 (± 0.099) 0.785 (± 0.048) 0.854 (± 0.101) 0.623 (± 0.213) 0.598 (± 0.310) 0.999 (± 0.001)

Table 4: Classifier trained on real data performance when testing with 4, 10, 15, and 20
feature spaces.

Table 4 presents the classification performances on 4, 10, 15, and 20 feature spaces from
the random forest classifier trained on real data. Based on Table 4, when the classifiers are
tested on real data, the use of 20 features resulted in the highest F1 scores in four out of six
classes, including Walking, Sitting, Standing, and Laying, while 15 features produced the
highest F1 scores in the remaining two classes, which are Upstairs and Downstairs. When
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the classifiers are tested on synthetic data, however, 15 features generated the highest F1
scores in three out of six classes, specifically Walking, Upstairs, and Downstairs. Moreover,
10 features produced the highest F1 scores in two out of six classes, which are Sitting and
Standing, and 20 features yielded the highest F1 scores in only one out of six classes, namely
Laying.

Number of Features Testing Data
F1 Scores by HAR Classes (Classifier Trained on Synthetic Data)

Walking Upstairs Downstairs Sitting Standing Laying

4
Real 0.526 (± 0.314) 0.756 (± 0.142) 0.525 (± 0.215) 0.451 (± 0.312) 0.702 (± 0.209) 0.999 (± 0.001)

Synthetic 0.619 (± 0.122) 0.706 (± 0.106) 0.678 (± 0.165) 0.570 (± 0.308) 0.682 (± 0.151) 0.999 (± 0.001)

10
Real 0.670 (± 0.182) 0.693 (± 0.088) 0.714 (± 0.099) 0.557 (± 0.227) 0.687 (± 0.172) 0.999 (± 0.001)

Synthetic 0.812 (± 0.056) 0.831 (± 0.017) 0.845 (± 0.088) 0.735 (± 0.100) 0.762 (± 0.056) 0.999 (± 0.001)

15
Real 0.725 (± 0.099) 0.771 (± 0.096) 0.750 (± 0.045) 0.545 (± 0.266) 0.689 (± 0.176) 0.999 (± 0.001)

Synthetic 0.911 (± 0.005) 0.877 (± 0.062) 0.947 (± 0.009) 0.845 (± 0.014) 0.850 (± 0.018) 0.999 (± 0.001)

20
Real 0.853 (± 0.077) 0.820 (± 0.052) 0.756 (± 0.142) 0.450 (± 0.315) 0.723 (± 0.088) 0.999 (± 0.001)

Synthetic 0.935 (± 0.014) 0.930 (± 0.015) 0.952 (± 0.022) 0.874 (± 0.087) 0.859 (± 0.045) 0.999 (± 0.001)

Table 5: Classifier trained on synthetic data performance when testing with 4, 10, 15, and
20 feature spaces.

Table 5 presents the classification performances on 4, 10, 15, and 20 feature spaces
from the random forest classifier trained on synthetic data. Based on Table 5, the classifier
performs consistently better on 20 features with one exception, namely the Sitting class
when tested on real data. In this case, the classifier trained on 10 features outperformed
the one trained on 20 features.

5.3.2 Tabular Diffusion Model Synthetic Data Visualization

The next section showcases principal component analysis (PCA) results on real and
synthetic data sets from 4, 10, 15, and 20 feature spaces. Figures 13, 14, 15, and 16 comprise
seven sub-figures each. The first sub-figure (Figure 13a, 14a, 15a, and 16a) shows the multi-
class PCA between real and synthetic data. The subsequent six sub-figures (Figure 13b,
13c, 13d, 13e, 13f, 13g, 14b, 14c, 14d, 14e, 14f, 14g, 15b, 15c, 15d, 15e, 15f, 15g, 16b, 16c,
16d, 16e, 16f, and 16g) display the PCA results of each class, as well as the heat map of
combined real and synthetic data, the heat map of only real data, and the heat map of only
synthetic data. In each class’s sub-figure, the top-left plot represents the PCA plot between
real and synthetic data, the top-right plot is the heat map of combined real and synthetic
data, the bottom-left plot is the heat map for only the real data, and the bottom-right plot
is the heat map for only the synthetic data.
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4 Features Visualization

(a) 4 Features PCA

(b) Walking (c) Upstairs (d) Downstairs

(e) Sitting (f) Standing (g) Laying

Figure 13: PCA and heatmap of the six HAR classes with 4 features – Walking, Upstairs,
Downstairs, Sitting, Standing, Laying – generated by the tabular diffusion model.
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10 Features Visualization

(a) 10 Features PCA

(b) Walking (c) Upstairs (d) Downstairs

(e) Sitting (f) Standing (g) Laying

Figure 14: PCA and heatmap of the six HAR classes with 10 features – Walking, Upstairs,
Downstairs, Sitting, Standing, Laying – generated by the tabular diffusion model.
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15 Features Visualization

(a) 15 Features PCA

(b) Walking (c) Upstairs (d) Downstairs

(e) Sitting (f) Standing (g) Laying

Figure 15: PCA and heatmap of the six HAR classes with 15 features – Walking, Upstairs,
Downstairs, Sitting, Standing, Laying – generated by the tabular diffusion model.
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20 Features Visualization

(a) 20 Features PCA

(b) Walking (c) Upstairs (d) Downstairs

(e) Sitting (f) Standing (g) Laying

Figure 16: PCA and heatmap of the six HAR classes with 20 features – Walking, Upstairs,
Downstairs, Sitting, Standing, Laying – generated by the tabular diffusion model.

Based on the PCA plots for the 4, 10, 15, and 20 feature spaces, it appears that higher
feature spaces result in better synthetic data quality, as evidenced by the distinct groupings
and class separations in the multi-class PCA plot. Additionally, the heat map comparisons
between the real and synthetic data (bottom left and bottom right heat map plot) for each
class demonstrate that the synthetic data distribution closely mirrors that of the real data,
providing evidence that the synthetic data quality replicates the real data distribution.
While the real and synthetic data distributions are not identical, they are comparable,
indicating that the model is actively learning and not generating random noise. However,
it is worth noting that some classes exhibit sharper decision boundaries, as the real data
distribution is often concentrated in one area while the synthetic data distribution contains
some noise. This is particularly evident in Figures 13d, 13e, 13f, 15f, and 16e.
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6 Discussion

During the development of our tabular diffusion model, we considered GAFs as potential
input. Even though we ultimately decided to use statistical features as input to our tabular
model, exploring GAFs allowed us to experiment with new technology and gain insights into
its applications within the field of HAR. In this section, we discuss our work with GAFs and
tabular diffusion to highlight their strengths, limitations, and potential for future research.

6.1 Gramian Angular Fields Representation

The team originally hypothesized that converting time series data to GAFs would provide
a more compact (and thus easier to process) input for machine learning models to learn
on. Several complications arose during and after the process of converting the data. We
combined each of the three individual axis GAFs into an RGB GAF in hopes that we can
better capture all of the accelerometer data of each time step in one image. However, this
made the data more complex and convoluted.

One possible explanation for why GAFs did not perform well on a CNN classifier is
the high dimensionality of each image. Despite using a CNN for its ability to reduce high
dimensionality in images, our GAFs might have been too highly dimensioned. Like with any
model, there is more work that could be done with adjusting hyperparameters and using
different models. For the purposes of testing the efficacy of GAFs and time series data as
viable input sources, we came to a conclusion earlier into the testing phase to be able to
focus more on the tabular diffusion model.

Given more time, there are a number of expansions we could make with GAFs, including:
1. More exploratory analysis to determine which axis is a better indicator of action.

This may be difficult because the orientation of the sensor is user-dependent. For instance,
some users may have their phones oriented upside down in their pockets instead of upright.
This impacts the data gathered for each X, Y, and Z axis of the accelerometer. This also
impacts the axis (or axes) that may contain the most meaningful data on what action is
being carried out. However, if we were to determine which axis provides the most meaningful
information, we could focus on the GAFs generated from that specific axis data rather than
trying to combine all three into one GAF.

2. Flattening the GAFs in order to minimize the complexity of using GAF images as
input. We could then run classification models based on the flattened images. GAFs can
be complex to work with due in part to their high dimensionality. The size of a GAF
depends on the length of the given time series data. For instance, a time series of length
50 produces a 50x50 GAF containing 2500 pixels. By flattening the images into a one-
dimensional vector, we can reduce their dimensionality. However, in doing so, we could lose
spatial information. For certain applications, this is less of a concern if we are less focused
on the spatial relationships between points.

3. Flattening the images also opens researchers up to using machine learning models
that work well with the input of flat vectors. CNN was the primary model used to test the
efficacy of the GAFs because it is known for reducing high dimensionality in images. Some
alternative models to consider include other neural networks and support vector machines.

6.2 Tabular Diffusion Model

This study aimed to investigate the effectiveness of the tabular diffusion model on the
UCI HAR dataset and compare it to vanilla diffusion and the state-of-the-art generative
model for HAR – GAN. The findings indicated that the diffusion model generally performs
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better than GAN on this dataset. Additionally, the tabular versions of both GAN and diffu-
sion models showed superior performance compared to their vanilla counterparts, consistent
with previous studies indicating that incorporating discrete features with HAR data can
improve classification accuracy.

Based on the results, the performance of the tabular diffusion model is comparable
to that of the current state-of-the-art model, CT-GAN. As indicated in Table 3, three of
the four models trained on synthetic data – the vanilla diffusion model, CT-GAN model,
and tabular diffusion model – were able to produce good results when tested on real data,
demonstrating that the generative models effectively capture the essential characteristics of
the real data and can generate synthetic data that resembles those characteristics. However,
the performance of the sitting and standing classes was only slightly above the chance level
across all four generative models. These two classes share very similar features, which the
generative models may not be able to distinguish, as evident from the PCA comparisons
between real and synthetic data.

Additionally, the results suggest that increasing the number of features for the tabular
diffusion model enhances synthetic data quality, with classifiers trained on synthetic data
and more features yielding better F1 scores when tested on both real and synthetic data.
Nonetheless, further optimization and analysis are required to determine the optimal number
of features for the tabular diffusion model due to computational limitations in the hardware.

It should be noted that the promising results achieved with the tabular diffusion model
were based on a reduced feature space of the UCI HAR dataset, which was limited to only
20 features. This is due to the constraints of our implementation of the model, and we were
unable to train the model for a sufficient amount of time to achieve good results with larger
feature spaces. Our attempt to run the model with 40 features resulted in an inability to
determine if the model was still learning after 72 hours, as well as a significant amount of
NaNs in the synthetic data generated from the model.

Moreover, due to the lack of available research on the optimal hyperparameters for the
tabular diffusion model in the context of HAR, we were unable to fully explore the impact of
hyperparameter tuning on the model’s performance. These hyperparameters, which include
the number of forward and reverse training steps, the training batch size, and the learning
rates for both the continuous and discrete losses, play a crucial role in determining the
efficacy of the model. Further research is necessary to explore the impact of hyperparameter
tuning on the performance of the tabular diffusion model in HAR applications.

7 Limitations

7.1 Gramian Angular Fields Limitations

Gramian Angular Fields provide a compact method of visualizing time series data, which
is often presented in extensive JSON files. Although GAFs allow for an alternative repre-
sentation of time series data, it also has a number of limitations.

First, the transformation from time series data to GAFs can result in a loss of informa-
tion. The resulting GAF may not capture all details of the original data after undergoing
the conversion process. The higher level of detail in the time series data, the bigger the
potential information loss.

Second, generating GAFs requires significantly more computational resources. If an
individual or organization does not have easy access to powerful computing infrastructure
like WPI’s Turing Research Cluster, it would be very difficult to run analysis on GAFs in a
timely and efficient manner.

Third, the conversion process for GAFs can add to the convolution of data. More than
one point in the original time series data can be mapped to the same pixel in a GAF. This
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can cause some information to be lost in the GAF, making it more difficult for both humans
and machines to extract meaningful patterns or insights from the data. Convolution of data
can also introduce noise into the image, further complicating data analysis.

7.2 Tabular Diffusion Limitations

While the performance of the tabular diffusion model was promising, there were several
limitations associated with our implementation of the models and the results we obtained.

One limitation of our implementation of the tabular diffusion model architecture is that
it has a structural restriction on the input. Specifically, the discrete portion of the input
must be in the label encoding format. While there are workarounds available to bypass
this restriction, we have not yet found a solution to accept both one-hot and label encoding
formats.

Another limitation of the tabular diffusion model is the need for retraining it when there
are changes in the number of features, classes, and other built-in hyperparameters. With
nine hyperparameters, this can be both an advantage and disadvantage as it enables the
model to be more tailored to specific problems. However, the large number of hyperparame-
ters makes algorithmic hyperparameter optimization challenging and time-consuming, thus
affecting the training and validation process.

Furthermore, the training time required for the tabular diffusion model is significantly
longer than its GAN counterpart, CT-GAN. In this study, it took approximately 72 hours
to train and validate the tabular diffusion model, while the CT-GAN was able to achieve
comparable results within 3 hours. Further research may be required to examine the rela-
tionship between the training time of the tabular diffusion model and its performance to
determine the advantages of this model. However, we suggest that other researchers assess
their computing resources to determine whether the tabular diffusion model’s performance
justifies its long training time.

In addition, our implementation of the tabular diffusion model has limitations on the
number of features it can handle. The model is not suitable for data with more than 20
features, which is one of its major constraints. The UCI HAR dataset used in this study
has more than 561 features per data point, but we achieved favorable outcomes for up to 20
features. For each additional feature, we anticipate a significant increase in training time,
which prevented us from training the model sufficiently to achieve favorable results with
more than 20 features.

Moreover, it is important to note that the UCI HAR dataset used in this study is highly
regarded for its cleanliness within the HAR field. The dataset is accurately labeled, and
the features included in the dataset are generally distinct between the six available classes.
Therefore, it is reasonable to assume that the performance of the tabular diffusion model may
deteriorate when applied to other real-world HAR data that may have greater variability
and noise in the data.

Finally, it is worth noting that our research findings only compared the diffusion models
with the GAN models. Therefore, we recommend conducting further comparisons of the
tabular diffusion models with other generative models, including Variational Autoencoders
(VAEs), to gain a more comprehensive understanding of their performance and potential
applications.

8 Conclusion

In this study, we investigated the effectiveness of the vanilla diffusion model and tabular
diffusion model on the UCI HAR dataset. We applied classifiers to both raw time series
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data and GAFs and found that converting HAR data to GAFs did not significantly improve
classification performance for this particular dataset. However, GAFs offer a more compact
representation of time series data.

Our findings revealed that the vanilla diffusion model generally outperformed the GAN
model, and including discrete features enhanced classification performance in HAR classi-
fication problems, which is consistent with previous research. In both GAN and diffusion
models, their tabular counterparts – CT-GAN and tabular diffusion – achieved better classi-
fication performance than the vanilla models. Finally, we observed that the tabular diffusion
model achieved results similar to the current state-of-the-art model for HAR – CT-GAN.

Our research also sheds light on the limitations of the diffusion models, such as the longer
training time and limited ability to handle large feature sets. Future studies could explore
ways to optimize and scale up the training process of the diffusion models for handling larger
datasets

Overall, the findings of this study demonstrate the potential of diffusion models as a
promising approach for tackling challenging problems in the field of HAR. Future work in
this area could help unlock new opportunities for the development of intelligent systems
that can analyze and understand human behavior in real-world scenarios, with applications
ranging from healthcare to sports performance monitoring.
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Individual Contributions

This section denotes the individual contributions of each member of the team. Note
there may be some overlap when multiple team members worked in collaboration.

Sirut Buasai

• GANs and HAR

– Established codebase documentation conventions

– Implemented preprocessing utility methods for data loading, data cleaning, and
data visualization

– Implemented vanilla GAN models for the UCI HAR dataset

• Vanilla and Tabular Diffusion Models

– Researched CT-GAN, HAR-GAN, Tabular Diffusion, and Multinomial Diffusion
implementation and evaluation methods

– Implemented utility classification methods for model evaluation and visualization
between real and synthetic data

– Wrote testing and visualization scripts for the multinomial loss function

– Wrote documentation for all diffusion models

– Bug-fixed multinomial loss function regarding multiple discrete features

– Adapted the tabular diffusion model to work with UCI HAR dataset

– Collected evaluation metrics for vanilla GAN, CT-GAN, vanilla diffusion, and
tabular diffusion models

– Collected evaluation metrics for tabular diffusion models across 4, 10, 15, and 20
features

– Collected visualizations for tabular diffusion models performance on various hy-
perparameters settings

• Final Project Paper

– Researched into GANs, CT-GANs, HAR, Diffusion Model, and Multinomial Dif-
fusion Model

– Wrote Challenges with HAR, Proposed Solution, and Contributions in the Intro-
duction section

– Wrote and edited Tabular Diffusion in the Background section

– Wrote and edited Process for Tabular Diffusion in the Methodology Section

– Wrote Generative Model Machine Evaluation and Tabular Diffusion Model Fea-
ture Space in the Results section

– Wrote Tabular Diffusion Model in the Discussion section

– Wrote Tabular Diffusion Limitations in the Limitations section

– Wrote the Conclusion section

– Edited all sections for the final draft

Jason Dykstra

• Researched into GANs via tutorials, videos, and research papers
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• Helped create the infrastructure for the GAN that was used to test our HAR dataset

• Read the overview article for understanding Gramian Angular Fields (GAFs)

• Researched further to understand the math behind converting time series data to
images

– Did some more research on how GAFs work in general, and how to implement
them in Python

• Overcame complications with creating RGB layered GAFs by using different axes of
triaxial time series data for different color channels.

• Wrote code to remove unnecessary visual components from generated GAFs such as
axes on plots

• Wrote code to generate RGB GAFs for both the triaxial training and test datasets in
the provided HAR data folder. Separated generated GAFs by train/test and by class
to be easily parsable by classification model.

• Included code to generate parent and child folders if they did not already exist, so
that the code could be run on a new environment without issues.

• Researched into diffusion models

• Helped clean up existing code for vanilla diffusion model on image generation

• Created visual representations of initial diffusion model results, including graphs,
PCA, and heat maps

• Creation of test script for running GAF classifier on Turing

• Experimented with numerous methods of implementing classifiers to test GAF vs time
series data performance

• Researched other time-series-to-image implementations to minimize information loss

Dillon McCarthy

• Developed evaluation metrics for generative models, including machine evaluation and
separability tests

• Tested and learned vanilla diffusion models on images

• Adapted and tested vanilla diffusion models on HAR

• Created an introductory presentation and explanation for diffusion models and devel-
oped a basic quiz to test knowledge for learners

• Modified vanilla diffusion to work for categorical data

– Created a new noise function inspired by Hoogeboom et al. Multinomial Diffusion

– Designed new model architecture

– Engineered new loss function used in reverse diffusion

– Improved data pipeline to support the concatenation of multiple discrete features
through the model
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– Developed a new method of generating discrete data from the model (as opposed
to continuous)

– Tested and evaluated the model’s effectiveness across multiple classes and a va-
riety of discrete data

• Combined vanilla diffusion and categorical diffusion in a single tabular diffusion model

– Modified model architecture

– Constructed a joint loss function separating data

– Invented a new generation function combining two independent methods for gen-
erating data

– Evaluated model on toy data, including machine evaluation and PCA

• Wrote the first section of 1. Introduction, sections 3.1, 3.2-3.2.2, 4-4.1.3

Cindy Trac

• Built upon GAF generation code to regenerate GAFs on as square images

• Bug-fixed Jason’s C-Term classifier for GAFs on HAR data

• Experimented with a number of classifiers to test efficacy of GAFs vs time series
classification

• Implemented code to manipulate GAFs format to improve (vectorize time series, flat-
ten GAFs, etc)

• Finalized and cleaned up Random Forest, CNN, and 1-D CNN classifiers

• Overcame many complications with Turing to be able to run all models, facilitated
other team members through the process

• Collected evaluation metrics for Random Forest, CNN

• Researched and wrote:

– Abstract

– 1 - Introduction (HAR)

– 2, 4, 5, 6, 7 - Introductions to Related Work, Methodology, Results, Discussion,
Limitations

– 3.3.1 Applications of GAFs

– 4.2 - Process of Gramian Angular Fields

– 4.2.1 - 4.2.4 Generating GAFs with HAR, By Axis and Class, Create RGB GAFs,
Efficacy of GAFs vs. Time Series

– 5.1 - HAR Data Input Classification Evaluation

– 6.1 - Gramian Angular Fields Representation

– 8 - Conclusion

• Edited all sections for the final draft and significantly added to:

– 3.1 Diffusion Models
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Appendix

A Project Presentation Poster

Figure 17: Our team’s project presentation poster for the WPI MQP Project Day.
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