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Abstract

Wigner (1932) showed how to introduce a phase space distribution

of quantum systems possessing one or more continuous degrees of

freedom. Gibbons et. al. (2004) [4] developed a discrete version of

the Wigner function which is used to describe systems with discrete

coordinates, such as systems of qubits. The discrete version for a

single qubit uses a phase space based on the eigenvalues of the Pauli

Z and X operators. For n qubits, the phase space is a 2n× 2n grid.

Lines in phase space are defined by the arithmetic of Galois Fields.

The association of lines with eigenstates of observables is partly

arbitrary, with different choices corresponding to different quantum

nets.

We discuss how two 1-qubit discrete Wigner functions can be

combined to form a single 2-qubit discrete Wigner function (DWF).

If the 1-qubit DWFs use different quantum nets, a straightforward

direct product produces the 2-qubit DWF. We discuss several open

questions regarding combining DWFs that are important for appli-

cations.

Arbitrary quantum computations can be built using single-qubit

rotations and the controlled-not gate. Arbitrary rotation matrices

which can be applied to the single qubit DWF are developed. We

give formulae for the effects of simple quantum gates on 2-qubit

Wigner functions. Applications of the DWF to quantum state re-

construction and superdense coding are also discussed.
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Chapter 1

Introduction

In 1932 E.P. Wigner introduced a phase space description of quantum systems,

now known as the Wigner function. The Wigner function is a real function de-

fined on the phase space of one or more particles that gives the probability of

finding the particle(s) to have each combination of position and momentum – but

these quasi-probabilities can be negative! A comprehensive review of the Wigner

function and its applications may be found in the article by Hillery et. al. [6].

In 1982 Feynman [3] used a form of the Wigner function to describe a 2-state

system (qubit). Recently, Wootters [11] extended Feynman’s idea and developed

a discrete phase space analog of the Wigner function for any number of qubits.

Gibbons, Hoffman and Wootters (2004) [4] give a formal treatment of the discrete

Wigner function.

The discrete Wigner function (DWF) representation of quantum states is based

on a finite phase space and therefore uses a finite set of real elements to describe

a state. Quantum bits, or qubits, are 2-state quantum systems and form the basis

of quantum computation and quantum information. One may represent systems

of any number of qubits using the discrete Wigner function. In this work we

follow the approach of Wootters [11] and Gibbons et. al. [4] who develop a formal

description of qubits using the discrete Wigner function.

Gibbons et. al. [4] define the DWF for a single qubit on a discrete phase

space grid with 2× 2 points. For higher dimensional systems of qubits the phase

space has 2n × 2n points, where n is the number of qubits. The phase space is

described mathematically using Galois fields. Physically measurable probabilities

may be found using a DWF by summing over lines in the phase space. Lines are

associated with eigenstates of measurable operators. There are 2n +1 sets of lines,

1



CHAPTER 1. INTRODUCTION 2

with 2n lines in each set.

An important problem in quantum mechanics and quantum information theory

is the determination of an unknown quantum state from measurements on many

identical copies of the state. This problem is sometimes called state reconstruction

or quantum tomography. One challenge in quantum tomography is the selection of

a set of measurements to make on the copies that provide a reliable estimate of the

quantum state with the minimum number of measurements. The Wigner function

is a useful tool for solving state reconstruction problems. Quantum tomography

has been experimentally verified for a single mode of the quantized electromag-

netic field in a cavity, a system with one continuous degree of freedom. Certain

measurements have been developed that give probabilities of finding the system

in strips in phase space at arbitrary orientations, from which the Wigner function

can be found. The book by Leonhardt [8] gives theoretical and experimental de-

tails. Wootters [11] and Gibbons et. al. [4] developed a discrete version of the

continuous Wigner function for modeling systems of qubits. This report focuses

on the DWF.

Recently many works have focused on the application of the DWF to problems

in quantum information theory. The DWF has been used to analyze quantum

teleportation in arbitrary dimensions and in the continuous limit by Koniorczyk

et. al. [7]. Paz et. al. [10] used the DWF in the analysis of error correction

and state retrodiction for up to 3 qubits. It is hoped that the DWF will lead to

useful visualizations and insights involving quantum computations. The field of

quantum information theory is still very active, and these hopes have yet to be

fully realized.

The report is arranged as follows:

Chapter 2 introduces the necessary quantum mechanics needed to understand

qubits. The continuous Wigner function is described; many of its properties carry

over to the discrete version. The chapter concludes with an informal description

of the 1-qubit discrete Wigner function motivated by analogy to the continuous

Wigner function.

Chapter 3 gives a formal description of the discrete Wigner function following

the work of Gibbons et. al. [4]. The necessary mathematics of Galois fields are

discussed, along with the application of Galois fields to the discrete phase space.

The theoretical framework connecting the phase space based on Galois Fields to

the quantum systems of qubits is then developed, with examples of 1- and 2-qubit
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DWFs. The connection between the discrete phase space and quantum systems

is used to develop the discrete Wigner function rigorously. Finally, we present an

alternative construction for the 2-qubit DWF.

Chapter 4 discusses the interesting problem of converting two 1-qubit DWFs

into one 2-qubit DWF and vice versa. We discuss how a näıve formula for combin-

ing two 1-qubit DWFs does not work. We then present a modified formula which

does work for certain quantum nets. We also discuss the reduction of Wigner

functions analogous to the partial trace of density matrices.

Chapter 5 contains applications of the DWF. Formulae for arbitrary rotations

of a 1-qubit DWF are derived. We present formulae for the effect of simple uni-

tary operators (quantum gates) on the 2-qubit DWF. We discuss how the discrete

Wigner function can be used to obtain a solution to the problem of state recon-

struction in quantum tomography. Finally, the quantum communication protocol

superdense coding is illustrated using the DWF.



Chapter 2

Basics of Qubits and the Wigner

Function

This chapter describes qubits and introduces the Wigner function. We will discuss

a few equivalent ways of representing a qubit including the familiar state vector

notation, the pseudospin vector, and the density operator formulation. The con-

tinuous Wigner function is discussed, those properties of it being highlighted that

are necessary for understanding the discrete version. We end the chapter with

a pedagogic discussion of the single qubit discrete Wigner function. A formal

discussion of the discrete Wigner function follows in Ch. 3.

2.1 Bloch Sphere Description of 1 qubit

A quantum bit (qubit) is any two-state quantum system. Examples of 2-state

quantum systems include a spin 1
2

particle, the horizontal and vertical polariza-

tions of a photon and the ground and first excited state of an electron in an atom.

A general state of a qubit is expressed as a superposition of the orthonormal

standard basis states, |0〉 and |1〉:

|ψ〉 = a |0〉+ b |1〉 (2.1)

where a and b are complex numbers. Normalization requires 〈ψ|ψ〉 = 1, thus

giving |a|2 + |b|2 = 1. The values |a|2 and |b|2 give the probabilities of measuring

the |0〉 and |1〉 state, respectively. The ability of a qubit to be a linear combination,

or superposition, of states allows it to be much more versatile than a classical bit.

4



CHAPTER 2. BASICS OF QUBITS AND THE WIGNER FUNCTION 5

Equation (2.1) may be rewritten in the form

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 (2.2)

where the normalization of the state is guaranteed by cos2 + sin2 = 1. The angles

θ and φ represent the state of the qubit by a point on the surface of a unit sphere

known as the Bloch sphere. The state in Eqn (2.2) represents a spin-half particle

whose spin is definitely up along the direction θ, φ. For example, the pure state

|ψ〉 = 1
2
|0〉 + i

√
3

2
|1〉 is definitely spin-up along the direction defined by θ = 2π

3

and φ = π
2
.

The standard observables for a qubit are the usual Pauli operators (or matrices).

They are Hermitian and thus represent observables. We write the Pauli matrices

as

X ≡ σx =

 0 1

1 0

 Y ≡ σy =

 0 −i
i 0

 Z ≡ σz =

 1 0

0 −1

 (2.3)

The eigenvalues of each Pauli operator are +1 and -1. The standard basis kets

|0〉 and |1〉 are the eigenvectors of the Z operator. To emphasize the connection

with the Z operator, we sometimes denote |0〉 by |↑〉 and |1〉 by |↓〉. Basis vectors

span the space and therefore one may write the eigenvectors of X and Y as linear

combinations of |0〉 and |1〉. The eigenvectors of X are |x+〉 = 1√
2
(|0〉 + |1〉) and

|x−〉 = 1√
2
(|0〉 − |1〉); the subscripts of + and - denote the eigenvalue signature.

Similarly, the eigenvectors of Y may be written as |y+〉 = 1√
2
(|0〉 + i |1〉) and

|y−〉 = 1√
2
(|0〉 − i |1〉).

The X, Y and Z bases have the property that if a qubit is in an eigenstate

of one basis and is projected onto another basis, the probability of finding it to

be either up or down is 1
2
. Such a set of bases is termed mutually unbiased. This

can be usefully generalized to any number of dimensions. A set of bases in a N -

dimensional Hilbert space is mutually unbiased if each basis is orthonormal and

for any |ψi〉 and |φj〉 from different bases, |〈ψi|φj〉|2 = 1
N

. The discrete Wigner

function is based on mutually unbiased bases.

The Pauli matrices may be written in a more compact form if we let ~σ =

(X, Y, Z). This simpler form allows one to write the following identity for vectors
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~a and ~b (whose components are complex numbers and not operators)

(~σ · ~a)(~σ ·~b) = ~a ·~bI + i(~a×~b) · ~σ (2.4)

where I is the identity matrix. A useful property is that one may express any

general Hermitian operator (observable) A as a linear combination A = aI+bX+

cY + dZ of the Pauli operators and the identity I, with real coefficients a, b, c and

d.

The Pauli operators can also be defined by the way they act on the vectors of

the standard basis:

Z |0〉 = |0〉 , Z |1〉 = − |1〉 ; X |0〉 = |1〉 , X |1〉 = |0〉 ;

Y |0〉 = i |1〉 , Y |1〉 = −i |0〉 (2.5)

The Z operator is often called the phase-flip operator, since it leaves the magnitude

of the coefficients in front of |0〉 and |1〉 unchanged but changes the sign (phase)

in front of the |1〉 term. The X operator is often called the bit-flip operator, since

it swaps |0〉 and |1〉. The Y operator is a combination of the previous two, since

Y = iXZ. One may also express the Pauli operators in outer product form:

X = |0〉 〈1|+ |1〉 〈0| Y = i |1〉 〈0| − i |0〉 〈1| Z = |0〉 〈0| − |1〉 〈1| (2.6)

The Hermitian operator ~σ · n̂ represents the spin of a spin 1
2

particle along the n̂

direction. Using the Bloch sphere description for a qubit, the direction of the unit

vector n̂ is specified by the spherical angles (θ, φ). One may now confirm that the

state in Eqn (2.2) is an eigenstate of ~σ · n̂ with eigenvalue +1 and so represents a

spin up state along θ, φ. The orthogonal eigenstate of ~σ · n̂ has eigenvalue -1 and

is represented by the unit vector that points in the opposite direction of n̂. One

may see this by replacing (θ, φ) by (π− θ, φ+π) and checking that the two states

are orthogonal. Alternatively, one may verify that the new state is an eigenvector

of ~σ · n̂ with eigenvalue -1.

2.1.1 Density Operator

A very useful and important way of representing the state of a qubit is by using

the density operator. For a 2-level pure state |ψ〉 (pure states are discussed below),
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the density operator ρ is defined as

ρ = |ψ〉〈ψ| (2.7)

Let us take |ψ〉 to be given by Eqn (2.2). Using Eqn (2.6), the completeness

relation for a 2-level system, I = |0〉〈0| + |1〉〈1|, and Eqn (2.7), one finds that ρ

takes the following form

ρ =
1

2
(I + ~s · ~σ) (2.8)

where ~s = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) is the pseudospin vector. This vector

completely describes the state of the qubit.

A generalization of quantum states, called mixed states, is often useful. In

the context of mixed states, the ordinary quantum states described previously in

this report, or in elementary quantum mechanics, are called pure states. A pure

state is one in which there is a direction along which the probability of finding

the spin of the qubit to be up is equal to 1. Elementary quantum mechanics deals

exclusively with pure states. A mixed state is one in which the state of the qubit

is not completely known, that is, there is no direction in space along which spin

of the qubit is definitely up. A mixed state has definite probabilities of being in

some mixture of pure states |ψi〉, with corresponding probabilities pi that sum to

unity. Therefore, one may write the density operator in more general terms, that

incorporates both mixed and pure states, as a weighted sum of pure states |ψi〉
with probabilities pi as their weighting factors

ρ =
n∑

i=1

pi |ψi〉 〈ψi| (2.9)

There is no requirement that the |ψi〉 be orthogonal, so the number of states being

mixed can exceed the dimensionality of the Hilbert space (2 for qubits). The

reader should be aware that the probabilities involved here are not the same as

the ordinary quantum mechanical probabilities. A system with a 50% probability

of being in the up or down along Z eigenstates is entirely different from a system

in the |X+〉 = 1√
2
(|0〉+ |1〉) eigenstate.

Using Eqn (2.8) for the density operators of the pure states |ψi〉 in Eqn (2.9),

one may express the pseudospin vector of a mixture as a weighted sum of the
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pseudospin vectors for the pure states

~smix =
∑

i

pi~si (2.10)

with weights pi for each pure state pseudospin vector ~si. A mixed state pseudospin

vector has less than unit length, whereas a pure state pseudospin vector has unit

length. This is easily verified by finding the norm of Eqn (2.10), since the pis are

all less than 1, and sum to unity for a mixed state. Also note that a completely

mixed state has a pseudospin vector of length 0; it is at the origin of the Bloch

sphere with a density matrix of ρ = I/2.

Representing a point on the interior of the Bloch sphere may be done in an

infinite number of ways, using any number of unit vectors with the appropriate

weighing factors. This means that Eqn (2.10) is not a unique representation of

a mixed state. Typically one uses the simpler method of writing the mixed state

pseudospin vector in terms of a pair of orthogonal states whose pseudospin vectors

are parallel (one parallel, one anti-parallel) to the mixed states pseudospin vector,

denoted ~s. If the pseudospin vector directed parallel to ~s is ~s1 with probability

p, then the pseudospin vector of the orthogonal state is directed along −~s1 with

probability (1− p). The pseudospin vector of the mixture may then be written as

~s = p~s1 − (1− p)~s1 = (2p− 1)~s1 (2.11)

with p ≥ 1
2
. Geometrically, Eqn (2.11) corresponds to representing the mixed state

pseudospin vector as a weighted sum of two orthogonal states which correspond

to diametrically opposite points on the Bloch sphere. These orthogonal states are

weighted by probabilities (1 + s)/2 and (1 − s)/2, where s is the length of the

mixed state pseudospin vector.

Alternatively, the form of Eqn (2.9) is reminiscent of an eigenvalue expansion

of ρ, except that the |ψi〉 need not be orthogonal. Any density operator can be

diagonalized, determining two pure states that can be mixed to form a particular

density operator.

As previously noted, the density operator is another way of representing a

quantum state. The following properties of density operators are useful:

1. ρ is Hermitian

2. Tr(ρ) = 1, normalization



CHAPTER 2. BASICS OF QUBITS AND THE WIGNER FUNCTION 9

3. Tr(ρ2) ≤ 1, equal only for pure states

4. ρ has eigenvalues λi, such that 0 ≤ λi ≤ 1 and
∑n

i=1 λi = 1. The eigenvalues

correspond to the probability weight associated with the expansion of the

mixed states in terms of orthogonal pure states.

5. The expectation of an observable A in the state ρ is 〈A〉 = Tr(ρA)

6. For a unitary transformation U such that |ψ′〉 = U |ψ〉, ρ′ = UρU †

All of the above properties for a 2-level system follow from Eqn (2.9). Alterna-

tively, one may use the pseudospin vector to verify the above properties. From

Eqn (2.8), one immediately sees that property 1 is true, as must be the case as

it represents an observable quantity. Property 2 follows directly from Eqn (2.8),

while properties 3 and 4 are both satisfied as a consequence of the fact that the

pseudospin vector has a length on the interval 0 ≤ |~s| ≤ 1. Property 4 is also

satisfied directly by property 3, since the eigenvalues λi are equivalent to the prob-

abilities pi in Eqn (2.9). As previously noted, a general observable may be written

as a linear combination of the identity and the Pauli matrices, thus one may ex-

press a general observable A as A = aI+~b·~σ, where a is a real scalar and~b is a real

vector. From this and by using property 5, one has 〈A〉 = Tr(ρA) = a+~b ·~s. The

last property follows for pure states from the definition of the density operator in

Eqn (2.7) and for mixed states from Eqn (2.9) and linearity arguments.

Property 6 can also be considered in light of the pseudospin vector. From [9],

a general unitary operator is defined with parameters the unit vector n̂ and the

angle θ as

U = e−in̂·~σ θ
2 = cos

(
θ

2

)
− i(n̂ · ~σ) sin

(
θ

2

)
(2.12)

with the last equality in Eqn (2.12) following from expansion of the exponential as

a power series. When one operates on a state described by the pseudospin vector

~s, the new pseudospin vector ~s ′ is found to be

~s ′ = (n̂ · ~s)n̂+ [~s− (n̂ · ~s)n̂] cos θ + (n̂× ~s) sin θ (2.13)

where we have used property 6 that says ρ′ = UρU † along with Eqn (2.12) and

Eqn (2.4). Equation (2.13) then relates the pseudospin vector ~s ′ = Tr(ρ′~σ) to

the old one ~s = Tr(ρ~σ), where we have used property 5 to write the pseudospin

vectors. There is a nice geometrical interpretation to Eqn (2.13), that the ~s ′ is

obtained by rotating ~s in a positive sense (counterclockwise) about the unit vector
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n̂ by the angle θ. The derivation of Eqn (2.13) demonstrates the homomorphism

between SU(2) and SO(3) by showing how the unitary transformation U(n̂, θ) in

the 2-dimensional complex space leads to a rotation in a 3-dimensional real space

[5]. The mapping is homomorphic since the two distinct unitary operators U(n̂, θ)

and U(n̂, θ+2π) are negatives of each other, but both map onto the same rotation

in 3-dimensional real space.

Now that we have a good understanding of the standard quantum mechanical

description of qubits, we may proceed to the Wigner function formulation of qubits

in phase space.

2.2 Continuous Wigner Function

The quantum state of a moving particle subject to a position-dependent force can

be represented by a weighted sum of eigenkets in many different bases, including

position, momentum, or energy. In 1932, E.P. Wigner [6] introduced a formulation

of a quantum state that puts position and momentum on an equal footing, as in

a Hamiltonian phase space. Unlike a classical system, a quantum system in phase

space cannot have definite simultaneous eigenstates for position and momentum

since the operators do not commute. Therefore, a delta-function like Wigner

function that is large in one neighborhood and zero elsewhere is not physically

possible.

The Wigner function is designed so that when it is integrated between parallel

lines in phase space associated with the position operator q̂ or momentum operator

p̂, the result is the probability of measuring the corresponding observable to have

the corresponding range of eigenvalues. For a particle moving in one dimension

the continuous Wigner function is defined as:

W(x, p) =
1

2π

∫ ∞

−∞
e(i p r) ψ(x− r

2
)ψ∗(x+

r

2
) dr (2.14)

where q and p are the particle’s position and momentum, r is a dummy variable

of integration and ψ is the particle’s position wave function. The Wigner function

is normalized, giving unity when integrated over all q and p. Unlike a ordinary

probability distribution, W(q, p) can take positive and negative values, and is

therefore known as a quasi-probability function. Having negative probabilities

seems counter-intuitive, but the negative probabilities arise in intermediate steps;
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the final answers are always positive and less than or equal to 1 as probabilities

should be. Feynman [3] discusses negative probabilities in his 1982 article in which

he introduces an analog of the Wigner function to describe a 2-state system. When

integrated over the momentum, W(q, p) gives the probability that the particle is

at q. Likewise, when integrated over position W(q, p) gives the probability of

the particle having momentum p. Fortunately, these and all other measurable

probabilities are positive.

∫ ∞

−∞
W(q, p) dx = |ψ(p)|2

∫ ∞

−∞
W(q, p) dp = |ψ(x)|2 (2.15)

One may also integrate an area between parallel lines in phase space. Two par-

allel lines in the phase space may be described by the linear equations aq+ bp = c

and aq+ bp = d, where a, b, c and d are real constants. When integrated over the

infinite strip between these two parallel lines in phase space, the Wigner function

gives the probability of measuring the operator aq̂ + bp̂ to be between c and d.

Wootters [11] also gives an important property of the Wigner function, the prop-

erty of translational covariance. An analogous property plays an important role in

the development of the discrete Wigner function. A state |ψ〉 that undergoes a uni-

tary transformation U in which the systems position is translated by an amount

q0 and its momentum is shifted by p0 is represented by |ψ′〉 = U |ψ〉. Transla-

tional covariance requires that the Wigner function of |ψ′〉, W′, be equivalent to

the Wigner function of the translated coordinates

W′(q, p) = W(q − q0, p− p0) (2.16)

It can be shown that the definition of the continuous Wigner function given here

is, in fact, translationally covariant.

2.3 1-Qubit Discrete Wigner Function

This section introduces and motivates the discrete Wigner function, or DWF, for

1 qubit. We take a qualitative approach to favor readability and intuition; a

rigorous discussion of DWFs for any number of qubits follows in the next chapter.

To introduce the DWF, we consider several properties of the continuous WF that

the discrete version must have: non-commuting operators, normalization, and the

correspondence of measurements to sums over lines.
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The continuous Wigner function exists in a phase space comprised of the non-

commuting observables position q̂ and momentum p̂. For the discrete version,

we base our phase space on two non-commuting observables, the Pauli X and Z

operators. The horizontal axis of the continuous Wigner function is labeled with

different eigenvalues of the position operator. For the DWF, the horizontal axis

is labeled by eigenvalues of the Z operator. Similarly, the vertical axis is labeled

by the p̂ operator in the continuous case and the X operator in the discrete case.

Since the Pauli operators have only 2 eigenvalues instead of an infinite number, the

resulting phase space is a 2× 2 grid instead of a continuous 2-dimensional space.

In the continuous case, the probability of measuring a certain position is equal to

the integral over a column in phase space. In the discrete case, the probability

of measuring the particle to be spin up or spin down along the z-axis is equal to

the sum of the Wigner function over the corresponding column. Sums along rows

correspond to momentum probabilities in the continuous case and x-component

spin measurements in the discrete case. We adapt the convention of labeling the

eigenvalues corresponding to the vertical and horizontal as: +1 eigenvalue of Z is

↑, the -1 eigenvalue of Z is ↓, +1 eigenvalue of X is → and the -1 eigenvalue of

X is ←. The phase space is shown below in Fig 2.1.

← • •

→ • •
↑ ↓

Figure 2.1: 1-qubit eigenstate assignments of the X and Z operators.

We continue to the next property the discrete Wigner function should have:

normalization. In the continuous case, the double integral of the Wigner function

over the phase space must be unity. We require the discrete Wigner function to

have an analogous property: the double sum over the Wigner function must be

unity. In other words the sum over all Wigner elements must be unity, where the

Wigner elements are the (real) values assumed at each of the points in phase space

by a quantum state.

As an example, the 1-qubit Wigner function for a particle spin down along X is

shown in Fig 2.2. The reader should verify that the sums along rows and columns

for the example Wigner functions are the expected ones for a particle that is spin
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down along the x-axis. Also note that summing all the elements gives unity, as

required by the normalization condition.

← 1
2

1
2

→ 0 0
↑ ↓

Figure 2.2: Wigner function for spin down along X.

Having discussed the probabilities of measuring eigenvalues of Z and X, it is

natural to ask about Y . To motivate the solution, consider another property of

the continuous Wigner function. When the Wigner function is integrated over a

line in phase space aq + bp = c, the result is the probability density of measuring

the observable aq̂ + bp̂ to have eigenvalue c. There are two obvious lines in our

phase space we have yet to consider: the two diagonals. In the discrete case the

operator that is associated with the diagonals is not Z +X, but rather ZX = iY .

In a later chapter, we develop a formalism that finds the operators that correspond

to each line algorithmically.

An obvious question remains: which diagonal should be assigned to Y -up,

and which to Y -down? There is no unique way to answer this question. We will

arbitrarily assign the state |y+〉 to the diagonal line which contains the origin (0,0);

the remaining state |y−〉 is assigned to the other diagonal line. Understanding how

rotations in real 3-dimensional space act to shift the elements in the phase space

will allow us to verify this assignment. A rotation acts to shift the DWF elements

so as to correspond to measurements made to the rotated state. A rotation of π

about z-axis will exchange the probabilities of measuring X and Y while leaving

the Z measurement unchanged. In terms of the DWF elements, this rotation

can be modeled by exchanging the two rows of the DWF, whereby exchanging the

measurement probabilities ofX and Y and leaving the Z measurement unchanged.

The assignment of the diagonals to the Y basis can be shown to be consistent with

rotations about the X and Z axes. This construction therefore strongly suggests

the assignment to be correct.

The last property of the continuous Wigner function that should be extended

to the discrete version is translational covariance. The unitary operator Z is as-

sociated with a vertical translation in the discrete phase space, analogous to the
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unitary operator e−
i
h̄

p0q̂ for the continuous Wigner function. The X operator is as-

sociated with horizontal translations. Chapter 3 discusses translational covariance

in great detail.

The 2 × 2 phase space contains 6 lines, which correspond to measuring the 6

eigenstates of the Pauli operators. These lines may be grouped into 3 sets of 2

lines each that correspond to the eigenstates of one of the Pauli operators. Each

set of lines is known as a striation, with the 3 striations containing all 6 lines in

the phase space given in Fig 2.3. When we develop the formalism in following

chapters, these lines will be given in a more rigorous way. For now the figure just

serves to give the lines that when summed along, give corresponding measurement

probabilities.

• ◦
• ◦

◦ •
◦ •

◦ ◦
• •

• •
◦ ◦

◦ •
• ◦

• ◦
◦ •

Figure 2.3: 1-Qubit Striation Diagrams. Each box contains a striation set. The
associated bases from left to right for each striation are Z, X, and Y

The DWF gives a complete description of a qubit, and is used in tomography.

Making measurements with the 3 Pauli operators, X, Y , and Z, is adequate to

obtain a complete description of a qubit. This is because the Pauli operators

constitute a complete and minimal set of observables for a qubit. This means

that leaving one measurement out will not give enough information to specify

the state, while measuring with all of them will completely determine the state.

These operators are also all mutually conjugate with their eigenstates forming a

set of mutually unbiased bases, where making a measurement of any eigenstate

with respect to another basis will return a value of 1
2
. For example, if a system is

prepared in the up along z state, and one makes a measurement in the Y basis,

one will get the probability of the system having spin up along y as 1
2
. Likewise,

the probability of finding the system with spin down along y is 1
2
. Looking at Fig

2.2, one sees that the probabilities of finding the state in an eigenstate of Y or Z

is 1
2
. The DWF thus expresses the mutually conjugate property of the Pauli bases

nicely.
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2.3.1 Mapping Between Pseudospin Vector and the DWF

Using the notion of striations, let us return to describing a state in phase space.

We will now write down our form for the discrete Wigner function in matrix

notation, with each element corresponding to a point in phase space. This is

simply a compact way of displaying the Wigner function; matrix operations such

as trace and multiplication do not give useful results. The Wigner matrix W is

defined by

W =

 w10 w11

w00 w01

 (2.17)

The elements in the Wigner matrix all have subscripts which denote spin orienta-

tions for the X and Z operators. An element is labeled with the subscripts with

the convention wxz, where the 0 denotes spin up and the 1 denotes spin down

along the corresponding axis. This labeling is used for convenience.

Summing the entries of the W matrix gives unity, 1 =
∑

i,j wij, which is the

normalization requirement. Summing two of the entries in the matrix that define

a line will give the probability of the measurement outcome associated with that

line. An element of W represents a joint probability, for example the element w10

gives the joint probability of measuring the +1 eigenvalue for Z and -1 for X, but

since these operators do not commute, one cannot have a definite value for this

joint probability. Individual elements can be negative, but summing along any line

will give legitimate probabilities, i.e. a value between 0 and 1. Summing along the

columns gives the spin up and spin down probabilities along z, whereas summing

along the rows gives the spin up and down probabilities along x. Summing along

the diagonals gives the probabilities of measuring spin up and down along y. One

may write the probabilities P (i) associated with summing along each line as

P (x+) = w00 + w01 P (x−) = w10 + w11

P (z+) = w00 + w10 P (z−) = w01 + w11 (2.18)

P (y+) = w00 + w11 P (y−) = w01 + w10

It is helpful to relate this to the pseudo-spin vector ~s. Recall that this vector

describes the direction of spin of the state and is defined as ~s = (sx, sy, sz), where

each component of ~s is the projection of ~s along its corresponding coordinate

axis. Each component of the pseudo-spin vector may be expressed in terms of the



CHAPTER 2. BASICS OF QUBITS AND THE WIGNER FUNCTION 16

eigenvalues λ associated with the spin operators multiplied by the correspond-

ing probability P of the state being in each eigenstate |λ〉. For example the si

component (i = x, y, z) is given by:

si = (+1)P (i+) + (−1)P (i−) (2.19)

since the Pauli matrices all have eigenvalues of (+1) and (−1).

The components of ~s can be found using Eqn (2.18) and Eqn (2.19). The nor-

malization condition that the elements in W sum to unity gives another relation.

The normalization equation and the equations for the components of ~smay be cast

as a matrix equation relating the pseudospin components to the matrix entries of

W:


1

sx

sy

sz

 =


1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1




w00

w01

w10

w11

 (2.20)

We label the vector containing the components of ~s and a 1 as ~S, and term it the

density coefficient vector. The ~S vector is just the components of the pseudospin

vector, with the normalization of the Wigner elements also included. The column

vector containing the Wigner elements will be denoted
−→
W , as opposed to just W

which will always be used to denote a Wigner matrix. The 4×4 matrix containing

1s and -1s is known as a Hadamard matrix, which has the property that any pair

of rows or any pair of columns is orthogonal. Solving the above equation for the

ws in terms of the components of ~s, we arrive at the following relations:

w00 =
1

4
(1 + sx + sy + sz)

w01 =
1

4
(1 + sx − sy − sz) (2.21)

w10 =
1

4
(1− sx − sy + sz)

w11 =
1

4
(1− sx + sy − sz)

The above equations give the relation between the Wigner function elements

and the pseudospin components. Using Eqn (2.21), we may find the discrete

Wigner function if we know ~s, or we may determine ~s from the discrete Wigner
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function. Once the components of ~s are known, we may also determine the density

operator. One may put Eqn (2.21) into Eqn (2.17) to write W explicitly in terms

of the components of ~s as

W =
1

4

 1− sx − sy + sz 1− sx + sy − sz

1 + sx + sy + sz 1 + sx − sy − sz

 (2.22)

One may also rewrite the density operator ρ = 1
2
(I + ~s · ~σ) in terms of w’s by

replacing the pseudospin components with their corresponding Wigner elements

as

ρ =

 w00 + w10
(−1+i)

2
α+ (1+i)

2
β

(−1−i)
2

α+ (1−i)
2
β w01 + w11

 (2.23)

where α ≡ −w00 + w10 and β ≡ w01 − w11.

An Example

We illustrate the mapping from ~s the discrete Wigner function with an example.

(The mapping from density matrices to the pseudo-spin vector can be found using

si = Tr(ρσi)). Consider a particle prepared in the spin up state along y. The

vector ~s then has components sy = 1 and sx = sz = 0. Substituting this into Eqn

(2.22), the W matrix is found to be

W =

 0 1
2

1
2

0


By summing along the diagonal points starting at the bottom left, we can find

the probability of finding the spin up along y. As the particle was prepared in

this state, the probability is 1, as it should be. Also notice that the probabilities

along the x and z directions give 1
2

for up and down. This is in accordance with

the Pauli operators being mutually unbiased. We may also map to the density

operator for this state directly from the above W via Eqn (2.23) giving

ρ =
1

2

 1 −i
i 1


which is the same as finding the density matrix for spin up along y using ρ =

|y+〉 〈y+|, the example just illustrates how given a W, one may find a ρ. Now

that we have ρ we can also find ~s using si = Tr(ρσi) giving what we expect, that
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sx = sz = 0 and sy = 1.

2.3.2 One-Qubit Operations using the DWF

Using the DWF representation of a qubit, one may reformulate many useful op-

erations from elementary quantum mechanics such as inner products, expectation

values, and measurements.

Overlap of 2 States

The overlap of two arbitrary states |ψ1〉 and |ψ2〉, is denoted as 〈ψ1|ψ2〉. Repre-

senting the states as density matrices, ρ1 = |ψ1〉 〈ψ1| and ρ2 = |ψ2〉 〈ψ2|, one can

show that Tr(ρ1ρ2) = | 〈ψ1|ψ2〉 |2. Writing the density matrices in terms of their

respective pseudospin vectors, as in Eqn (2.8), ~s1 and ~s2, one can also show that

Tr(ρ1ρ2) = 1
2
(1 + ~s1 · ~s2). One may then use Eqn 2.20 to write the pseudospin

vectors in terms of their respective DWF elements, along with the normalization

condition for the Wigner elements. We let the Wigner elements for ~s1 and ~s2 be

aij and bij respectively, with (i, j = 0, 1). After some algebra one has the following

relation:

| 〈ψ1|ψ2〉 |2 = 2
∑
i,j

aijbij (2.24)

This equation holds for states that may or may not be pure states. In Ch. 3, we

prove a generalization of this for any number of qubits.

Expectation values

In terms of density matrices, the expectation value for an arbitrary observable A

is given by 〈A〉 = Tr(Aρ), where ρ is the state of interest. In order to express the

expectation value of A in terms of DWF elements, we need to first consider the

spectral decomposition of A, which is A = λ1 |ψ1〉 〈ψ1|+λ2 |ψ2〉 〈ψ2| = λ1ρ1+λ2ρ2,

with each term containing the eigenvalue (λ) and its corresponding eigenstate (ρ).

Using the spectral decomposition and the linearity of the trace, one can represent

A as

〈A〉 = TrAρ = λ1Tr(ρρ1) + λ2Tr(ρρ2) (2.25)
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Labeling the elements of the DWFs for ρ, ρ1, ρ2 as a, b, and c, respectively, one

may use Eqn (2.24) to find

〈A〉 = λ1(2
∑
i,j

aijbij) + λ2(2
∑
i,j

aijcij) = 2
∑
i,j

aijAij (2.26)

with Aij = λ1bij + λ2cij (i, j = 0, 1). The Aij is the Wigner representation of the

observable A. Thus to find an expectation value using the DWF, first find the

Wigner representation of the observable, then find the overlap of the observable

with the state of interest.

Measurements

Projective measurements on quantum systems may be written in terms of density

operators. For a measurement operator Mm, corresponding to measurement of

state m, and an initial state ρ, the state after measurement ρm is defined as [9]

ρm =
MmρM

†
m

Tr(M †
mMmρ)

(2.27)

where the denominator is the required normalization for the new state. One may

also rewrite Eqn (2.27) in terms of the DWF. We can use Eqn (2.23) to express ρ

in terms of its Wigner elements, and once the numerator is found, one may get the

proper normalization using the normalization condition for DWFs 1 =
∑

i,j wij,

where the wij are the elements of the measured DWF. Unfortunately, the formula

one arrives at is quite messy, and is best implemented using mathematical software,

such as Maple.



Chapter 3

Formalism

This chapter introduces the discrete Wigner function for n-qubits in a rigorous

fashion. To help illustrate the theory, examples with one and two qubits are

provided. Appendix B discusses some examples of the theory for a 3-qubit system.

This chapter is based on Gibbons et. al. [4]. That paper covers a more

general case (arbitrary prime powers, not just powers of 2), but given the central

importance of qubits, we limit our discussion to qubits. We refer readers seeking

the generalization to the paper by Gibbons et. al. [4].

3.1 Galois Fields

To extend the discrete Wigner function to 2-qubit systems, we need the notion of

a line in phase space. In the continuous case, lines can be defined by aq + bp = c.

To make this work for qubits, we need some sort of numbers to associate with the

rows and columns of the phase space for a system of qubits. An obvious choice is

arithmetic modulo 2n, where n is the number of qubits. A few example lines in

the 4× 4 phase space modulo four are shown in Fig 3.1.

There is a big problem with defining lines this way: two distinct lines can

intersect at more than one point! This would prevent us from associating lines with

mutually unbiased bases. To discover what went wrong, consider the following

proof that non-parallel lines in two real dimensions intersect at exactly one point.

Consider two non-parallel non-vertical lines defined by y = m1x + b1 and y =

m2x + b2. To find the point of intersection, simply subtract one equation from

the other and solve for x, yielding x = −b1−b2
m1−m2

. This gives the unique intersection

point.

20
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3 ◦ ◦ ◦ •
2 ◦ ◦ • ◦

p 1 ◦ • ◦ ◦
0 • ◦ ◦ ◦

0 1 2 3
q

3 ◦ ◦ • ◦
2 ◦ ◦ ◦ •

p 1 • ◦ ◦ ◦
0 ◦ • ◦ ◦

0 1 2 3
q

3 ◦ ◦ • ◦
2 • ◦ ◦ ◦

p 1 ◦ ◦ • ◦
0 • ◦ ◦ ◦

0 1 2 3
q

3 • ◦ ◦ ◦
2 • ◦ ◦ ◦

p 1 • ◦ ◦ ◦
0 • ◦ ◦ ◦

0 1 2 3
q

Figure 3.1: Some lines in arithmetic modulo 4. The horizontal axis is the q axis
and the vertical axis is the p axis. From left to right and top to bottom the lines
satisfy the equations q − p = 0, q + p = 1, q + 2p = 0, and q = 0. Note that the
first two lines are not parallel yet do not intersect. The third and fourth lines
are not parallel yet intersect at two points.

What went wrong with the modular case? There is no unique multiplicative

inverse in arithmetic modulo 4, so the division in the above proof does not extend

to the modular arithmetic case. What we need is a mathematical structure that

satisfies the familiar properties of addition and multiplication, but has only 2n

elements. Such a structure is called a Galois Field, after its inventor. Here are the

properties satisfied by all fields, including Galois Fields, where a, b, c are arbitrary

elements of the field, and 0 and 1 are fixed additive and multiplicative identities

respectively.

1. a+ 0 = a 0 is the additive identity

2. 1a = a 1 is the multiplicative identity

3. a+ (b+ c) = (a+ b) + c addition is associative

4. a+ b = b+ a addition is commutative

5. ab = ba multiplication is commutative

6. a(bc) = (ab)c multiplication is associative

7. a(b+ c) = ab+ ac addition distributes over multiplication

8. a+ (−a) = 0 where −a is additive inverse

9. a ∗ a−1 = 1 a 6= 0 where a−1 is multiplicative inverse

Examples of fields include the rationals, reals, and complex numbers. It turns

out that one can construct fields over finite sets of objects, not just infinite ones.
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However, such fields exist if and only if the number of objects is equal to a prime

power: pn, where p is prime and n is an integer. There is really only one distinct

Galois field of any particular order, for it can be shown that all Galois fields of

the same order are isomorphic to each other.

If the exponent n is 1, the Galois field is simply arithmetic modulo p. For

higher exponents, the Galois fields (denoted GF (N)) are more complicated. The

addition and multiplication tables for GF (2) are defined in Table 3.1.

Phase space points used to define the discrete Wigner function are elements of

a Galois Field. For a state space dimension N = 2n, where n is the number of

qubits, the phase space is defined on GF (N), with elements of 0 and the 2n − 1

powers of a primitive element, which we take to be ω. The primitive element and

its powers are solutions to the primitive polynomial, which is of degree n, and

cannot be factored into a product of lesser degree polynomials using elements of

the prime field.

A similar extension technique allows one to generalize the real numbers to com-

plex numbers. One can define the complex numbers by introducing the primitive

polynomial x2 + 1 = 0, which cannot be solved with real numbers. The solution

to this polynomial is defined to be the primitive element i =
√
−1.

The trace of any element within the field GF (N) is defined as:

tr(x) = x+ x2 + x22

+ · · ·+ x2n−1

(3.1)

To differentiate the Galois Field trace from the matrix trace, the former is

denoted tr(x) with a lower-case t while the latter is denoted Tr(x) with an upper-

case T. The trace is linear:

tr(x+ y) = tr(x) + tr(y) (3.2)

since the expansion of (x + y)2i
, contains the terms x2i

, y2i
and cross terms with

an even coefficient in front and therefore equal to 0 mod 2. It can be shown that

the trace is always a member of the primitive field GF (p). In particular, when

dealing with qubits, the trace is always either 0 or 1.

The basis of a field is a set of field elements: E = {e1, e2, · · · , en} such that any

field element can be expressed as a linear combination of the basis:

x =
n∑
i

xiei (3.3)
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The xi are restricted to be elements of GF (p) in general, or 0 or 1 for the GF (2n)

we are concerned with when discussing qubits. For every field basis there exists

a unique dual basis which is important for assigning bases for the horizontal and

vertical directions in phase space. The unique dual basis E ′ = {e′1, e′2, · · · , e′n} is

defined by:

tr(e′iej) = δij (3.4)

where δij is the Kronecker delta.

The special case of one qubit (n = 1) is quite simple. GF (2) is simply arith-

metic modulo 2:

x tr(x)
0 0
1 1

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 1
1 1 1

Table 3.1: GF (2) tables. These tables give the trace, addition and multiplication
for GF (2).

For GF (22) the primitive polynomial is taken as: π(x) = x2 + x+ 1. The field

elements are then: GF (22)={0,1,ω,ω2}. Note that ω2 = −ω − 1 = ω + 1, since

−1 = 1 mod 2. Also note that ω3 = 1, which is useful when finding the trace.

We arbitrarily choose the field basis (ω, 1) which has a unique dual of (1, ω2).

Arithmetic in GF (4) is shown in Table 3.2. The addition and multiplication

n ωn tr(ωn)
0 1 0
1 ω 1
2 ω + 1 1

+ 0 1 ω ω2

0 0 1 ω ω2

1 1 0 ω2 ω
ω ω ω2 0 1
ω2 ω2 ω 1 0

× 0 1 ω ω2

0 0 0 0 0
1 0 1 ω ω2

ω 0 ω ω2 1
ω2 0 ω2 1 ω

Table 3.2: GF (4) tables. These tables give the trace, addition and multiplication
for GF (4).

tables for GF (23) are given in Appendix B.

3.2 Lines in Discrete Phase Space

Now that we have defined Galois fields, we can use the equation for a line ap+bq =

c to generate lines in a phase space labeled by a Galois field. There are N vertical
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lines which are solutions to the equation q = ci. Non-vertical lines have b 6= 0, so

we can without loss of generality choose b = 1, yielding ajq + 1p = ci. There are

N possible values of aj, and N possible values of ci, resulting in N2 non-vertical

lines. Together with the vertical lines, there are N2 +N lines in N + 1 families of

N parallel lines each. For lines in this discrete phase space we define two lines to

be parallel if they do not intersect. Two different lines in the same family clearly

cannot intersect, since otherwise aq + bp = c1 and aq + bp = c2, contradicting

c1 6= c2. Two lines from different families always intersect at exactly one point.

Two lines of the form ajq+1p = ci and akq+1p = cl intersect at q = cl−ci

ak−aj
, which

is well-defined since the lines are from different families so ak 6= aj.

Figures 3.2 and 3.3 show the family of striations for 1 and 2 qubits respectively.

1 • ◦
0 • ◦

0 1

1 ◦ •
0 ◦ •

0 1

1 ◦ ◦
0 • •

0 1

1 • •
0 ◦ ◦

0 1

1 ◦ •
0 • ◦

0 1

1 • ◦
0 ◦ •

0 1

Figure 3.2: 1 Qubit Striation Diagrams. Each box contains a striation set. The
associated bases from left to right for each striation are Z, X, and Y . The
horizontal and vertical axes correspond to q and p respectively. The equations
are q = c, p = c, and p + q = c respectively, where c ∈ {0, 1}.

3.3 Translational Covariance and Quantum Nets

We begin the theoretical development of the n-qubit DWF, with N = 2n states.

To connect the Galois field phase space to the world of qubits, we need to associate

translations in the phase space labeled by Galois Field (GF) elements with unitary

operators in the quantum world. A translation vector in the Galois world is a pair

of GF elements (δq, δp) that can be added to a point in GF phase space (q, p),

yielding (q+δq, p+δp). Given a basis E for q, and a basis F for p, one expands δq

and δp in the basis, so δq =
∑n

i=1 qiei and δp =
∑n

i=1 pifi. The translation operator

corresponding to (δq, δp), T(δq,δp), is defined by:

T(δq,δp) = Xq1Zp1 ⊗Xq2Zp2 · · · ⊗XqnZpn (3.5)

This equation satisfies a desirable property of a translation operator, in that
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ω2 • • • •
ω • • • •

p 1 • • • •
0 • • • •

0 1 ω ω2

q

• ◦ ◦ ◦
• ◦ ◦ ◦
• ◦ ◦ ◦
• ◦ ◦ ◦

◦ • ◦ ◦
◦ • ◦ ◦
◦ • ◦ ◦
◦ • ◦ ◦

◦ ◦ • ◦
◦ ◦ • ◦
◦ ◦ • ◦
◦ ◦ • ◦

◦ ◦ ◦ •
◦ ◦ ◦ •
◦ ◦ ◦ •
◦ ◦ ◦ •

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
• • • •

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
• • • •
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
• • • •
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

• • • •
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ •
◦ ◦ • ◦
◦ • ◦ ◦
• ◦ ◦ ◦

◦ ◦ • ◦
◦ ◦ ◦ •
• ◦ ◦ ◦
◦ • ◦ ◦

◦ • ◦ ◦
• ◦ ◦ ◦
◦ ◦ ◦ •
◦ ◦ • ◦

• ◦ ◦ ◦
◦ • ◦ ◦
◦ ◦ • ◦
◦ ◦ ◦ •

◦ ◦ • ◦
◦ • ◦ ◦
◦ ◦ ◦ •
• ◦ ◦ ◦

◦ • ◦ ◦
◦ ◦ • ◦
• ◦ ◦ ◦
◦ ◦ ◦ •

◦ ◦ ◦ •
• ◦ ◦ ◦
◦ ◦ • ◦
◦ • ◦ ◦

• ◦ ◦ ◦
◦ ◦ ◦ •
◦ • ◦ ◦
◦ ◦ • ◦

◦ • ◦ ◦
◦ ◦ ◦ •
◦ ◦ • ◦
• ◦ ◦ ◦

◦ ◦ ◦ •
◦ • ◦ ◦
• ◦ ◦ ◦
◦ ◦ • ◦

◦ ◦ • ◦
• ◦ ◦ ◦
◦ • ◦ ◦
◦ ◦ ◦ •

• ◦ ◦ ◦
◦ ◦ • ◦
◦ ◦ ◦ •
◦ • ◦ ◦

Figure 3.3: 2 Qubit Striation Diagrams. Each box contains a striation set. The
equations are q = c, p = c, p + q = c, ω2p + q = c, and ωp + q = c respectively,
where c ∈ {0, 1, ω, ω2}.
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the translation operator corresponding to a sum of translation vectors is equal to

the product of corresponding translation operators, up to an unimportant phase

factor.

We will define the quantum state associated with each line, |λ〉, by insisting that

the eigenstates associated with lines in phase space be translationally covariant:

|λ+ (δq, δp)〉 = eiθT(δq,δp) |λ〉 (3.6)

where θ is a real phase factor. λ + (δq, δp) denotes the line λ with each point

shifted by the translation vector (δq, δp). T is the quantum-mechanical unitary

operator that corresponds to (δq, δp).

Alternatively, in operator form, with Q(λ) ≡ |λ〉〈λ|:

Q(λ+ (δq, δp)) = T(δq,δp)Q(λ)T †
(δq,δp) (3.7)

Gibbons et. al. [4] showed that the Galois Field bases for the two axes cannot

be chosen independently. If the basis associated with the horizontal axis is taken

as E = {e1, e2, · · · , en}, then the basis associated with the vertical axis F =

{f1, f2, · · · , fn} must satisfy the following relation:

fi = αe′i (3.8)

where α is an element of GF (N) and e′i is the dual of ei.

For each line, there are N − 1 non-trivial translation vectors that leave the line

unchanged. Using Eqn (3.6), we find:

|λ〉 = eiθT(δq,δp) |λ〉 (3.9)

This is just an eigenvalue equation for |λ〉! The quantum mechanical translation

operators corresponding to translation vectors that leave a line invariant commute

(requiring this is what led to Eqn 3.8), so one can simultaneously diagonalize them.

This gives the states that can be assigned to each striation.

Translational covariance does not, however, specify which eigenstate to assign

to which line. It turns out that the choice of which eigenstate to assign to one of

the lines in a striation is completely arbitrary, but translational covariance then

determines the assignment of the remaining lines to the remaining eigenstates.
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3.3.1 Example: 1 Qubit

For the case of n = 1, this theory becomes quite simple. Consider the family of

vertical lines q = c. This has an associated invariance translation vector of (0, 1).

The corresponding translation operator is simply the Pauli Z operator. Therefore,

the vertical lines are associated with Z-eigenstates. Similarly, horizontal lines are

associated with X-eigenstates.

The diagonals are a bit more interesting. Both diagonal lines can be expressed

in the form q+p = c, with associated invariance vector (1, 1). Therefore, the trans-

lation operator is XZ = −iY , so the corresponding lines must be Y -eigenstates.

3.3.2 Example: 2 Qubits

Now we consider the case for n = 2. We choose for E the field basis (e1, e2) = (ω, 1)

which has the dual basis (e′1, e
′
2) = (1, ω2). Using Eqn (3.8) we can take α = ω

yielding (f1, f2) = (ω, 1). Now we may use Eqn (3.5) to determine which operators

to associate with each striation. First let us give the invariance translation vectors

for each striation set. The invariance translation vectors are given in Table 3.3 for

the 5 striations for a system of 2-qubits. The invariance operators send points in

a line in the striation into other points in the line.

Basis Invariance Operators
0 (0, 1), (0, ω), (0, ω2)
1 (1, 0), (ω, 0), (ω2, 0)
2 (1, 1), (ω, ω), (ω2, ω2)
3 (1, ω), (ω, ω2), (ω2, 1)
4 (1, ω2), (ω, 1), (ω2, ω)

Table 3.3: 2-Qubit Invariance Operators. The basis numbers correspond to the
order of the striations in Fig 3.3.

We will discuss a few examples to make the use of Eqn (3.5) clear. In the

following examples, we will find the invariance translation operators using the line

that contains the point (0, 0), and then see which translation vectors result in

landing on points within the line, as one can see from Fig (3.3). For each example

there will be three invariance vectors, since there are four points on a line, and we

start at the origin.
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Example: q = c

This first example is quite straightforward and instructive, and will display the

method to be follow in the later examples. For this line the three invariance

translation vectors corresponding to three separate vectors (δq, δp) are (0, 1),

(0, ω), (0, ω2). Expanding each of these in terms of the basis and the dual we

get (0, 1) = (0e1 + 0e2, 0f1 + 1f2), (0, ω) = (0e1 + 0e2, 1f1 + 0f2) and (0, ω2) =

(0e1 +0e2, 1f1 +1f2). For GF (22), Eqn (3.5) becomes T(δq,δp) = Xq1Zp1 ⊗Xq2Zp2 .

We then have T(0,1) = X0Z0 ⊗ X0Z1 = I ⊗ Z, T(0,ω) = X0Z1 ⊗ X0Z0 = Z ⊗ I
and T(0,ω2) = X0Z1 ⊗ X0Z1 = Z ⊗ Z. From Eqn (3.9) we know that we can

simultaneously diagonalize the operators we have just found to find the basis that

we want to associate with the striations that are defined by q = c. One can show

that the three operators just found all commute with each other. We list this

set of operators as {IZ, ZI, ZZ}, which we have now shown correspond to the

striations for q = c. When discussing commuting sets, we often omit the direct

product symbol; for example IZ is short for I⊗Z. Since the third operator is the

product of the first two, if one simultaneously diagonalizes the first two operators,

the resulting eigenvectors automatically satisfy the eigenvalue equation for the

third operator. These eigenvectors are obvious and are the standard basis vectors

in Hilbert space dimension N = 4: |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉.

Example: ωp + q = c

In this case the three invariance translation operators are (1, ω2), (ω, 1) and

(ω2, ω). Writing them in terms of the field bases we have (1, ω2) = (0e1+1e2, 1f1+

1f2), (ω, 1) = (1e1+0e2, 0f1+1f2) and (ω2, ω) = (1e1+1e2, 1f1+0f2). We then find

that the translation operators for these vectors are T(1,ω2) = Z ⊗XZ = −iZ ⊗ Y ,

T(ω,1) = X ⊗ Z and T(ω2,ω) = XZ ⊗X = −iY ⊗X. We can ignore the phase in

two of the terms, and then have the set of operators {ZY,XZ, Y X}, which cor-

respond to the striations for ωp + q = c. One can check that the three operators

just found do indeed commute, and also that the third is the product of the first

two. We can then simultaneously diagonalize the first two operators to find the

eigenvectors which will be associated with this striation.
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Remaining Lines

One can use the method just outlined to find the rest of the commuting sets.

Upon simultaneous diagonalization of the first two operators in each set, one can

find the four eigenvectors of each set. The results are summarized in Table 3.4.

The commuting sets are each labeled in terms of a basis number labeled 0 to 4.

The striations for 2 qubits are given in Fig 3.3. The commuting sets are numbered

from top to bottom in the figure with basis 0 corresponding to the 1st striation,

basis 1 to the second striation, and so on. The operators in the commuting set

for a striation are equivalent to the invariance translation vectors. One can verify

that the bases given in Table 3.4 form a set of mutually unbiased bases.

Basis Eigenvectors
0 {ZI,IZ,ZZ} |01〉=1000 |02〉=0100 |03〉=0010 |04〉=0001
1 {XI,IX,XX} |11〉=1111 |12〉=11̄11̄ |13〉=111̄1̄ |14〉=11̄1̄1
2 {YI,IY,YY} |21〉 = 1ii1̄ |22〉 = 1̄ii1 |23〉 = 1īi1 |24〉 = 1̄īi1̄
3 {XY,YZ,ZX} |31〉 = 11̄ii |32〉 = 11̄ii |33〉 = 11īi |34〉 = 11̄̄īi
4 {YX,ZY,XZ} |41〉 = 1i1̄i |42〉 = 1̄i1i |43〉 = 1i1̄i |44〉 = 1̄i1̄̄i

Table 3.4: 2-qubit mutually unbiased bases from [1]. The rows contain
the simultaneous eigenstates for the given basis with eigenvalue signatures of
++,+−,−+,−− with respect to the first 2 observables in a commuting set. The
numbers following a ket in each row are abcd, which are the coefficients for the
unnormalized state a |00〉+ b |01〉+ c |10〉+ d |11〉. A bar over a number means
the number is negative and i =

√
−1.

3.3.3 2-Qubit Quantum Net

One needs to associate each eigenstate in Table 3.4 with a particular line in the

corresponding striation of Fig 3.3. This choice is completely arbitrary, and each

separate choice is known as a quantum net. We will associate the vertical and

horizontal lines in a way similar to the single qubit DWF. The choice is shown in

Fig 3.4.

We have made our choice for the first two striation sets in Fig 3.3, but what

about the other three remaining bases? One can choose to associate a particular

eigenstate of a commuting set with any line in a striation, but upon doing so the

other eigenstates are fixed by the shift operators. For each of the bases given in

Table 3.4 one may apply a shift operator to one of the eigenvectors to produce a

new eigenvector within the same basis. The phase space defined on GF (22) has

4 basic translation operators out of which any other translation operator can be
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←← • • • •
←→ • • • •
→← • • • •
→→ • • • •

↑↑ ↑↓ ↓↑ ↓↓

Figure 3.4: Phase Space Labels for a System of 2 Qubits. The arrows are defined
as ↑ = spin up along z, ↓ = spin down along z, → = spin up along x, ← =
spin down along x. Qubit one is always the leftmost arrow, qubit two is always
the rightmost arrow. Each phase space point is labeled by the horizontal and
vertical arrows with which it is aligned.

built up. These basic translation vectors each correspond to a unitary operator

in the state space and are given with their corresponding unitary operators as

(1, 0) ↔ I ⊗ X, (ω, 0) ↔ X ⊗ I, (0, 1) ↔ I ⊗ Z and (0, ω) ↔ Z ⊗ I. There

are many different ways in which one can shift from one eigenvector in a basis to

another eigenvector in a basis. Table 3.5 gives one of the ways for each basis of

shifting from the first eigenstate to the other eigenstates in a basis. One can check

that the unitary operators corresponding to the shift operators given in the table

do indeed shift to the correct eigenstate.

Basis 1 & 2 1 & 3 1 & 4
0 (1, 0) (ω, 0) (ω2, 0)
1 (0, 1) (0, ω) (0, ω2)
2 (0, 1) (ω, 0) (ω2)
3 (1, 0) (ω, 0) (ω2, 0)
4 (ω, 0) (ω2, 0) (1, 0)

Table 3.5: 2-Qubit Shift Operators. The columns are labeled with the eigenvalue
signatures corresponding to the eigenvectors one can shift between with the
corresponding shift vector.

Following the choice of Gibbons et. al. [4], we use the association of the

eigenstates for each basis to lines in the striations given in Fig 3.5. We chose this

quantum net because it leads to an elegant crossing formula as discussed in Ch.

4.

There are of course many other choices of quantum nets one may use. One

possible quantum net is the one for which each ++ eigenstate is associated with

the line that passes through the origin (0, 0) of phase space. The line passing

through the origin is called the ray. This choice was proposed by our advisor,

Aravind [2], and it turns out that it gives a simple form for the Cnot gate (in Ch.
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1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

4 4 4 4
3 3 3 3
2 2 2 2
1 1 1 1

3 4 1 2
4 3 2 1
1 2 3 4
2 1 4 3

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

3 2 4 1
4 1 3 2
1 4 2 3
2 3 1 4

Figure 3.5: 2-Qubit Striations with Associated Eigenstates. From left to right
the associated mutually unbiased bases are 0, 1, 2, 3, and 4. The numbers
arranged in the grids correspond to eigenvalue signatures for the corresponding
basis vectors with the convention that 1 = ++, 2 = +−, 3 = −+ and 4 = −−.

5) as well as for the reduction formula (Ch. 4). Unless specified, we will use the

choice of quantum net given in Fig 3.5, denoted Wootters’s net. Occasionally we

will refer to Aravind’s net.

3.4 The Wigner Function

We return to the development of the DWF theory for a N = 2n-state system. The

elements of GF (N) will furnish the labels for the two axes of the phase space.

Here we define the DWF by associating a number with each point in phase space;

later we prove that these numbers are real. This section follows Gibbons’s et. al.

paper [4], section 5 closely.

With the lines λ in phase space associated with quantum states |λ〉 and corre-

sponding density operators Q(λ) = |λ〉〈λ|, we are prepared to define the Wigner

function. We would like a sum along a line to give the probability of measuring

the corresponding eigenstate. That is, for a quantum state ρ with corresponding

Wigner function W , we insist that, for any line λ:

Tr(ρQ(λ)) =
∑
α∈λ

Wα (3.10)

It is useful to invert this equation, to find Wβ as a function of ρ. To do this,

we sum the above equation over the N + 1 lines λ containing an arbitrary point

β. ∑
λ3β

Tr(ρQ(λ)) =
∑
λ3β

∑
α∈λ

Wα (3.11)

The sum on the right-hand side contains Wβ exactly N + 1 times (one for each

line), and every other point exactly once. Subtracting the sum of the Wigner
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function over every point in phase space from both sides:

∑
λ3β

Tr(ρQ(λ))−
∑
γ

Wγ =
∑
λ3β

∑
α∈λ

Wα −
∑
γ

Wγ (3.12)

Using the linearity of trace on the LHS, and the analysis of the double sum dis-

cussed earlier on the RHS:

Tr

∑
λ3β

Q(λ)ρ

−∑
γ

Wγ = (N + 1− 1)Wβ (3.13)

Use the fact that parallel lines form a complete orthonormal basis, so for any line

Λ: ∑
λ‖Λ

Q(λ) = I (3.14)

and therefore, using Eqn (3.10):

∑
γ

Wγ =
∑
λ‖Λ

∑
α∈λ

Wα =
∑
λ‖Λ

Tr(ρQ(λ)) = Tr(ρI) (3.15)

Solving Eqn (3.13) for Wβ using Eqn (3.15):

Wβ =
1

N
Tr

ρ
∑

λ3β

Q(λ)− I

 (3.16)

The quantity multiplying ρ in the argument of the trace is given a special name:

Aβ ≡
∑
λ3β

Q(λ)− I (3.17)

The following fact is useful for proving statements about the A operators:

Tr

∑
λ3β

Q(λ)

 = N + 1 (3.18)

Several properties follow from this and the properties of the Q operators:

Aβ = A†
β (3.19)

TrAβ = 1 (3.20)∑
α∈λ

Aα = NQ(λ) (3.21)
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Another equation that can be derived from Eqn (3.17) is:

Tr(AαAβ) =
∑
λ3β

∑
Λ3α

Tr(Q(λ)Q(Λ))− 2(N + 1) +N (3.22)

To evaluate the double sum, note that since the bases are mutually unbiased,

Tr(Q(λ)Q(Λ)) is 1 if the lines are the same, 0 if the lines are parallel, and 1
N

if the lines are not parallel. If the points are the same, N + 1 terms in the

double sum have λ = Λ, contributing N + 1, and the remaining N(N + 1) terms

contribute 1/N each, totaling N + 1. The right side of Eqn (3.22) works out to

2(N + 1)− 2(N + 1) +N = N .

If the points are different, one term in the double sum will involve the same

line, N involve two parallel lines, and the remaining N(N+1) involve intersecting

lines. In this case, the total is 1 +N + 1− 2(N + 1) +N = 0. Therefore:

Tr(AαAβ) = Nδαβ (3.23)

According to Gibbons et. al. [4], Eqn (3.23) shows that the A operators form a

complete set in the space of N ×N matrices. This means that ρ can be expressed

as a linear combination of the A’s:

ρ =
∑
α

bαAα (3.24)

Multiplying by Aβ, and taking the trace:

Tr(Aβρ) =
∑
α

bαTr(AβAα) = Nbβ (3.25)

Comparing this to the formula for W (Eqn 3.16), we see that bα = Wα, so

ρ =
∑
α

WαAα (3.26)

We have therefore shown how to convert from ρ to W (Eqn 3.16) and vice

versa (Eqn 3.26). Note that nowhere in this derivation did we assume that ρ was

a density operator. The Wigner representation works fine for any operator at all.

For Hermitian ρ, Eqn 3.16, combined with the fact that Hermitian operators can

be expressed as a sum of projectors with real weights, shows that Wα is real.

It is useful to be able to construct a Wigner function for a pure or mixed state

from a set of measurement probabilities. Using Eqn (3.16), one finds:
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Wβ =
1

N

∑
λ3β

Tr(ρQ(λ))− 1

N
Tr(ρ) (3.27)

=
1

N

∑
λ3β

P (|λ〉)− 1

 (3.28)

where P (|λ〉) denotes the probability of finding the system in the state correspond-

ing to the line λ.

A corollary of this equation is that Wigner elements cannot be more negative

than −1
N

. This is an unobtainable lower bound; Wootters [11] states that for 1

qubit the most negative element is -0.183. An interesting problem is finding the

most negative obtainable Wigner element for any number of qubits.

Using the expansion of ρ in terms of A, it is easy to show that, if ρ1 and ρ2 can

be expressed using Wigner elements W and V respectively, the squared overlap

is:

Tr(ρ1ρ2) = N
∑
α

WαVα (3.29)

This leads to a way to determine if a DWF corresponds to a pure or mixed

state. A state with density operator ρ is pure iff it has an eigenvalue of 1. Together

with the normalization condition that all eigenvalues add up to 1, this shows that

a state is pure iff the sum of squares of eigenvalues is 1. Identifying the trace with

the sum of eigenvalues and using Eqn (3.29), we can characterize how mixed a

state is by:

M ≡
∑
α

W 2
α (3.30)

For a pure state, M = 1/N while for a mixed state, 0 ≤M < 1/N .

3.4.1 1-qubit Wigner Function Example

For this example we will consider the state |y+〉. We want to write the discrete

Wigner function for this state, and we may do so by using Eqn (3.28). Let us

begin by finding the value of the Wigner element at the origin, i.e. (0, 0). There

are three lines that pass through this point and correspond to the states |↑〉, |→〉
and |y+〉. For the state under consideration, |y+〉, we may find the probabilities

of measuring the three states whose lines pass through this point. The respective

probabilities of measuring the |y+〉 state to be in the states whose lines pass
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through (0, 0) are: P (|↑〉) = 1/2, P (|→〉) = 1/2 and P (|y+〉) = 1. We can now

use these probabilities and employ Eqn (3.28), where the Hilbert space dimension

is of course N = 2. We then find for the state |y+〉:

W(0,0) =
1

2

 ∑
λ3(0,0)

P (|λ〉)− 1

 =
1

2
[P (|↑〉) + P (|→〉) + P (|y+〉)− 1]

=
1

2

[
1

2
+

1

2
+ 1− 1

]
=

1

2
(3.31)

In this way one can also find the other values of the Wigner elements at the

remaining three points. Upon performing these calculations, one arrives at the

following representation of the state |y+〉 in terms of the DWF:

Wy+ =

 0 1/2

1/2 0

 (3.32)

3.5 Alternate Construction for 2-qubit DWF

This section describes an alternate way to determine how to convert between

the Wigner representation and the standard density matrix representation using

Hadamard matrices. As an accident of history, some of our later results were

derived from this representation, since we encountered it first.

A 2-qubit discrete Wigner function physically corresponds to a system contain-

ing 2 spin-1
2

particles with a Hilbert space dimension of N = 4. A 2-qubit pure

state may be represented as a state vector, a density operator or a discrete Wigner

function. The state vector of a 2-qubit state can be represented as

|ψ〉 = a |00〉+ b |01〉+ c |10〉+ d |11〉 (3.33)

The kets correspond to direct products (tensor products) of the standard 1-qubit

basis vectors. The first number in a ket corresponds to the first qubit, and the

second number to the second qubit, i.e. |01〉 = |0112〉 = |01〉 ⊗ |12〉, where the

1 and 2 subscripts denote qubit 1 and 2. The subscripts will not be included

henceforth. The coefficients are in general complex and obey the normalization

condition |a|2 + |b|2 + |c|2 + |d|2 = 1.

A general density operator for a 2-qubit system requires 42−1 = 15 independent

parameters, with the -1 coming from normalization. A general density matrix for



CHAPTER 3. FORMALISM 36

a system of 2 qubits is found by taking a tensor product of two 1-qubit density

matrices. The general 2-qubit density matrix is defined as:

ρ =
1

4
(I + s1xXI + s1yY I + s1zZI + s2xIX + s2yIY + s2zIZ +

cxxXX + cxyXY + cxzXZ + cyxY X + cyyY Y + cyzY Z +

czxZX + czyZY + czzZZ) (3.34)

where I, X,Y , and Z are the one-qubit identity and Pauli spin operators, except

for the first I after the parenthesis, which is a 4×4 identity matrix. The notation

XI is shorthand for the tensor product of the operators, i.e. XI = X⊗I. We use

this shorthand often in this report. The coefficients in the expansion of ρ may

be found by multiplying ρ by the operator corresponding to the coefficient and

taking the trace, for example, cxz = Tr(ρXZ). The coefficients labeled sni, where

n is 1 or 2 and i is x, y, or z are the spin components for the individual qubits,

when the other qubit is ignored. It is convenient to represent the coefficients of ρ

in a column vector ~S. To save space ~S is written below transposed:

~ST = (1, s1x, s1y, s1z, s2x, s2y, s2z, cxx, cxy, cxz, cyx, cyy, cyz, czx, czy, czz) (3.35)

Equation (3.35) is useful when manipulating the 2-qubit Wigner function, as is

explained shortly.

Now that we have a good understanding of the eigenstate associations and the

phase space structure, let us discuss representing states with the discrete Wigner

function. The discrete Wigner function representation for 2 qubits is given as a

4× 4 matrix. The elements are expressed as:

W =


w1100 w1101 w1110 w1111

w1000 w1001 w1010 w1011

w0100 w0101 w0110 w0111

w0000 w0001 w0010 w0011

 (3.36)

The entries in W are labeled with the convention wx1x2z1z2 , with the subscripts

on the x’s and z’s representing qubit 1 and qubit 2, respectively. The x’s and z’s

are either 0 (spin up) or 1 (spin down) with the columns associated with the Pauli

Z operator and the rows associated with the Pauli X operator. The elements of

the W matrix correspond to discrete phase space points, which may be formed

into 5 sets of striations for the (22 +1) = 5 sets of commuting operators, with each
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set containing (22 − 1) = 3 operators. It is again convenient to write the entries

of W as a column vector
−→
W with its elements arranged in lexicographic order. To

save space,
−→
W is shown in Eqn (3.37) transposed:

−→
W

T
= (w0000, w0001, w0010, w0011, w0100, w0101, w0110, w0111,

w1000, w1001, w1010, w1011, w1100, w1101, w1110, w1111) (3.37)

In Sec 2.3.1 we were able to easily map between the density coefficients and

the Wigner elements. We would again like to do such a mapping for a system of

2-qubits. The mapping between the elements of the Wigner matrix (Eqn 3.37) and

the density matrix coefficients (Eqn 3.35) can be found as follows. Each density

matrix coefficient, denoted ηi, can be calculated as

ηi = (+1)P (i+) + (−1)P (i−) (3.38)

Equation (3.38) is essentially the same as Eqn (2.19) from Ch. 2. The 2-qubit case

is a bit more involved since the probabilities of measuring the density coefficient ηi

to be up or down each correspond to summing over 8 Wigner elements as opposed

to 2. For instance if we are to find the total probability of finding qubit 1 to have

spin up along z we need to sum the 8 Wigner elements that correspond to the

lines ↑↑ and ↑↓. Likewise if we want to find the total probability of finding qubit

2 to have spin up along z we need to sum the 8 Wigner elements corresponding

to the lines ↑↑ and ↓↑. In Eqn (3.34) each ηi is multiplied by an operator which

belongs to one of the 5 commuting sets. To get the probability of measuring each

ηi to be either up or down one needs to sum over a particular set of lines; which

set of lines to sum over is determined by the quantum net. When considering the

ηi’s which correspond to the first two operators in a commuting set it is easy to

see which elements to sum over, since the eigenvalue signatures of ++, +−, etc

were developed for the first two operators. Since the third operator in each set

is either equal to the product of the first two (bases 0 to 3) or the negative of

the product (bases 4 to 5), one can easily calculate the eigenvalue for the third

operator from the eigenvalues of the first two.

It is a bit easier to write the formula for each ηi in terms of the lines within a

striation. We can then re-write Eqn (3.38) as

ηi = (+1)
∑
i+

λm
i+ + (−1)

∑
i−
λm

i− (3.39)
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where the λ’s correspond to the lines within a basis labeled by m ∈ {0, 1, 2, 3, 4}.
Each sum is over the elements from 2 lines, which represent the +1 or -1 eigen-

value signature for the ηi. For the ηi that corresponds to the third operator

in a commuting set, make sure the +1 or -1 for the set results from multiply-

ing the three lines for the ηi’s corresponding to a commuting set. For example,

the reader can verify that for the coefficient czz associated with basis 0 we have

czz = (+1){λ0
1 + λ0

4}+ (−1){λ0
2 + λ0

3}. After finding each coefficient of ρ in terms

of the elements W , one may relate the two using the column vector forms of each.

The equation relating them is given by Eqn (3.40), where the ~S is given by Eqn

(3.35) and the
−→
W is given by Eqn (3.37).

~S = H
−→
W (3.40)

Using this process one can arrive at the 16× 16 Hadamard matrix which is given

in Appendix A.1. The 16× 16 Hadamard matrix is used for manipulating the 2-

qubit discrete Wigner function; this is why we write ~S and
−→
W as column vectors.

Using the inverse of Eqn (3.40), we can determine a Wigner function for a given

ρ.

Manipulations on 2-qubit systems using the DWF are best done using a com-

puter program such as Maple. Applications of the 2-qubit DWF are given in Ch.

5.



Chapter 4

Discrete Wigner Function

Crossing and Reducing

4.1 Introduction

Often in physics one must combine two subsystems to form a single composite

system. In quantum mechanics, the density matrix of a composite system is

obtained by taking the direct product of the density matrices of the component

subsystems, while the density matrices of the individual subsystems are obtained

from that of the composite by taking the partial trace [9]. The direct product of

1-qubit Wigner functions looks promising as a way to form a combined Wigner

function, but we show that regardless of what quantum net one uses, the direct

product of Wigner functions cannot be made to yield the DWF of the combined

system.

When combining two qubits, we discovered that if one uses different quantum

nets for the two qubits being crossed, the direct product does give the correct

Wigner function for the two qubits considered together. The same crossing formula

can be considered from an equivalent perspective, using the same quantum net for

both qubits, but negating a spin component before doing the direct product. We

discuss both viewpoints. From this crossing formula, we derive a similar reduction

formula.

39
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4.2 Näıve Crossing

In this section, we discuss how the simple direct product might work, and why it

does not.

The combination formulae for the A operators and the W Wigner function

elements are intimately related. Consider one qubit with a density matrix ρ(1)

and a second with density matrix ρ(2). Using Eqn (3.26), and our knowledge of

how to cross density matrices, we can find the combined density matrix ρ(1,2):

ρ(1) =
∑
α

WαA
(1)
α (4.1)

ρ(2) =
∑
β

VβA
(2)
β (4.2)

ρ(1,2) =
∑
α

∑
β

WαVβA
(1)
α ⊗ A

(2)
β (4.3)

If one were to identify WαVβ with the two-qubit Wigner coefficients and A(1)
α ⊗

A
(2)
β with the 2-qubit A operators, Eqn (4.3) would be an expansion for the two

qubit Wigner function.

Unfortunately, the A operators are not arbitrary Hermitian operators, so this

identification of the A(1,2) might not be legitimate. The A operators must be re-

lated to the density matrices for the mutually unbiased bases discussed previously

via Eqn (3.17).

We will next show that there is no quantum net where the näıve direct product

formula Eqn (4.3) correctly computes the 2-qubit DWF. Consider the Wigner

functions for |x+〉 ⊗ |y+〉, |y+〉 ⊗ |z+〉, and |z+〉 ⊗ |x+〉 produced by the näıve

crossing formula (Eqn 4.3):

←← 0 0 0 0

←→ 0 0 0 0

→← 0 1/4 0 1/4

→→ 1/4 0 1/4 0

↑↑ ↑↓ ↓↑ ↓↓

|x+〉 ⊗ |y+〉

←← 0 0 1/4 0

←→ 0 0 1/4 0

→← 1/4 0 0 0

→→ 1/4 0 0 0

↑↑ ↑↓ ↓↑ ↓↓

|y+〉 ⊗ |z+〉

←← 0 0 0 0

←→ 1/4 1/4 0 0

→← 0 0 0 0

→→ 1/4 1/4 0 0

↑↑ ↑↓ ↓↑ ↓↓

|z+〉 ⊗ |x+〉
(4.4)
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Here are the lines for the {XY, Y Z, ZX} basis from Table 3.5:

1 2 3 4

4 3 2 1

2 1 4 3

3 4 1 2

(4.5)

We want to show that no association of the above lines to the eigenstates of the

{XY, Y Z, ZX} basis is consistent with Eqn (4.4). Comparing the supposed |x+〉⊗
|y+〉 Wigner function to the lines, one sees that lines 1 and 3 must be associated

with +XY eigenstates. From the supposed |y+〉⊗ |z+〉Wigner function, one sees

that lines 2 and 3 must be associated with +Y Z. Since the Pauli operators satisfy

X · Y = iZ, (X ⊗ Y ) · (Y ⊗Z) = −Z ⊗X, one can determine the ZX eigenvalue

for each line by multiplying the XY and Y Z eigenvalues. Table 4.1 summarizes

these results.

Line XY Y Z ZX
1 + - +
2 - + +
3 + + -
4 - - -

Table 4.1: The eigenvalues associated with the lines under näıve crossing.

Now consider the |z+〉 ⊗ |x+〉 Wigner function. Comparing it to Table 3.5,

one sees that lines 3 and 4 are associated with ZX+. This is inconsistent with

the association of ZX+ with lines 1 and 2 in Table 4.1. We therefore conclude

that for the 1-qubit quantum net we chose, no 2-qubit quantum net will allow the

näıve crossing formula (Eqn 4.3) to work. The cause of this problem is the fact

that the Pauli operators satisfy X · Y = iZ, not X · Y = Z, so for the fourth

and fifth bases, the third operator is the negative of the product of the first two.

If one instead uses the 1-qubit quantum net where the Y -eigenstates have line

assignments swapped, a similar problem occurs with the {IY, Y I, Y Y } basis.

4.3 Spin Component Flipping

Gibbons et. al. [4] note that their quantum net has the special property that:

A(1,2) = A(1) ⊗ Ā(2) (4.6)
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where the overbar indicates complex conjugation. They mention this as a reason

to prefer their choice of net.

Complex conjugating a density matrix negates the y-component of the spin

while leaving the x and z-components unchanged. We generalized their result in

two ways. We discovered that a negation of the x or z-component of the spin

would also allow an analogous cross-product of A operators. We also found the

crossing formula for the W that goes with Eqn (4.6).

To negate the y spin-component of a 1-qubit Wigner function, use:

V ′
00 = 1/2− V11 (4.7)

V ′
01 = 1/2− V10 (4.8)

V ′
10 = 1/2− V01 (4.9)

V ′
11 = 1/2− V00 (4.10)

where Vij is the original Wigner function and V ′
ij is the flipped WF.

Consider density matrices ρ(1) and ρ(2), expanded as Wigner functions using

Eqn 3.26:

ρ(1) =
∑
α

WαA
(1)
α (4.11)

ρ(2) =
∑
β

VβA
(2)
β (4.12)

One can also express the result of flipping a component of the spin of ρ(2), denoted

ρ′(2) as a Wigner function:

ρ′(2) =
∑
β

V ′
βA

(2)
β (4.13)

Do the inverse of the spin-flip to both sides:

ρ(2) =
∑
β

V ′
βA

′(2)
β (4.14)

where A′(2) denotes the A operator with its spin component flipped. Combining:

ρ(1,2) =
∑
α

∑
β

WαV
′
βA

(1)
α ⊗ A

′(2)
β (4.15)

We identify WαV
′
β with the the 2-qubit Wigner function, and A(1)

α ⊗A
′(2)
β with the
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2-qubit A operator.

It turns out that the A operators defined here do correspond to a legitimate

quantum net if the x, y, or z component of the spin is flipped. Reflection of

the spin along other axes, such as x̂ + ŷ, do not seem to correspond to quantum

nets. We tested various crossing formulae by calculating the resulting A operators.

We then verified numerically that the Q operators derived from the A operators

formed mutually unbiased bases.

Another way to think of the spin-flip is that one must use different quantum

nets for the two Wigner functions being crossed. Since the choice of quantum net

for a 1-qubit system amounts to deciding which X, Y , and Z eigenstates to assign

to each line, negating the y-component of the spin is equivalent to swapping which

Y -eigenstate to associate with which line, with similar remarks applying to X and

Z.

Any odd number of space inversions (combined between the two qubits) along

the three axes forms a quantum net. There are therefore 8 · 8/2 = 32 possible

2-qubit quantum nets that are formed using cross products of this form. However,

there are 44+1 = 1024 different quantum nets, so there are quantum nets that do

not have a crossing formula of this type. For example, a choice of quantum net

that looks obvious at first is the one where the ++ eigenstate is associated with

the line passing through the origin – Aravind’s net (see Sec 3.3.3). However, with

this type of net, crossing is more complicated. With this quantum net, the Z⊗X
eigenstate has a DWF of:

W =
1

8


1 1 −1 −1

1 1 1 1

1 1 −1 −1

1 1 1 1

 (4.16)

Note that this cannot be expressed as the direct product of 2× 2 matrices.

4.4 Reduction

The crossing formula for the A operators leads naturally to a formula for calculat-

ing the reduced density matrix for 1 of the 2 qubits. The reduced density matrix
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for the first qubit can be expressed as follows:

Tr(2)(ρ) =
∑
α

∑
β

WαβTr(2)(Aα ⊗ A′
β) (4.17)

=
∑
α

Aα

∑
β

Wαβ (4.18)

The sum over β can be identified with the Wigner coefficient Wα for the reduced

system. Similarly,

Tr(1)(ρ) =
∑
α

∑
β

WαβTr(1)(Aα ⊗ A′
β) (4.19)

=
∑
β

A′
β

∑
α

Wαβ (4.20)

This produces a 1-qubit DWF, but for the wrong quantum net. One needs

to flip the spin (Eqn 4.10) to get the Wigner function in terms of the correct A

operators. Therefore, computing the reduced density matrix over the second qubit

requires summing the Wigner function in 4 sets of 4, and then flipping the spin of

the resulting 1-qubit DWF.

Aravind’s net has a complicated crossing formula, but the reduction formula

is surprisingly simple. Using Aravind’s net and performing the reduction using

brute-force computer aided algebra using the methods of Sec 3.5, one can show:

W (1) =

 w1000 + w1001 + w1100 + w1101 w1010 + w1011 + w1110 + w1111

w0000 + w0001 + w0100 + w0101 w0010 + w0011 + w0110 + w0111

(4.21)

W (2) =

 w0100 + w0110 + w1100 + w1110 w0101 + w0111 + w1101 + w1111

w0000 + w0010 + w1000 + w1010 w0001 + w0011 + w1001 + w1011

(4.22)

The result for the first qubit is the same as for Wootters’s net. For Aravind’s net,

reduction over the second qubit is analogous to the first – no spin-flip required.

4.5 Future Work

Spin component flipping does not seem to be sufficient for handling 3 qubits

crossed together. We do not understand in any deep way why the spin-component

inversion trick makes crossing work, so we cannot predict what generalization of

spin-component negation might work for more qubits.

Aravind’s quantum net has a complicated crossing formula, but some other
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formulae are simpler than Wootters. In particular, the reduction formula for

Aravind’s quantum net is very simple, and the Cnot gate (see Ch. 5) is also

simpler. We do not understand why. Understanding these issues would help one

choose an appropriate quantum net that is convenient for calculations.



Chapter 5

Applications

5.1 Arbitrary Rotations of 1-Qubit DWF

Applying gates to qubits is equivalent to acting on the qubits with unitary oper-

ators. Arbitrary rotations for a qubit are represented here in the form of unitary

operators, which we apply to the discrete Wigner function. We will use the column

vector form of the 1-qubit Wigner function

−→
W =


w00

w01

w10

w11

 (5.1)

along with what will be called the arbitrary gate matrix G, to find the new matrix

form of the DWF W ′ of the rotated state in phase space. We will use Eqn (2.13),

which we reproduce here:

~s ′ = (n̂ · ~s)n̂+ [~s− (n̂ · ~s)n̂]cosθ + (n̂× ~s)sinθ

to relate the rotated to non-rotated pseudospin vectors. This equation can be

written as ~s ′ = r~s where r is a 3 × 3 orthogonal matrix. We can then augment

that matrix to a 4 × 4 rotation matrix called R, where we do not give explicit

46
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expressions for the components of r since they are rather cumbersome.

R =


1 0 0 0

0 r11 r12 r13

0 r21 r22 r23

0 r31 r32 r33

 (5.2)

Equation (5.2) may then be used to relate the density coefficient vectors ~S and
~S ′ by ~S ′ = R~S. This may then be used to relate the rotated DWF,

−→
W

′
= H−1~S ′, to

the original DWF ~W = H−1~S by
−→
W

′
= H−1RH

−→
W , where H is the 4×4 Hadamard

matrix given in Eqn (2.20). One can write the relation more compactly as

−→
W

′
= G
−→
W (5.3)

with G ≡ H−1RH. The G matrix acts on the DWFs as a unitary operator would

act on state vectors. It turns out that G contains a lot of terms and does not

simplify nicely. One can limit the rotations to those that correspond only to

rotations about the x, y, and z axes with corresponding rotation matrices Gx, Gy,

and Gz, respectively. These matrices are easier to write than the general form and

are given, for a rotation by θ about each axis, by

Gx =


1
2
(1 + cos θ) 1

2
(1− cos θ) −1

2
sin θ 1

2
sin θ

1
2
(1− cos θ) 1

2
(1 + cos θ) 1

2
sin θ −1

2
sin θ

1
2
sin θ −1

2
sin θ 1

2
(1 + cos θ) 1

2
(1− cos θ)

−1
2
sin θ 1

2
sin θ 1

2
(1− cos θ) 1

2
(1 + cos θ)

 (5.4)

Gy =


1
2
(1 + cos θ) −1

2
sin θ 1

2
sin θ 1

2
(1− cos θ)

1
2
sin θ 1

2
(1 + cos θ) 1

2
(1− cos θ) −1

2
sin θ

−1
2
sin θ 1

2
(1− cos θ) 1

2
(1 + cos θ) 1

2
sin θ

1
2
(1− cos θ) 1

2
sin θ −1

2
sin θ 1

2
(1 + cos θ)

 (5.5)

Gz =


1
2
(1 + cos θ) 1

2
sin θ 1

2
(1− cos θ) −1

2
sin θ

−1
2
sin θ 1

2
(1 + cos θ) 1

2
sin θ 1

2
(1− cos θ)

1
2
(1− cos θ) −1

2
sin θ 1

2
(1 + cos θ) 1

2
sin θ

1
2
sin θ 1

2
(1− cos θ) −1

2
sin θ 1

2
(1 + cos θ)

 (5.6)

Note that each of the Gi (i = x, y, z) matrices have the same diagonal terms

with a trace of 2(1+cos(θ)) = 4 cos2( θ
2
). Note also that all of the rotation matrices
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contain the same four elements: 1
2
(1+cos(θ)), 1

2
(1−cos(θ)), 1

2
sin(θ) and −1

2
sin(θ).

As an example of using the rotation matrices, consider a rotation about the x axis

by π
2

on the 1-qubit Wigner function for the |↑〉 state. Setting θ = π
2

in Gx we

have for
−→
W

′

−→
W

′
=

1

2


1 1 −1 1

1 1 1 −1

1 −1 1 1

−1 1 1 1




1
2

0
1
2

0

 =


0
1
2
1
2

0


The resulting Wigner vector corresponds to the state |y−〉, which is what one

would expect from such an operation. One can easily check that other obvious

rotations, such as those for θ = π, give the expected results.

One may write any arbitrary rotation as the product of three rotations about 2

perpendicular axes [5]. For example a rotation of α about z followed by a rotation

of β about y followed by a rotation γ about z may be used to form any rotation.

These three angles are the Euler angles and the rotation can be expressed as the

product R = Rz(γ)Ry(β)Rz(α).

5.2 2-Qubit DWF Gates

One may define the outcome of applying a gate (unitary operator) to a quan-

tum system in terms of the discrete Wigner function. For a 4-level system we

develop the quantum gates XI, IX,ZI, IZ, Y I, IY , and Cnot. We also discuss

the Hadamard, S, and T gates, but these gates have complicated Wigner function

representations so we omit them.

To find the new Wigner functions that are formed by the unitary operators

(gates) we need to first see how the 4-level density operator changes. One may

find the new density operator as follows: ρ′ = |ψ′〉 〈ψ′| = U |ψ〉 〈ψ|U † = UρU−1

where the U is a unitary operator which acts as a gate. We are interested in

finding the resulting Wigner function W ′ as the result of a gate. We can represent

the original density matrix in terms of the original Wigner elements by writing the

density matrix as a column vector, ~ρ, that can be related to the density coefficient
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vector ~S. We write ~ρ as follows:

~ρ =


ρ11

ρ12

...

ρ44

 (5.7)

~ρ can be related to ~S using Eqn (3.34) by writing ~ρ = J ~S = JH
−→
W where J

is a 16 × 16 matrix that picks out the correct components of ~S and is given in

Appendix A.2.

Using ~ρ = JH
−→
W and a function that takes ~ρ from a 16× 1 column vector into

the 4× 4 ρ matrix, one can write ρ in terms of the original Wigner elements, thus

being able to write ρ′ in terms of the original Wigner elements. Now that we have

ρ′ in terms of the w’s, we can obtain the new density coefficient vector ~S ′ utilizing

the inverse of J . We can write ρ′ as a column vector ~ρ ′ and then relate ~S ′ to it by
~S ′ = J−1~ρ ′. Once that ~S ′ is known, it is easy to find the new Wigner function that

is obtained from the given unitary operator by
−→
W

′
= H−1~S ′. This construction

gives W ′ in terms of the elements of the original Wigner function, W .

We will now look at specific examples of quantum gates on the DWF, which

may be understood by recalling the translation operators in the discrete phase

space. The DWF for an arbitrary 2-qubit state has the form given in Eqn (5.8).

It is a useful exercise to look at this and to see how each gate should transform

using the phase space translation vector. Gates that can be expressed as products

of Pauli operators (e.g. I ⊗ Y ) look the same in any quantum net since they

correspond to translation operators.

W =


w1100 w1101 w1110 w1111

w1000 w1001 w1010 w1011

w0100 w0101 w0110 w0111

w0000 w0001 w0010 w0011

 (5.8)

IX gate

When the state in Eqn (5.8) is acted on by the gate IX, equivalent to a translation

in phase space by (1, 0), one obtains the state in Eqn (5.9).
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
w1101 w1100 w1111 w1110

w1001 w1000 w1011 w1010

w0101 w0100 w0111 w0110

w0001 w0000 w0011 w0010

 (5.9)

XI gate

When the state in Eqn (5.8) is acted on by the gate XI, equivalent to a translation

in phase space by (ω, 0), one obtains the state in Eqn (5.10).


w1110 w1111 w1100 w1101

w1010 w1011 w1000 w1001

w0110 w0111 w0100 w0101

w0010 w0011 w0000 w0001

 (5.10)

IZ gate

When the state in Eqn (5.8) is acted on by the gate IZ, equivalent to a translation

in phase space by (0, 1), one obtains the state in Eqn (5.11).


w1000 w1001 w1010 w1011

w1100 w1101 w1110 w1111

w0000 w0001 w0010 w0011

w0100 w0101 w0110 w0111

 (5.11)

ZI gate

When the state in Eqn (5.8) is acted on by the gate ZI, equivalent to a translation

in phase space by (0, ω), one obtains the state in Eqn (5.12).


w0100 w0101 w0110 w0111

w0000 w0001 w0010 w0011

w1100 w1101 w1110 w1111

w1000 w1001 w1010 w1011

 (5.12)

IY gate

When the state in Eqn (5.8) is acted on by the gate IY , equivalent to a translation

in phase space by (1, 1), one obtains the state in Eqn (5.13).



CHAPTER 5. APPLICATIONS 51


w1001 w1000 w1011 w1010

w1101 w1100 w1111 w1110

w0001 w0000 w0011 w0010

w0101 w0100 w0111 w0110

 (5.13)

Y I gate

When the state in Eqn (5.8) is acted on by the gate Y I, equivalent to a translation

in phase space by (ω, ω), one obtains the state in Eqn (5.14).


w0110 w0111 w0100 w0101

w0010 w0011 w0000 w0001

w1110 w1111 w1100 w1101

w1010 w1011 w1000 w1001

 (5.14)

Cnot, Hadamard, π
4 and π

8 gates

The Cnot (controlled-not) gate is defined by the matrix in the Z-basis:

Cnot =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (5.15)

We discovered that using the quantum net proposed by Wootters (which we have

been using unless otherwise noted) in this case did not lead to a simple formula

for the Cnot gate. If one instead uses Aravind’s net and acts upon the state in

Eqn (5.8) with the Cnot gate, one gets the elegant form shown in Eqn (5.16):


w0100 w0101 w0111 w0110

w1000 w1001 w1011 w1010

w1100 w1101 w1111 w1110

w0000 w0001 w0011 w0010

 (5.16)

The Wigner function transforms in a more complicated manner under the

Hadamard gate and the π
8

gate as one may show. One may obtain the result

of operating on a 2-qubit state by any unitary operator using the construction

explained at the beginning of the section. It is necessary to use a computer for
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this, as there are many terms involved. We used the math program Maple to

determine the effect of these gates on Wigner functions, but the result was too

complicated to usefully report here. The π
4

is denoted by S and the π
8

gate is

denoted T . The forms of the Hadamard, S and T gates are as follows

Hadamard =
1√
2

 1 1

1 −1

 (5.17)

S =

 1 0

0 i

 (5.18)

T =

 1 0

0 e
iπ
4

 (5.19)

For details on the use of these gates see [9].

5.3 Quantum Tomography

In quantum tomography, or quantum state estimation, the problem is to determine

an unknown quantum state of which a large number of identical copies are given.

Both the continuous and discrete Wigner function can be determined by quantum

tomography. The continuous case has been discussed extensively in the book by

Leonhardt [8]; the discrete case is discussed here.

To determine the DWF of a 2-qubit system by quantum tomography, one di-

vides the copies of the system into 5 groups. A measurement of a pair of com-

muting observables is carried out on each of these groups, the observables being

the ones shown in the first column of Table 5.1 (only the first pair of observables

in each triplet need to be measured). The measurements are used to estimate the

probabilities of measuring each state |λ〉.
Using Eqn (3.28) from Ch. 3 (Wβ = 1

N

[∑
λ3β P (|λ〉)− 1

]
), one can construct

the WF from the measured probabilities. For example, consider a system where

both qubits are up along z. The probability of measuring both qubits up along

z is one and the probability of measuring any other pair of z eigenstates is zero.

The probability of measuring any pair of eigenvalues in any of the other bases is
1
4
. Therefore, the elements along the Z-up-up axis are 1

4
(1 + 4 · 1

4
− 1) = 1

4
, and

all others are 1
4
(0 + 4 · 1

4
− 1) = 0. This fits what one expects.
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++ +- -+ --
X1, X2 37/76 13/76 1/76 25/76
Y1, Y2 13/76 13/76 1/76 49/76
Z1, Z2 4/76 16/76 40/76 16/76

X1Y2, Y1Z2 9/76 13/76 45/76 9/76
Y1X2, Z1Y2 37/76 13/76 25/76 1/76

Table 5.1: Example Probabilities for Quantum Tomography

For a more complicated example, consider the probabilities in Table 5.1. The

Wigner elements can be found again using Eqn (3.28). For example, the lower-left

Wigner element is obtained as w0000 = 1
4
[37/76 + 13/76 + 4/76 + 45/76 + 13/76− 1] =

9/76. The complete Wigner function can be found in Table 5.2.

←← -3/76 10/76 12/76 6/76
←→ -3/76 6/76 4/76 -6/76
→← 1/76 -6/76 0/76 18/76
→→ 9/76 6/76 24/76 -2/76

↑↑ ↑↓ ↓↑ ↓↓

Table 5.2: Wigner Function for Example Quantum Tomography

Using Eqn (3.26) (ρ =
∑

αWαAα), one can find ρ. Diagonalizing ρ yields the

original state |ψ〉 = 1√
19

(|↑↑〉+ 2 |↑↓〉+ (3 + i) |↓↑〉 − 2i |↓↓〉).

5.4 Superdense Coding

It is not immediately obvious how much information one can transmit using a

qubit. By preparing a qubit in one of the two Z-eigenstates and giving it to

another person, one can easily transmit 1 classical bit using 1 qubit. However, it

is possible to do better. A scheme called superdense coding allows one to transmit

two classical bits by transmitting 1 qubit – if the parties are already in possession

of a pair of entangled qubits [9].

Suppose Alice is trying to send 2 classical bits to Bob. A third party prepares

a pair of entangled qubits in the singlet state and sends one each to Alice and
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Bob. The singlet state’s discrete Wigner function is shown below.

←← 0 0 0 0

←→ 0 1/4 1/4 0

→← 0 1/4 1/4 0

→→ 0 0 0 0

↑↑ ↑↓ ↓↑ ↓↓

(5.20)

If the first bit Alice wants to send is a 1, she applies the X gate to her qubit,

otherwise she does nothing. If the second bit Alice wants to send is a 1, she applies

the Z gate to her qubit, otherwise she does nothing. As mentioned earlier in this

chapter, applying the X gate to the first qubit swaps the first two and last two

columns of the Wigner function. If Alice applies the X gate, the resulting Wigner

function is:
←← 0 0 0 0

←→ 1/4 0 0 1/4

→← 1/4 0 0 1/4

→→ 0 0 0 0

↑↑ ↑↓ ↓↑ ↓↓

(5.21)

Similarly, the Z gate swaps the first and last pair of rows of the Wigner function.

Regardless of what Alice sends, the resulting Wigner function is of the form:

←← d b b d

←→ c a a c

→← c a a c

→→ d b b d

↑↑ ↑↓ ↓↑ ↓↓

(5.22)

where all of a, b, c, d are 0 except for one which is 1/4. Nonzero a, b, c, d correspond

respectively to sending 00, 01, 10, 11. These states correspond to the famous Bell

basis, but we do not need that for this analysis, so we do not prove it here.

One can easily verify that the Bell states are all pure and mutually orthogonal
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using Eqn (3.29):

|〈ψ1|ψ2〉|2 = Tr(ρ1ρ2) = N
∑
α

WαVα (5.23)

where |ψ1〉 and |ψ2〉 have Wigner elements Wα and Vα respectively.

Alice then physically gives her qubit to Bob. Bob then makes a measurement on

the two qubits in the Bell basis. Since these states are orthogonal, a measurement

can differentiate the states with perfect reliability. Bob thereby deduces the two

bits Alice sent.
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Conclusions

This report showed how the discrete Wigner function (DWF) can be developed in

a manner analogous to the continuous Wigner function. The DWF representation

for n qubits is defined on a discrete phase space of 2n × 2n points. The values

of the DWF at the phase space points are always real, but they can be nega-

tive. Summing along a line in phase space gives the probability of measuring the

associated eigenstate. Galois Fields provide the discrete analog of real numbers

essential for the construction of the discrete Wigner function.

One difficulty delaying the application of the DWF is the difficulty in com-

bining 1-qubit DWFs to make a many-qubit DWF. Since different quantum nets

have different crossing formulae, this problem is closely related to the problem

of choosing an appropriate quantum net. We discussed how two 1-qubit DWFs

can be combined using a simple direct product if the 1-qubit DWFs use different

quantum nets. It remains to be discovered why this works and how to combine 3

or more qubits.

The DWF can be used to visualize quantum computations. We discussed how

to express arbitrary rotations of a single qubit using the DWF. We showed how

various 2-qubit gates, including IX, IY , and IZ, and the controlled-not gate, can

be expressed using the DWF. These gates allow any quantum computation using

2 qubits to be visualized without complex numbers. Once crossing formulae are

discovered for an arbitrary number of qubits, the controlled-not and 1-qubit gates

can be combined to simulate any quantum computation.

In quantum tomography, the DWF can be used to easily determine the state

of a large number of identically prepared systems. The DWF naturally produces

a set of mutually unbiased bases which provide the most accurate reconstruction

56
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possible for a given number of measurements. The DWF also eases the calculations

involved in reconstructing the state from the measurements.

The DWF provides a valuable tool for visualizing 2-qubit quantum compu-

tations without complex numbers. Once crossing formulae for more qubits are

developed, the DWF will be a valuable tool for many qubits.



Appendix A

2-Qubit 16× 16 Matrices

A.1 2-Qubit Hadamard Matrix

The Hadamard matrix for 2 qubits relating ~S to
−→
W by ~S = H

−→
W using Wootters’s

quantum net.

H =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

−1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

−1 1 −1 1 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1

1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1

−1 1 1 −1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1

1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1

1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

−1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1

1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1


(A.1)
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A.2 2-Qubit J Matrix

The J matrix relates the density vector ~ρ to the density coefficient vector ~S by

~ρ = J ~S. The J matrix makes finding gate operations on 2 qubits easy.

J =
1

4



1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 1 −i 0 0 0 0 0 0 0 1 −i 0

0 1 −i 0 0 0 0 0 0 1 0 0 −i 0 0 0

0 0 0 0 0 0 0 1 −i 0 −i −1 0 0 0 0

0 0 0 0 1 i 0 0 0 0 0 0 0 1 i 0

1 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 1 i 0 −i 1 0 0 0 0

0 1 −i 0 0 0 0 0 0 −1 0 0 i 0 0 0

0 1 i 0 0 0 0 0 0 1 0 0 i 0 0 0

0 0 0 0 0 0 0 1 −i 0 i 1 0 0 0 0

1 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 −1

0 0 0 0 1 −i 0 0 0 0 0 0 0 −1 i 0

0 0 0 0 0 0 0 1 i 0 i −1 0 0 0 0

0 1 i 0 0 0 0 0 0 −1 0 0 −i 0 0 0

0 0 0 0 1 i 0 0 0 0 0 0 0 −1 −i 0

1 0 0 −1 0 0 −1 0 0 0 0 0 0 0 0 1


(A.2)
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3 Qubit Arithmetic Tables

The primitive polynomial is taken as: π(x) = x3 + x2 + 1. The field elements are

then: GF (23) = {0,1,ω,ω2,ω3,ω4,ω5,ω6}. Note that ω3 = ω2 + 1. Also note that

ω7 = 1. It turns out that there are 7 field bases {ei} in GF (23) that have a dual

basis {e′i} that may be multiplied by an element α of GF (23) to get fi = αe′i = ei.

The field bases with their dual and multiplicative factor to return the original

basis are also given below:

n ωn tr(ωn)

0 1 1

1 ω 1

2 ω2 1

3 ω2 + 1 0

4 ω2 + ω + 1 1

5 ω + 1 0

6 ω2 + ω 0

basis dual α

(1, ω, ω3) (ω2, ω3, ω5) ω5

(1, ω2, ω6) (ω4, ω6, ω3) ω3

(1, ω4, ω5) (ω, ω5, ω6) ω6

(ω, ω2, ω4) (ω, ω2, ω4) 1

(ω, ω5, ω6) (1, ω4, ω5) ω

(ω2, ω3, ω5) (1, ω, ω3) ω2

(ω3, ω4, ω6) (ω6, 1, ω2) ω4
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The following table shows addition in GF (8).

+ 0 1 ω ω2 ω3 ω4 ω5 ω6

0 0 1 ω ω2 ω3 ω4 ω5 ω6

1 1 0 ω5 ω3 ω2 ω6 ω ω4

ω ω ω5 0 ω6 ω4 ω3 1 ω2

ω2 ω2 ω3 ω6 0 1 ω5 ω4 ω

ω3 ω3 ω2 ω4 1 0 ω ω6 ω5

ω4 ω4 ω6 ω3 ω5 ω 0 ω2 1

ω5 ω5 ω 1 ω4 ω6 ω2 0 ω3

ω6 ω6 ω4 ω2 ω ω5 1 ω3 0

The following table shows multiplication in GF (8).

× 0 1 ω ω2 ω3 ω4 ω5 ω6

0 0 0 0 0 0 0 0 0

1 0 1 ω ω2 ω3 ω4 ω5 ω6

ω 0 ω ω2 ω3 ω4 ω5 ω6 1

ω2 0 ω2 ω3 ω4 ω5 ω6 1 ω

ω3 0 ω3 ω4 ω5 ω6 1 ω ω2

ω4 0 ω4 ω5 ω6 1 ω ω2 ω3

ω5 0 ω5 ω6 1 ω ω2 ω3 ω4

ω6 0 ω6 1 ω ω2 ω3 ω4 ω5
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