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Abstract

This project involves the design and implementation of a feedback control system to enable a quadrotor
unmanned aerial vehicle (UAV) to detect and track the motion of a terrestrial wheeled mobile robot. The
detection of the terrestrial robot is enabled by a camera carried onboard by the UAV, in conjunction with
unique identification marks placed on the terrestrial robot. Raw camera data is processed by an algorithm
developed using the open source software library OpenCV, which is executed a Raspberry Pi embedded
computer carried onboard by the UAV. To correct errors in the vision-based measurement of the position
of the terrestrial robot, a Kalman filter is developed, which is also to be executed by the Raspberry Pi
computer. Preliminary test results are reported.
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1 Background

This project is about interfacing between vehicles of different types. The scope of the project is limited
to two vehicles, a ground vehicle, and an aerial one, with a visual uplink between them. This section details
extant information on the tools we use to achieve that goal: the two vehicles, the computer vision
algorithms, and Kalman filtering.

1.1 Project Objective

The objective of this project is building a heterogeneous network between the ground vehicle and the
autonomous UAYV to enable the UAV to detect, track and follow the ground vehicle automatically. For
achieving this objective, the video tracking, navigation and guidance system will be built on the autonomous
UAV. This system consist of an onboard camera, a Raspberry Pi miniature computer and a Pixhawk
autopilot computer of the autonomous UAV. An object detection and navigation program will be built on
the Raspberry Pi miniature computer and the navigation data will be given to the autopilot guidance
program on the Pixhawk computer to enable the UAV follow the ground vehicle automatically.

1.2 Ground Vehicle

iRobot Create is designed for robotics development. It is developed from the iRobot Roomba
vacuuming cleaning robot. It replaces the vacuum cleaner with a cargo truck with a DB-25 port for serial
communication, digital input and output, analog input and output and electrical power supply. It also has a
7-pin Mini-DIN serial port. This port can transfer the sensor data and the motor command that using the
iRobot Roomba Open Interface (ROI) protocol.

1.3 Unmanned Aerial Vehicles

Unmanned aerial vehicles have been in use for several decades. Their first use was much longer ago
than that where balloons were used to drop bombs on (hopefully) enemy targets. It was in World War | and
more prominently later in World War 1l where UAVs gained some notoriety. The V1 Rocket, also known
as the Buzz-Bomb, that were used against Britain were UAVs. The Nazi Germans would used them to fly
without a pilot over England and when they ran out of fuel they returned to earth delivering their destructive
ordinance. In more modern times, one of the most prolific is the Predator Drone used by the United States
Military. These UAVs are piloted by soldiers remotely to perform a wide variety of reconnaissance and
combat operations. With the continued miniaturization of electronics and advancements in computing



power on smaller and smaller devices. The UAV is now one of the fastest growing hobby markets in the
US and is being explored as viable options for large corporations like Amazon as well.

The advantage of having a vehicle fly without a human pilot is appealing in these situations. A Military
spends an enormous amount of time and energy to train its pilots, removing the risk of loss of life is an
important effort. For companies like Amazon, UAV’s are appealing for the purpose of delivering packages
faster or in very remote delivery locations. For the consumer, UAVs are fun to fly and also when equipped
with a camera, make for entertaining home videos.

Unmanned aerial vehicles have come to be colloquially named “drones.” This is because of the
extensive use of the Predator Drone, and also because a drone, by definition, is a low humming sound which
is similar to the sound that many UAVs make. Unfortunately the term ‘drone’ has acquired the stigma of
relating to the military operations more than the sound of low humming. In our work, we actively avoid
using the term “drone’ as our work is not militarized in any way.

1.4 Object Recognition

The heart of object recognition software in most applications is a library of complex vision
algorithms known as OpenCV. OpenCV was developed originally in 1998 at Intel, and is now used by
professionals and amateurs around the world to create vision applications. The name stands for Open Source
Computer Vision, and has grown into an extremely powerful tool. The software has been downloaded seven
million times, and can be used in a myriad of situations. In their own words, “OpenCV’s deployed uses
span the range from stitching streetview images together, detecting intrusions in surveillance video in Israel,
monitoring mine equipment in China, helping robots navigate and pick up objects at Willow Garage,
detection of swimming pool drowning accidents in Europe, running interactive art in Spain and New York,
checking runways for debris in Turkey, inspecting labels on products in factories around the world on to
rapid face detection in Japan.” [5]

The software contains hundreds of algorithms for different purposes. One such algorithm is SURF,
Speeded Up Robust Features. It was presented by Herbert Bay in 2006 as an improvement upon existing
detection programs. It uses simplified integral images and Hessian matrices to detect points of interest in a
picture. These points of interest are points where the image changes suddenly, such as the edge of an object,
or the corners of text. The area around those points is represented by a vector. Its primary purpose is to
take two images of the same scene, and match the vectors between them. For example, if you were to use
the algorithm on a close up image of a book and another image of that book from a distance, it would give
you data that could be used to identify the book in the larger scene. SURF is more repeatable and, most
importantly, much quicker than its predecessors. [2] That speed is what gives it its name, notwithstanding
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the poor grammar. SURF uses very complicated mathematics that are outside the scope of this project, but
we recommend anyone using vision detection to read Bay’s article on the subject.

1.5 Kalman Filter

Kalman filtering is also known as linear quadratic estimation (LQE). It uses a series of
measurements, which contains measurement noise and other noise to produce more precise estimation of
unknown variables. It is named after the theory developer Rudolf E. Kalman. It is widely used in Guidance,
Navigation and Control of vehicles.

In our project, a Kalman filter is used to filter the measurement noise of tracking camera on UAV and
produce a more precise estimation of the position of the ground vehicle and the guidance of UAV needs
this estimation to generate a more precise route.

10



2 System Design

2.1 Ground Vehicle

The ground vehicle should be detected and followed by the UAV. For easy detection of the target by
OpenCV object detection program, a significant visual feature should be placed on the top of the ground
vehicle. After the tests with the solid spot, the solid square and the QR code, we selected QR code since it
is easiest to be detected and recognized by our object detection program through the on board camera. The
ground vehicle is required to achieve a remote control of its motion by using the ground station computer.
So building wireless connection between the ground vehicle and the ground station is the most important
element.

2.2 The IRIS Quad Copter

Our UAV is a small quad-copter called the IRIS. A quad-copter is a helicopter with 4 propellers
mounted away from the center of the vehicle in a two by two pattern. You can think of them like tires on a
car. One front-left, one front-right, one rear-left, and one rear-right. The control of the propellers is operated
by a microcontroller inside of the quad-copter that changes the speed of the propeller motors accordingly.
The microcontroller also takes input data from a variety of sources like the GPS receiver and IMU and also
has the remote control receiver and other connectivity options such as for an antenna to transmit telemetry
data to a ground station.

The IRIS components are controlled by its brain, the PixHawk. The PixHawk is a microcontroller
specifically designed and built for controlling multi-copters of 2, 3, 4, 6, or 8 propellers. It is available for
purchase separate from any UAV regardless of manufacturer or specific type. The PixHawk uses pulse-
width modulation to control the rate at which the motors spin at. Pulse width modulation is a common
electrical method to control motors by changing the electric wave sent to the motor, thereby changing how
fast it will be induced to spin. At zero modulation, the signal is unchanged and the motor experiences full
power from the controller.

Once we decided that we were going to run our commands to the PixHawk from onboard the IRIS
Quad-rotor, this gives us where to start on developing the Air Vehicle. The IRIS is tasked with carrying the
Raspberry Pi and a camera to image the marker on the Ground Vehicle. This requirement means that the
solution must be lightweight and out of the way of any of the other components or the rotors.

The Raspberry Pi is mounted in a case on the nose of the IRIS. The case was purchased from a
commercial vendor and is acrylic. It has holes for cables to connect to the GPIO header, the camera ribbon
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connector, the video ribbon connector, in addition to the external port cluster. It is two pieces, a bottom,
where the Pi board clips into place and has walls that make it deep enough to house the connection ports.
The other part is a lid that snap-fits into place on the bottom.

The camera is on the bottom screwed to an acrylic sheet that is mounted on the bottom the IRIS. The
sheet is larger than the camera board so a portion of material was removed from the bottom of the IRIS
body. This was done to allow for the board to be located more up and inside the body of the vehicle while
still easily allowing it to be connected to the Raspberry Pi on the exterior. The acrylic sheet is fixed in place
with plastic ties that loop over it and through to the inside of the body. The ties form a loop and are tight
but have some elasticity and the camera feels very secure and resists any attempts to move it by hand.

In the figure below you can see the position of the Raspberry Pi and its connections to the PixHawk
inside the body of the IRIS. The rotor blades have been removed here for working in the lab. There are two
methods available to connect data between the Pi and the IRIS, USB and UART Serial. The USB connection
is the black cable plugged into the USB port on the Pi and that leads to the USB port on the PixHawk.

The UART connection travels over a cable that was made to splice together three wires salvaged from
a junk device that have the correct end connection for the GPIO header. The wires carry signals for
Transmit-Send, Transmit-Receive and Ground. These wires were soldered to a spare 6 pin connector that
the PixHawk uses. The PixHawk has a port that has functionality for 2 serial ports. It is labeled “Serial 4/5”
in documentation and on the PixHawk itself. The fabricated wire uses the serial 4 port and leaves the serial
5 port connected to nothing. The unused serial 5 wires were looped and taped to the bundle so they can be
easily identified and used in the future if the need arises.
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Figure 1: Iris Quadrotor front view
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2.3 Battery

Mounting and operating the Raspberry Pi onboard the IRIS presented a problem of where it is to be
powered from. There are essentially two options to solve this issue. The first is to add its own power supply
and mount this onboard as well. The other is to link it into the battery already in use by the IRIS.

We will first examine how much flight time we can expect to lose by powering the Raspberry Pi on
the same battery as the IRIS. The Raspberry Pi, according to its manufacturer draws at maximum
approximately 1200 mAh. [8] This includes any peripherals that may be connected to it while running and

Rotor Control '
Cables 3
LR

Power Cable

':{-m l ;»_

1 N

|

Figure 2: Iris quadrotor bottom view

processing data. The PixHawk draws a maximum of 2250 mAh

On the IRIS is a six-cell lithium-polymer battery rated at 3500 mAh. The manufacturer expects flight
time to last between 10 and 13 minutes for an unmodified IRIS. Amp-hours is a measure of how many

14



hours a power source can provide that amount of amperage at. We use this number divided by the total
Amperage used, averaged over the course of an hour. The amperage drawn at any given instant can vary
greatly depending on what the device is doing at that time. Climbing to a higher altitude consumes more
power than just hovering. [1]

We could attach an ammeter to the IRIS and then fly it while sampling the current flow out of the
battery. This is unnecessarily complicated and also would require a lot of testing to produce results. Instead
we can use algebra and the expected flight time for the IRIS to determine what the expected average draw
for a flight is. Solving for Ah drawn, the IRIS is expected to use approximately 17Ah of power over the
course of an average flight lasting 10 to 13 minutes. For the predictions here the low value of 10 minutes is
used to do the calculation and comparison. This also means that the motors on the IRIS are expected to
draw around 3.7Ah per motor, again this value can be higher or lower depending on variation of the flight.

Factoring in the Raspberry Pi, the current drawn from the battery increases to around 18.25 Ah for a
flight. In our calculations we also assume an 80% cut off time so that we do not excessively deplete the
battery. Lithium-polymer batteries are well known to become unusable if they are completely discharged.
The 80% cut-off is a common rule of thumb for micro air vehicle users. Below is a table of expected flight
times based off of the previously explained methods. The range shown on the table goes from the ideal case
of under usage, around 16 Ah of use, to higher use, 20 Ah, and an extreme case of very high usage, 25Ah.

Current  Drawn Flight Time w/o Extra Pack Flight Time w/ Extra Pack
(Ah) (min) (min)

16 10.8 114

17 9.9 10.6

18 9.4 9.3

19 8.9 10
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20 8.4 8.9

25 6.7 7.1

Here we see that in the ideal case we gain less than a minute of flight time by adding a battery pack
specifically for the Raspberry Pi. In the worst case, it could be lower than a half of a minute of added flight
time.

The next element to consider in this decision is how the weight would affect the flight of the IRIS.
Intuitively, adding more weight will mean more work needs to be done by the motors to do the same
operation. Thus further reducing any gains in flight time by having an additional separate battery pack for
the Raspberry Pi. The recommended safe payload for the IRIS is 425 grams. The Raspberry Pi, it’s case,
wiring and connected camera add about 235g of mass to the IRIS. Six AA alkaline batteries, a holder, and
wiring would add a further 190 grams bringing the total added mass up to 425g. This is the limit of the
recommended payload so any other mass addition would be expected to reduce flight time.

Given the tradeoff between a marginal amount of actual flight time added to any single flight for the
cost of added equipment and payload usage, it was decided to keep it simpler and lighter and go without an
extra battery pack and to link in the Raspberry Pi to the IRIS’s extant power supply.

2.4 MAVLink

MAVLink is a Micro Air Vehicle Communication Protocol. This protocol is a header-only message
marshalling library for micro-air vehicles. Functionally, this is sets of code that, when integrated into a
program, allow that program to send and receive messages to the microcontroller on an UAV. This kind of
program is commonly called a ground station as the most common are operated on the ground while the
UAV is in light in the area. Some of these messages are sensor information from the UAV to the ground
station and some others are navigation or waypoint commands to the microcontroller for the UAV. Some
others are for configuring setting on the UAV microcontroller.

The list of specific messages is long and detailed which makes it a very versatile protocol. It is also
developed closely with the community that uses it, the tech-savvy UAV hobbyist. It is also extensively used
with common UAV microcontrollers, such as, P4X, PixHawk, APM and AR.Drone. These UAV controllers
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have autopilot systems that can be updated by way of messages communicated with the MAVLink Protocol.

[7]

2.5 Code Construction

The code as a whole follows a simple loop. The camera takes a photo; that photo is processed by
OpenCV, as above; the program generates a waypoint; that waypoint is run through a Kalman filter to
reduce noise; then it is sent to MAVLink onboard the Pixhawk; and then the process repeats. As of now,
that process takes about a second, but will run slower on the RaspberryPi. We outline each step below

Ground
Vehicle

Raspberry Pi

Rotors

-

Kalman Filter Waypoint
Navigation Guidance

Autopilot

N — —\

Camera OpenCV Internal GPS

Figure 3: Planned code flow

2.6 Object Detection

We began working on the object detection software from the very beginning. Our object recognition
is programmed in C++ using the OpenCV libraries. We also did the bulk of our programming on a Linux
machine, as the Raspberry Pi runs a Linux based operating system. None of the project members had
experience with programming, so our first step was learning C++. There are several good tutorials online
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for learning the basics. Luckily, OpenCV programming is mostly self-contained, so only the basics of C++
are necessary, as long as you have an on hand reference.

The next step was installing the OpenCV libraries, and insuring they ran correctly. The instructions
were fairly clear, so installation was not an issue. However, when compiling with CMake, we had some
issues with paths. We attempted to run some basic sample code, that when run correctly would display a
chosen image. All C++ code includes dependencies in the top of the document, and if these are pathed
incorrectly the code will fail to compile.

We then did research into similar applications to our own. This is when we found the SURF
detection algorithm. OpenCV’s website has a large list of tutorials for different applications. We found a
demonstration of finding a known object in a scene. [3] With some modifications, this became the basis for
our code. This code, if given a target image and another image with that target in it, would identify the
target in the scene, and highlight it. The dots in both images, with the lines drawn between them, are the
points of interest as found by the SURF algorithm.

Figure 4: Object detection locating the target in a scene
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The target here being the QR code displayed. We went through several different target images
before we decided on the QR code. Some of our ideas included a target, or the symbol commonly seen on
crash test dummies. We settled on a QR code because the SURF detector works best with corners, and with
contrast between light and dark. A QR code has more corners, and a more distinct shape than our other
options.

This code, as is, was obviously not going to function as part of our navigation system. We did not
need the highlights, or indeed the final image at all. We needed the pixel locations of those points of interest,
and very little else. We edited the code to output a matrix of those points, and we made the code delete the
image as soon as the SURF was done running. A significant period of time was also spent making the code
more controllable. In the end, we made the code run continuously, until given a command, so that it could
feed navigation data more smoothly into the next part of the process.

The next step was optimization. This section of the code is very processor intensive, and so took a
great deal of time for each iteration. We will list some of the steps we took to improve this. We had the
RaspberryPi boot directly to a command line, to avoid eating up processing time with graphics. We also
removed a great deal of superfluous code, much like the image displays we showed above. The search for
areas we could optimize was ongoing for much of the project.

2.7 Navigation

The series of points needs to be converted into a single useable point. The code takes the mean of all
the points, and that is passed on to the next step. It is important to note that the algorithm will still draw
points even if the target is not onscreen. In this case, the points will be scattered and random, but it will
always at least attempt a match. To this end, the program also takes the average deviation from the mean
of the points. The more clumped they are, the more “sure” the algorithm is that the object is found. If that
deviation goes above a certain point, the program assumes that it does not in fact see the target at all. In this
case, it goes into search mode, as described in the code overview.

Our quad rotor, of course, cannot be given movement commands in pixels. We needed the output
in meters, which could be converted geometrically. It is important to remember that cameras function with
a pinhole system, so the distance from the center of an image correlates to an angle, not a length. Those
conversions are easily found, because they are two of the most commonly quoted specifications of cameras,
field of view and resolution. We would also know the distance to the plane the object is in, because of the
onboard altimeters. The conversion is as follows:

X = horizontal distance from center (meters)
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Xp = horizontal distance from center (pixels)

R = horizontal resolution (pixels)
0 = horizontal field of view (degrees)

h = distance from plane (meters)

x=h><tan(%’><9)

2.8 Kalman Filter

Since the onboard camera only can provide the position data of the ground vehicle over a unit time, a
discrete-time motion simulation model is applied to simulate the object motion. This model assumes that
the object executes a straight constant speed during the unit time of the model. And the average speed is
calculate from the difference of the positions during the unit time. The Kalman filter is designed based on
this discrete-time motion simulation model. [6] This Kalman Filter is designed to have four states: X, , Xy,

Xy, Xy The first two state are the position data in x-axis and y-axis, and the last two states are the average
speed data in x-axis and y-axis.

Here is the basic Kalman filter design:
The state estimation without Kalman Filter:
X(n™) = AX(n)
Update state estimation (The state estimation with Kalman Filter):
X(n+1) = X(n™) + K(n+1)(z(n+1) - CX(n"))
In these two equations:
A and C are transfer matrix:
1 0 1, 0
01 0 T,

0O 0 1 0
0o o0 o0 1

1 00 0
| 01 0 0

T, = 3.7 seconds is the unit update time for every round that all programs runs in Raspberry Pi
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Z is the measurement of states come from onboard camera.
K is the Kalman Gain:
K(n+1) = P(n+1)CTR(n+1)~*

P(n+1) is the update state covariance:

P(n+1) = [(AP(N)AT+Q(n+1)) *+CTR(n+1)*C]

Where P(n) is the previous state covariance with the beginning that

P(0) = E((2(0) — 2(0))(2(0) — Z(0))")

For all equation listed, Q is the covariance of process noise and R is the covariance of measurement
noise. Since the ground vehicle only can make the pivot turning and the acceleration is an impulse
acceleration, most of the ground vehicle’s motion is a straight constant speed motion. The process noise,
the difference of real position and predict position, that results from the difference between the real time
velocity and discrete time average velocity estimation, is negligible Q(n+1) =~ 0. And for the measurement
noise:

o[ )

0 R,

Where R, is the covariance of measurement noise on the x-axis and R, is the covariance of
measurement noise on the y-axis. Both of them are constant and it is found by the a experiment measures
the distance between the UAV and the ground vehicle in x-axis and y-axis by hands and take that value as
the ture value X(n),re and the distance measured by camera as the measurement value X(n)getect- Then
the measurement noise v(n) will be calculate as follow:

X(n)detect'x(n)ture: V(n)

And we take the average measurement noise to calculate static covariance of measurement noise R,
and R,

Ry = Wy (n)z

RZ = ‘_’y(n)z
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3 System Development

3.1 Ground Vehicle

There are two options to build the connection between the ground vehicle and the ground station. One
is building a Bluetooth connection between the ground vehicle and the ground station. A Bluetooth module
is been put on the ground vehicle and achieve the wireless connection with the ground station computer.
However, the remote range is limited since the small range that Bluetooth wireless connection can provide.
Another method is building a Wi-Fi connection between the ground vehicle and the ground station. [4] We
use EZ-B v4 Wi-Fi Robot Controller instead of the Bluetooth module and install it on the ground vehicle
and remote the ground vehicle through a supplementary program EZ-builder. EZ-builder provides many
options of control methods. We decide to use joystick to control the ground vehicle.

Figure 5: EZ-B v4 Wi-Fi Robot Controller (ezrobot.com)

3.2 IRIS Quad Copter

The hardware integration of the Raspberry Pi with the Iris is complete. What is meant by hardware is
that the Pi is physically mounted onto the Iris in a way that is secure and is connected to the Iris or the
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PixHawk in a way that is functional or should be functional, should someone attempt to use it in the future.
The way that we know that features work is through testing in the lab with multi-meters and other
instruments. This prodding of various wires produced no suspicious results so without symptoms of any
remaining issues, we must conclude that it works as intended. The Iris flies with the Pi loaded onto it under
manual control in similar ways to it unloaded.

3.3 Code Construction

The object detection code was very robust at the end. It detected objects, provided the relative
locations of those objects, and had failsafe procedures for non-detection and for malfunctions. The premise
of the design was simple, the IRIS was to be powered up, and then given a manual command to switch
control to the autopilot. While we never achieved communication with the pixhawk, all of these functions
were created.

Figure 6: Successful object detection

The hurdle that prevented us from communicating with the pixhawk was incorrect references to the
MavL.ink libraries or the incorrect installation of those libraries. No matter how we changed the code, one
command or another could not be found. This occurred both with an installer and with manual installation
of the libraries.
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The detection feature was exactly as described in the methodology. OpenCV includes the SURF
algorithms, which were used to identify the target objects. This part of the code outputs either two pixel
coordinates, or a not found command.

The next part of the code was a translation between coordinate systems. The first system is the
camera’s view, with positive x being “up”, positive y being “right”, and z being ahead out of the camera.
This reference frame rotates in 3 dimensions, so the translation is variable in time. The second reference
frame is centered at the camera, but has z fixed straight down. In this frame of reference, the commands are
simple 2D commands, as altitude is fixed.

The non-detection protocol outputs a simple series of 4 commands: [1, 0] [0, 1] [-1, 0] and then [O,
-1]. This command has no override feature and so will be queued behind any other commands. The typical
direction commands do feature an override. The effect of those two choices in tandem is that the quadroter,
when lost, should fly to the last known location of the target, and then fly in a square until the target is
found again.

The malfunction procedure was to set up a fence. When the quadroter leaves a specified boundary
zone, this command gives contrrol over to a program native to the pixhawk that returns the quadroter to its
launch point. This of course only protects against failures in our own code, not in the pixhawk or IRIS
themselves. In other emergency situations, manual control can be reinstated at any time from the remote
controller.

The external shell code, as well as any parts of the code relying on mavlink only work in theory.
Because we could not achieve communication between our raspberry pi and the pixhawk, many of those
references caused halting (the code is designed to shut itself down if its inputs, such as the camera and the
pixhawk, cannot be found). The shell code included commands that created and maintained the uplink, and
navigated between functions of the code.

3.4 Kalman Filter

The simulation of Kalman filter is conducted on Matlab. It is designed to generate a series of coordinate
data on x-axis and y-axis to form a series of coordinate of a straight line with constant time interval and
constant distance interval on x-axis and y-axis. Then a normal distributed random with the limitation of
maximum and minimum is added to the original data to produce the noise. And finally, the average absolute
value of the random is taken as the static measurement noise and put that value into Kalman filter to test if
the Kalman filter is functional.
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4 Results and Discussion

4.1 Ground Vehicle

After we tested the remote control of the ground vehicle using both Bluetooth wireless connection and
Wi-Fi wireless connection. The iRobot Create can achieve straight constant speed motion. But when it
makes turn, it always stops first and two wheel with the motor runs at same speed with opposite direction
to make a turning with respect to its own center, a pivot turning.

The reasons for the ground vehicle only can make pivot turning is that iRobot Create was preset that
when it makes turn, it always stops and use the two wheel motor runs at same speed with opposite direct.
It can only recognized the biggest movement of joystick from its center position. This limitation makes the
iRobot create only can execute one order of movement direction.

4.2 IRIS Quad Copter

The construction of the Iris and its mounted Raspberry Pi went well. The challenges that we ran into
were not ones were we could not look up the information to solve it or figure out what to do in some other
fashion. This was mostly when looking at the PixHawk and wiring of the unit.

Removing the previous group’s hardware and mounting was easy but needed to be done carefully as
to not rip wires or leave waste tape attached all over. We tried to leave parts in a configuration that allowed
easy access to the interior of the body.

Stripping wire and soldering connections or ends was a basic process and took time to do carefully as
some of the wires are quite small. This was greatly aided by a small vice in the lab. This vice was used with
some alligator clips to hold connections together for soldering. All solder connections are wrapped in
electrical tape rated for light use.

Assembling the Raspberry Pi was simple enough, if not time consuming. This entailed loading the
Operating System, basic testing it, and then finally mounting it inside its case with all cables connected and
then mounting the whole apparatus to the body of the Iris. It could be located anywhere on the body, our
choice of the front kept it from impacting the ground upon landing and also kept the running of wires to the
interior out of the way of any other parts, especially the rotor blades.

The last thing to comment on in regards to the Iris may not be necessary for this report but merits
mentioning: We are happy to work alongside our colleagues in the lab space provided, but it was frustrating
to go to work on the Iris and to find it missing parts a few different times. Sharing is good and we want to
help our colleagues in other groups but when borrowed parts were returned, some important bits were
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missing. The only things worth mentioning here are that when the bottom cover of the body was returned,
none of the hardware to mount it back to the body was with it. All new screws of varying sizes and type
had to be sourced and purchased because of this. And for some reason, the side portions of this bottom
cover of the body were removed and presumed to be discarded.

4.3 Code Construction

The navigation code was the source of several interesting successes and several points of failure. While
several key parts worked very well, the code had a number of bugs that prevented the project from being
flight tested.

This part of the project represented a large part of our time on the project, which was compounded
by our lack of background in computer science. While we did learn the basics of the C++ language, as well
as the two extra libraries we needed, a lot of the “good practice” that is taught in CS courses was lost on us.
Reviewing our build files, we found them to be poorly structured and organized, a fact to which we attribute
the amount of time it took to overcome each new bug in the system. It did not help our progress that much
of our progress had to be made with guess and check methods. While there was a lot of documentation on
OpenCV and Mavlink, there was significantly less on their integration, and none on doing so on such a
small processer. We were simply not prepared for the amount or the severity of bugs in our system. In the
future, I would recommend at least one team member with a background in computer science, as this would
make progress much faster.

In spite of that, the code is nearly in a final working state. We do not know if the section that
communicates with the Pixhawk is written correctly, because of the libraries, but we feel confident that it
is. It was carefully pieced together from existing communication code provided by the makers of MavLink,
S0 we have no reason to suspect that it is incorrect. Though our skills with coding were lackluster, the theory
behind our code was based on principles we were far more familiar with. The guidance laws, coordinate
translations, and as we’ll talk about later, Kalman filtering, were all shown to be sound.

The camera processing code was one of the most interesting and successful parts of the process.
While the SURF algorithm is difficult to conceptualize, its implementation went well. And after reading its
documentation, we created an ideal target image. We had to go to great lengths to make the algorithm fail
to find its target at that point. The processing speed of this algorithm however, left room to be desired. In
the future, I would recommend a further parsing down of the program, as well as any superfluous functions
running on the processer. We did a great deal in this respect, but more is necessary. Unfortunately, there is
no faster alternative to SURF, as it is already a vast improvement over its predecessor in terms of processing
speed. Storing images at lower resolution is also infeasible, because the resolution directly affects the
efficacy of the image detection.
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4.4 Kalman Filter

The plot of test result shows below:

Figure 7: Matlab output of the matlab test of the kalman filter

The blue segment line is the plot of the path that detected with measurement noise and the red segment
line is the plot of the path detected with measurement noise and processed by Kalman filter. This proves
that the Kalman filter is functional on filtering the measurement noise.

This Kalman filter can only apply to the motion that execute the straight constant speed motion during
the unit time. This limitation results from that our Kalman filter design cannot filter the process noise, which
is the difference of discrete-time average speed estimation within the unit time and the real instant speed
and its change within the unit time, since the lacking of detection of real instant speed of the ground vehicle.
However, the process noise can be reduced significantly by increase the processing frequency of the
pictures from the onboard camera and generate the position data of the ground vehicle faster.
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5 Conclusions

Our project fulfilled many of our goals, though it did not make it to a final stage. We never had the
UAYV in flight following the ground vehicle. Because of this, we never truly had an opportunity to test the
efficacy of what we had created.

The pieces that we could test functioned well. The physical integration of all of our mechanical parts
was complete. Power breakouts, data linkups (both hard wired and wireless), and peripheries were all shown
to be functional. Our solutions to these mechanical problems were simple and lightweight. The body was
damaged somewhat while being transferred between project groups but this did not impede the attachment
of the camera or the Raspberry Pi. The ground vehicle could be controlled wirelessly, as could the UAV in
case of emergency. The power breakout to the Raspberry Pi allowed it to function fully with few
modifications to the circuitry inside the IRIS. All in all, the mechanical aspects of the project were highly
functional.

The digital aspects of our project were not as functional. The Kalman filter was completely coded and
works well, but it was tied up in development for a long period of time. The uplink between the PixHawk
and the Raspberry Pi never bore fruit, despite the fact that the link had been physically established. The
object detection also ran far too slowly for accurate navigation to be achieved. Three and a half seconds is
enough time for an object to leave the field of view entirely. Even if uplink had been achieved, this likely
would have impeded the function of the system a great deal.

Even so, some aspects of the coding looked very promising. The functional object detection did give
us a strong base to work off of, even if it did have some issues. The Kalman filter linked up to that code in
a very intuitive way. We believe our design for the flow of the code was the most efficient possible. The
coding certainly needs more time put into it, but is not conceptually flawed.

In sum, the project was very near a functional state at the end. The point of failure was the integration
of MavLink in order to communicate commands, as well as a lack of efficiency in object processing times.
Nearly every other system was functional and complete.
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