
Sonification of Spectroscopy Data 1

Sonification of Spectroscopy Data

By Matthew Pietrucha
Worcester Polytechnic Institute

Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial

fulfillment of the requirements for the Degree of Master of Science in Interactive Media and
Game Development

Primary Advisor:

VJ Manzo, Associate Professor of Music

Readers:
 Scott Barton, Associate Professor of Music

Charles Roberts, Assistant Professor of Computer Science

Sonification of Spectroscopy Data
2

List of Figures 3

Abstract 4

Acknowledgements 4

Introduction 5

Background 7

Method 10

Software Development 11
Prototype 11

Current Build 14
Overview 14

Data Importation (Appendix A) 14
Region Routing (Appendix B) 15
Playback (Appendix C) 15
Filtering (Appendix D) 15
Synthesis and Digital Signal Processing (Appendix F) 16
Presets and Tagging (Appendix G) 17
Comment System (Appendix I) 17
Advanced Mode 18

2. Interview Process 18

3. User Study 23

Results 24

Development & Interview Results 24

User Study Results 25

Discussion and Outcomes 26

Conclusions 31

Future Directions 32

Appendix 33
Appendix A: [Dict] and Data Processing 34

Sonification of Spectroscopy Data
3

Appendix B: Region Routing 35
Appendix C: Playback 36
Filtering (Appendix D) 37
Synthesis and Digital Signal Processing (Appendix F) 40
Presets and Tagging (Appendix G) 43
Comment System (Appendix I)

Figure 18: Comment system 45
Wavelength Mapping (Appendix J) 46
Interview Notes (Appendix K) 46
Survey Results (Appendix L) 48

References 51

List of Figures
Figure 1: Year one prototype of sonification platform 8
Figure 2: A typical use of [function] within Max 9
Figure 3: Prototype pitch filtering system 9
Figure 4: Overview of current build 11
Figure 5: An example of vibrations by wavelength of Benzoic Acid
16
Figure 6: Selecting data results 23
Figure 7: Advanced results 26
Figure 8: Data processing sub-patch 29
Figure 9: Region subpatch 30
Figure 10: Playback module 31
Figure 11: [p mel_filter] abstraction 32
Figure 12: Chord/Harmonic Filtering 33
Figure 13: Peak Detection 34
Figure 13: Synth Bpatcher 35
Figure 14: Overview of Bpatcher 36
Figure 15: [poly~] overview 37
Figure 16: Tagging system 38
Figure 17: Advanced tagging system 39
Figure 18: Comment system 40
Figure 19: Wavelength mapping module 41
Figure 20: Interview note 42

Sonification of Spectroscopy Data
4

Abstract

Sonification is the process of mapping non-audio data to sound. The field has three key areas of
research: (1) psychological research in perception and cognition, (2) the development of tools
(SDKs, packages, hardware connectivity), and (3) sonification design and application. The goals
of this research were twofold: (1) To provide insights to the development of sonification tools
within the programming environment Max for use in further sonification/interdisciplinary
research, as well as (2) provide a framework for a musical sonification system.

The sonification system discussed was developed to audify spectroscopy data, with the purpose
of better understanding how multi-purpose systems can be modified to suit a particular need.
Since all sonification systems may become context specific to the data they audify, we developed
a system in the programming language Max that is both modular and responsive to the
parameterization of data to create musical outcomes. The trends and phenomena of spectral data
in the field of spectroscopy plot musically through the system and further enhanced by processes
that associate descriptors of said data with compositional idioms such as rhythm, melody, and
harmony.

This process was achieved in Max by creating a modular system that handles the importing and
formatting of spectral data (or any data in an array format) to send that data to a variety of
subprograms for sonification. Subprograms handle timing and duration, diatonic melody,
harmony, and timbral aspects including synthesis and audio effects. These systems are accessible
both at a high level for novice users, as well as within the Max environment for more nuanced
modification to support further research.

Acknowledgements

Many thanks to my advisor VJ Manzo for all his support. I may have never attended graduate
school without him suggesting it to me years ago. (I think I’m still partial to Queen II, VJ. It only
got one track in Bohemian Rhapsody, still the underdog album..) Thank you to my readers Scott
Barton and Charlie Roberts, whose advice and suggestions improved my research and writing.
Thank you to my father, Steven Pietrucha, for all his love and support. Lastly, I dedicate this
work to my grandparents Joseph and Edna Pietrucha. Their love and support has made all things
possible.

Sonification of Spectroscopy Data
5

Introduction

The purpose of this research was to provide insight into the development of sonification tools
and programs within the Max programming environment to help meet the expanding needs of the
sonification field at large. By developing a novel and musical application aligned with a specific
data type, the research also aims to illustrate how it and other similar systems may be modified to
make sonification study more accessible and approachable. Barrass (2012) argues that
“sonification is a design practice in which effective solutions to the problem of communicating
data via sound are achieved through an iterative, heuristic process.” This iterative process
creates a need for modular, flexible, and expandible systems that can meet the demand for
specialized and context specific sonifications.

One key issue in designing sonification systems is its inherent reliance on an interdisciplinary
methodology, which requires the collaboration of programmers, scientists, and musicians with
music theory, composition, sound design, and synthesis knowledge. Vickers (2004) noted that
“...for sonification the goal is to maximize the information transfer while minimizing the noise (a
high signal-to-noise ratio). However, for composers, music that contains high information and
low redundancy cannot be accommodated into musical schemata.”(Snyder, 2001: 235)

Our expectations as listeners are embraced, delayed, or denied, and these expectations tie to the
amount of information in a musical piece. As such, music with low information tends to confirm
our expectations more often. For example, popular music tends to be less demanding to a
listener’s expectations than other genres. Electroacoustic music varies in the degree of difficulty
in regards to how listeners unpack musical information. Sonification operates somewhere
between these distinctions. Sonifications may be electroacoustic, and their reliance on data to
produce sound can make them procedural in nature. However, sonifications also exist as tools for
multimodal/periphery monitoring and thus usually have some functional purpose outside of
aesthetic experience. Overall, the musical experience of a sonification impacts the experience of
data and ties to each listener’s experience with music as a whole.

While many simple data-to-MIDI mappings for sonification exist, developers struggle to create
aesthetically pleasing systems that are also useful in conveying data phenomena. For example,
the TwoTone Data Sonification app developed by Datavized Technologies is flexible with
loading multiple data sets and mapping each set to a musical scale. However, it does not
visualize the data for a multimodal experience displaying a column of values. It also relies
entirely on producing a single melodic voice from a data column, with the only adjustable
parameters being pitch, duration, volume, and an instrument (timbre).

Loading in multiple data sets serves as an interesting compositional aid, but if sonifications are to
simultaneously function as a tool for analysis or an augmented/periphery experience, then
combining multiple sets as independent voices may be problematic as it introduces more

Sonification of Spectroscopy Data
6
information, or noise, that is competing perceptually with the same space. Asking a listener to
unpack simultaneous melodic voices and make sense of them can be a difficult task based on
how parameterizations execute. The study “Drawing By Ear: Interpreting Sonified Line Graphs”
by Lorna M. Brown and Stephen A. Brewster (2003) suggests in its results that multiple streams
of data are better recognized by a listener when they use the same timbre, despite the user
preference for them to be different.

Another example of a data agnostic system, or a system which is multi-purpose in nature in
regards to how it handles many different types of data, is the Data to Music API by Takahiko
Tsuchiya and Jason Freeman (2015). Its design allows users to modify high level music
parameters, avoiding lower level one-to-one parameters, and offers this functionality as a real
time process. The crux of this approach is the theory that all sonifications “...may have musical
effects on listeners, as our trained ears with daily exposure to music tend to naturally distinguish
musical and non-musical sound relationships, such as harmony, rhythmic stability, or timbral
balance” (Tsuchiya et al., 2015). We all approach musicing (performing, listening, rehearsing, or
composing) informed by a variety of learned cultural contexts. These contexts inform our
understanding of the relationships between data and music.

Watkins and Dyson (1985) demonstrated that melodies following the rules of Western tonal
music are easier to learn, organize cognitively, and discriminate than control tone sequences of
similar complexity, however this result extends primarily to Western listeners. This suggests that
the cognitive organizational overhead associated with atonal systems makes them less well suited
as carriers of program information (Vickers 2004). The approach to our application, ​Sonify, ​uses
similar data scaling and filtering methods as the aforementioned applications like TwoTone, by
creating common diatonic relationships between significant data changes. More unique to the
Sonify platform is how insignificant data changes behave. Repetitive data is filtered to silence,
resulting in unique rhythmizations and phrasing from a data set. Additionally, other
accompaniment voices such as a bass voice or chords can link to the same phenomena through
other parameterizations. As both user preference varies in regard to parameterization, and this
preference may impact the experience of data, these features allow for research into other
musical phenomena not commonly featured in these other applications.

We chose the Max programming environment to increase the accessibility of sonification
development for musicians and creatives, as Max is widely adopted in the music community.
Max’s visual object oriented design promotes rapid prototyping. As a data flow language, it also
naturally lends itself well to manipulating and controlling real time streams of data, which is
efficient for sonification work. These affordances encourage modular design. When combined
with functionality like Max’s package manager, it may shorten sonification development time for
other programmers in the future.

Sonification of Spectroscopy Data
7

Background

Sonification is the process of mapping non-musical data to sound, usually with the intent of
conveying aspects of the data that would be difficult to visually express, by enhancing periphery
monitoring (Hunt & Neuhoff, 2011). Additionally, sonifications occur over a duration of time,
while data visualizations may be static in nature. While composers have explored timbral
possibilities for centuries, the manipulation of timbre was constrained to interactions with
acoustic instruments or the voice. In the past century, the advent of recording and synthesis has
led to new possibilities of sonic manipulation, which has led to new compositional techniques.
As noted by Lodha (et. al) in the design of MUSE, a musical data sonification toolkit, the
creation of musical and non-fatiguing sounds is important in experiencing sonifications over
extended periods of time. Achieving this goal alongside dealing with the subjectivity of
parameterization has called for flexible programs in the field.

There is debate on whether sonification belongs to the realm of music, art or science, or all three
(Sinclair, 2012). The need to comprehend complex streams of data has increased the need for
periphery monitoring of data. This need coincides with increased access to more powerful media
technologies (Walker, 2010). Early sonification traces back to geiger counters and stethoscopes,
which use non-speech sound to warn the user of harmful radiation, or help us hear how the
rhythms of our internal organs might suggest illness (Walker et al., 2010). In the realm of music,
in the late 1950’s, composers such as Xenakis experimented with applying mathematical
probability tables to music in his piece ​Achorripsis​, which applied those probability tables to
different musical parameters. Xenakis also represented the statistical mechanics of gases in his
piece ​Pithoprakta (1955-56)​, where each molecule moving through space ties to a string
instrument and pitch. He created his own simulation of temperatures and pressures, and created
his own graphs of these simulations to aid in the composition. In the 1960’s, composer John
Cage used a variety of data sources in his compositions, such as ​Atlas Eclipticalis​, which utilized
star charts (Childs, 2018). While these pieces share some techniques of parameterization, they
can be more broadly defined as “data driven music” instead of sonification, as their goals differ
from sonification in that the latter is often used to some analytic end, whether that is periphery
monitoring of data or the primary tool for analyzing data behavior.

Current sonification systems take advantage of our ease of access to complex data sets through
web APIs, scientific tools, and databases. Interactive sonification systems enable users to adjust
sonification parameters directly, often in real time.

Sonification also has many other practical purposes, designed around periphery audio
information. One of the first industrial sonifications was the ARKola system, which notifies
workers of every process at a bottling facility. ARKola was developed and tested by William W.
Gaver, Randall B. Smith, and Tim O'Shea (1991). Each of the nine machines in the facility
communicated its state through an “auditory icon”, a sound effect tied to the machine’s current
state. For instance, a heating machine made a blowtorch sound, and a bottling machine made a
clunking sound. The results of this research concluded that “...audio cues can provide useful

Sonification of Spectroscopy Data
8
information about processes and problems, and support the perceptual integration of a number of
separate processes into one complex one. In addition, they can smooth the transition between
division of labour and collaboration by providing a new dimension of reference. These results
suggest that auditory icons can play a significant role in future multiprocessing and collaborative
systems” (Gaver et.al 1991).

Another example is the ShareMon system developed by Jonathan Cohen at Apple in 1993.
ShareMon used a variety of sound effects from Star Trek to notify users of background network
tasks on a computer. Hermann, Drees, and Ritter created a weather “prototypes” system that took
24-hour data streams of weather patterns and sonified them as non-speech weather reports for
radio. Engineers from the 50s through 70s would tune their radios to pick up the electrical noise
from their computer processors, and used those sounds to help inform debugging the computer
(Hunt & Neuhoff, 2011). These “earcons” are simple sonifications where a short musical motif
conveys a system’s state. Another common example is the tone a user hears when they receive
an error message using the Windows operating system.

The most common approach to data sonification is parameter mapping, where a data dimension
maps onto an auditory parameter such as duration, pitch, loudness, position, brightness, etc.
Different variables can map to different parameters at the same time to produce a complex
sound. The parameter-mapping approach has the following advantages: (1) ease of production –
existing tools allow mappings to many auditory parameters; and (2) multivariate representation –
many data dimensions can be listened to at the same time (Barass & Kramer, 1999).

Parameterization may use a direct mapping of hierarchical music structures such as pitch,
volume, harmony, and duration, which are the primary structural factors in Western tonal music.
It may also map timbral aspects such as signal processing effects, by which audio signals
transform through spectral processes such as reverberation, echoes, equalization, filtering, or
saturation. The common obstacle of parameterization is how parameters map, sometimes
arbitrarily, to data. The resulting sound is often unpleasant and usually lacks any natural
connection to the data represented (Barass & Kramer, 1999).

One expects that spectral data sounds different from demographic data or atmospheric pressure
readings – models of sonification must be sensitive to the type of data they are representing.
Indeed, the “mapping problem” is the most significant impediment to an otherwise flexible and
potentially powerful means of representing information (Worrall, 2011). To promote widespread
acceptance of sonification, systems should “provide easy-to-use tools and systems that allow
non-experts to make their own sonifications tailored to their particular task, data, experience and
expectations” (Barass, 2011).

The mapping problem itself arises from the many approaches to create data sonifications. The
three data representations in sonification identified by Alberto de Campo (2007) are ​Continuous,
Discrete Point, ​and​ Model-Based ​representation. These representations all have their own
advantages and shortcomings. ​Continuous ​treats data as “quasi-analog continuous signals”, often
tied to movement in a single axis. ​Discrete Point ​creates events for every data point for a more

Sonification of Spectroscopy Data
9
modular, flexible approach to sonification. ​Model-Based ​introduces a musical model that is
informed by the data, which can be useful for implementing the domain knowledge, or data
behavior, directly into the musical model itself. As a drawback, this can produce bias as the
model curates the experience around that domain knowledge. Campo is careful not to
compartmentalize these representations, and his “Data Sonification Design Space Map” has
overlapping zones that encourage combinations of these approaches based on the number of
dimensions in the data as well as the number of data points.

While sonification of spectra data has been previously explored, other systems focus on real time
auditory monitoring for the visually impaired or as a periphery monitoring process combined
with haptics while using hardware with force-based spectroscopy. The study for sonified infrared
spectra involving the visually impaired uses a CSV to MIDI conversion process (Pereira et.al
2013) was also conducted at Worcester Polytechnic Institute by a group of undergraduate
students, and similarly maps frequency to absorption rates from spectra, but maps the
wavelength value of X to a timing parameter. The study notes that “...the full interpretation of an
IR spectrum is difficult because of its inherent complexity. Fortunately, it is not necessary to
fully interpret an IR spectrum to get useful structural information.” Similarly concluded through
the Sonify development process was to emphasize certain aspects of spectra to gain a broad
analysis of the molecular composition by hearing bands of absorption activity in key wavelength
regions.

In terms of pedagogical uses of sonifications, the effectiveness of sonifications are partially
determined by how specialized the parameterization is in the context of the data it is
representing. For example, sonifications of sea levels, earth surface temperatures, and
atmospheric CO2 levels created by Mark Bellora were presented to undergraduate students to
assess how they may enhance understandings of the data sets. The study focuses on educational
settings and was conducted by Robert Pockalny (Ballora et.al, 2018). This study differed from
informal STEM contexts such as a museum, in that the sonifications were part of a class module
on climate change. The preliminary results from this study indicate that the addition of sound
was useful in understanding the data sets overall. Interestingly, these sonfications were static
compositions with no interactivity or ability for the listener to change parameters to suit their
needs. There is certainly merit to controlled output in gauging the effectiveness of sonifications
in pedagogical contexts. However, as parameterization is subjective, the ability to modify the
sonification may lead to different understandings on its effectiveness as a tool.

As such, future applications in the field should explore combinations of “agnostic” models, or
models which allow for specialized data parameterizations to convey one specific form of data.
The Sonify application’s design process reflects trying to balance these two approaches to meet
the needs of chemical engineering data sonification through specialized processes, as well as
allowing for modifications to the system through the changing of musical models. The goal of
including a model based approach was to allow an expert to describe data phenomena, and
without musical knowledge, tie that data phenomena to some musical phenomena. Additionally,
the expert can create distinct musical differences to differentiate selected regions for playback.
Lastly, models increase accessibility by hiding more complex sound design and compositional

Sonification of Spectroscopy Data
10
processes to increase immediacy in interacting with data.

Method

Overview

The objective of this research was to design a system that facilitates sonification of spectroscopy
data in the Max programming environment, which could then be validated by an expert in
chemical engineering at WPI, Associate Professor of Chemical Engineering Michael Timko. The
sonification application was iteratively tested and built in collaboration with Professor Timko to
suit his needs as an educator. Validation involved considering the application’s parameterization
and design in a theoretical pedagogical context during the interview process. This methodology
has three major components:

1. The development of a software-based sonification system
2. Implementation of that system within the context of chemical engineering
3. Validating the built-in tutorial as an effective mechanism for conveying the basic operation the
system

Development took place over a two year period following an iterative practice-led research
approach (Skains, 2018). Practice-led research is a common paradigm in the creative arts, where
“...the observations and experiences of practical circumstances often lead to new research
questions” (Brown & Sorensen, 2009). In this model, a feedback loop often exists between
speculation and experimentation. This led to iterations on the design of the application, as
different models and processes were tested after each successive interview.

The original prototype focused on a multi-purpose sonification system, which was then modified
specifically for spectroscopy data in its second phase of development. Alongside these
specializations are the development of tools for the sonification system itself in Max, which
required the creation of modules to process/filter data, interact with the data, and convert that
data to audio signals through audio synthesis processes. Development had two guided factors:

1. Sonify must work as a standalone application by not requiring any additional software to
run.

2. Both the sonification behavior and application user interface should allow someone
knowledgeable about the data behavior to easily describe that data in musical terms via a
tagging system. The tagging system imposes a musical model on the data sonification to
occur without interfering with other parameterizations that fundamentally describe
spectra phenomena.

The modifications in the second year were developed with Michael Timko, Associate Professor
of Chemical Engineering. Professor Timko’s insights and recommendations came from a
combination of interviews used to optimize the system for spectral data. Notes were taken at

Sonification of Spectroscopy Data
11
each interview stage to modify the system. Upon completion of development, we conducted a
user study with undergraduate students to test the accessibility of the application before
comprehensive research could occur in pedagogical contexts.

1. Software Development

Prototype

Figure 1: Year one prototype of sonification platform

Initial focus
The alpha build produced the basic functions necessary for a sonification system inside Max.
The key features for this build were as follows:

1. Import any array data to be visualized in graph form. Find minimum and maximum
values of X and Y for pitch scaling.

2. Highlight a region of data to be looped for playback. Allow import/export of selected
regions.

3. Choose a preset which changes a variety of parameterizations.
4. Link a comment system to a selected region which can save data analysis alongside

sonification.
5. Allow user to access a few high level controls, such as tempo and volume.

Prototype Shortcomings
While basic functions were present, the resulting application lacked any robust features for
parameterization of data and contained numerous UI bugs. The alpha prototype used general
MIDI sounds within Max for timbral changes, which did not allow for the development of
specific electronic instruments with modifiable timbres and envelopes. As different data should
“sound different” based on its context, general MIDI was passable but did not allow for any low
level control of shaping tools such as an ADSR envelope, or EQ filtering. As the aim of design
was to avoid the need for any additional software, these features were left out of the prototype.

Sonification of Spectroscopy Data
12

The visualization element of the prototype was based off the ​[function] ​ object inside Max.
(Note: brackets indicate a Max object, which perform a specific function or process in the Max
programming environment).The purpose of ​[function]​ is meant for interaction with ADSR
envelopes or other parameter changes. While ​[function]​ is able to import and visualize
thousands of arrays, it is very taxing on the object when its general use is usually from four to
twenty points. This led to slow and occasionally inaccurate visualizations due to the scaling
behavior of ​[function]​.

Figure 2: A typical use of [function] within Max

The region system for looping sections of data uses the object​[dict]​, which allows for JSON
data formatting. Each region selection ties to an ​[rslider] ​, with its size and range tied to the
number of indexes inside ​[dict]​. Upon making a selection, a “replace” command would
rewrite indexes and data arrays within a new “sub-dictionary”, which stored that selection for
sonification. This proved to be cumbersome for making multiple selections of data and switching
between those selections in real time. The main purpose of this system was to preserve the
integrity of data by allowing for non-destructive edits inside ​[dict]​. ​(Appendix A)

A preset system recalls combinations of timbre, volume, duration, key, mode, tempo, and
rhythms, by the press of a button. These presets were not tied to any attribute one might associate
with data and were completely generic. The preset system was not tied to region selection,
meaning that all separate selections of data all changed to the chosen preset. This was
cumbersome for use, as it did not allow the user to tag a selected region with a preset.

Sonification of Spectroscopy Data
13

Figure 3: Prototype pitch filtering system

On selection, the minimum and maximum values for both X and Y send to a ​[scale] ​ object.
Data is then sonified by constraining pitch values to four octaves, and is then filtered to a key
and mode. While data may vary in small floats, filtering created redundancy as many arrays
became the same MIDI value upon playback. While a diatonic relationship for sonification was
the goal, filtering simply played back “one to one”, which created a sense of ear fatigue.
Important changes, or the lack of significant change, were not highlighted by the system.

Further inaccuracy to pitch mapping was present through constraining minimum and maximum
values to a selection, instead of the entire data set. While a “localized” scaling made for more
interesting music, it tended to exaggerate what would otherwise be insignificant value changes
when the data is analyzed as a whole.

Timing Issues
Best practice in Max programming involves limiting the number of ​[send]​ and ​[receive]
objects within a patch. The size of the patch and its bpatchers (modular subprograms)
necessitated the use of many send and receive objects to control parameterization from a high
level. Upon playback, tempo offset would occur due to Max’s internal clock. An initial fix for
this issue was to use the CPU’s soundcard and audio sampling as a timekeeper for playback. The
external object ​[el.samm~]​, created by Eric Lyon, offered an audio sample rate version of
Max’s​ [metro] ​ and ​[counter] ​ objects. This limited the amount of latency of different
elements within the patch. Since each voice (melody, harmony, drums) ran from its own
[metro] ​and ​[counter] ​, using send and receive objects was problematic as it is opaque what
priority Max assigns to data flow behavior. ​[el.samm~]​ is an older object (last updated in
2013), and became deprecated upon installing Max version 8.01. This created a need to
deconstruct each bpatcher and simplify rhythm generation for future use using standard Max
objects.

Sonification of Spectroscopy Data
14
Current Build

Figure 4: Overview of current build

The Sonify application completed in Spring ‘19 and has a variety of improvements, most notably
specialized processes for sonifying spectroscopy data. This section describes the development of
the current build.

Overview
The system uses many sub patchers, or small programs, inside Max to achieve sonification. The
process is outlined as follows:

Data Importation (Appendix A)
Spectra files are dragged and dropped onto the GUI for importation. These spectra files are
usually a list of arrays such as [181.32 32.95] in a standard text document. Text documents can
be dragged and dropped onto the application to import data. To help retain the structure of data
upon playback, the text file is first sent to a ​[coll]​, which then dumps out all data to be
recombined with an index number for each array. This new data is compiled into a ​[dict]
object, which allows for more organization through a JSON file format. Upon completion, the
[dict] ​ is scanned to find the minimum and maximum values for X (wavenumber) and Y
(absorption rate) within the entire data set. Min/max for X is used to trigger drum patterns tied to
wavenumber, while Y is used to scale pitches to an octave range, key, and mode in playback.
The final index is used to scale various UI objects within the patch to match the data, such as a
visualization in ​[plot~]​and different slider controls used for region selection, which must
have the same index range as the ​[dict]​ object to accuracy create new playback regions.

Sonification of Spectroscopy Data
15

Region Routing (Appendix B)
When all visualizations and UI objects have been configured with the correct values, selections
of data can be made. Selection works by using an ​[rslider] ​ UI object which collects a
minimum and maximum value as a list. This list is tied to the same index numbers associated
with each array of data. The list is saved as its own separate index inside a new ​[coll]​ object.
When playback is initiated, this ​[coll]​ object sends the minimum and maximum index
numbers as loop points to a ​[counter].

Playback (Appendix C)
Once the ​[counter]​ has been fed the appropriate start and end points, playback of data is
triggered by outputting data indexes according to a metronome timing. At each metronome
pulse, the index is combined with a “get” message and sent back to ​[dict]​, which then sends
the array out to a combination of melodic pitch filtering modules and chord/bass triggering
modules. Each array is pulled from ​[dict]​ and sonified in real time as it counts through the
selection of data. Upon reaching the end of the selection, the ​[counter] ​ will automatically
start over at the first index that was selected by the user. Rhythmic variation can be controlled
from “masks”, or ​[multislider] ​ objects used to effectively mute certain indexes from being
output. This feature is bypassed in the optimization for spectral data, where insignificant data
changes create silence (thereby making self-generated rhythms out of the data itself). However, a
user can toggle between these settings if they prefer to write in their own rhythms for another
purpose or context.

Another major change for this module from the alpha was decoupling tempo from presets.
Tempo has been noted in other studies (Poirier-Quinot 2016) as an important factor in a user’s
ability to identify data trends through sonification. Tempo was removed from the “Advanced
Mode” window and permanently placed in the main UI.

Filtering (Appendix D)
Pitch filtering occurs in real time as indexes are sent out from​ [dict] ​. The ​EAMIR SDK ​ and
its companion ​Modal Object Library ​developed by VJ Manzo were used to speed up
implementation of this process. Data is first scaled to an octave range, with a default range of
four octaves. The user can decrease or extend this range manually for more “resolution”, where a
larger octave range will provide more pitch changes during playback.

Keys and modes are triggered by the tag preset system or manually by the user in “Advanced
Mode”. The EAMIR objects save the stepwise relationship of a diatonic key and mode in another
[coll] ​ object, which is then combined with a “raw pitch” and octave designated from a
[scale] ​ object. The resulting data is output as a MIDI number. While “pure tones”, or
non-filtered data as a 1:1 mapping, have more fidelity, the filtering approach was implemented
with studies showing that “cognitive organizational overhead associated with atonal systems
makes them less well suited as carriers of program information” (Watkins 1985). After all, most
Western users are familiar with diatonic tonal systems in general. Additionally, a common issue
in sonification is ear fatigue which can arise from unpleasant or overly noisy sonifications of

Sonification of Spectroscopy Data
16
data. Pitch parameterization and pitch averaging in studies are inconclusive but preliminary
results show promise for reducing “noise” through diatonic relationships and pitch scaling in
general (Poirier-Quinot 2016).

As a melodic voice is filtered and sent to be synthesized to audio, it is also sent to another
EAMIR chord bpatcher which chooses diatonic chords based on each note received. The chord
filtering system may produce a 1:1 relationship between the melodic voice and accompaniment,
or can “look ahead” by reading arrays from ​[dict]​ in non sequentially. This feature was
implemented to increase the feeling of arrival between the relationship of melody and harmony.
Our common expectation of tension and release in Western music can be heightened by the
offsetting of a melodic voice from its accompaniment chords.The EAMIR chord object also has
affordances for fuzzy logic, where a single note can trigger a variety of related diatonic chords
that have some relationship to the base pitch. This feature is not currently implemented in
playback but can be easily set up from the main Max patch if a user is not working with the
standalone application.

In data specialization mode, chords are triggered by the pass of an apex of data to signify
molecular activity from a spectrometer reading. The threshold by which the system identifies a
peak can be manually changed by the user, but defaults to an increase and decrease by five scale
degrees in pitch. As a peak is passed, a ​[gate]​ object opens which triggers chords based on the
metronomic timing in the playback module. As a default, chords are triggered in 8th notes. An
interesting phenomena that occured from this implementation is that more significant apexes
from peaks tend to trigger more chords in general, allowing the user to hear how big the peak is
by listening to chordal activity. A more detailed description of this design is elaborated on in the
interview notes.

Lastly, the root note is pulled again from chord output and is dropped an octave as a bass voice.
The bass voice has its own unique rhythm per preset, and can be heard as an accompaniment
even if peaks have not been reached to trigger chords.

Synthesis and Digital Signal Processing (Appendix F)
Once all data has been assigned to MIDI values corresponding to an octave, key, and mode, it is
sent to a bpatcher that contains a polyphonic version of a BEAP oscillator. The BEAP package
within Max was used to shorten development time, as it contains fully functioning synthesizer
modules commonly used for sound design. A polyphonic version of the “bp.Oscillator” bpatcher
was created that affords common synthesizer parameter changes such as waveform, ADSR
envelope, filtering (lowpass, hipass, bandpass), and octave changes. To extend the timbral
possibilities, two oscillators were combined in the ​[poly~]​ patch with the same functionality,
allowing for combinations of waveforms. The bpatcher contains 30 custom presets which may be
used for any voice in playback, and are attached to each filtering module to create an audio
signal. More presets can be created by users using the bpatcher located in the Max source code.

Each bpatcher is sent to a ​[live.gain]​ object for localized volume control, and then sent to a
“pre-master” gain object that combines output into a single stereo signal. The premaster gain

Sonification of Spectroscopy Data
17
object connects to a reverb bpatcher based off the “yafr2” effect. Reverb can be bypassed
altogether by toggling a ​[gate~]​ object, or can be combined as a wet/dry signal. Lastly, the
pre-master signal is then sent to a“master” gain which controls volume of all signals
simultaneously during playback.

Drum sounds were created by mixing down samples from a classic Roland 606 drum machine
instrument in Ableton Live. These sounds are imported through the​[playlist~]​object, and
are triggered through rhythm masks tied to the playback module.

Presets and Tagging (Appendix G)
The Max ​[preset] ​ object stores all global changes to the system, which are swapped through
a tag system. Triggering a preset will change the key, mode, accompaniment rhythm, and timbres
of synthesizers. Each preset is tied to a tag associated with a data attribute, such as “expected
trend” or “developing”. Tag names can also be swapped to generic names from the Advanced
menu, which may be beneficial for educational settings or exploratory learning. The default data
presets were designed to represent data phenomena by tying common western tonal harmony
practices to parameters. For instance, the “Good Trend” tag triggers playback in C major, with a
steady rhythm, and more “pure” synthesizer presets using sine waves and triangle waves. A “Bad
Trend” tag will execute noisier waveforms created with square and sawtooth waves, a key and
modality of A minor, and more syncopated rhythms.

The point of mappings were as follows:

1. Allow an expert to describe data phenomena, and without musical knowledge, tie that
data phenomena to some musical phenomena.

2. Create distinct musical differences to differentiate selected regions for playback.
3. Increase accessibility by hiding more complex sound design and compositional processes

to increase immediacy in interacting with data.

In “Advanced Mode”, users can also create up to three custom presets by accessing the same
global controls used to make presets in the tag system. These can be exported and shared with
other users.

Tag Features for Future Development (Appendix H)
There is an abstraction within the tag system for logging multiple tags at once, and swapping
between presets according to a beat/bar timing system. In future development, tags may trigger
only a few parameters, allowing for the combination of attributes to represent data phenomena.
This feature was removed due to bugs in the ​[poly~]​ synthesizer patch, which may require a
more robust design to take full advantage of the process.

Comment System (Appendix I)
Used for logging observations of data, the comment system is tied to a region selection.
Comments are saved through a ​[textedit]​ object connected to another ​[coll]​. Comments
may be imported/exported as .txt files.

Sonification of Spectroscopy Data
18

Wavelength Mapping (Appendix J)
Scales X value (wavelength or wavenumber) from spectra data to trigger a series of drum
presets. These drum presets help to aurally indicate where absorption rates are occuring by three
distinct regions.

Advanced Mode
Shows all features that are hidden by default to be used in lower level modifications to data and
musical parameters. All UI objects to control aspects of sonification (pitch, timbre, rhythm) as
well as data behavior such as peak detection, are nested in advanced mode. The purpose of this
was to not overwhelm the user with too many options, but provide the support and capability to
customize aspects of the system. These features are important to future studies, where the system
may be optimized for other data types, or used in a combination with other systems to study best
practices in sonification design.

2. Interview Process

A series of interviews took place to obtain Professor Timko’s input on how to optimize the
Sonify system for spectrometer data by implementing domain-specific knowledge into the
sonification model. We held interviews in the second year of development between January and
April 2019. Before each interview, Professor Timko was able to use a current build of the
application for a brief period of 10-20 minutes. Each interview focused on the parameterization
of spectra phenomena, and UI design for ease of use in educational settings per his criteria. Due
to the nature of this iterative design process, results are partially embedded in each interview
section. A summary of all results resides in the results section. I asked Professor Timko the
guiding questions below, and took summative notes on his responses." Full note cards are
available in the Appendix.

Interview #1 (Appendix K)

We held an hour long interview where Professor Timko used the application for twenty minutes
before discussion, after which a series of questions regarding specializing the system towards
spectra data took place:

1. What activity determines the compounds of a molecule?
2. What is the phenomena of absorption rate during a spectrometer reading?
3. How can that absorption rate be better represented through music?
4. If X represents wavenumber in spectra, what parameterization could give the listener a

better understanding of where they are in the reading?

Timko’s responses to this questions are summarized as follows:

Both X (wavenumber) and Y (absorption rate) relate to molecular vibration. The bonds of the
molecule move in different directions and patterns based on when and where heat hits the

Sonification of Spectroscopy Data
19
molecule. The wavenumber, or where that vibration occurs in the molecule, is what determines
the composition of the molecule. For instance, activity from wavenumbers 0-1000 indicate a
fundamental, or "skeletal" bond. These do not move as freely as other bonds can. The peaks in
the readings should emphasize this, as chemists do not often pay attention to the individual
values in a reading. The peaks are the most important information for quickly identifying
molecular structure.

At this point in development, the application was converting every array into an audible pitch,
regardless of the significance of a change absorption rate. By scaling this data to diatonic pitch,
the listener would hear many repetitions of the same note if a large enough change had not
occured in absorption rate. This design adds unnecessary “noise” to the sonification. For peak
detection, the listener could potentially identify peaks by listening for increases and decreases in
pitches. This required far more active listening over time to get a sense of the molecular activity.
Timko suggested to deemphasize individual arrays, and to try to emphasize peaks to the listener.

Upon discussing the vibration of molecular structures, the case could be made that mapping pitch
to absorption rate is an appropriate mapping. An example in Oregon State University’s organic
chemistry resources visually maps spectra to vibrations within the molecule, describing it as
“Every line in an IR spectrum arises from activating a molecular vibration. In the "functional
group region" these are generally simple: only one bond, or a collection of two in concert. In the
"fingerprint region" these tend to be more complex combinations of bond vibrations.”

Figure 5: An example of vibrations by wavelength of Benzoic Acid via

https://www.science.oregonstate.edu/~gablek/CH335/Chapter10/IR_vibrations.htm

As a heat source hits the molecule, different sections of the molecule vibrate at various speeds.
The “functional group” denotes a structural, single bond or possibly two. This earlier region in
wavelength is the “skeleton” of the molecule, while the “fingerprint region” is more complex
combinations of bonds that make up the molecule. The analysis of X (wavelength) by Y
(absorption rate) indicates the potential makeup of the molecule.

From this information, I modified to the system to emphasize peaks. Using a simple operation in
Max, the system detects increases and decreases in values over time by a threshold value. To test

https://www.science.oregonstate.edu/~gablek/CH335/Chapter10/IR_vibrations.htm

Sonification of Spectroscopy Data
20
the system, a default value of 5 (up and down) indicates the passing of a peak in the data. The
threshold can be modified by the user to control the sonification behavior. As the apex of a peak
is passed, diatonic chords are triggered indicating activity. These chords are tied to the individual
array being sonified as a melodic voice to create an accompaniment.

Silence in music is a form of distance, and duration and magnitude of silence has an effect on our
experience of compositions. By tying peak detection to chord triggering, each data set also
becomes unique in its form -- no region of data will sound alike in chordal accompaniment. The
general sense of chordal activity can also indicate peak activity. The sonic events tied to peak
activity were considered acceptable upon a third test and interview.

Interview #2 (Appendix L)

The second interview focused on indicating wavelength/wavenumber values to the listener
through an aural signal, and simplifying the interface for use with students, who receive support
in a class or group setting with Professor Timko or another experienced chemist. The series of
questions for this interview were as follows:

1. Now that peak activity is aurally indicated, how can we also indicate to the listener the
location of this peak activity via wavelength/wavenumber values?

2. What affordances are useful to users, and which features can be hidden?
3. Are there bugs or behavior in the program that are problematic for use in an educational

setting or study?
4. Are the tag system presets varied for attributing musical properties to a selected region of

data?
5. Are the presets pleasing to listen to?
6. Are tag descriptors useful for describing data phenomena?

Our discussion is summarized as follows:

While the new sonification behavior helps to signify peak activity, it does not solve the issue of
indicating the location of a peak in terms of wavelength. Since we know that wavelength
corresponds to what type of bond is likely vibrating, and this is important to identifying
molecular composition, another sound source must be layered with chordal activity to indicate
location. Previous methods in an undergraduate prototype of a sonification system developed for
Professor Timko tied wavelength to MIDI velocity, or volume, which was problematic.

Volume for location is considered natural in a physical space using acoustics. We can use the
inverse square law to calculate that a sound loses 6dB amplitude as a distance is doubled
(Cooper, 2019). In a virtual system with no spatialization features, this mapping is too abstract.
Humans can detect a change of 1dB, or 12% of amplitude increase from a soundwave (Smith
1997). However, asking a listener to quantify amplitude from listening to music is difficult.
While we can generally assume a normal speaking voice to be around 50dB, and an airplane
passing overhead as 150dB, the discreet differences of volume are not apparent to even practiced

Sonification of Spectroscopy Data
21
musicians and sound engineers without signal detection from microphones and Fourier transform
processes.

Based on this discussion, I further explored other options for sonifying X (wavelength). We
considered two methods as alternatives to a volume parameterization. The first method was to tie
wavelength to the structural elements of a longer form composition as sections. Wavelength
values can be divided up into three key regions, from 0-1000, 1000-2000, and 2000-5000. These
wavelength regions could tie to traditional sections of composed works, as an “A section” or “B
section”. Parameterization would involve tying accompaniment chord progressions to X values,
so that 0-1000 becomes “A section” by having a particular progression that always occurs. The
“A section” could emphasize a standard tonic of a diatonic key, while the “B section” could
emphasize a subdominant, dominant, submediant, or other chord quality.

Our other approach was to leave chord accompaniment tied to Y, or absorption rate , and to use
drum patterns to signify a region of wavelength values. Drum patterns may be easier for a
non-musician to differentiate than diatonic chord progressions, which usually require some
formal training to identify. Altering the global tempo of playback could create confusion to the
listener, while subdividing drum rhythms over time may not. As an example, 0-1000 wavelength
becomes drum patterns that emphasize quarter notes, and then 1000-2000 emphasizes eighth
notes. The listener would then have an aural indication of what wavelength the peak activity is
occurring in without seeing any visualized data, and without understanding music theory.

I implemented the drum pattern approach using the major wavenumber regions identified by
Professor Timko (Appendix J). Drum pattern presets emphasize smaller subdivisions of rhythms
by region. 0-500 produces no drum patterns, 500-1000 emphasizes quarter notes, 1000-1500
introduces eighth notes, 1500-2000 further emphasizes eighth notes and introduces sixteenth
notes, and so forth.

We also discussed user affordances, and how the UI could better facilitate informal learning
settings. Timko proposed reintroducing parameters to the user such as a volume visualization
from ​[live.gain] ​ objects. We also wanted to de-emphasize the comment section which was
not the primary concern for engaging with the data sonification. Other UI changes such as a
feature that pauses playback when dragging and dropping a new file into the program prevented
crashes during testing.

While the tag presets sounded acceptable to Timko, he noted that the data descriptors may be
confusing to users in a STEM informal learning environment. We decided to include a toggle in
“Advanced Mode” which renames all tag descriptors to general musical preset names. This
allows Timko, or another user, to modify how users see the UI and tag descriptors as necessary.

Interview #3 (Appendix M)

The third interview followed up on desired features and bug fixes discussed previously, most
notably a wavelength parameter mapping. Questions then moved on to discussing potential

Sonification of Spectroscopy Data
22
future features to implement within the development window. The questions were proposed as
follows:

1. Is the parameter mapping of wavelength to drum rhythm changes interesting, and does it
help to indicate a general location within the data set?

2. If not, what changes could better portray wavelength values?
3. What other features, if any, would be useful to have?
4. How may the system be used beyond the scope of this initial research and development?

Discussion from Interview #3 is summarized as follows:

Timko found the drum percussion parameterization to be acceptable, but had concerns
specifically with the presets that were triggered. In my initial approach, the 0-500 region of
wavenumbers produced no percussion whatsoever. While this intended to make it obvious where
the user was hearing absorption rates, Timko found it would be boring for an extended period of
time to listen to, especially with younger students. We discussed how popular music has a
“build” and how foundational rhythms tend to elaborate over time. A simple change proposed
was to use a “four to the floor” kick drum sound as this foundational preset. Timko reiterated that
this 0-1000 wavelength region is foundational to the composition of molecular structure. Presets
were modified to reflect this need.

We further discussed how many drum presets should trigger by a wavelength region, noting that
too few presets was uninteresting, and too many could be confusing to the listener. Timko also
noted that the subdivision of the three main wavelength regions were arbitrary, and that more
subdivisions could provide a more informative and interesting listening. The three regions
previous proposed were then divided into eight regions covering every 250 wavenumbers up to
2000.

A following discussion on future improvements or “would be nice” features followed. The most
desired feature for Prof. Timko was the ability to export the sonification as a music file to share,
or to create longer form pieces of music using multiple data readings. What we decided was most
significant for future work was the ability to showcase sonifications as more than an analysis of a
single set of readings.

For example, we explored the options of longer pieces of music to illustrate the differences
between organic sugar compounds and artificial sweeteners. To promote education on the risks
of different sweeteners to public health, a musical piece could allow the audience to see and hear
the discrete differences between the spectra of these compounds. Since a product like splenda
(sucralose) is visually indistinguishable from another sugar, like fructose or glucose, a user could
use a multimodal representation to become aware of these differences. The ability to export
regions of each data sonification and string them together became apparent as a future
consideration for development. Particularly, sonifications using the same presets as a control
would allow the user to better hear the differences in molecular activity across multiple data sets
like splenda and fructose.

Sonification of Spectroscopy Data
23

A limitation in Max’s object library to “offline” export music files identified potential issues in
creating music files -- the ​[sfrecord~]​ object could record playback, but that recording must
occur in real time. The sonification could be bulk exported as a MIDI file, but it would not retain
any of the signal processing from the application. The application must be able to function as a
standalone with no additional software. Exporting only sections of data was the most typical use
of the system and supports the current architecture of the build. For future development, Prof.
Timko noted that being able to import multiple data sets for sonification simultaneously would
be a useful feature, but was outside the scope of development at the time. Notes on approaching
this feature are elaborated on in the discussion section.

Another difficulty in using the Sonify app is the ease of access to spectrometer readings. While
many scientific websites presented by Prof. Timko had many images of readings, it was not easy
to get text documents of arrays. Some websites required subscription fees to access this data. We
discussed adding a “baked in” set of spectra data for users to experiment with if they did not
have access to data either on the web, or directly taken from a spectrometer. Data collections
from graduate students at WPI who already create spectra for their research may enhance the
database in the future.

3. User Study

A pilot user study evaluated the application’s accessibility. This evaluation was important to
ascertain its viability in future tests in educational settings as per Prof. Timko’s use scenarios. 27
undergraduate students at WPI participated in the survey. Because this pilot focused on
accessibility, the survey did not ask for a user’s level of familiarity in music technology or
chemical engineering. Participation in the activity was optional to students, and all submissions
were anonymous.

Users tested the Sonify application in a music technology classroom on campus using iMac
computers and Sennheiser closed-ear headphones.. A Google form survey contained video
tutorials of each section of an embedded tutorial within the app. Upon finishing each video, users
execute the same procedure and then report on a scale the level of difficulty in doing so. Each
question is standardized as “Please rate your experience with..” followed by a linear scale input
from 1 to 5, with easy being 1 and 5 being difficult. Detailed analysis of the findings are included
in the results section.

Sonification of Spectroscopy Data
24

Results

The section will outline results based on each section of the methodology in three parts,
concluding with a final summary of all results.

1. Summary
2. Development & Interview Results
3. User Study Results

Summary

The intended goal of the methodology was to provide a system that sonifies spectroscopy data in
the Max programming environment, which could then be validated through testing with an
expert in chemical engineering at WPI, Associate Professor of Chemical Engineering Michael
Timko. The development process was extensively documented in the methodology and
appendix, while the source code was made available on a public facing WPI website at
http://sonify.wpi.edu​. This website contains all documentation, source code through a github
repository, and downloads for a standalone application on both Windows and Mac platforms.
Features requested through interviews were implemented in the iterative design process, which
optimized the system for spectroscopy sonification.

Following the development process, a pilot study provided initial feedback for future studies and
development by looking to survey the accessibility of the application. These data suggest the
application is ready for more comprehensive studies in the future, but could benefit from
improving UI design in some areas.

Development & Interview Results

The interview process led to many new specializations for the sonification of spectra. Most
notably, the system produces much less “noise”, as in unnecessary or distracting aural signifiers,
using a peak emphasis for absorption rate combined with the removal of pitch repetitions. As
noted earlier, peaks in spectra tend to indicate the vibration of bonds within molecules, and that
activity determines the makeup of the molecule. The triggering of chords upon reaching the apex
of a peak gives a unique voice and process to indicate this data phenomena. This feature
additionally creates unique sonifications through repetition removal, creating a sense of different
rhythms and periods of rests as the algorithm deemphasizes insignificant data changes.

Wavelength, or the X array of data fed into the system, maps to percussion rhythms as a result of
the interview process. Where X was previously tied to volume/amplitude in an undergraduate
version of a sonification platform at WPI, percussion provides a more aesthetically pleasing

http://sonify.wpi.edu/

Sonification of Spectroscopy Data
25
listening experience while still notifying the user of the location of absorption rate within a data
trend.

Resulting UI changes from interviews revolved around accessibility for younger STEM students
(around middle school age) as per Prof. Timko’s use case scenarios. The main intention was to
make the application “rugged”, so that it could not be easy broken, as well as accessible. Further
use cases with a younger audience is noted as a future study in the discussion. An outline of
accessibility changes are detailed as follows:

● Tutorial Window
Provides more detailed explanations on a pop-up window of how to use the application.

● Hint System
Explains each UI element on mouse-over.

● Advanced Mode
Hides all customization features including rhythmic and timbral changes, signal
processing effects, and spectroscopy specialization processes. Also allows the user to
change the name of tag attributes.

● Custom Presets
In Advanced, users can create their own presets and save them as a .json file. These
presets trigger timbre changes on synthesizers, key and modality, or even volume
settings.

● Playback
When pressing space bar, playback always starts at the beginning of a selected region.
Users can bypass this by holding shift before pressing spacebar to continue playback at
the playhead.

● Export as .wav
Toggles real-time recording of audio signal generated from sonification.

● Bug fixes
- ​Crashes occurred while importing new data during playback.
- Tags sometimes did not apply a preset change until pressed more than once.
- Removed “multitag” process to prevent volume spikes when changing presets.
- Fixed a bug where the visualization randomly moved the location marker when
reloading the application.
- Resolved an issue where entered comments were not tied to region selection.
- Decreased the size of the comment field and included volume attenuation visualization
in the basic display.
- Added a pulsing “loading” icon to inform users when data was finished being
compiled.
- Allowed window resizing in standalone application to fix display resolution differences
between systems.

Sonification of Spectroscopy Data
26

User Study Results

While 27 undergraduate students as a test group confines the test to a particular age group, it
proved sufficient for a pilot study. It is reasonable to expect that certain kinds of computer
workflow and interactions are familiar to most students, and thus, part of the ease of accessibility
may be biased in this age group. A follow-up study with a greater diversity of users may yield
different results. In summary, this initial pilot shows the program is accessible and ready for use
in more comprehensive studies, as well as educational settings as per Prof. Timko’s intended use.
Out of the 27 students who used the program, 50% or more found all of the procedures rated “1:
Easy”, except for advanced features, which 44% of students described as easy. The most
reassuring result was the design of the tagging system, which 74.1% of students found to be easy
to use. This design choice meant to simplify the workflow of sonifying data by removing or
hiding lower level musical parameterizations through presets. Advanced features scoring the
lowest in ease of use ties back to the tagging feature, in that hiding lower level functions may
create a more accessible and enjoyable experience with the application.

A few findings highlight potential UI improvements for the future, which are elaborated on in the
discussion and conclusion sections. An example of collected survey data is shown below. The
full collection of survey results are listed in appendix L.

Figure 6: Selecting data results. Reported on a scale from 1 “easy” to 5 “difficult”.

Sonification of Spectroscopy Data
27

Discussion and Outcomes

Development Discussion
The development process shows that sonification systems can be designed and modified to
accommodate a wide variety of data in a specialized manner through a modular system. While
expertise in lower level programming languages such as JavaScript may be beneficial for
implementing more robust systems, particularly web-based systems, the Max programming
environment is conducive to collaboration between musicians/creatives and the sciences.
Musicians are familiar with the visual object oriented design of Max that affords quick methods
to manipulate data into MIDI or audio signals. For professional use, it was expected and
confirmed that a chemical engineer could quickly use the program to sonify data. Each use in
every interview session for Prof. Timko’s interview enabled him to import data and create a
sonification in minutes.

While all sonification mappings (and visualizations for that matter) are abstractions, close
collaborations with experts in scientific fields of study can promote the building of multimodal
representations of data that are context specific in nature. These collaborations enable domain
knowledge transferral across disciplines, which can help to contextualize the nature of a
sonification system. Mappings were misguided following the first interview in the design
process, despite being grounded in music theory and sonification background research. After
reflection and dialogue with a chemical engineer, a better system emerged to meet both musical
and scientific needs. Collaboration is essential to improving sonifications in the future if they are
to reach a higher adoption rate in a variety of settings such as educational or professional.

It should be noted that the primary use case following this development would be in a
pedagogical context, such as a STEM module. The application could also be used to promote and
raise awareness about spectroscopy in education as a whole. The pilot study only accesses the
ease of use to which students are able to perform the processes required to create a sonification
in the application environment. While these studies were positive, it is important going forward
to test and further modify the system to obtain more cognition data on how sonification may
enhance chemistry education through multimodal representations of data. Multiple limitations in
this research, from project scope to time, made this kind of work unfeasible. In future research, I
recommend combining consultation from both the chemical engineering and school psychology
fields, which would greatly benefit coming to new understandings between sonifications and
pedagogy. This study and consultation would require more iterative development based on
results, so it may still require collaboration with an expert in sonification.

From a musical perspective, the current Sonify model comes close to western tonal tradition, and
further research and design would help answer if incorporating cadential structures would bias
the listening experience to a degree that the significance of data is lost. The program lacks
cadences we associate with harmonic structures – such as a half cadence ending on a dominant
chord that proceeds to another progression eventually returning to the tonic. The current model
either triggers a diatonic chord based on the mapping of a single array from the spectra, or offsets
this process by looking ahead in the data. While the interview process comes to conclusions that

Sonification of Spectroscopy Data
28
highlighting and emphasizing the peaks of absorption rates through chord triggering is sufficient
for spectra sonification overall, the user is simply listening for chordal activity. For an even more
aesthetically satisfying experience, the size and frequency of peaks could be tied to cadential
structures, so that a series of peaks trigger a plagal cadence, and another trigger a deceptive
cadence, and so on.

It is important to note that such a cadential structure may bias the listener’s interpretation of
peaks. A study comparing the differences between a harmonically neutral system and one with
clear cadential structures would be a worthy investigation, or more studies confirming or denying
that Western tonal systems (used with a Western audience) are more beneficial than atonal or
microtonal systems. There are studies on the comparison of sonification programs in the context
of aiding visually impaired users. Their findings suggest that visually impaired users
experiencing sonification are more likely to justify and understand parameterizations, where
sighted listeners found mappings to be more abstract. A visually impaired listener upon hearing a
mapping of frequency:dollars in the study “...explained her responses by noting that a coin
dropped on a table makes a high-pitched clink, whereas a roll of quarters makes a clunk, and a
bag of coins makes a lower-pitched thud, leading to the negative polarity for the frequency:
dollars mapping” (Walker & Mauney 2010). Interestingly, this mapping was the inverse in
frequency that the user justified. Such a finding further implies that the experience of
parameterizations vary across diverse groups, where the most obvious mapping may even be the
opposite of what users may wish to experience.

Tying musical schemata to molecular phenomena directly may prove difficult without a more
robust system to analyze data upon importation. The design focus of Sonify was to allow an
expert to “mark up” the data with tags, which trigger musical events. This bypasses the need for
the program to make its own decision on what parts of data to emphasize. Another interesting
future study would be allowing the system to suggest what parts of the data to highlight before a
user makes a manual selection of a region of data. This could be done through a similar process
as what currently triggers chords from peak activity in absorption rates, but would have to be
implemented in the beginning of the data processing chain upon importation. This importation
process is already taxing on the system in Max—it currently takes anywhere from three to ten
seconds to successfully analyze and map data—and this change would likely further slow down
the process.

Additionally, while outside the scope of this initial research, it is important to consider
comparing the Sonify application to other sonification systems, whether they are multi-purpose
or specialized to process spectra. By looking at the affordances and constraints of a variety of
systems, the field can garner a better understanding of the parameterization process and user
interaction from a HCI perspective. The initial pilot study gives some insight into how accessible
the Sonify system is, but further research is necessary for how that extends into more diverse
audiences, or other use case scenarios such as installations or an education curriculum.

For instance, the aforementioned the Data-To-Music API developed by Tsuchiya, Freeman, and
Lerner also considers harnessing the power of hierarchical musical frameworks through higher

Sonification of Spectroscopy Data
29
level control. The study similarly raises the question of how “organized sound” may impact the
transparency of data (Tsuchiya et.al 2015). Both Sonify and the Data-To-Music API take the
approach of creating “music structure models”, or models which control a variety of parameters
within a musical framework simultaneously. The Data-To-Music API models create abstractions
of these structures, which control units such as “...rhythmization, note dynamics, articulation,
pitch scale, chord voicing, timbre modulation, and so on.” Sonify has specialized processes for
spectra data, but follows a similar design aesthetic that the user/expert can create their own
parameterizations from a higher level process. In this way, the two programs are very similar in
this regard, however Sonify leverages specializations for spectroscopy data as well.

A tradeoff not mentioned in the method of design earlier was the decision for the application to
run independently by not requiring any additional music software to run. One of the drawbacks
of this design was having to develop synthesizers, sequencers, and other musical processes
directly in Max. These modules were sufficient to achieve an independent sonification platform,
but they are somewhat limited in the scope of sound design. It should not be assumed that any
user has access to specialized VSTs or DAW applications when they use the platform, and that a
goal of mass adoption is predicated on independent applications. However, VSTs offer many
more affordances for sound design, such as complex wavetable synthesis, more realistic
reverberation or spatialization, and sampling functionality, and do so more efficiently than
systems in Max without designing on a lower level using ​[Gen~]​ or working with Fourier
transform processes. A tradeoff may be to build future versions of the system to work directly
inside another DAW such as Ableton Live via Max for Live, or to offer plug-in support directly
within Max combined with MIDI and audio out. The application should offer both options to
remain independent of third party software, while allowing for more experimentation in sound
design.

Pilot Study Discussion

While results confirm the application is ready for more comprehensive studies in the sonification
field, some processes in the application may need adjustment to enhance accessibility. Possible
modifications based on findings are elaborated on below:

1. Selecting Data
59.3% of users found data selection to be easy, while 29.6% rated the activity a 2 as fairly
easy. 11% of users rated it a 3, as somewhat difficult. The original design for selection
did an automatic iteration of region selections. As the user clicks and drags to select a
new region, the application automatically would advance to the next region. Currently,
users must manually choose a second or third region from a drop-down menu. This
design choice was made to ensure that selections correctly entered a coll object in Max.
However, the previous model of automatic iterations may reduce the amount of steps
necessary to make selections for sonification, thereby simplifying the selection process.

Sonification of Spectroscopy Data
30

2. Saving and Loading
51.9% of users found this procedure to be easy. However, 33.9% rated a 2, 11.1% rated
3, and 3.7% rated it a 4 as fairly difficult. Due to development time constraints, a
consolidated file saving system was not created. While these results are largely positive,
the current design asks users to save different sections of the application as separate text
documents. Future development should include a system that saves all user settings (data
regions, presets, comments, tempo, etc) as a single file. This file should have a custom
extension (such as data.sonify) to avoid any confusion, and should save directly to the
application’s folder as a default.

3. Advanced

Figure 7: Advanced results

Initial findings show this is the weakest part of the application’s design, with more than a quarter
of users describing its use experience as somewhat difficult. One user during the study noted that
UI objects such as the multislider only respond when being clicked on the upper half of the
object’s window. Certain parameters, such as selecting new presets, are displayed using only
integers instead of drop down or scroll menus with detailed descriptions. Even lower level
controls such as using the BEAP polyphonic synthesizer module are hidden to the user, but may
be more beneficial to include for customization in the future.

Another issue to note with this finding is that the tutorial for this process merely explains what
controls are available to the user, and briefly demonstrates clicking them through the video
tutorial. The tutorial does not explain why or how you would want to use these lower level
controls. An in depth “advanced tutorial” may need to be included to better introduce
affordances to the user. In defense of the poorer score for this procedure, it strengthens the
argument to reduce interactivity to higher level control through the tagging system, which scored
very high on its ease of use.

Sonification of Spectroscopy Data
31

Conclusions

This research has resulted in the development of a system specialized in spectroscopy
sonification through collaboration with a chemical engineering expert. What is novel about this
system is its combination of the three common design paradigms, discrete-point,continuous, and
model-based sonification approaches. Users hear continuous data through the melodic voice,
they hear specific triggering of audio events with a discrete-point design, and users may choose
to impose different models upon the sonification as a whole through the tagging system. The
combination of these approaches is flexible and worthy of further investigation given that many
sonfication models are compartmentalized to one or two of these approaches.

The aforementioned absolute mapping of time to wavelength and pitch to absorption rate is
sufficient, but does not include any models for a musical or “organized” sonification in the way
Sonify or the Data-To-Music API does. What makes Sonify differ in in its approach is the
combination of specialized parameterization processes and higher level customization by the end
user. Sonify combines these “hard coded” parameter mappings (such as triggering chords on the
apex of peaks of absorption rates) that make a broad analysis possible with the “musical structure
models” of the Data-To-Music API approach, allowing a user to tag data and apply a variety of
processes to further describe the data phenomena in a musical way. While agnostic models that
use one-to-one mappings are useful, and perhaps preferable depending on the circumstances,
Sonify offers musical affordances at the user’s own discretion through the tagging system.

In a sense, the Sonify user dictates the level of specification in regards to the behaviors of
parameterization through higher level functions. As the visually impaired user noted for a
mapping of frequency to dollars, it made more sense to them to invert the pitch relationship so
that a larger sum of money was a lower pitch instead of a higher one. These relationships can be
altered with the press of a few buttons on the Sonify platform without impacting any of the more
specialized features used to denote absorption rates as a whole, or how to identify a wavelength
region. The only entirely “agnostic” design in Sonify is its timbre controls, which do not make
any attempt to symbolize tradition instruments. This feature, as it were, does not imply to the
user that what they are hearing is entirely traditional music, as they may be inclined to think if
the resulting sonification was comprised of orchestral strings and pianos.

This design meets its intended focus of being used as an educational tool for Prof. Mike Timko

Sonification of Spectroscopy Data
32
through its parameterization processes, which were aligned to spectra phenomena. Its current
state enables further research in developing its use in a broader distribution, or modifications to
the source code to parameterize other forms of data. For example, the Sonify system could be
used to create real-time scores in a notation format from the same data input for a musical
performance following some modifications to the source code. Additionally, the pilot study
reinforces that the application is currently accessible and easy to use, however, further research
with a more diverse user base is needed to test its viability with younger audiences if it is to be
used in a STEM education context.

While time constraints hindered the development of a fully modular system, the current work is
ready to be modularized and distributed as a Max “sonification toolkit” package. This package
would aid in future sonification development. A full breakdown of potential future directions for
the project are elaborated on in the following section.

Future Directions

Most importantly, while all specializations to sonify spectra were created in collaboration with a
chemical engineering expert, cognitive studies could confirm or deny if these specializations
impact the recognition of data phenomena in regards to pitch filtering, peak emphasis, and
wavenumber location through percussive rhythms. It is likely that these specializations will need
modifications as more comprehensive user studies that focus on how parameterization affects
understanding are tested. However, for the current purposes of the application, these features are
sufficient for their intended use in Professor Timko’s work.

There were also suggested features during the interview process that could not be completed due
to time constraints. For self-directed or informal learning environments, it was noted in the
interviews that the focus of study may phase between spectroscopy concepts and data
exploration to music and composition, especially with middle school aged students. The current
platform behaves more like a tool, but it can easily be modified to emphasize musical concepts if
necessary. Many specialized features that were implemented for spectra sonification already
have toggles that can deactivate certain parameterizations. For future work, more
parameterizations should have this toggle as more features are introduced. This would allow a
user to tailor the sonification system to their needs.

The most compelling feature to add in the future was agreed to be the ability to import multiple
data sets into the program simultaneously. The use case noted in the aforementioned third
interview describes a composition that sonifies many kinds of sugars to teach about the impact of
sugar consumption and the dangers of synthetic sugars. Currently this concept would have to be
manually pieced together in a separate digital audio workstation. Expanding the current
sonification model to handle multiple data sets would require duplicating many of the modules
already available within the system. However, a better GUI for the user would be necessary to
interact with that much data, as the current base Max objects used cannot support visualizing and
selecting multiple data sets.

Sonification of Spectroscopy Data
33

Many processes would benefit from custom UI designs and websocket implementation. For
example, a faster and more accurate data visualization to accompany sonification is needed for
future development. The [JSUI] object, combined with Node.js, may help facilitate this need.
Due to the time restrictions in this project, a custom UI was not created. Conversely, using
standard Max objects guarantees compatibility across all development platforms and versions of
Max, which avoids bugs in building stand alone applications as well as installing multiple
custom packages to program.

Additionally, the ability to pull spectra data directly from a web server would make exploration
of data more accessible to users by removing the need to host files locally. Spectroscopy data
may not be accessible to end users, so either an API function or a server which hosts data would
enhance the experience for novice users.“Node for Max” introduced in Max version 8 would
likely assist in creating these features by assisting in porting Node.js code directly in Max.

Max also affords many ways to modularize programs into bpatchers, which are self-contained
patches that can be quickly added to projects to facilitate development. Due to timing issues with
Max’s internal clock, many bpatchers were deconsolidated back into the main patch for Sonify.
However, most of these issues can be avoided in future builds by avoiding send and receive
objects. Ideally, the main components of the patch should be offered as separate bpatchers for
other developers in the future. For example, the entire data processing abstraction could offer a
quick way to always import data arrays and scale them to MIDI values. These bpatchers could be
offered as a package via Max’s package manager feature. Users could then combine sections of
the Sonify platform to fit their own sonification needs in Max, thereby potentially decreasing
development time on other projects.

For research, collaboration with the manufacturers of spectrometers could result in a direct
connection between the hardware and Max, allowing for immediate data importation upon
producing spectra. The immediacy of this outcome would greatly aid sonification research in the
future, and provide a compelling installation piece. This kind of work would likely also require
either an existing chemistry program who has access to spectrometers, or a grant involving a
specialized development by a spectrometer manufacturer, to implement such a design.

Appendix

Includes more detailed explanations of each section of the patch and the processes to achieve
sonification. These notes may be useful to other developers who may wish to modify the source
code of the project or implement similar solutions in their own work.

Sonification of Spectroscopy Data
34

Appendix A: [Dict] and Data Processing

Figure 8: Data processing sub-patch

This abstraction takes any text file of data arrays and processes it for sonification. Files are
imported through a [dropfile] object, which triggers a full clear of all objects that store data in the
patch before loading in the new file. The data is then sent to the [text] object, where it is dumped
back out alongside a [counter] object. The [counter] is used to add an index to each array, since
[coll] requires an index to store data correctly. Once indexes have been added to all arrays, a
dump message is sent to coll alongside a “pull_from_coll” message, which imports that data into
[dict] to be formatted as a .JSON file. The dump from coll sends all data out to an [unpack] to
separate X and Y values, which are then grouped together again using the [thresh] object.

Sonification of Spectroscopy Data
35
That list is sent to [minimum] and [maximum] for scaling both X and Y respectively. The
minimum and maximum values of X and Y are then remotely sent out for pitch filtering to scale
the range of the entire data set to a designated octave range. The final index of the [coll] is used
to set UI objects used for selection and visualization by the [rslider] object, and [plot~]. Finally,
upon making a selection, the “receive melodic_beat_number” is combined with a “get” message
back to [dict] for real time sonification. As each index is output from the metronome timing in
the rhythm generator, it is fed out the patch for playback.

Appendix B: Region Routing

Figure 9: Region subpatch

The original purpose of this abstraction was to take a selected region and find its minimum and
maximum value to create a localized sonification. This feature is not currently in use. After
testing, it was decided that using the minimum and maximum values of the entire data set was a
more accurate representation of data phenomena when filtered to pitches. The old code has been
left in for future development, where a different kind of data may need a more localized
approach.

The main feature of this abstraction is to store selections from the [rslider] object, which outputs
a list of the starting and ending indexes. This list is used to set a [counter] object in the rhythm
generator, which pulls indexes based on the tempo of a [metro] object. Each list stored in [coll
region_selection] also contains the region number the user has selected, so that different
selections of data can be recalled if the user has made more than one selection. Finally, the user
can write these selections to a text document if they wish to share their selections of a data set.

Sonification of Spectroscopy Data
36
Appendix C: Playback

Figure 10: Playback module

This section of the patch handles indexes for real time playback. After a selection is made, the
[coll] from the region routing section sends out a list, which is received by [receive
min_measure] and [receive max_measure]. These are used to set a [counter] to loop at the correct
place in the data set. When the uses initiates playback, a [metro] object sends bangs into
[transport], which outputs beats and bars based on a tempo. The subdivision of a tempo can be
set by the developer or user to change playback behavior.

As the counter is banged by another [metro] object, it outputs a value which is used to pull a
single array back from [dict]. Those arrays are then sent out to the patch for pitch filtering,
rhythmic changes, and finally synthesis.

Additionally, there are features to control behavior based on a number of bars that have occurred
during playback. These can be sent to change parameters such as key/mode, preset behavior, or

Sonification of Spectroscopy Data
37
rhythmic changes over time. It is currently not implemented in the final build, but may be useful
to other developers or users in the future.

Filtering (Appendix D)

Figure 11: [p mel_filter] abstraction

As arrays of data are sent back out of [dict] from the metronome timer, they are remotely sent to
this abstraction using the send and receive objects. Each array is scaled to an octave range of five
octaves by default. We use Y, or “absorption rate” for spectra as our melodic voice for
sonification. We use a combination of division and modulo to derive the pitch class and octave
register, which are decoupled temporarily from the initial pitch value. The scaled data is then
filtered again through the use of Modal Object Library objects developed by VJ Manzo. It should

Sonification of Spectroscopy Data
38
be noted that other developers will need to install the EAMIR package from Max’s package
manager to work on the program. The [coll my_coll] stores a key and mode as a simple stepwise
relationship that converts non diatonic pitches to fit. The octave register is then recombined with
the filtered pitch to be sent out for audio synthesis. The gate at the bottom of the patch
determines if repetitions of pitches will be output or not, which can be toggled by a user in
presentation mode. By default, repetitions are avoided for playback.

Figure 12: Chord/Harmonic Filtering

Once an X or Y value has been filtered to a diatonic pitch, it is remotely sent to a series of
chordal voicing objects from the Modal Object Library. A subpatcher [p futureintervals] will pull
values behind or ahead the current melodic pitch for different harmonic progressions. The pitch
is sent to create a diatonic chord of the same key and mode, and can also be modified for
different inversions or voicings such as a 7th chord. The resulting chord is sent to a [poly~] for
audio synthesis. The root of the diatonic chord is also stripped and sent to a separate [poly~] as a
bass voice.

Sonification of Spectroscopy Data
39

Figure 13: Peak Detection

To emphasize to a user that a peak in the data has been passed, a peak detection process was
created for analyzing spectra data. This feature can be toggled on and off in the higher level
patch. Peak analysis receives a filtered pitch, subtracts the pitch against itself, and looks to see if
it is less than zero. The output is sent to a toggle to visualize that a data trend is decreasing or
increasing. A [select] object sends a bang when it receives 1 for decrease, or 0 for increase. Each
bang is sent to [counter] objects to create a threshold for when a peak should be identified. At the
default setting of 5, there must be an increase/decrease of 5 pitches within the data to signify a
peak. A [change] object then looks for a zero to nonzero transition, and opens a gate object to
allow chords to be triggered by a rhythm mask. Chords are by default triggered in 8th notes, but
can be manually changed by a user or developer depending on the data being input.

All voices are connected to “rhythm masks”, which are [multislider] objects used as a GUI to
draw in different rhythms. As [transport] sends bangs, a “fetch $1” message pulls an individual
slider value ber peat, by subdivision. A value of 0 or 1 is sent out of the bottom right of
[multislider] to indicate if a pitch or drum sound triggers or is muted. [sel 1] looks for values of 1
and sends a bang to the corresponding filtering objects.

Sonification of Spectroscopy Data
40

Synthesis and Digital Signal Processing (Appendix F)

Once data has been converted to MIDI values, it is sent to a bpatcher containing a polyphonic
version of the simple BEAP oscillator patch, which uses two oscillators instead of one for more
sound design possibilities.

Figure 13: Synth Bpatcher

The bpatcher allows for top level control of synthesizer parameters, including two waveform
selectors, an ADSR envelope, octave control for each oscillator, and a filter for shaping.

Sonification of Spectroscopy Data
41

Figure 14: Overview of Bpatcher

The bpatcher contains a [poly~] patch that creates multiple instances of a BEAP oscillator. It
takes MIDI in its inlet, and will target the voices of [poly~] with parameter changes like the
ADSR curve. It also saves presets for callback.

Sonification of Spectroscopy Data
42

Figure 15: [poly~] overview

The [poly~] patch uses BEAP modules, which were chosen to decrease development time.
BEAP patchers are used to simulate classic analog synthesizer models, and were developed to
teach concepts like control voltage as an input. As the sonification system uses MIDI, a few
modifications were used to implement BEAP.

[makenote] creates a MIDI note value and velocity to drive the synthesizer, but these values are
unpacked upon arrival and scaled. The MIDI pitch value is scaled to the control voltage range of
BEAP’s oscillator, which is -5. to 5. volts. The velocity value is scaled to the same range from 0
127 to -5. and 5., but it is sent to drive a ADSR module to control note triggering. Both
oscillators and the ADSR are connected to a VCA module (voltage controlled amplifier), and
sent out of the [poly~] patch through its two outlets as a stereo signal.

Sonification of Spectroscopy Data
43
BEAP patch parameters are hidden by default, in that they cannot be altered directly by other UI
objects such as a slider or dial in Max. To work around this issue, the [pattrforward] object is
used to directly access each object’s parameters. Each parameter uses different values such as
millisecond timings or percentage values, so each dial has been converted in the inspector
options to output the appropriate value type. More parameters can be easily accessed by creating
more [pattrforward] objects, which can be found by looking at View > Parameters from the Max
window bar.

Presets and Tagging (Appendix G)

Figure 16: Tagging system

Uses a variety of [textbutton] objects to set preset changes to many musical parameters. Each
button can be renamed by sending any symbol to [attrui]. This abstraction joins the region
selection from the user with a chosen preset and saves it to be recalled for playback. As such,
when a user swaps between their regions of data to be sonified, a tag/preset is saved onto that
selection automatically.

Sonification of Spectroscopy Data
44
Advanced Tag System

One removed feature was a more robust tag system that could identify when multiple tags were
selected and trigger different events. This was removed due to the synthesizer’s behavior when
swapping between presets, which triggered loud volume spikes. Additionally, this system could
be used to isolate parameters triggered by each tag, where combinations of them produce unique
results.

Figure 17: Advanced tagging system

In this abstraction, the [textbutton] must be set to toggle mode for input. The output of 0 or 1 is
converted to -1 and 1 respectively, and sent to an [accum] object which accumulates input
following a bang. If a single tag is selected, a gate object sends the preset value directly out for a
parameter change. If multiple tags are selected, the gate is triggered to swap between presets
over a length of time based on the [transport] object. The [pak] object collects a unique number
assigned to each tag as multiple tags are selected, removes any values of zero, and then collects
them into a [zl len] object to find the length of the list. This length determines how many tags
have been selected, and thus, how many must be swapped around by a [transport] trigger over
time, or if a single tag was selected and must be immediately sent out. The [zl reg] object stores
lists and outputs them with a bang, so the list is stored twice and sent to different gates
depending on its length.

Sonification of Spectroscopy Data
45

Comment System (Appendix I)

Figure 18: Comment system

Receives a selected region as an index and combines with the output of a [textedit] object to save
in a [coll]. Text is entered via pressing the enter key or pressing “save comment”, which then
bangs a [zl reg] that stores the list of text symbols and the index. Comments can then be
imported or exported through the [coll] object.

Sonification of Spectroscopy Data
46

Wavelength Mapping (Appendix J)

Figure 19: Wavelength mapping module

Receives X values from [dict] and looks for activity using [split] within three major regions.
From 0 to 500 wavelength, no drum patterns occur. As the wavelength increases, drum patterns
emphasize smaller subdivisions by triggering a preset object. These presets control each voice in
the drum module, such as the kick drum and snare.

Interview Notes (Appendix K)

Short notes were taken in Trello during each interview, which were then expanded on post
meeting to describe the next steps in the development process. An example of one of the meeting
cards is shown below:

Sonification of Spectroscopy Data
47

Figure 20: Interview note

Sonification of Spectroscopy Data
48
Survey Results (Appendix L)

Results of each prompt are listed below in the order they appear in the survey sequentially.

Prompt #1:

Prompt #2:

Sonification of Spectroscopy Data
49
Prompt #3:

Prompt #4:

Sonification of Spectroscopy Data
50
Prompt #5:

Prompt #6:

Sonification of Spectroscopy Data
51

References

Barrass, S. (2011). The aesthetic turn in sonification towards a social and cultural medium.
AI & SOCIETY​, ​27​(2), 177-181. doi: 10.1007/s00146-011-0335-5

Barrass, S., & Kramer, G. (1999). Using sonification. ​Multimedia Systems​, ​7​(1), 23-31. doi:
10.1007/s005300050108

Ballora, M., Roman, C., Pockalny, R., & Wishner, K. (2018). Sonification and Science
Pedagogy: Preliminary Experiences and Assessments of Earth Science Data Presented
in an Undergraduate General Education Course. ​Proceedings of the 24th International
Conference on Auditory Display - ICAD 2018,​213-218. doi:10.21785/icad2018.004

Brown, L. M., & Brewster, S. A. (2003). Drawing by ear: Interpreting sonified line graphs.
9th International Conference on Auditory Display (ICAD),​152-156.

Brown, A., & Sorensen, A. (2009). Integrating Creative Practice and Research in the Digital
Media Arts. In Smith H. & Dean R. (Authors), ​Practice-led Research, Research-led
Practice in the Creative Arts​ (pp. 153-165). Edinburgh: Edinburgh University Press.
Retrieved from ​http://www.jstor.org/stable/10.3366/j.ctt1g0b594.10

Campo, A. (2007). Toward a Data Sonification Design Space Map. ​The 13th International
Conference on Auditory Display,​342-347. Retrieved April 23, 2019.

Childs, E. (2018). Achorripsis: A sonification of probability distributions. Retrieved April
13, 2019, from ​https://smartech.gatech.edu/handle/1853/51332

Cohen, J. (1993). “Kirk here:”. ​INTERACT 93 and CHI 93 Conference Companion on
Human Factors in Computing Systems - CHI 93,​63-64. doi:10.1145/259964.260073

Cooper, I. (n.d.). BEHAVIOUR OF WAVES. Retrieved April 13, 2019, from
http://www.physics.usyd.edu.au/teach_res/hsp/sp/mod31/m31_intensity.htm

Gaver, W. W., Smith, R. B., & O'Shea, T. (1992). Effective sounds in complex systems:
The Arkola simulation. ​Applied Ergonomics,23​(6), 429.
doi:10.1016/0003-6870(92)90399-g

 Hermann, T., Hunt, A., & Neuhoff, (2011). Perception, Cognition and Action in Auditory
Displays, Neuhoff, J. The sonification handbook. (pp. 63-81). Logos Verlag, Berlin

 Hermann, T., Hunt, A., & Neuhoff, (2011). Sonification Design and Aesthetics, Barrass, S.
& Vickers, P., The sonification handbook. (pp. 145-164). Logos Verlag, Berlin

 Hermann, T., Hunt, A., & Neuhoff, (2011). Interactive Sonification, Hunt, A. & Hermann,
T., The sonification handbook. (pp. 273-296). Logos Verlag, Berlin

http://www.jstor.org/stable/10.3366/j.ctt1g0b594.10
https://smartech.gatech.edu/handle/1853/51332
http://www.physics.usyd.edu.au/teach_res/hsp/sp/mod31/m31_intensity.htm

Sonification of Spectroscopy Data
52

Infrared Spectroscopy: IR Energy Activates Molecular Vibrations. (2014, April 29).
Retrieved April 15, 2019, from
https://www.science.oregonstate.edu/~gablek/CH335/Chapter10/IR_vibrations.htm

Kramer, G., Walker, B., Bonebright, T., Cook, P., Flowers, J., Miner, N., & Neuhoff, J.
(2019). Sonification Report: Status of the Field and Research Agenda. Retrieved from
http://digitalcommons.unl.edu/psychfacpub/444

Manzo, V. (2019). EAMIR || eamir.org. Retrieved April 13, 2019, from
http://www.eamir.org/

Martini, J., Hermann, T., Anselmetti, D., & Ritter, H. (2004). Interactive Sonification for
exploring Single Molecule Properties with AFM based Force Spectroscopy.
PROCEEDINGS OF THE INT. WORKSHOP ON INTERACTIVE SONIFICATION,​1-6.
Retrieved April 15, 2019.

Mynatt, E. D. (1994). Designing with auditory icons. ​Conference Companion on Human
Factors in Computing Systems - CHI 94,​109-119. doi:10.1145/259963.260483

Poirier-Quinot, D., Parseihian, G., & Katz, B. (2017). Comparative study on the effect of
Parameter Mapping Sonification on perceived instabilities, efficiency, and accuracy in
real-time interactive exploration of noisy data streams. ​Displays​, ​47​, 2-11. doi:
10.1016/j.displa.2016.05.001

Pereira, F., Ponte-E-Sousa, J. C., Fartaria, R. P., Bonifácio, V. D., Mata, P.,
Aires-De-Sousa, J., & Lobo, A. M. (2013). Sonified Infrared Spectra and Their
Interpretation by Blind and Visually Impaired Students. ​Journal of Chemical
Education,90​(8), 1028-1031. doi:10.1021/ed4000124

Skains, R. (2018). Creative Practice as Research: Discourse on Methodology. ​Media
Practice And Education​, ​19​(1), 82-97. doi: 10.1080/14682753.2017.1362175

 Sinclair, P. AI & Soc (2012) 27: 173. Retrieved April 17, 2019, from
 ​https://doi.org/10.1007/s00146-011-0346-2

 Snyder, R. (2001). ​Music and Memory​. Cambridge: Bradford Books.

The Scientist and Engineer's Guide to Digital Signal Processing. (2019). Retrieved April 13,
2019, from ​https://dspguide.com/

Tsuchiya, T., Freeman, J., & Lerner, L. (2015). DATA-TO-MUSIC API: REAL-TIME
DATA-AGNOSTIC SONIFICATION WITH MUSICAL STRUCTURE MODELS.
The 21st International Conference on Auditory Display, ​244-251. Retrieved April 15,
2019.

Vickers, P., Worrall, D., & So, R. (2017). Special Issue on Sonification. ​Displays​, ​47​, 1.
doi: 10.1016/j.displa.2016.12.001

https://doi.org/10.1007/s00146-011-0346-2
https://dspguide.com/

Sonification of Spectroscopy Data
53

Walker, B. N., & Mauney, L. M. (2010). Universal Design of Auditory Graphs. ​ACM
Transactions on Accessible Computing,2​(3), 1-16. doi:10.1145/1714458.1714459

Xenakis, I. (2013). Pithoprakta. Retrieved April 18, 2019, from
http://www.iannis-xenakis.org/xen/works/genres/work_11.html

