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Abstract
Sharpe has shaped recent thinking in the financial sciences with his paper on the
Distribution Builder, a tool designed to elicit investor preferences as probability
distributions. We examine pricing such distributions in simple financial models.
The no-arbitrage pricing method is a well studied technique for pricing derivative
securities in financial market models. We apply this method to price arbitrary
probability distributions on finite outcome spaces. This work surfaces constraints on
the technique as the number of possible investment outcomes increases, and examines
these constraints from multiple perspectives.
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1 Introduction

1.1 Background
In this paper we examine desired outcome distributions of investors in financial markets
and attempt to ascertain the cost to achieve them. Pricing in financial markets is
well studied under various models, such as the Black-Scholes-Merton model, but the
object of interest is usually a derivative security. We apply these pricing techniques,
particularly the no-arbitrage pricing method, to arbitrary distributions representing
investor preferences.
The study of investor preferences in terms of probability distributions can be

attributed largely to William F. Sharpe. Sharpe and his co-authors designed and
experimented with a tool called “The Distribution Builder”. The tool is designed to
elicit an individual’s investment preferences in terms of their preferred distribution of
wealth at a given time horizon, such as retirement [1]. By distribution of wealth we
mean the set of possible outcomes and their relative probabilities. This probability
distribution encapsulates the states they wish to be possible, and perhaps more
importantly impossible, such as losing everything.
The most important detail of how this works in practice for our purposes is the

cost contraint. In a real market in order to possibly gain money an investor must
take on some kind of risk. Thus, the more weight an investor places on higher valued
outcomes in the Distribution Builder, necessarily the more wealth they need a priori
in order to achieve that outcome. The limitation on resources at an investors disposal
is called the cost constraint.

Our aim in this paper is to examine the cost contraint in simple models of financial
markets. This then is what we mean by choosing investment strategies by their out-
comes; using a tool such as Sharpe’s we can obtain an investors preferred distribution
of wealth and then, using the techniques we present, identify both how much wealth
you need today to achieve that outcome as well as identify a strategy to allocate your
wealth appropriately.

We require a method by which to calculate how much a distribution costs. In the
financial sciences two such tools are: the no-arbitrage pricing model, and the captial
asset pricing method. These tools are typically used in order to price derivative
securities, financial instruments whose value derives from some underlying asset
and whose role is to hedge against movements in the underlyings price. For us the
security will be random variables whose law is our desired wealth distribution, and
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the underlying will be the stock market.
That is to say we determine how much money an investor must invest into the market

to hedge the probability distribution, to always have the value of the probability
distribution in stock and bond holdings at the time horizon. The question is how
much stock is required to meet the investors goals in every market outcome, and both
of these methods provide an answer. These pricing models will then tell us the price,
the amount of wealth necessary, in order to realize this distribution. We will use
the no-arbitrage approach for it’s precise numerical results in the kinds of idealized
models that we will deal with exclusively in this paper [2].

1.2 Mathematical Concepts
In order to effectively model stock markets we first recall some fundamental concepts
in probability, both to fix a notation and to highlight some subtleties which will come
up often throughout the report. First, since the value of a stock is an uncertain
quantity it is natural to model it as a random variable. A random variable is a
function from the outcome space into the real numbers. Note, it does not matter
how likely an outcome is, even the most unlikely of outcomes is given a value, and
the assignment of values to outcomes, that is to say the random variable, encodes no
information about how probable or improbable an outcome is. The space of possible
outcomes however is intrinsic to the definition of a particular random variable. In all
of our cases this space shall be finite.

Definition 1. Let Ω be the set of all possible outcomes then a random variable is a
function ξ : Ω→ R.

An important related object to random variables is a probability distribution.
A probability distribution is a tabulation of probabilities. Specifically it tabulates
the probability that a random variable takes on a given quantity. A probability
distribution captures information about a random variable in relation to a probability
measure, and elides information about the outcome space the variable was defined
upon. Since it encodes no information about how the variable relates to the outcome
space it is possible for two distinct random variables to have the same probability
distribution. We will exhibit an example of this shortly.

Definition 2. Let P be a probability measure on Ω, a probability distribution is a
map P : R→ [0, 1] satisfying

P (ω) = P(ξ−1(ω))

where ξ−1(ω) is the inverse image of ω under ξ.

6



If we let Ω = {ω1, ω2} with probability measure P(ω1) = P(ω2) = 1
2 , then we can

exhibit two random variables, ξ and ξ, with the same distribution:

ξ(ω1) = 1, ξ(ω2) = 0;

ξ(ω1) = 0, ξ(ω2) = 1.

Since the probabilities of the two outcomes are equal, and probability distribu-
tions elide information about the outcome space these two variables have the same
probability distribution given by:

P (1) = 1
2 , P (0) = 1

2 .

This example suggests a broader result which we now present and prove.

Theorem 1. Let P be a probability measure on Ωk, a finite set with k elements, given
by P(ωi) = 1

n
for all i, 1 ≤ i ≤ k. Then any two random variables ξ : Ωk → R and

ξ : Ω→ R have the same probability distribution iff there exists a permutation σ of n
elements such that for every ωi ∈ Ωk, ξ(ωi) = ξ(ωσ(i))

In other words, two variables have the same probability distribution if we can
permute the labels on the outcome space to make them agree.

Proof. Let ξ and ξ be two such random variables related by σ. Then the probability
distribution of ξ is given by

P (ω) = P(ξ−1(ω))

for each ω in the range of ξ. Since ξ is related to ξ by a permutation it has the same
range and hence its distribution is given by

P ′(ω) = P(ξ−1(ω))

and has the same domain. Then these distributions are the same so long as

P(ξ−1(ω)) = P(ξ−1(ω))

for each value ω. Since the probability measure is uniform this is the case.
Next, let ξ and ξ be random variables with the same distribution, P . Select a

permutation in Sn, the symmetric group on n elements, whose orbits are ξ−1(ω) for
each ω in the range of ξ. Such a permutation satisfies the theorem.

We have exhibited these two basic concepts with the express purpose of highlighting
that a random variable is not a probability distribution. Random variables are tightly
coupled with the outcome space and unrelated to the probability measure. Probability
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distributions are tightly coupled with the measure. Sure, given a particular measure
there exists a map of random variables to probability distributions, but under a
different measure this map changes. This paper is mostly interested in pricing the
distribution relative to the uniform probability measure, every outcome being equally
likely, but as we will see this sometimes requires examining other measures.
Finally, we visit the concept of martingales, and conditional expectation. The

definition of expectation is the familiar one

Definition 3. Let P be a probability measure on Ωk, and ξ : Ωk → R be a random
variable. Then the expectation of ξ is denoted E[ξ] and given by

E[ξ] =
∑
ω∈Ωk

ξ(ω)P(ω)

We also will find use for the conditional expectation, the expectation of a random
variable when some information is known about the outcome but not all.

Definition 4. Let Ωn be the set of all strings of length n constructed from alphabet Ω,
a finite set. Then let ξ : Ωn → R be a random variable. The conditional expectation
of ξ at time k, 0 < k < n is denoted Ek[ξ] and given by

Ek[ξ](ω1ω2 · · ·ωk) =
∑

ωk+1,ωk+2,...,ωn∈Ω
P(ω1ω2 · · ·ωkωk+1ωk+2 · · ·ωn)ξ(ω1ω2 · · ·ωkωk+1ωk+2 · · ·ωn)

with extremal cases given by
E0[ξ] = E[ξ],

En[ξ](ω1ω2 · · ·ωn) = ξ(ω1ω2 · · ·ωn).

Conditional expectations have four fundamental properties which we summarize
here

Theorem 2. Let X, Y be random variables defined on Ωn, and let 0 ≤ k ≤ n be
given.

Linearity: for all constants c1, c2 we have

Ek[c1X + c2Y ] = c1Ek[X] + c2Ek[Y ].

Taking out what is known: If X only depends on the first k letters of the string
then we have

Ek[XY ] = XEk[Y ].
Iterated Conditioning: Let k ≤ j ≤ n then

Ek[Ej[X]] = Ek[X].

Independence: If X depends only on the letters k + 1 through n then

Ek[X] = E[X].
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Proof. A proof is given [2].

Utilizing these definitions we are now equipped to introduce martingales. Models
of markets under which the stock price is a martingale are especially easy to work
with as we shall see later so this is an important definition.

Definition 5. Let ξ0, ξ1, . . . , ξn be a sequence of random variables where ξ0 is a scalar,
and ξ1, . . . , ξn are defined on Ω, . . . ,Ωn respectively. In other words each of these
random variables, ξk, depends only on the first k letters of a string of length n. Then
this sequence is called a martingale if they satisfy

ξk = Ek[ξk+1] k = 0, 1, . . . , n− 1

It is worth noting as before with distributions that expectations and martingales
are intrinsically tied to a certain probability measure. A sequence of random variables
may be a martingale under one measure but not another. For this reason, while we
will find need to change measure to make a sequence of random variables a martingale
for analysis we must find a way to relate these results back to the original measure,
and hence the original distribution.

With all these preliminary concepts in hand we are now equipped to begin examining
market models in particular. We will begin by defining and exmining the binomial
model in one period, and continue by extending this to multiple periods. The multiple
period case will also give us insight into a technique that will be especially useful in
the multinomial case.
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2 Pricing Probability Distributions

2.1 Pricing Investment Strategies
We examine a market comprising one stock, and one bond. We assume that the
bond exhibits no interest and has constant value. The stock has positive value at
time zero, and random positive values at further times. Time is discrete, divided
into sections called periods. The simplest models have only one period, so-called
single-period models. At the start of a period an investor purchases or sells stocks
and bonds and at the end we examine what their holdings are worth. We will in later
sections examine models where there are multiple periods, and the investor can move
their investments between the stock and bond at the start of each period. In each
case we will be interested in an investor’s distribution of possible wealth at the end
of the final period.

We now fix some notation that will help us illuminate theorems and proofs through-
out the report. We denote by Ωk the set of all possible outcomes at the end of the
period, k equal to the number of outcomes. First we examine k = 2; Ω2 = {ω1, ω2}.
This is called the single-period binomial model. We also assume throughout the paper
that the probability measure, denoted P, on Ωk is uniform; P(ωi) = P(ωj) for all
ωi, ωj ∈ Ωk. The random variable S1 : Ω2 → R maps outcomes onto the value that
the stock takes in that outcome. We also assume that S1 takes on different values
in each outcome and that these values come in order; S1(ω1) > S1(ω2), relabeling if
necessary. The quantity S0 represents the value of the stock at time zero, that is to
say the price, and is positive by assumption.
Of particular interest is the question of in what ways an investor might invest

in this market, and how those investments could possibly pay out. We call these
allocations investment strategies.

Definition 6. An investment strategy is an allocation of funds into stocks and bonds,
represented by the ordered pair (α, β) where α is the amount of stock, and β is the
amount of bond.

Definition 7. The price of an investment strategy is a real number representing how
much the investment strategy is worth at the start of the period

αS0 + β.
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Definition 8. The value of an investment strategy is a random variable representing
the amount the investment strategy is worth at the end of the period;

αS1 + β.

Keep in mind that while intuitively α and β are positive values, they need not be,
and the negative values also have meaningful financial interpretation. For example,
consider a strategy with zero price, β = −αS0, with α positive, hence β negative.
This strategy represents a loan from the bond to fund the purchase of stock. If the
value of the stock goes up we can pay off this loan and pocket the difference, but
if the value goes down we have gambled and lost and owe money; our investment
strategy takes on a negative value. Conversely, we can take a loan from the stock
market to buy bonds, but if those stocks go up in value our loan will correspondingly
take more wealth to pay off; again this investment strategy takes on a negative value
in this outcome. On the other hand if the stock goes down it will be cheaper to
pay off than it cost to purchase, the investment strategy has positive value in this
outcome. These zero-price strategies motivate concerns we cover presently.
As in reality we will require that money must come from somewhere, it cannot

spontaneously appear in an investor’s pockets without a little risk.

Definition 9. A market is said to exhibit arbitrage if there exists an investment
strategy, (α, β), with zero price, αS0 + β = 0, a positive probability of taking on a
positive value, and zero probability of taking on a negative one, αS1 + β ≥ 0, and
P[αS1 + β ≥ 0] > 0.

Such a strategy requires no funds to start, has no chance to incur loss, yet still
has a chance to profit. As an example, take the binomial model whose stock satisfies
0 < S0 < S1(ω1) < S1(ω2). In this model the stock can only increase in value. By
borrowing some funds from the bond, β < 0, we purchase some stock, α > 0, such
that the price is zero. But, the stock is guaranteed to grow in value from what it cost
us to purchase, and so we can pay back our interestless debt at the end of the period
with money to spare, regardless of the outcome. Such markets are pathological and
in order to avoid them we introduce the No-Arbitrage Conditon:

Definition 10. The No-Arbitrage Condition states that valid markets do not exhibit
arbitrage; there does not exist an invesment strategy with zero price, a positive
probability of taking on a positive value and zero probability of taking on a negative
one.

In the binomial model this condition is equivalent to S1(ω1) > S0 > S1(ω2). In
other terms, there must be a chance that the stock decreases in value, and there must
be a chance it increases.
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Theorem 3. The No-Arbitrage Condition is equivalent to the condition

S1(ω1) > S0 > S1(ω2)

in the single-period binomial model.

Proof. A proof is given in [2].

Finally, the thrust of this report is that we can select investment strategies based
on their outcomes; by their outcomes we of course mean their probability distribution.
As a stepping stone let’s first introduce another definition:

Definition 11. Let ξ : Ω2 → R be an arbitrary random variable. Then the price of
ξ is the price of the investment strategy satisfying the system of equations

αS1(ω1) + β = ξ(ω1),
αS1(ω2) + β = ξ(ω2)

if such an investment strategy exists.

Correspondingly we define price for distributions:

Definition 12. Let P be a probability distribution. Then the price of P is the
minimum price of all the random variables which have probability distribution P .

The primary goal of this report is to find results on pricing probability distributions,
this is called portfolio optimization, and indentifying the investment strategies that
correspond to them. The methods by which we achieve this, and the extent to which
we can achieve this, both depend on the particular market model we are studying. In
each of the following sections we examine a different model.

2.2 Pricing in the Binomial Model
We first examine the single-period, binomial model. We denote by ξ an arbitrary
random variable defined on Ω2 and describe a price for it in general.

Theorem 4. Let ξ : Ω2 → R be a arbitrary random variable, then the price of ξ is
given by

ξ(ω1)(S0 − S1(ω2)) + ξ(ω2)(S1(ω1)− S0)
S1(ω1)− S1(ω2)

with corresponding investment strategy

(α, β) =
(

ξ(ω1)− ξ(ω2)
S1(ω1)− S1(ω2) ,

S1(ω1)ξ(ω2)− S1(ω2)ξ(ω1)
S1(ω1)− S1(ω2)

)
.
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Stock S0

S1(ω1)

S1(ω2)

Bond 1 1

Figure 2.1: Stock and bond dynamics in two outcome markets.

Proof. By definition of the price of a random variable we have the following system
of equations

αS1(ω1) + β = ξ(ω1),
αS1(ω2) + β = ξ(ω2).

Since this system of equations is so small it is easily be solved by inverting its
associated matrix.[

S1(ω1) 1
S1(ω2) 1

]−1

= 1
S1(ω1)− S1(ω2)

[
1 −1

−S1(ω2) S1(ω1)

]
.

Recall our earlier assumption that the stock value be random ensures that S1(ω1)−
S1(ω2) 6= 0. Next applying the inverted matrix to the right hand side column vector
we find [

α
β

]
= 1
S1(ω1)− S1(ω2)

[
1 −1

−S1(ω2) S1(ω1)

] [
ξ(ω1)
ξ(ω2)

]

= 1
S1(ω1)− S1(ω2)

[
ξ(ω1)− ξ(ω2)

S1(ω1)ξ(ω2)− S1(ω2)ξ(ω1)

]
.

Note, we have already achieved one half of our claim and described in general the
investment strategy which achieves ξ.
We next substitute these values into the price expression to find the price of ξ
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given by:
ξ(ω1)− ξ(ω2)
S1(ω1)− S1(ω2)S0 + S1(ω1)ξ(ω2)− S1(ω2)ξ(ω1)

S1(ω1)− S1(ω2)

= ξ(ω1)S0 − ξ(ω2)S0 + S1(ω1)ξ(ω2)− S1(ω2)ξ(ω1)
S1(ω1)− S1(ω2)

= ξ(ω1)(S0 − S1(ω2)) + ξ(ω2)(S1(ω1)− S0)
S1(ω1)− S1(ω2) .

Since a binomial model only has two outcomes there are only two random variables
which share the same distribution. The complementary random variable, ξ, is defined
by the equalities:

ξ(ω1) = ξ(ω2),
ξ(ω2) = ξ(ω1).

These two variables have identical probability distributions, and no other random
variable shares it with them. Since the distribution is our focus, we would like to
know which of these investment strategies is cheaper, or if they cost the same.

Theorem 5. Let ξ : Ω2 → R be a arbitrary random variable, and ξ defined as above.
Then the price of ξ is given by

ξ(ω2)(S0 − S1(ω2)) + ξ(ω1)(S1(ω1)− S0)
S1(ω1)− S1(ω2)

with corresponding investment strategy

(α, β) =
(

ξ(ω2)− ξ(ω1)
S1(ω1)− S1(ω2) ,

S1(ω1)ξ(ω1)− S1(ω2)ξ(ω2)
S1(ω1)− S1(ω2)

)
.

Proof. Pricing ξ follows in exactly the same way as pricing ξ. Using the definition of
ξ we find an expression for ξ in terms of ξ.

This leads us to a sufficient condition for their prices to be equivalent

Theorem 6. ξ and ξ have the same price iff

S1(ω1)− S0 = S0 − S1(ω2)

Proof. Denote the quantity S1(ω1)− S0 by S. Then the price of ξ and ξ are both

ξ(ω1) + ξ(ω2)
S1(ω1)− S1(ω2)S

by substitution.
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This condition has a nice economic interpretation; the two strategies cost the same
if the stock moves up by the same amount as it moves down. Further, the two
strategies have economic interpretations. First, notice that α = −α, and α 6= 0 since
then ξ wouldn’t be random. Without loss of generality, relabeling if necessary, let
α > 0 > α. Then ξ represents a strategy where one buys stock at the start of the
period, and sells it afterwards, whereas ξ represents a complementary strategy, where
one sells stock at the start of the period, and replaces it when the period ends. This
illustrates the equation ξ(ω1) = ξ(ω2), as ω1 represents the outcome where the stock
price increases, so ξ increases as well. On the other hand ξ increases when the stock
goes down in price, and accordingly is equal in value in outcome ω2 to ξ in ω1.

Given this condition then we have successfully priced any probability distribution,
all the random variables sharing a distribution have the same price and so any one of
their investment strategies will provide us our desired distribution at the minimal
price. Failing this condition, however, we need some way to determine which strategy
is cheaper in order to price their probability distribution.
Fix ξ as above as the strategy with α > 0.

Theorem 7. ξ has lower price than ξ if and only if
S0 − S1(ω2) < S1(ω1)− S0

Proof. By definition the statement ξ has lower price than ξ is equivalent to the
following inequality:
ξ(ω1)(S0 − S1(ω2)) + ξ(ω2)(S1(ω1)− S0)

S1(ω1)− S1(ω2) <
ξ(ω1)(S1(ω1)− S0) + ξ(ω2)(S0 − S1(ω2))

S1(ω1)− S1(ω2) .

The following are equivalent to the above.
ξ(ω1)(S0 − S1(ω2)) + ξ(ω2)(S1(ω1)− S0) < ξ(ω1)(S1(ω1)− S0) + ξ(ω2)(S0 − S1(ω2))

⇔ 0 < ξ(ω1)(S1(ω1) + S1(ω2)− 2S0)− ξ(ω2)(S1(ω1) + S1(ω2)− 2S0)
⇔ 0 < (ξ(ω1)− ξ(ω2))(S1(ω1) + S1(ω2)− 2S0)

⇔ 0 < S1(ω1) + S1(ω2)− 2S0

⇔ S0 − S1(ω2) < S1(ω1)− S0

This is the same as the condition for equality, but now as an inequality. With
similar interpretation, if the stock goes up by more than it goes down then it is
cheaper to invest in stock than to sell and replace it. Thus, we can price probability
distributions in the single-period binomial model regardless of which particular model
we are working in. Depending on which condition holds we know whether to look for
an investment strategy with positive α, negative α, or if it does not matter. Since
α is positive exactly when ξ(ω1) > ξ(ω2) then we can easily construct the random
variable which has minimum price as well.
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2.3 Pricing in the Multi-Period Binomial Model
In this section we utilize the results of the previous section to examine the case where
the model has multiple periods. We start by examining the case where the model
has two periods and take the simplifying assumption that the stock moves up by the
same amount that it moves down, and that these moves are the same regardless of
period. We are able to extend this readily to the case where the market has more
than one period, and where the stock moves up by a different amount than it moves
down.
We will need to extend our notation first though. Since there are now multiple

periods before which an investor can buy stock we must record the value of the stock
during each period. If the market has k periods then we write Ωk

2 for the set of all
strings of length k consisting of ω1 and ω2, and Sk is the value of the stock at the
end of the k-th period: Sk : Ωk

2 → R. Similarly for any i, 1 ≤ i ≤ k denote by Ωi
2 the

set of strings of length i and let Si : Ωi
2 → R be the random variable representing the

value of the stock after i periods. S0 continues to be the real valued, deterministic
value of the price before the first period. In the two-period binomial model then we
have two random variables, S1 and S2, and one scalar S0.
Our goal as always is to price a probability distribution, but as a first step we

need to examine how to price an arbitrary random variable, ξ : Ωk
2 → R. That is

we want to find an investment strategy (α, β) which agrees with ξ. However, an
investment strategy in a multi-period market may be dynamic, it might reallocate
funds based on previous outcomes. That is to say, instead of an ordered pair it is
instead a process: (α0, β0), (α1, β1), . . . , (αk−1, βk−1). For each i, 1 ≤ i ≤ k − 1, we
have that αi, βi : Ωi

2 → R. The price of this investment strategy remains the real
number given by α0S0 + β0, and its value is now given by αk−1Sk + βk−1.

It is helpful to track how this strategy performs after each period so we introduce
intermediates, ξi : Ωi

2 → R, for all i, 1 ≤ i ≤ k, and require ξk = ξ. These values
track the value of our investment strategy over time, ξi = αi−1Si + βi−1. Further, we
require that each period we utilize the entirety of what our holdings are worth, for
0 ≤ i ≤ k − 1:

ξi = αiSi + βi

We start with k = 2 the two-period binomial model to illustrate how the results
from the last section come in handy. Since at each juncture there are still only two
paths we group together the following equations to illuminate the similarities to the
binomial model. First, assume that period one has outcome ω1 then we find the
following system:

α1(ω1)S2(ω1ω1) + β1(ω1) = ξ2(ω1ω1),
α1(ω1)S2(ω1ω2) + β1(ω1) = ξ2(ω1ω2).
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Next, assume period one had outcome ω2 then we have instead this system:

α1(ω2)S2(ω2ω1) + β1(ω2) = ξ2(ω2ω1),
α1(ω2)S2(ω2ω2) + β1(ω2) = ξ2(ω2ω2).

We solve each of these systems according to our previous methods to find values
for α1(ω1), β1(ω1) and values for α1(ω2), β1(ω2). With these values in hand we then
substitute into the equation ξ1 = α1S1 + β1 to determine that variable. Then pricing
our random variable, ξ is now the same problem as pricing ξ1 as is made clear by the
equations:

α0S1(ω1) + β0 = ξ1(ω1),
α0S1(ω2) + β0 = ξ1(ω2).

Working from right to left we unravel the two period model as a sequence of
problems that are essentially single-period binomial model problems, each conncected
to the others by the price expression. In particular, using the exact method we used
for the one period model, we find the following closed forms for the constants α1(ω1)
and β1(ω2):

α1(ω1) = ξ2(ω1ω1)− ξ2(ω1ω2)
S2(ω1ω1)− S2(ω1ω2) ,

β1(ω1) = S2(ω1ω1)ξ2(ω1ω2)− S2(ω1ω2)ξ2(ω1ω1)
S2(ω1ω1)− S2(ω1ω2) .

Which via substitution yields a price for ξ1(ω1):

ξ2(ω1ω1)(S1(ω1)− S2(ω1ω2)) + ξ2(ω1ω2)(S1(ω1)− S2(ω1ω1))
S2(ω1ω1)− S2(ω1ω2) .

The process to determine ξ1(ω2) is identical. With these values in hand, writing down
a price for the general model amounts to substitution,

ξ1(ω1)(S0 − S1(ω2)) + ξ1(ω2)(S1(ω1)− S0)
S1(ω1)− S1(ω2) =

1
S1(ω1)− S1(ω2)

(
ξ2(ω1ω1)(S1(ω1)− S2(ω1ω2)) + ξ2(ω1ω2)(S2(ω1ω1)− S1(ω1))

S2(ω1ω1)− S2(ω1ω2) (S0 − S1(ω2))

+ ξ2(ω2ω1)(S1(ω2)− S2(ω2ω2)) + ξ2(ω2ω2)(S2(ω2ω1)− S1(ω2))
S2(ω2ω1)− S2(ω2ω2) (S1(ω1)− S0)

)
.

A fraction which the reader surely must find very enlightening. All joking aside,
while it is instructive to work directly with the two-period model to demonstrate how
the price expression allows us to unwind the model into interconnected one-period
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models, it will be far more productive to study it further in general, which we shall
do shortly.
First, if the two-period model demonstrated anything, it surely demonstrated

the need for terser notation. We now introduce two constants which will aid us in
simplifying fractions like the above. The up factor and the down factor are two
scalars, denoted u and d respectively, and defined as follows:

u = S1(ω1)
S0

d = S1(ω2)
S0

It follows from the ordering of the values of S1 and that S0 is positive, that u > d,
further the no-arbitrage condition gives us u > 1 > d. Importantly, since the stock
moves in the same manner each period, for any given ω ∈ Ωi

2, we have that

u = S1(ω1)
S0

= Si+1(ωω1)
Si(ω) d = S1(ω2)

S0
= Si+1(ωω2)

Si(ω)

Hence, if ω ∈ Ωi
2 contains m many ω1 and n many ω2 we can write Si(ω) = umdnS0.

Our first step towards general results on pricing random variables in multi-period
binomial markets is to relate our intermediates.

Theorem 8. For i, an integer between 0 and n− 1, we have that

ξi(ω) = ξi+1(ωω1) 1− d
u− d

+ ξi+1(ωω2)u− 1
u− d

.

Proof. Fix ω ∈ Ωi
2. Then by Theorem 4 we have that the price of ξi+1 is given by

ξi(ω) = ξi+1(ωω1)(Si(ω)− Si+1(ωω2)) + ξi+1(ωω2)(Si+1(ωω1)− Si(ω))
Si+1(ωω1)− Si+1(ωω2) .

Next we take advantage of our new notation, let m,n be integers representing the
number of occurrences of ω1 in ω and ω2 in ω respectively. Then we can rewrite the
above to get

ξi(ω) = ξi+1(ωω1)(umdnS0 − umdn+1S0) + ξi+1(ωω2)(umdnS0 − um+1dnS0)
um+1dnS0 − umdn+1S0

= ξi+1(ωω1) umdnS0 − umdn+1S0

um+1dnS0 − umdn+1S0
+ ξi+1(ωω2) umdnS0 − um+1dnS0

um+1dnS0 − umdn+1S0

= ξi+1(ωω1) 1− d
u− d

+ ξi+1(ωω2)u− 1
u− d

.
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Since this relation holds for arbitrary ξi and arbitrary ω it certainly holds for
ξi+1(ωω1) and ξi+1(ωω2), allowing us to find a relation between ξi and ξi+2, which by
substitution looks like this:

ξi(ω) = ξi+1(ωω1) 1− d
u− d

+ ξi+1(ωω2)u− 1
u− d

=
(
ξi+2(ωω1ω1) 1− d

u− d
+ ξi+2(ωω1ω2)u− 1

u− d

)
1− d
u− d

+
(
ξi+2(ωω2ω1) 1− d

u− d
+ ξi+2(ωω2ω2)u− 1

u− d

)
u− 1
u− d

= ξi+2(ωω1ω1)
(

1− d
u− d

)2

+ ξi+2(ωω1ω2)(1− d)(u− 1)
(u− d)2

+ ξi+2(ωω2ω1)(1− d)(u− 1)
(u− d)2

+ ξi+2(ωω2ω2)
(
u− 1
u− d

)2
.

But why stop there? First, for notational convenience we define σ to be the function
that takes a string of ω1 and ω2 to the number of occurrences of ω1 in that string.

Definition 13. Let σ : Ωn
2 → R be a function which maps a string onto the number

of occurences of ω1 in that string.

Theorem 9. The price of the random variable ξn is given by the following weighted
sum of its outcomes:

ξ0 =
∑
ω′∈Ωn

2

ξn(ω′)(1− d)σ(ω′)(u− 1)n−σ(ω′)

(u− d)n .

Proof. We proceed by induction. We have already shown that

ξ0 = ξ1(ω1) 1− d
u− d

+ ξ1(ω2)u− 1
u− d

.

Next assume that for some k, 1 ≤ k < n, that

ξ0 =
∑
ω′∈Ωk

2

ξk(ω′)
(1− d)σ(ω′)(u− 1)k−σ(ω′)

(u− d)k .
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Note that in the case k = 1 we recover our base case, though we have adopted new
notation to make the k > 1 case terser. We apply our previous theorem to get

∑
ω′∈Ωk

2

ξk(ω′)
(1− d)σ(ω′)(u− 1)k−σ(ω′)

(u− d)k

=
∑
ω′∈Ωk

2

(
ξk+1(ω′ω1) 1− d

u− d
+ ξk+1(ω′ω2)u− 1

u− d

)
(1− d)σ(ω′)(u− 1)k−σ(ω′)

(u− d)k

=
∑

ω′∈Ωk+1
2

ξk+1(ω′)(1− d)σ(ω′)(u− 1)k+1−σ(ω′)

(u− d)k+1 .

Since ξ0 is the price of ξn this theorem then yields a simple closed form expression
for pricing arbitrary random variables in the multi-period binomial model. It does
not, however, address the pricing of distributions. In order to examine pricing a
distribution lets first take a simplifying assumption. In the single-period model we
found both random variables for a given distribution had the same price when we had

S1(ω1)− S0 = S0 − S1(ω2).

Dividing through by S0 gives us an equivalent condition in terms of u and d:

u− 1 = 1− d.

Theorem 10. Assuming u − 1 = 1 − d, every random variable sharing the same
probability distribution has the same price.

Proof. Taking this additional assumption our price expression simplifies to

ξ0 =
∑
ω′∈Ωn

2

ξ(ω′)
(
u− 1
u− d

)n
=
(
u− 1
u− d

)n ∑
ω′∈Ωn

2

ξ(ω′)

But we can do more:
u− 1
u− d

= u− 1
u− 1 + 1− d

= u− 1
(u− 1) + (1− d)

= u− 1
2(u− 1)

= 1
2 .

20



Note that we used our simplifying assumption again in this derivation. This turns
our price expression into

ξ0 = 1
2n

∑
ω′∈Ωn

2

ξ(ω′)

Since any random variable with the same distribution as ξ will sum to the same value,
this assumption guarantees that the price of any two random variables with the same
distribution have the same price.

In order to compare various random variables with the same distribution we will
need to first have a handle on the coefficients.

Theorem 11. The sequence

(1− d)n(u− 1)0

(u− d)n ,
(1− d)n−1(u− 1)1

(u− d)n , . . . ,
(1− d)0(u− 1)n

(u− d)n

is increasing when u−1 > 1−d, decreasing when u−1 < 1−d and constant otherwise.

Proof. We have already shown that the sequence is constant if u− 1 = 1− d. Next,
fix s in 0, 1, . . . , n− 1. Then the ratio of two consecutive terms gives

(1− d)n−s−1(u− 1)s+1(u− d)n
(1− d)n−s(u− 1)s(u− d)n = (u− 1)

(1− d) ,

indicating that the sequence is increasing when

u− 1
1− d > 1

and decreasing when
u− 1
1− d < 1.

In other terms, it is increasing when

u− 1 > 1− d

and decreasing when
u− 1 < 1− d.

We will need an additional smaller result to tackle the pricing of distributions in
general.
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Theorem 12. Let (an), (bn) be monotone sequences. Then the sum
n∑
k=0

akbk

has minimal value when (an), (bn) are anticomonotonic, one is increasing and the
other decreasing, and maximal value when they are comonotonic, both increasing or
both decreasing

Proof. We first prove the case where (an) and (bn) are sequences of two elements and
proceed by induction. Let a1 > a2 and b1 > b2, then

(a1 − a2)(b1 − b2) > 0,

or,
a1b1 + a2b2 > a2b1 + a1b2.

Hence the result is true if the sequences are of length two. Assume this holds for
sequeces of length n− 1. Let

a1 > · · · > an, and b1 > · · · > bn.

Select a permutation σ for which the arrangement

aσ(1)b1 + · · ·+ aσ(n)bn

gives rise a maximal result. If σ(n) were different from n, say that σ(n) = k, then
there must be some j less than n such that σ(j) = n. However, by what was just
proved an > ak and bn > bj implies that anbn + akbj > akbn + anbj. This would
suggest another permutation τ which agreed with σ except at j and n where τ(j) = k
and τ(n) = n gives rise to a larger result, a contradiction. This implies that σ(n) = n.
By the induction hypothesis we know that σ(i) = i for each i = 1, . . . , n− 1 and this
concludes the proof of the upper bound. Note also that the same argument goes
through with non-strict inequalities.
In order to show that the reverse order is minimal apply the upper bound to the

sequences bn and −an,−an−1, . . .− a1.

Theorem 13. The price of a random variable has minimal price among all random
variables with the same distribution, only if it monotonic in the number of occurrences
of ω1. Specifically, when u − 1 > 1 − d it is minimal if ξn is increasing and when
u− 1 < 1− d it is only minimal if ξn is decreasing.
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Proof. Let ξn be a random variable. Combining the results of the last two theorems
we know the price of ξn is given by

ξ0 =
∑
ω′∈Ωn

2

ξn(ω′)(1− d)σ(ω′)(u− 1)n−σ(ω′)

(u− d)n .

It is minimized when ξn and the second factor are anticomonotonic; when one is
increasing while the other decreases. Further, we have showed that as the number
of ω2 increases the coefficients increase when u− 1 > 1− d, and decrease otherwise.
Thus the minimal priced random variable will have the opposite property.

2.4 Pricing in Three-Outcome Markets

Stock S0

S1(ω1)

S1(ω2)

S1(ω3)

Bond 1 1

Figure 2.2: Stock and bond dynamics in three outcome markets.

Consider now the market with three outcomes; Ω3 = {ω1, ω2, ω3}. We again assume
that S1 takes on distinct values for each outcome and that they come in order,
S1(ω1) > S1(ω2) > S1(ω3). Consider again a random variable as above, ξ . The
associated system of equations is overdetermined. This system is given by:

αS1(ω1) + β = ξ(ω1),
αS1(ω2) + β = ξ(ω2),
αS1(ω3) + β = ξ(ω3).

Its associated matrix is given by S1(ω1) 1
S1(ω2) 1
S1(ω3) 1

 .
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It is clear from this matrix and our distinctness assumption on the values that
S1 can possibly take on that this matrix has linearly independent rows, and hence
no solutions exist to our system of linear equations. We can’t find an investment
strategy or price for ξ in the manner we did for the two outcome market. In order to
study the three outcome market we can instead attempt to find a strategy that takes
on values at least as great as ξ does. This changes our system of linear equations to
a system of linear constraints:

αS1(ω1) + β ≥ ξ(ω1),
αS1(ω2) + β ≥ ξ(ω2),
αS1(ω3) + β ≥ ξ(ω3).

In light of these constraints we could find many strategies, but we are interested only
in the cheapest. Thus, we will attempt to satisfy those constraints while minimizing
the price:

αS0 + β

This transforms our problem from a system of linear equations into a linear program-
ming problem.
First, a note on feasibility, no matter what values ξ or S1 might take on we can

always find a feasible solution. Set α = 0 and β to be the maximum of ξ(ω1),
ξ(ω2) and ξ(ω3). This satisfies our constraints, though it takes no advantage of the
possibility that S1 changes and hence is probably not optimal.
Now, knowing that there are certainly feasible solutions we can more confidently

look for optimal ones. Since this is a system in two unknowns we apply the graphical
method in order to solve it. It will be helpful to rewrite our constraints in slope-
intercept form:

β ≥ −αS1(ω1) + ξ(ω1),
β ≥ −αS1(ω2) + ξ(ω2),
β ≥ −αS1(ω3) + ξ(ω3).

Each of these inequalities specifies a half space bounded by the line where both sides
are equal and directed up. By our initial assumptions they come in order of decreasing
slope, −S1 determines the slope, but we can say nothing about their β-intercepts,
determined by ξ. Similarly if we denote the price by p then we have:

β = −αS0 + p

In this case the objective function has slope S0 and β-intercept equal to its price. This
function partitions the space into parallel lines, each pair of collinear points having
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the same price. The superhedging investment strategy is described by the point which
has minimal price and lies in the feasible region described by our constraints. We
know that S1(ω1) > S0 > S1(ω3) since otherwise the market would admit arbtitrage;
this is an important restriction as it tells us that points lying on the lines with those
slopes are all different prices. Further since S0 > S1(ω3) we know that the price
increases along the line with slope S1(ω3), and similarly for S1(ω1). Thus, where
we once had a large configuration space to consider we can reduce our focus to
merely the intersections of boundary lines, and the line with slope S1(ω2). For some
diagrams, some of these points lie outside of the feasible region and may be ignored.
If S0 = S1(ω2) it is worth noting that every point on that line is equally priced.

Now, pricing an individual random variable is easy and follows exactly as any linear
programming problem in two variables proceeds. Further, for a given distribution
we can brute force its lowest price, investment strategy and corresponding random
variable by solving for the price of the six different random variables which admit
such a distribution. However, one might want a more direct approach to calculating
the price of a distribution, similar to the case of the single-period binomial model
where we found a simple discriminant to determine which of ξ and ξ is cheaper. Now
however we have six different possible random variables. If we select a canonical
representation for a distribution, say that described by ξ(ω1) > ξ(ω2) > ξ(ω3), we
would like to be able to describe in terms of the market what transpositions will lower
the price. If we let i, j ∈ {1, 2, 3} then define ξ(ij) by the following

ξ(ij)(ωi) = ξ(ωj),
ξ(ij)(ωj) = ξ(ωi).

We would like a simple discriminant that tells us if ξ or ξ(ij) admits a lower priced
investment strategy. This would be the first step in understanding in general how to
price distributions instead of random variables, but unfortunately even this is not
quite possible. The issue being that a point which is feasible for one random variable
need not be feasible for another. Thus, the price of a random variable, relative to
another with the same distribution, depends on their values, as these determine the
feasible region. More particularly, if we looked only at the critical points of ξ, and
ξ(ij), we could certainly compare the prices of these points, and order these prices
only according to the values of S1, however without also knowing the explicit values
of ξ we would be unable to determine which ones are feasible, and hence determine
which of ξ and ξ(ij) is cheaper.
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Figure 2.3: Examples of all optimization problems with a given distribution. The
green area is the set of feasible solutions.
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3 Pricing via State Prices
While in the last few sections we have successfully managed to examine the prices of
distributions in binomial models, our technique relied heavily on the invertibility of
the associated matrix. If we are to generalize to models with three or more outcomes
we will need alternative methods when the corresponding matrix is not invertible.
Shreve [2] describes a method that will be useful to recapitulate here, state pricing.
The idea behind this technique is to associate to each possible market state a price,
much as we did with the ξk(ω), but this time the price is based on the conditional
expectation of ξn under what is called the risk-neutral probability measure. Further,
under the risk neutral measure ξn may have a different distribution than it does under
the original measure. We relate the risk-neutral conditional expectation with the
original conditional expectation so that we can price probability distributions.

3.1 Risk-Neutral Probability Measures
We begin by introducing the risk-neutral probability measures. In the binomial model
these represent alternative probabilities for the outcomes ω1 and ω2. We will denote
the risk neutral probability measure by P̃, and in the binomial case we have

P̃(ω1) = q1, P̃(ω2) = q2.

These values are such that the stock is a martingale under the risk-neutral ex-
pectation, denoted Ẽ. Note that they do not reflect the actual probabilities, these
are estimated from historical data, but rather a fictitious construct to aid in the
mathematics. We will later relate the two. First, let us see how to calculate these
numbers.
There are two key constraints on these numbers which both make them useful,

and let us determine suitable values for them. The first is obvious, we called these
numbers a probability measure and hence require that they sum to one. The next is
that the stock must be a martingale under them. This amounts to the following

Ẽ[S1] = Ẽ[S0] = S0

⇔ q1S1(ω1) + q2S1(ω2) = S0.
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Finally, in order for these values to be sensible they must agree on what outcomes are
possible with the uniform measure; q1 > 0 and q2 > 0. Implicitly this also means that
q1 < 1 and q2 < 1. We summarize these considerations in the following definition

Definition 14. The risk-neutral probabilities on Ω2 are two real positive numbers,
q1, q2 satisfying

q1 + q2 = 1,
q1S1(ω1) + q2S1(ω2) = S0.

Scaling the second condition by S0 we find an equivalent condition:

uq1 + dq2 = 1.

Solving the associated matrix yields a closed form expression for each of these
terms:

q1 = 1− d
u− d

, q2 = u− 1
u− d

.

These numbers importantly encode the price of derivative securities quite succinctly.

Theorem 14. The price of a random variable ξ : Ω2 → R is given by

Ẽ[ξ] = q1ξ(ω1) + q2ξ(ω2).

Proof. The price of ξ is given by, by prior result

ξ(ω1)(S0 − S1(ω2)) + ξ(ω2)(S1(ω1)− S0)
S1(ω1)− S1(ω2)

Scaling by S0 and rearranging we find that this is exactly

ξ(ω1)(S0 − S1(ω2)) + ξ(ω2)(S1(ω1)− S0)
S1(ω1)− S1(ω2)

= ξ(ω1)(1− d) + ξ(ω2)(u− 1)
u− d

= ξ(ω1) 1− d
u− d

+ ξ(ω2)u− 1
u− d

= Ẽ[ξ].

Next, we calculate q1, q2 in the same manner as in Definition 14 and define P̃1 :
Ω1

2 → R by
P̃1(ω1) = q1, P̃1(ω2) = q2.
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Then we define P̃k : Ωk
2 → R by, for some ω ∈ Ωk−1

2 ,

P̃k(ωω1) = q1P̃k−1(ω), P̃k(ωω2) = q2P̃k−1(ω).

for 1 < k ≤ n where n is the number of periods as usual. This can be summarized in
terms of our earlier σ map as follows, for some ω ∈ Ωk

2

P̃k(ω) = q
σ(ω)
1 q

n−σ(ω)
2

for 0 < k ≤ n. Note that whether we define Ẽk as the conditional expectation of P̃
in the k-th period, or as the expectation under the measure P̃k these two definitions
coincide because of the way we constructed P̃. Using these conditional expectations
we recover something akin to the previous result in the multi-period model.

Theorem 15. Let ω ∈ Ωk
2 then the time k value of a random variable ξk+1 is given

by
Ẽk[ξk+1] = q1ξk+1(ωω1) + q2ξk+1(ωω2)

Proof. This proof follows in exactly the same manner as above.

It remains to be verified that S0, S1, . . . , Sn is a martingale under P̃n. We do that
presently

Theorem 16. The sequence S0, S1, . . . , Sn is a martingale.

Proof. Let ω ∈ Ωk
2, for some k = 0, 1, . . . , n− 1, then

Ẽk[Sk+1](ω)
= q1Sk+1(ωω1) + q2Sk+1(ωω2)
= q1uSk(ω) + q2dSk(ω)
= Sk(ω)(uq1 + dq2)
= Sk(ω).

We have more than that however.

Theorem 17. Let ξ : Ωn
2 → R be a random variable, and ξ0, ξ1, . . . , ξn be the sequence

of intermediates given by

ξk(ω) = ξk+1(ωω1)q1 + ξk+1(ωω2)q2,

then this sequence is a martingale under P̃.

Proof. This follows in exactly the same way as the above.
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This particular process is familiar to us from the previous section; it is the investment
strategy for the multi-period model that ends in ξ. Indeed, we could have stated that
the process is defined by

ξi = αiSi + βi

and then applied a prior theorem to get the same result.
Now, there was a particular case in the binomial model where our probability

distributions were especially easy to price; u− 1 = 1− d. One might wonder what
makes this case special. Now that we have described the risk-neutral measure, and
demonstrated the risk-neutral pricing method, we are well equipped to demonstrate
what makes this case special:

q1 = 1− d
u− d

= 1− d
u− 1 + 1− d

= 1− d
2(1− d)

= 1
2 .

This is a familiar trick we have already used, but this then means that we have

P(ω1) = P̃(ω1), P(ω2) = P̃(ω2).

The uniform measure and the risk-neutral measure coincide! In this case we have that

E[ξ] = Ẽ[ξ] = ξ0.

Since under the uniform measure any two variables with the same distribution have
the same expectation, this is another way of saying something we already know; they
also have the same price. We now present a way to extend this concept to other cases.

Definition 15. The Radon-Nikodym derivative of P̃ with respect to P, denoted Z(ω)
is given by

Z(ω) = P̃(ω)
P(ω) ∀ω ∈ Ω.

It has the following fundamental properties

Theorem 18. Let P and P̃ be probability measures on Ω, such that for all ω ∈ Ω we
have P(ω) > 0 and P̃(ω) > 0.

• We have Z(ω) > 0 for all ω ∈ Ω.
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• We have that E[Z] = 1.

• We have that for any random variable Y : Ω→ R that

Ẽ[Y ] = E[ZY ]

Proof. A proof is given in [2].

In the particular case of the binomial model we have Z given by:

Z(ω1) = 2q1, Z(ω2) = 2q2.

In the multi-period case we simply extend it in the same manner as before with the
exponents depending on the number of occurences of ω1 and ω2. Now, the third
property of the Radon-Nikodym derivative should be very suggestive of what is to
follow, it will let us relate the risk-neutral expectation which accurately prices random
variables with the actual expectation. Before we get there though we have some more
definitions to get through in order to be precise.

Definition 16. Let P, P̃, and Z be defined as above, then the Radon-Nikodym
Derivative Process is a sequence of random variables given by

Zk = Ek[Z] k = 0, 1, . . . , n.

Theorem 19. The process (Zn) is martingale under P

Proof. This follows directly from the iterated conditioning property.

We further have the following results

Theorem 20. Let Y : Ωn → R be a random variable depending on only the first k
letters of the string of length n, then we have

Ẽ[Y ] = E[ZkY ].

Proof. A proof is given in [2].

Theorem 21. Let j < k be positive integers less than n and let Y : Ωn → R be a
random variable depending only on the first k letters of the string of length n. Then
we have

Ẽ[Y ] = 1
Zj
Ej[ZkY ].

Proof. A proof is given in [2].

Finally this lets us reformulate our definition of the intermediates ξk in terms of
expectation.
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Theorem 22. Let ξ0, ξ1, . . . , ξn be random variables as before where ξk represents the
time at price k to realize the random variable ξn then these prices are given by

ξk = 1
Zk
Ek[Znξn].

Proof. By definition the time k value of the random variable is its conditional
expectation under the risk neutral measure. Further, we have that

Ẽ[ξn] = 1
Zk
Ek[Znξn],

by Theorem 21.

Importantly, so long as we can indentify a suitable risk-neutral measure we can
define the state prices and hence price the random variable. We now apply this to
the three outcome case.

3.2 Revisiting the Three-Outcome Model
Consider the three-outcome model, Ω3 = {ω1, ω2, ω3}. Since the stock now takes on
three values we need three parameters

u = S1(ω1)
S0

, m = S1(ω2)
S0

, d = S1(ω3)
S0

,

and hence we need three risk-neutral probabilities, q1, q2, q3, which satisfy as before
the equations

q1 + q2 + q3 = 1,
uq1 +mq2 + dq3 = 1.

Which unfortunately leaves us with exactly the same problem we had with the
other approach; a non-invertible matrix. This system of equations, however, is
underspecified, and hence has an infinite family of solutions. We describe those
solutions presently and see how they suggest a risk-neutral measure that will aid us
in our analysis

q1 + q2 = 1− q2,

uq1 + dq3 = 1−mq2.

in terms of q2 as our free parameter. We find the following expressions

q1 = (1− d) + (d−m)q2

u− d
q3 = (u− 1) + (m− u)q2

u− d
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This then describes a line in three-dimensional Euclidean space of points satisfying
our equations. However, much of this line makes no sense in the context of finding a
risk-neutral measure. We want that q1, q2, q3 > 0 so that the measure agrees with the
uniform measure on which paths are possible, and thus implicitly we must have that
q1, q2, q3 < 1. Intersecting our line with this feasible region, an open box with unit
side length, we find an interval of feasible solutions in terms of q2.

Theorem 23. q2 is in (0, 1) when m = 1, in (0, 1−d
m−d) when m > 1, and in (0, u−1

u−m)
when m < 1.

Proof. Starting with the bounds on q1 we make equivalent transformations:

0 < q1 < 1

⇔ 0 < 1− d+ (d−m)q2

u− d
< 1

⇔ 0 < 1− d+ (d−m)q2 < u− d

⇔ d− 1 < (d−m)q2 < u− 1

⇔ d− 1
d−m

> q2 >
u− 1
d−m

.

The left bound is written with positive denominator and numerator as 1−d
m−d and the

right bound is less than zero and less restrictive than our feasibility assumptions.
Similarly by looking at q3 we find the following are equivalent:

0 < q3 < 1

⇔ 0 < u− 1 + (m− u)q2

u− d
< 1

⇔ 0 < u− 1 + (m− u)q2 < u− d

⇔ 1− u < (d−m)q2 < 1− d

⇔ 1− u
m− u

> q2 >
1− d
m− u

.

Here we have a left bound with positive denominator and numerator written as u−1
u−m

and again a negative left bound. This tells us that q2 is contained in an interval
whose infimum is zero. The supremum of the interval of possible q2 values is the
smallest of 1−d

m−d and u−1
u−m and 1. Note that the following are equivalent:

1− d
m− d

< 1

⇔ 1− d < m− d

33



⇔ 1 < m.

Also, the following are equivalent:

u− 1
u−m

< 1

⇔ u− 1 < u−m

⇔ −1 < −m

⇔ m < 1.

Finally, by substitution m = 1 implies that each of the three possibile supremums is
equal to 1.

These inequalities show that there are three cases to consider depending on the
value of m, but that in each case we can find an open interval for q2 over which the
parameters are an equivalent risk-neutral measure to the actual probabilities in our
model.
Under these measures S1 will be a martingale, and it will agree with our original

measure on the possible paths. However, as we saw last time there is not necessarily
an investment strategy, with any price at all which achieves exactly ξ in every outcome.
Last time we resorted to finding the cheapest strategy which outperforms ξ in each
outcome and here we will have to do the same.

Now as before the no-arbitrage price of a random variable is its expectation under
the risk-neutral measure, we write it as a function of q2 here:

p(q2) = q1(q2)ξ(ω1) + q2ξ(ω2) + q3(q2)ξ(ω3).

Since we described above bounds for q2 in each of the three cases we know that this
function has an open interval for its domain, and, as it is continuous, an open interval
of images.
The interval of images under p is the set of prices we can select for ξ which do

not introduce arbitrage. If the random variable is priced less than this interval it
is replicable for less than the price. Priced any higher than this interval implies
that the initial value is overestimated, and a loan in ξ will be worth less than the
stock purchased. In that case however, we would be describing strategies that are
expensively priced, and consistently outperform ξ, hence the short position arbitrage
opportunity. Since any one of these strategies would outperform ξ the cheapest would
be the most desirable superhedging strategy. We have shown that the arbitrage-free
prices form an open interval, and that any strategy with greater price than any of
the arbitrage-free strategies superhedges. The least upper bound of an open interval
is it’s supremum, and this price is the cheapest superhedging price.
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Theorem 24. The price of a random variable is the larger of p(0), and one of
p(1), p( 1−d

m−d), or p( u−1
u−m) depending on whether m = 1, m > 1, or m < 1 respectively.

Proof. Since p is continuous the Extreme Value Theorem tells us that the supremum
of p occurs at either end of its domain; q2 = 0 or one of q2 = 1, u−1

u−m ,
1−d
m−d . The

supremum as discussed above is the price.

Thus pricing a random variable amounts to comparing 1 and m to determine which
of three cases we are in, and to comparing the endpoints of p. We will denote by q∗2
the pre-image of the super-hedging price. We will utilize q∗1, q∗3 as shorthand for q1(q∗2)
and q3(q∗2) respectively.
We know that at least one of q1, q2, q3 is surely zero, since positivity is how

we selected the boundary of the interval. This is useful for pricing a probability
distribution rather than a random variable. Pricing a distribution is done by comparing
the six possible permutations of the values assignment to outcomes. Each permutation
of the values of ξ yields a price function defined over q2. Each permutation has its
own price which is the higher endpoint of its price function. The lowest such price is
the price of the distribution.

q2

p

1
q2

p

1
q2

p

1

Figure 3.1: Examples of pricing distributions. Each graph represents a different
market model and a different distribution. Each line represents the
function of all possible prices for a different random variable.

In order to illustrate the technique we will examine the case where m = 1.

Theorem 25. Let ξ be the random variable of a given distribution such that ξ(ω1) >
ξ(ω2) > ξ(ω3). If m = 1, then the price of the distribution is one of ξ(ω2), q∗1ξ(ω1) +
q∗3ξ(ω3), or q∗1ξ(ω3) + q∗3ξ(ω1).

Proof. When m = 1 we know for sure that q2 ∈ (0, 1) and that q∗2 ∈ {0, 1}, where p
is the price function for ξ. We have that

p(1) = ξ(ω2),
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p(0) = q∗1ξ(ω1) + q∗3ξ(ω3).

Equivalently,
p(0) = 1− d

u− d
ξ(ω1) + u− 1

u− d
ξ(ω3).

The price of the distribution is the price of the variable whose maximum of p(0) and
p(1) is the lowest. That is we take some permutation of ξ, call it ξ and examine the
quantities q∗1ξ(ω1) + q∗3ξ(ω3) and ξ(ω2), the higher is the price of ξ, and the particular
ξ with the lowest price determines the price of the distribution. Notationally we have∧

σ∈S3

(q∗1ξ(ωσ(1)) + q∗3ξ(ωσ(3))) ∨ ξ(ωσ(2))

Note that the left hand quantities are weighted averages, thus the sum is no larger
than the larger of the two, and no smaller than the smaller. In the cases

(q∗1ξ(ω1) + q∗3ξ(ω2)) ∨ ξ(ω3),
(q∗1ξ(ω2) + q∗3ξ(ω1)) ∨ ξ(ω3),

we have that the price is q∗1ξ(ω1) + q∗3ξ(ω2) and q∗1ξ(ω2) + q∗3ξ(ω1) respectively, since
ξ(ω2) and ξ(ω1) are both larger than ξ(ω3). In the cases

(q∗1ξ(ω2) + q∗3ξ(ω3)) ∨ ξ(ω1),
(q∗1ξ(ω3) + q∗3ξ(ω2)) ∨ ξ(ω1),

we have that the price is ξ(ω1). This is certainly not the price of the distribution
since it is the larget quantity out of all the candidates. Thus we have only four cases
to compare. The remaining possibilities are

(q∗1ξ(ω1) + q∗3ξ(ω3)) ∨ ξ(ω2),
(q∗1ξ(ω3) + q∗3ξ(ω1)) ∨ ξ(ω2),
(q∗1ξ(ω1) + q∗3ξ(ω2)),
(q∗1ξ(ω2) + q∗3ξ(ω1)).

Certainly
q∗1ξ(ω1) + q∗3ξ(ω2) > q∗1ξ(ω1) + q∗3ξ(ω3),

q∗1ξ(ω1) + q∗3ξ(ω2) > ξ(ω2)

and
q∗1ξ(ω2) + q∗3ξ(ω1) > q∗1ξ(ω3) + q∗3ξ(ω1),

q∗1ξ(ω2) + q∗3ξ(ω1) > ξ(ω2)
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eliminating both of those cases as possibly being the minimum. This reduces our
original problem to the following:

((q∗1ξ(ω1) + q∗3ξ(ω3)) ∨ ξ(ω2)) ∧ ((q∗1ξ(ω3) + q∗3ξ(ω1)) ∨ ξ(ω2))

These remaining possibilities can’t be narrowed down further without knowing the
particular values of q∗1, q∗3 and each value ξ takes on. While the first consideration
can be addressed solely in terms of the market, the second prevents us from generally
pricing the distribution. We must manually compare these quantities to determine
which is the solution.

Unfortunately, we can’t find a general solution for pricing distributions. We must
write out and price each permutation, since the ordering of the prices depends on the
particular values of the distribution. Indeed even in the simplest cases the price of
a random variable depends on the values it takes on: although we can in that case
write out a discriminant instead of calculating the two possible prices and comparing
them. More of these discriminants might exist in the general cases but regardless
calculating and comparing the twelve possible prices will always succeed in pricing
the distribution. Importantly since the discriminant for pricing a random variable
depends on the values it takes on it is not possible to get results comparable to the
binomial model. In the binomial model our discriminant depends on the market, not
the distribution, but in the trinomial model this is not the case and the particular
distribution is the determining factor: no general result accross all distributions is
possible.
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4 Conclusion
While we have successfully analyzed the binomial model using the usual no-arbitrage
pricing techniques the trinomial model is not readily solved. Indeed, both approaches
to the trinomial model fail to admit a pricing strategy for general distributions in our
analysis. In order to tackle these kinds of problems without the general tools that
the binomial case provides requires comparing every random variable with a given
distribution. This grows combinatorially with the number of outcomes and limits the
usefulness of the pricing strategy.
In the binomial model the price of the distributions depends only on the market

parameters while in the trinomial model it depends also on characteristics of the
distribution we wish to price. Further, in the binomial model given a distribution we
can not only price it, but also exhibit an appropriate investment strategy with that
price. In the trinomial model while we did have some success in pricing investment
strategies, we did not exhibit any techniques for constructing investment strategies.
This is possibly complicated by the fact many investment strategies may exist with a
given price that superhedge the distribution.
Pricing in these simple models is an important part of analysing and pricing

distributions of wealth. Results about simple models sometimes lead to conclusions
about more realistic models. However, as we saw moving from the binomial to the
trinomial model, sometimes changing models introduces new complications.

38



Bibliography
[1] William F Sharpe, Daniel G Goldstein, and Philip W Blythe. The Distribution

Builder: A Tool for Inferring Investor Preferences. https://web.stanford.edu/
~wfsharpe/art/qpaper/qpaper.html, October 2000.

[2] Steven E. Shreve. Stochastic calculus for finance I. The binomial asset pricing
model. Springer Finance. Springer-Verlag, New York, 2004.

39

https://web.stanford.edu/~wfsharpe/art/qpaper/qpaper.html
https://web.stanford.edu/~wfsharpe/art/qpaper/qpaper.html

	Introduction
	Background
	Mathematical Concepts

	Pricing Probability Distributions
	Pricing Investment Strategies
	Pricing in the Binomial Model
	Pricing in the Multi-Period Binomial Model
	Pricing in Three-Outcome Markets

	Pricing via State Prices
	Risk-Neutral Probability Measures
	Revisiting the Three-Outcome Model

	Conclusion
	Bibliography

