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ACCURATE IDENTIFICATION OF PAVEMENT MATERIALS SUSCEPTIBLE TO 

MOISTURE DAMAGE WITH ADVANCED TEST METHODS AND MACHINE 

LEARNING TECHNIQUES 

 

Abstract 

 

Moisture induced damage in Hot Mix Asphalt (HMA) mixture is a prevalent problem all 

over the world. It is one of the leading causes of premature failures in asphalt pavements and a 

significant concern to the paving industry. It is, therefore, necessary to identify mixes that are 

susceptible to moisture damage during the mix design process. Extensive research has been carried 

out by several researchers over the years to develop a reliable and practical laboratory test 

procedure that can simulate field moisture damage conditions and that can make predictions that 

are likely to correlate to field performance. However, it is inferred from literature that no single 

laboratory test method can accurately predict the moisture induced damage performance HMA 

mixtures.  

 

The objectives of the present study are to: Develop a framework that considers different 

test methods to predict the moisture induced damage of Hot Mix Asphalt (HMA); Develop a  

suitable machine learning method to achieve significantly high accuracy in predicting the moisture 

damage potential of Hot Mix Asphalt (HMA); and  develop a tool (App) for use by practicing 

engineers to identify HMA mixes that are likely to be susceptible to moisture induced damage.  

 

A total of 35 in-plant produced asphalt mixtures with known field performance were 

sampled, and compacted in the laboratory, and the compacted samples were subjected to 

mechanical tests before and after moisture conditioning with the Moisture Induced Stress Tester 

(MiST). In addition, the effluent from the MiST was checked for Dissolved Organic Carbon 

(DOC) content and gradation of dislodged aggregates. Fourier-Transform Infrared Spectroscopy 

(FTIR) analysis of the asphalt extracted from HMA samples was performed to observe changes in 

the functional groups before and after the MiST test.  
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Statistical analysis showed that seismic modulus and indirect tensile strength were effective 

in distinguishing poor-performing mixes from the well-performing mixes. Principal component 

analysis was conducted on the test data, and a reduced set of dimensions that were capable of 

explaining significant variance in the data was identified. The significant test properties were used 

to develop machine-learning models with two supervised classification approaches. The k-nearest 

neighbor model was found to be very accurate in differentiating the mixes. The use of MiST 

conditioning, specified physical tests, and machine learning methods are recommended for the 

identification of moisture-susceptible hot mix asphalt. 

 

Contribution of this Work 

 

The major contribution of this work is the creation of a framework or a system that 

combines appropriate test methods and suitable machine learning models to achieve high accuracy 

(84%) in predicting the moisture damage potential of Hot Mix Asphalt (HMA). A secondary 

contribution is that this study, for the first time, combines the principles of Artificial Intelligence 

(AI), in the form of Machine Learning (ML), with the field of pavement performance, specifically 

for the evaluation of mixes that are subjected to moisture damage. Finally, the work provides users 

with a highly accurate ML model as well as an app, which can be used and further improved. 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Dedication 

I dedicate this dissertation to my parents who were the source of inspiration, 

guidance and support that enabled me to carry out my research for the Master's and 

Doctoral programs at the prestigious Worcester Polytechnic Institute. I also 

dedicate the thesis to my advisors Professor Rajib Mallick and Dr. Aaron Sakulich 

for their constant guidance, encouragement and support that shaped my 

professional competency in the field of pavement engineering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

ACKNOWLEDGEMENT 

 

I would like to express my sincerest gratitude to my advisor Prof. Rajib. B. Mallick, for having given 

me the opportunity to pursue Masters and Doctoral research programs at Worcester Polytechnic 

Institute. I also thank him and the Civil and Environmental Engineering (CEE) Department for the 

generous financial support through Research Assistantship and Teaching Assistantship during the 

entire study period, and also for the support to participate in international conferences organized by the 

Transportation Research Board (TRB) and the American Society of Civil Engineering (ASCE).  

 

Dr. Aaron Sakulich, my principal advisor, has been a great source of inspiration during the period of 

my study. He introduced me to the new area of Phase Change Materials. His constant advice, guidance, 

and support enabled me to understand the properties of phase change materials. Dr. Sakulich's advice 

from time to time on the characterization of pavement materials created a lot of interest and enthusiasm 

to pursue research in pavement material characterization. I thankfully acknowledge Dr. Sakulich for 

all his support, guidance, and advice that shaped me to join the industry with the needed professional 

knowledge experience and skills.  

  

I would like to thank my dissertation committee members – Prof. Mingjiang Tao, Prof. Xiangnan Kong 

for their support and guidance from time to time and for monitoring the research to meet the standards 

of the Ph.D. dissertation. I would also like to thank various researchers – Prof. Soheil Nazarian (Texas-

El Paso) and Prof. Paul Mathisen (WPI) for their suggestions and contributions at different stages of 

this research work. I would like to thank the Maine Department of Transportation for funding the 

project and providing the material, especially the valuable field mixes for the research work. My 

sincere thanks go to my lab managers – Mr. Don Pellegrino and Mr. Russ Lang, who were very 

resourceful in the laboratory. I thank the former department head Prof. Tahar El-Korchi for all his 

efficient coordination to run the experiments smoothly and for his support for my teaching assistantship 

(TA). I would also thank all of my TA course professors, Prof. John R Hall, Prof. Paul P. Mathisen, 

and Prof. Guillermo F. Salazar for their kind support. I would also thank the department office staff - 

Marylou Horanzy and Cynthia Bergeron, for their extensive help in all the works related to the office.  

  

I thank my fellow students and friends – Nivedya Madankara Kottayi, Uma Maheswar Arepalli, James 

Vorosmarti, Austen E. Crawford, Wenwen Yao, Ryan Worsman, Mohammed Salhi, Shiva Prasad, and 

Sravan Katepalli for their help and support at different stages of this long journey.  



v 
 

  

I would like to thank my parents, caring brother, Ramanan Veeraragavan and my loving wife, Aarthi 

Ram Kumar for all their love, care, and support. I thank all my friends and relatives for their 

encouragement and support throughout the period of my study at WPI. 

 

 

 

 

 

 

 



vi 
 

TABLE OF CONTENTS 

 

1.0  INTRODUCTION 1 

 1.1 Importance of Studies on Moisture Induced Damage to HMA 1 

 1.2 Objectives 2 

 1.3 Scope of the Present Study 3 

2.0  LITERATURE REVIEW 4 

 2.1 Importance of Research on Moisture Induced Damage in HMA 4 

 2.2 Aggregate Properties 5 

 2.3 Binder Properties 9 

 2.4 Surface Energy Theory 10 

 2.5 Mixture Properties 12 

 2.6 Modes of Moisture Transport in Asphalt Mixtures 13 

 2.7 Test Methods 14 

 2.8 Application of Fibers in Hot Mix Asphalt 18 

 2.9 Machine Learning  19 

 2.10 Machine Learning Algorithm (Model) Evaluation Process 21 

 2.11 Conclusions from Literature Review 24 

3.0  RESEARCH METHODOLOGY AND LABORATORY 

INVESTIGATIONS 

25 

 3.1 Materials and Methodology 25 

 3.2 Moisture Conditioning 25 

 3.3 Tests for Characterization of Moisture Conditioned Samples 27 

  3.3.1 Indirect Tensile Strength (ITS) 27 

  3.3.2 Ultrasonic Pulse Velocity (UPV) 27 

  3.3.3 Semi-Circular Bending (SCB) 28 

 3.4 Effluent Analysis 31 

 3.5 Image Analysis 31 

 3.6 Fourier Transform-Infrared Spectroscopy (FTIR) 33 

4.0  TEST RESULTS AND ANALYSIS 36 

 4.1 Statistical Analysis 36 



vii 
 

 4.2 Discussions 40 

 4.3 FTIR Data Average Values and Discussions  40 

 4.4 Statistical Analysis and Results Including FTIR Data 43 

 4.5 Use of Radar Chart to Evaluate Multiple Criteria Based on Multiple 

Test Properties 

45 

5.0  APPLICATION OF MACHINE LEARNING IN MOISTURE 

INDUCED DAMAGE PREDICTION IN HOT MIX ASPHALT 

47 

 5.1 Study Approach 47 

 5.2 Results of ML Analysis 49 

  5.2.1 Correlation Analysis 49 

 5.3 Applications of Machine Learning Techniques 54 

  5.3.1 K-Nearest Neighbor (K-NN) Method 54 

  5.3.2 Naïve Bayes (NB) Method 55 

 5.4 Application (APP) for the Use of ML Model 56 

6.0  EVALUATION OF USE OF FIBERS FOR THE ENHANCEMENT 

OF RESISTANCE AGAINST MOISTURE DAMAGE 

59 

 6.1 Fibers in HMA for Improved Performance 59 

7.0  CONCLUSIONS AND RECOMMENDATIONS 62 

 7.1 Conclusions 62 

 7.2 Recommendations 63 

 7.3 Scope for Future Work 63 

  REFERENCES 64 

  APPENDIX A 77 

   A 1.1 FTIR Test Plots 78 

  A 1.2 FTIR ICO and ISO Indices Results 87 

  APPENDIX B 89 

  B 1.1 Ultrasonic Pulse Velocity (UPV) Test Results 90 

  B 1.2 Indirect Tensile Strength (ITS) Test Results 94 

  B 1.3 Semi-Circular Bend (SCB) Test Results 98 

  B 1.4 Image Analysis Test Results  103 

  B 1.5 MiST Effluent Analysis Results 107 



viii 
 

  APPENDIX C 111 

  C 1.1 MATLAB Code for K-Nearest Neighbor Model 112 

  C 1.2 MATLAB Code for Naïve Bayes Model 114 

  C 1.3 MATLAB Code for the Software 116 

    

    

    

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

LIST OF TABLES 

 

2.0  LITERATURE REVIEW 4 

 2.1 Factors That Can Contribute to Moisture Damage in Pavements 

(Varveri, 2017) 

5 

 2.2 Classification of Aggregates Based on Degree of Stripping (Hicks, 

1999) 

7 

 2.3 Affinity of Asphalt Functional Groups for Aggregate Surfaces (Hefer 

et al., 2005) 

10 

3.0  RESEARCH METHODOLOGY AND LABORATORY 

INVESTIGATIONS 

25 

 3.1 Mix Information 26 

4.0  TEST RESULTS AND ANALYSIS 36 

 4.1 Average Values (Standard Deviation) Of Various Test Parameters 37 

 4.2 Indices from FTIR (Ico And Iso) 42 

 4.3 Statistical Analysis Results 44 

 4.4 Statistical Accuracy 45 

5.0  APPLICATION OF MACHINE LEARNING IN MOISTURE 

INDUCED DAMAGE PREDICTION IN HOT MIX ASPHALT 

47 

 5.1 Coefficients for the Different Predictors for PC 1, PC 2, and PC 3 50 

 5.2 Coefficients for the Different Predictors for PC 1, PC 2, and PC 3 52 

6.0  EVALUATION OF USE OF FIBERS FOR THE 

ENHANCEMENT OF RESISTANCE AGAINST MOISTURE 

DAMAGE 

59 

 6.1 Physical Properties of HTPP Fibers   59 

 

 

 

 

 

 



x 
 

LIST OF FIGURES 

 

2.0  LITERATURE REVIEW 4 

 2.1(a) Longitudinal Cracking Due to Moisture Induced Damage in HMA Layers 4 

 2.1(b) Alligator Cracks Due to Moisture Induced Damage in HMA Layers 4 

 2.2 Classification of Igneous Rocks 6 

 2.3 Three-Phase Boundary of a Liquid on A Solid Surface in Vapor (Read et 

al., 2013) 

11 

 2.4 Air Voids Vs Retained Maximum Strength (Terrel et al., 1993) 12 

 2.5 Confusion Matrix with Classification Metrics 23 

3.0  RESEARCH METHODOLOGY AND LABORATORY 

INVESTIGATIONS 

25 

 3.1 Semi-Circular Bending (SCB) Sample Test Setup 30 

 3.2 Schematic of Fracture Energy and Flexibility Index Parameters 30 

 3.3 Pixels-Image Analysis Software 32 

 3.4 Fourier-Transform Infrared Spectrometer (FTIR) 34 

 3.5 Extracted Asphalt Binder on ATR Crystal 34 

4.0  TEST RESULTS AND ANALYSIS 36 

 4.1 A Sample FTIR Spectra with Peaks at Carbonyl and Sulfoxide Groups 

(Highlighted) 

41 

 4.2 Radar Chart A) Good Mix; B) Poor Mix 46 

5.0  APPLICATION OF MACHINE LEARNING IN MOISTURE 

INDUCED DAMAGE PREDICTION IN HOT MIX ASPHALT 

47 

 5.1 Flowchart of ML Framework Steps 48 

 5.2 Correlation of Variables 49 

 5.3 Pareto Chart Showing the Percent of Variance in The Data Explained by 

The First Six Principal Components (PC) 

50 

 5.4 Contribution of the Different Variables Towards the Composite Principal 

Component 

51 

 5.5 Pareto Chart Showing the Percent of Variance in the Data Explained by 

The First Four Principal Components (PC) 

52 



xi 
 

 5.6 Contribution of the Different Variables Towards the Composite Principal 

Component 

53 

 5.7 Composite Score of Each of the 38 Mixes with Green Bars Indicating Good 

Mixes 

53 

 5.8 Confusion Plot for NN Method 55 

 5.9 Confusion Plot for NB Method 56 

 5.10 Layout of MATLAB App Designer Interface 57 

 5.11 MATLAB Application Interface to Classify Mix Performance 58 

6.0  EVALUATION OF USE OF FIBERS FOR THE ENHANCEMENT 

OF RESISTANCE AGAINST MOISTURE DAMAGE 

59 

 6.1 Pre-MiST and Post-MiST Results with 0% and 0.25% HTPP Fibers 60 

 



1 
 

1.0 INTRODUCTION 

 

1.1 Importance of Studies on Moisture Induced Damage to HMA 

 

Highway infrastructure plays a vital role in the economic development and growth of a 

nation leading to social benefits. One of the most difficult challenges for the development of any 

road network is to execute projects in harmony with the concept of sustainable development. It is, 

therefore, necessary to develop sustainable highway pavements that are highly durable, energy-

efficient, and cost-effective for the construction and maintenance of roads. 

 

A majority of highways and airfield pavements throughout the world are surfaced with Hot 

Mix Asphalt (HMA). The surface layer acts as a “wearing” course and is designed not to be 

affected significantly during service life by traffic load/tire pressure repetitions and the 

environment. Generally, this surface HMA layer acts as an ‘impermeable’ layer to prevent the 

ingress of water into the pavement structure. This is because water has been identified as the single 

most destructive element in pavements leading to pavement distresses such as cracking and rutting. 

Such moisture-related distresses in pavements has been observed since the late 1920s and has been 

regarded as a national concern. Extensive research conducted by Hicks (1991) has shown that 

about half of the states in the United States had experienced moisture-related distresses. Moisture-

induced damage is therefore regarded as one of the leading causes of premature failures in asphalt 

pavements and a major concern to the paving industry. Moisture in any form combined with traffic 

and environmental conditions can cause a significant loss in asphalt pavement strength and 

durability (Al-Swailmi et al. 1994). The mechanisms by which it occurs depends on several factors 

such as material properties (aggregate and binder properties), mixture properties (voids, 

permeability, etc.), and external factors (moisture exposure conditions, etc.) (Bagampadde et al. 

2005, Masad et al. 2006, Lottman et al. 1978, Read et al. 2003).  

 

Over the years, extensive research has been conducted to develop a reliable and practical 

laboratory test procedure that can simulate field moisture damage conditions, and that can make 

predictions that correlate well with the field performance. From the literature, it can be concluded 

that no single laboratory test method can be used to accurately predict the performance of a given 
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HMA mixture due to various potential mechanisms of moisture damage. Research conducted by 

the Maine Department of Transportation (MDOT) and other agencies have found the moisture 

conditioning of HMA samples with the Moisture Induced Stress Tester (MiST) and the use of 

Indirect Tensile Strength test (ITS) to be effective in screening moisture susceptible HMA 

mixtures (Arepalli et al. 2017, Mallick et al. 2001). However, the test results were not found to be 

sufficiently accurate to justify the use of the MiST and ITS procedures on a regular basis. 

 

Conventional statistical models such as linear regression models or significance tests are 

generally used to develop relationships among variables such as relating mix properties to 

performance or screen poor-performing mixes. The main disadvantage of such conventional 

statistical methods is that they cannot estimate nonlinear and complex relationships accurately 

(Nivedya et al. 2018). Recent advances in statistics and data science have led to the development 

of Machine Learning (ML) techniques. ML is a sub-field of artificial intelligence that allows the 

computers to learn without being explicitly programmed. Unlike statistics, ML requires no prior 

assumptions about the relationships between the variables. The ultimate goal of ML is to develop 

computer algorithms that can cluster or classify or make predictions and is particularly applicable 

under the following conditions: There is a multitude of factors that influence the target (of 

regression) or the outcome (of classification or clustering); and, the relationship between the 

predictors or the variables to the target or the outcome is not simple – it is very complex, and the 

assumption of linearity in models is not valid. ML techniques can be used to predict HMA mix 

properties more accurately than conventional statistical approaches. There is a need for research 

on accurate prediction of mix performance using ML techniques. 

 

1.2 Objectives 

 

The overall objectives of this study were to determine a suitable set of tests that could be used with 

a moisture conditioning process and to develop a machine-learning model with appropriate test 

data to predict the moisture susceptibility of HMA. The specific objectives of the present study are 

as follows: 

1. Development of a framework that considers different test methods to predict the 

moisture induced damage of Hot Mix Asphalt (HMA). 
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2. Develop suitable machine learning methods to achieve significantly high accuracy 

(84%) in predicting the moisture damage potential of Hot Mix Asphalt (HMA).   

3.  Development of a tool for use by the practicing engineers to identify hot mix asphalt 

samples that are likely to be affected by moisture induced damage.  

 

1.3 Scope of the Present Study 

 

The scope of the present study is limited to laboratory experiments on hot mix asphalt to study 

the various factors influencing the moisture induced damage. The findings of the laboratory 

experiments were validated from samples of hot mix asphalt obtained from the field.  The 

laboratory performance of the HMA samples was validated with field HMA samples. An App has 

been developed for use by the practicing engineers to identify HMA mixes that are susceptible to 

moisture induced damages from limited laboratory experiments. 
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2.0 LITERATURE REVIEW 

 

2.1 Importance of Research on Moisture Induced Damage in HMA 

 

Moisture damage in asphalt pavement is a complex phenomenon involving many factors. 

It is one of the major causes of distress in HMA and has been considered a national issue (D'angelo, 

2003; Epps et al., 2003; Little et al., 2003). In general, not all damages are caused directly by 

moisture, but its presence accelerates the extent and severity of different distresses. Moisture 

damage has been defined as the loss in structural strength and durability of HMA mixtures due to 

the deterioration caused by the effects of moisture. The existence of moisture in pavement can lead 

to loss of cohesion within the asphalt binder itself or the loss of interfacial adhesion between binder 

and aggregates. Figure 2.1(a) and 2.1(b) show typical distresses that may occur due to moisture 

damage. 

  

(a) (b) 

Figure 2.1(a): Longitudinal Cracking Due to Moisture Induced Damage in HMA Layers  

Figure 2.1(b):  Alligator Cracks Due to Moisture Induced Damage in HMA Layers  

 

Several factors contribute to moisture induced damages in HMA. The properties of the aggregates, 

properties of the binder and mixes as well as external factors contribute towards moisture induced 

damages in HMA (Table 2.1).  
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Table 2.1: Factors That Can Contribute to Moisture Damage in Pavements (Varveri, 2017) 

Aggregate 

Properties 
Binder Properties Mixture Properties External Factors 

Mineralogy Rheology Void content Rainfall 

Surface texture 
Physico-chemical 

properties 
Permeability Humidity 

Porosity Constitution Asphalt content Water pH 

Dust Surface free energy 
Asphalt film 

thickness 
Presence of salts 

Durability 

 

Filler type Temperature 

Surface area Aggregate grading Temperature cycling 

Surface free energy Type of mixture Traffic 

Absorption 

 

Design 

Moisture content Workmanship 

Shape Drainage 

Weathering  

 

2.2 Aggregate Properties 

 

Some of the important properties of coarse aggregates that are generally considered during 

the mix design process are strength, shape, texture, and gradation. Since about 95% of a typical 

HMA mix is made up of mineral aggregates it is essential to consider their properties such as 

mineralogy, geometric irregularities, and gradation that can be directly related to pavement 

performance. In addition, it can be inferred from the literature that moisture sensitivity is affected 

by aggregate chemistry as well as asphalt chemistry. Hence, there is a need to investigate the 

mineralogy of aggregates and its effects on the asphalt-aggregate system under different 

conditions. 

 

Natural aggregates are generally classified into three broad categories: Igneous rocks, 

sedimentary rocks, and metamorphic rocks. Some of the common types of igneous rocks include 

granite (commonly found in New England states), diorite, gabbro, etc. Rocks are aggregates with 

one or more minerals whereas minerals are naturally occurring, inorganic solids with a definite 

chemical composition and a crystalline structure formed by geological processes. The amount of 

silica in igneous rocks (acidity) can vary from 75% to less than 45%. Higher percentages of silica 
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have been known to reduce asphalt-aggregate bond strength (adhesive failure). For example, 

marble and limestone (sedimentary) are known to be basic and have lower percentages of silica 

whereas sandstone granite and quartzite (metamorphic) are acidic. It is also well known that most 

siliceous aggregates such as granite are negatively charged in the presence of water indicating that 

they are hydrophilic aggregates. Figure 2.2 shows the classification of common types of igneous 

rock. 

 

Figure 2.2: Classification of Igneous Rocks 

(http://www.physicalgeography.net/fundamentals/10e.html) 

 

Asphalts are highly complex materials. They contain saturated and unsaturated aliphatic 

and aromatic compounds. These compounds are classified as asphaltenes or maltenes according to 

their solubility in hexane or heptane solvents. Asphaltenes have high molecular weight species and 

they are insoluble in these solvents. Maltenes have lower molecular weights and are soluble. 

Asphalts normally contain between 5% and 25% by weight of asphaltenes. Research work carried 

out by Ribero (2009) found that some of the minerals like feldspar and biotite contained numerous 

binding sites where the adsorption of asphaltenes takes place due to the presence of aluminum in 

the structure of the minerals. On the other hand, quartz with lower aluminum content was found 

to hinder the interaction between the two materials. Fisher (2013) verified the mechanism using 

Atomic Force Microscopy (AFM) study. The research done by Bagampadde (2005) found that the 

higher percentages of both quartz and alkali feldspar in aggregates increased the moisture 

susceptibility of asphalt mixtures, but higher resistance to moisture damage was found when the 

http://www.physicalgeography.net/fundamentals/10e.html
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quartz content in the aggregate was 100%.  Hicks (1991), classified aggregates based on the degree 

of stripping (i.e. separation of asphalt binder from aggregate surfaces due primarily to the action 

of moisture) as shown in Table 2.2. 

 

Table 2.2: Classification of Aggregates Based on Degree of Stripping (Hicks, 1999) 

Minerals 

Slight stripping Moderate stripping Severe stripping 

Biotite Biotite Biotite 

Hornblende Hornblende Hornblende 

Feldspars Feldspars Feldspars 

Labradorite Oligoclase Oligoclase 

Bytownite Albite Albite 

Anorthite Anorthite Anorthoclase 

Chlorite Garnet Microcline 

Sercite muscovite Quartz Perthite 

Diopside Muscovite Andesite 

Olivine 

 

Chalcedony 

Pyroxenes Quartz 

Augite 
 

Calcite 

IGNEOUS ROCKS 

Slight stripping Moderate stripping Severe stripping 

Gabbro Biotite granite Biotite granite 

Basalt Basalt Aplite granite 

Greenstone Olivine dolerite with analcite Pegmatite granite 

Quartz dolerite Quartz diorite Soda granite 

Diabase Andersite Granodiorite 

Scoria Diabase Albitised olivine-diorite 

Slight stripping Moderate stripping Severe stripping 

Peridotite Obsidian Diorite 

Scoria 

 

Rhyolite 

Peridotite Trachyte 

 

Pumice 

Dacite 

Syenite 

METAMORPHIC ROCKS 

Slight stripping Moderate stripping Severe stripping 

Silicious river sand Biotite feldspar gneiss Quartzite 

Silicious sand with iron oxide Feldspar quartz-sercitesnesis Granite gneiss 

Serpentine Granite quartz-feldspar gnesiss Quartzite-sericite schist 

 Biottie-muscovite schist Feldspathic-quartzite 

 Diabase-hornfeis Biotite schist 

 Hornblende-gneiss Muscovite schist 
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Table 2.2: Classification of Aggregates Based on Degree of Stripping (Hicks, 1999) 

(continued) 

SEDIMENTARY ROCKS 

Slight stripping Moderate stripping Severe stripping 

Limestone Limestone Iron oxide-rich arkose 

Dolomite Dolomite Chert 

Graywacke Lime rock Flint 

Lime rock Reed coral Breccia 

 

Calcareous sandstone Feldspadic sandstone 

 

Sandstone 

Chalk 

Oolitic limestone 

Argillaceous sandstone 

 

Surface texture is known to affect the mechanical bond strength between asphalt and aggregate. 

Aggregate with rough surface texture and/or high amount of surface porosity will increase the 

moisture damage resistance of HMA mainly because of the availability of more surface area for 

the asphalt to bind. Many siliceous aggregates are known to have low porosity or smooth surface 

texture, but this may not be the case always because, for example, granites do have very high 

surface texture and can create an excellent mechanical bond but may suffer in chemical bonding. 

Aggregates like limestone may sometimes contain a high amount of calcite, which is known to 

interact with calcium carbonate instead of asphalt and may result in a reduced aggregate surface 

area. 

 

During the aggregate crushing process, dust is generally generated and based on the nature 

and extent of the dust, it may affect the moisture susceptibility of a mix. The presence of dust 

coating on the aggregate surface can prevent the asphalt binder from forming a bond directly on 

the surface of the aggregate. The asphalt layer coated over an aggregate will not allow water to 

penetrate through it. Water entering through the pores/dust and localized between the binder and 

surface of the stone can cause stripping. However, this effect is significant only when the aggregate 

is coated with large amounts of dust. In certain special cases, when a small amount of clay dust 

particles is coated on the aggregates, it can act as an emulsifier. Similarly, gravel aggregates may 

have shale. The crushed shale may break down during in-service and may cause a problem of 

adhesion. Clay has been known to expand in the presence of water, and in the process can strip the 
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asphalt off the surface of aggregate. If this is combined with the action of traffic, the clay will 

emulsify the asphalt in the mix and can cause severe stripping.  

 

Water absorption rate, amount of water uptake, and the presence of micro cracks in the 

aggregate surface may have a severe effect on the moisture susceptibility of a mix. It can be said 

that the aggregates that absorb more water are likely to absorb more asphalt as well. If during the 

mix design process the percentage of binder added is incorrect without considering the absorption 

capacity, then more amount of binder would be absorbed by the aggregates and the effective 

asphalt may be insufficient to bind the aggregates together. This may lead to segregation, raveling, 

cracking and stripping. Segregation in a hot mix asphalt (HMA) mixture can be defined as the 

detachment of the coarse aggregate particles in the mix from the rest of the mass, which may be 

due to insufficient binder in the mix.  Raveling is defined as progressive separation and dissociation 

of fine aggregate particles and binder from the bituminous surface, which is a direct consequence 

of stripping of the binder from the aggregates as an effect of moisture induced damage. Cracks 

develop due to either insufficient asphalt content, excessive filler, improper compaction or 

excessive moisture in the pavement layers. Stripping is a defect which is characterized by the 

separation of the asphalt film from the surface of the aggregate particles, due to the presence of 

moisture. Therefore, it can be inferred that moisture in pavement layers cause catastrophic effect 

and there is a need to understand and quantify the influence of moisture on the performance of 

asphalt pavements.  

 

2.3 Binder Properties 

 

Asphalt is a viscoelastic material derived from crude oil. Its properties are mainly 

dependent on the source of the crude oil from which the asphalt is derived. The asphalt binder 

consists of two principal chemical groups within the binder, the maltenes (saturates, aromatics, 

and resins) and asphaltenes. These two chemical groups are primarily responsible for the rheology 

of the asphalt.  Hefer et al., 2005 conducted a study to understand the relative affinity of aggregate 

surfaces to the functional groups from asphalt binder and water. Table 2.3 shows the affinity of 

asphalt functional groups for aggregate surfaces. From the table, it can be inferred that the 

functional groups of asphalt binder that are significantly adsorbed on the aggregate surface are 
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more prone to being displaced by water. The displacement of the binder by water at the interface 

region is a chemically favorable phenomenon. Robertson (2000) stated that the overall polarity 

within the organic molecules promotes the attraction of polar asphalt components to the polar 

aggregates. He further explains that neither asphalt nor aggregate has a net charge and the 

components of each form non-uniform charge distributions and behave as if they have charges that 

attract the opposite. Curtis (1993) had evaluated the asphalt-aggregate interactions in terms of 

adsorption and desorption and showed that specific functional groups that had the most affinity for 

the aggregates also tended to have the highest sensitivity to water. He further adds that once the 

surface of aggregate has been coated with asphalt, their interactions become relatively not 

significant.  

Table 2.3: Affinity of Asphalt Functional Groups for Aggregate Surfaces (Hefer et al.  

2005) 

Plancher et al. 1977 Petersen et al. 1982 SHRP (Jamieson et al.1995) 

Most strongly functional groups (decreasing order) 

Carboxylic acids 

Anhydrides 

2-Quinolones 

Sulfoxides 

Pyrridine types 

Ketones 

Carboxylic acids 

Anhydrides 

Phenols 

2-Quinolones 

Sulfoxides 

Ketones 

Pyrridine types 

Pyrrolic 

Carboxylic acids 

Sulfoxides 

Pyrridine types 

Phenolic 

Pyrrolic 

Ketones 

Susceptibility of adsorbed functional groups for water displacement (decreasing order) 

Carboxylic acids 

Anhydrides 

Sulfoxides 

Pyrridine types 

2-Quinolones 

Ketones 

Anhydrides 

2-Quinolone types 

Carboxylic acids 

Pyrridine types 

Sulfoxides 

Ketones 

Phenolic 

Pyrrolic 

Sulfoxides 

Carboxylic acids 

Pyrrolic 

Ketones 

Pyrridine types 

Phenolic 

 

 

2.4 Surface Energy Theory 

 

According to Surface Energy Theory, adhesive strength can be quantified in terms of adhesive 

bond energy with the bond being dependent on the surface free energy of the two materials 

considered (Bhasin et al., 2007). The surface energy can be calculated using the equation: 
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 = LW + +- = LW + 2+- 

 = total surface free energy of the material 

LW – LW component 

+- = acid-base component 

- = Lewis acid component and 

- = Lewis base component 

 

According to this theory, when a drop of liquid is placed on a horizontal surface, either it can 

spread on the solid surface, or it can take the shape of a drop with a finite contact angle between 

solid and liquid phases. This contact angle is commonly used to measure the surface energy of 

solids based on the relationship between contact angles, the surface energy of solids, wetting of 

solids and thermodynamic considerations. The properties of these solid-liquid, liquid-vapor, and 

solid-vapor interfaces can generally be described as a three-phase boundary.  

 

Fig 2.3 shows the two-phase boundary of a liquid on a solid surface in vapor (Readet et al., 

2003). In this figure, θ is the angle between solid-liquid interface and the tangent of the liquid-

vapor interface. 

 

Figure 2.3: Three-Phase Boundary of a Liquid on A Solid Surface in Vapor (Read et al., 

2003) 

 

In this figure, the contact angle is greater than 90º, indicating that water does not spread easily 

over the surface and hence it is a hydrophobic surface. It should be noted that many different 
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theories  have been developed to explain adhesion of asphalt to aggregates but none of the theories 

have provided a completely satisfactory explanation of the true mechanism, which may be a 

combination of theories (Arno et al., 2005). 

 

2.5 Mixture Properties 

 

One of the major factors responsible for the moisture transport in asphalt mixtures is the 

void structure. It is generally assumed that air voids are not interconnected when the asphalt 

mixture has 4 to 5% air voids (Choubane et al. 2000). Generally, many road construction agencies 

compact asphalt mixtures to at least 8% in-place air voids during the construction, assuming that 

the mixture will densify normally under traffic to its final percentage of about 4% air voids over 

the years due to secondary compaction. 

 

Terrel et al. 1993 proposed a concept of pessimum void content in an asphalt mixture that 

relates to stripping potential. Their research shows that at low percentages of air voids (< 4% to 

5%), the voids are not connected and the potential for water intrusion and stripping are low. Also, 

at higher percentages of air voids (>15% to 20%), the voids are interconnected such that the asphalt 

mixture is free draining. The percentages of air voids between 5% and 15% is called the pessimum 

range, where some of the air voids are interconnected, and water may get entrapped in the mixture, 

thereby increasing the striping potential. Figure 2.4 shows the relation between air voids and 

retained mix strength. 

 

 

Figure 2.4: Air Voids vs Retained Maximum Strength (Terrel et al., 1993) 
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Unfortunately, most asphalt mixtures are constructed near the pessimum range, causing an 

increase in the stripping potential during the early pavement life. In addition, it is not always 

guaranteed that after a few years of construction the asphalt mixture would densify to the 

impermeable range (4% to 5%). Terrel et al. 1993 suggested the adoption of Stone Matrix Asphalt 

(SMA) and Open Graded Friction Course (OGFC). The SMA mixtures are often densely packed 

and are impervious after proper compaction. On the other hand, OGFC mixtures are more likely 

to be outside pessimum air void range allowing adequate drainage. Mohammed (2010) found that 

the common compaction techniques in asphalt mixtures are prone to generate cracks called checks. 

These checks are 1 to 4 in. in length and 1 to 3 in. apart. Checks are normally not visible and are 

generated during the first or second pass of conventional steel-wheel rollers. They had mentioned 

that these checks promote water transport in isolated areas within the pavement. In addition, they 

had proposed a new compaction technique that reduces the formation of such cracks. 

 

2.6 Modes of Moisture Transport  in Asphalt Mixtures 

 

Moisture can transport in asphalt mixtures by three main modes, the first of which is 

permeability. Permeability is an important characteristic of pavement materials. It can be defined 

as the ability of a material to transmit water or fluid through it. Previous research done by 

Bhattacharjee and Mallick (2002) showed that the permeability is a better indicator of durability 

than porosity because the permeability indicates the pores that are exposed to water, whereas 

porosity indicates all the pores, which may or may not be filled with water. There are many existing 

empirical equations to determine the permeability of asphalt mixtures that cannot be correlated to 

field performances (Vardanega, 2004). 

 

Capillary rise, the second mode, is more prominent in the region of a saturated gradient 

combined with ambient conditions at the interface (i.e. low humidity and high temperature). It is 

generally defined as the rise in the liquid above the level of zero pressure due to the gross upward 

force produced by the attraction of the water molecules to a solid surface. In asphalt pavements, 

capillary rise phenomenon allows subsurface water to be transported into the pavement through 

the capillaries formed by the interconnected voids. The extent to which the water would rise above 

the saturation surface, as well as the rate of rise, depends on: (1) the geometrical characteristics of 
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the capillaries, (2) the surface tension of water, (3) the density of the water (4) the contact angle 

between the liquid and solid. Masad et al. (2007) reported that the HMA specimens with high voids 

showed a rapid increase in the flow of water in the laboratory testing when the contact angle 

between the water and the particles was lowest.  The results were only presented for voids that 

were equal to or larger than the image resolution of the X-ray computed Tomography equipment. 

However, it was expected that a greater height of rising took place in smaller voids that were not 

detected in the images and the aggregate–binder interfaces. 

 

Vapor diffusion through asphalt binder (the third mode) is a slow process because of the 

molecular structure of the material. The amount of water vapor and the rate at which it accumulates 

in an asphalt mixture depends on: (1) relative humidity (2) diffusion coefficients (3) storage rate 

and (4) storage capacity. Vapor diffusion is a cumulative process depending upon the condition of 

the road (Arambula et al., 2009). 

 

2.7 Test Methods 

 

In general, existing test methods can be classified into two categories: (1) tests on loose 

mixtures and (2) tests on compacted mix samples. In the past, observation-based rating systems 

were used to evaluate the moisture susceptibility of loose asphalt mixtures. Some of the tests 

include the boiling water test (ASTM D3625) and the static immersion test (AASHTO T182). 

These tests involve visual observation of stripping potential. Such visual based rating systems are 

currently not in use and have been criticized for subjective visual evaluation and for not accessing 

moisture potential in compacted asphalt mixtures. Such tests usually focus on moisture-induced 

adhesive failures without considering cohesive failure within asphalt mastic. 

 

On the other hand, tests on compacted mix samples usually involve dividing the samples 

into control and moisture-conditioned groups. Both samples are subjected to mechanical testing 

such as Indirect Tensile Strength (ITS), resilient modulus, and dynamic modulus, as well as wheel 

tracking tests. Currently, the most widely used mix design test procedure for the evaluation of 

moisture damage in the U.S. is the AASHTO T283 (AASHTO, 2001) test. The AASHTO T283 

procedure requires the samples to be moisture saturated to a level of 70% to 80%. The saturated 
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samples are then subjected to air conditioning at -18°C (-4ºF) for 16 hours followed by a thawing 

period at 60°C (140ºF) for 24 hours. The specimens are then placed in a water bath at 25°C (77ºF) 

and tested in indirect tensile mode at 25°C (77ºF). However, a number of researchers have reported 

the inability of this test procedure to predict the moisture damage potential of HMA mixes 

accurately. The test does not replicate the high saturation and pore water pressures that are 

expected in the field and researchers have identified significant variability in test results and the 

need for alternative tests (Kringos et al., 2009). Other test methods under saturated conditions 

include the Hamburg wheel tracking test (Aschenbrener, 1995) and the saturation ageing tensile 

stiffness test (Airey et al., 2005). Typically, moisture evaluation ‘test’ procedure refers to a 

combined system of a conditioning step that simulates field conditions and a characterization test 

that evaluates the effect of the conditioning. As mentioned before, AASHTO T283 test consists of 

subjecting a sample to saturation and then to freeze/thaw (generally one cycle).  

 

The environmental conditioning system approach (Al-Swailmi et al., 1992) combines these 

in the sense that tests are conducted within an environmental system that is supposed to simulate 

field conditions. One of the main criticisms of these conditioning systems is that they cannot 

simulate the damage caused by the generation of pore water pressure, which occurs due to the 

effect of tire pressure on fully saturated HMA mixes (Kandhal and Rickards, 2001; Novak et al., 

2002). 

 

The semi-circular bend (SCB) test was explored by Molenaar (2000) and extensively 

evaluated through the TPF-5(132) study (Marasteanu et al. 2012). SCB test is an important 

indicator to characterize the cracking resistance of asphalt mixture before and after moisture 

damage. The post-peak crack energy can be used to characterize the ductility of asphalt mixture. 

The SCB test was performed according to the AASHTO standard (Al-Qadi et al., 2015) at 25ºC. 

For this test, a semicircular disc of HMA, 150 mm in diameter and 25 mm thick, was tested in a 

three-point bending mode. 

 

To simulate the generation of pore pressure in HMA in the lab, the MiST was developed 

(Mallick et al., 2003; Buchanan et al., 2004;) based on work conducted by Jimenez (1974). The 

MiST is capable of representing the action of repeated traffic on a saturated asphalt pavement. It 
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uses a hydraulic system to create alternating pressure and vacuum cycles inside the test chamber 

and hence forces water in and out of the pores of the HMA specimens. It is capable of 

accommodating any standard HMA sample. Studies have confirmed that high pore water pressures 

are developed in the upper layers of HMA in the field (Mallick et al., 2003), and the MiST is 

capable of simulating such conditions. The MIST test was designed to simulate stripping damage 

in fewer than three hours of treatment. The temperature levels are controlled during the test. The 

pore pressure is generated in the mixture, mimicking temperature, traffic and humidity field 

conditions. The test is effective for the identification of poor performance HMA (Ahmad et al., 

2017; Birgisson et al., 2007; Mallick et al., 2005; Pinkham et al.,2013). The MiST is a relatively 

inexpensive piece of equipment, and the conditioning of the samples can be completed within a 

reasonable time period (< 24hours). 

 

Image analysis is being increasingly used in the transportation field, due to the ease of 

obtaining the data and the development of image analysis software (Radopoulou, 2013). This 

technique continues to be used at a significant level in other areas of pavement engineering, for 

example in automated identification and analysis of pavement distresses in pavement management 

systems. The technique is specifically relevant for the topic of moisture damage since it has been 

reported that if a sample is subjected to moisture conditioning, it is likely that there will be a 

difference in the color of the sample before and after conditioning, specifically for a moisture 

susceptible mix. This is because the damage will cause a removal of asphalt from the surface of 

the aggregates.  

 

The Ultrasonic Pulse Velocity (UPV) test is recommended for the following reasons (University 

of Texas, 2006):  

1. UPV test is nondestructive and can be conducted in a very short period of time;  

2. The UPV test has been extensively evaluated, found to be sensitive to key properties of 

HMA and has been utilized to determine design moduli that could be used in M-E analysis;  

3. Seismic modulus data have been previously used successfully to detect moisture 

susceptible mixes (Birgisson et al., 2003; Nazarian et al., 2005; Maser et al., 2006); and  

4. Well-established guidelines have been developed for regular use of this test by the Texas 

DOT  
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Fourier transform infrared–attenuated total reflectance (FTIR-ATR) spectroscopy has been 

widely used by several researchers to characterize the materials used in pavement construction. 

The equipment is found to be robust and is an accurate noninvasive in situ method to provide data 

in the shortest possible time to identify various functional groups present in the material. FITR 

technique has been widely used to examine diffusion in polymers and is found to have wide 

practical applications. 

 

Seifollah Nasrazadani et. al., (2009) presented the practical applications of Fourier 

Transform Infrared Spectroscopy (FTIR) in characterizing pavement materials. FTIR technique 

has been found to be capable of quantifying alkali content in concrete cement. FTIR is found to be 

useful in the analysis of polymer content in asphalt binders but, it was not found to be a suitable 

technique to detect and quantify anti-stripping agents in asphalt materials.  One of the reasons for 

this may be because of the low concentration of the antistripping agents and possibly band overlap 

in the spectra of organic compounds. Howard et.al., (2013) conducted experiments on the aging 

characteristics of binders using FTIR, while studying the hauling time effects on unmodified, 

foamed, and additive modified binders used in hot mix asphalt. FTIR can throw light on the 

specific functional groups of compounds in asphalt. Karmakar et. al., (2018) studied the moisture 

damage analysis of bituminous mix by Durability index Utilizing waste plastic cup (PC). They 

conducted FTIR tests on PC-modified bitumen to observe the reduction of carbonyl acid in the 

bitumen in order to determine the enhanced structural integrity of the bituminous mix. The findings 

enabled the researchers to quantify the optimal dosage of PC to be added for the improved 

performance.  

 

Vasconcelos et.al., (2010) measured the water diffusion in asphalt binders using Fourier 

Transform Infrared – attenuated reflectance spectroscopy (FTIR-ATR) to monitor the diffusion of 

water into thin films of asphalt binder. Morian et. Al, (2013) studied the effect of binder aging in 

hot mix asphalt using FTIR. FTIR was used to study the binder kinetics with respect to the carbonyl 

area measured from the Fourier transform infrared spectroscopy spectra as a function of aging time 

and temperature and found that effective binder content to be the indicator of the aging 

characteristics of binders. Lamontagne et. al., (2001) studied the aging characteristics of road 

bitumen using FTIR. 
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2.8 Application of Fibers in Hot Mix Asphalt 

Researchers are looking for better materials to improve the performance of hot mix asphalt. 

The addition of fibers in hot mix asphalt is found to improve the fatigue as well as the rutting 

performance. The addition of fiber also reduces the drain down in case of gap graded asphalt mixes 

like Stone Matrix Asphalt. It also reduces the temperature susceptibility of the mastic. Fiber 

incorporation has proved to be a practical and dependable technique for improving the 

performance of hot mix asphalt. The addition of fiber ensures that the mixes is rich in bitumen. 

Rich binder will enable better and improved resistance to moisture, aging, fatigue and cracking.  

(Serfas et al., (1996) 

 

Klinsky et. al., (2018) studied the performance characteristics of fibers modified hot mix 

asphalt. The addition of fibers has resulted in higher tensile strength; higher resilient modulus; 

lower permanent strain accumulation and better fatigue resistance. The addition of blended fibers 

of polypropylene and aramid to hot mix asphalt is found to enhance its mechanical properties and 

extended the service life. Slebi-Acevedo et. al., (2018) presented a review of the mechanical 

performance of fibers in hot mix asphalt. The tensile strength, modulus of elasticity, specific 

gravity and Mohs hardness are the relevant properties to be considered in performance evaluation 

of asphalt mixes with different fibers. The use of waste fibers and natural fibers like coconut fibers 

are found to improve the mechanical properties of hot mix asphalt and also improve the 

performance. Kockal and Kofteci (2016) studied the aggressive environmental effect on 

polypropylene fiber reinforced hot mix asphalt. The bulk density of the sample and the Marshall 

stability values improved with the addition of the fibers. Na2SO4 showed most damaging effect 

on samples under aggressive environment.  

 

Kumar et.al (2009) investigated the laboratory performance of fiber modified asphalt 

mixes. The indirect tensile strength and Marshall test properties were found to improve with the 

addition of fibers. As polypropylene fibers get entangled, strength reinforcement of asphalt-binder 

mastic was found to be necessary. Mufta et. al (2017) carried out a research study to quantify the 

benefits of using fiber reinforced hot mix asphalt to mitigate the distresses. The researchers have 

reported that the optimal fiber content recommended by the manufacturer need not be optimal and 

detailed investigations are needed before field implementation. HMA mixes with higher dosage of 
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fibers had higher fracture energy than control mixes. Rutting and fatigue resistance of the mixes 

with fibers are found to be higher than control mixes. Alfalah (2020) assessed the impact of fiber 

type on the performance of fiber reinforced hot mix asphalt. The researchers have found that the 

fibers affected the volumetric properties, mix durability, and rutting resistance of HMA mixes. 

The use of fibers was found to improve the rutting and durability performance of asphalt mixtures 

in the laboratory. However, research studies on improved moisture resistance of hot mix asphalt 

with fibers is limited and there is a need to investigate the resistance to moisture of HMA with 

fibers. 

 

2.9 Machine Learning: 

 

Artificial Intelligence (AI) has been defined as the “the science and engineering of making 

intelligent machines” (McCarthy, 2007). Machine Learning (ML) is a specific way in which AI is 

implemented in the real world. The aim of ML is to develop algorithms that can receive input data 

and apply statistical analysis to predict the output within an acceptable range. ML is based on the 

association of learning with hidden patterns and the theory that computers are able to recognize 

patterns in such a way as to learn to adjust their responses without human intervention. ML 

techniques are applicable in classification and regression-type problems with multiple dimensions. 

They are suitable for nonlinear systems because they can capture non-linear relationships among 

multivariate datasets – something that is very relevant to the evaluation of moisture susceptibility 

of HMA. Machine learning techniques can be broadly classified into two categories based on 

technique that are used to train the model: supervised and unsupervised. Supervised classification 

models are used to classify the input data into categories if the response variable is discrete. 

Supervised regression models are applicable in cases where the response variable is continuous. 

Unsupervised learning models find patterns in the data and develop inferences without any labelled 

output. The method of clustering is commonly used to find hidden patterns or groupings in the 

data. Studies have shown that ML models for binary classification outperform regression models 

that are used for prediction. This is because of the relatively easier process of training when the 

response variables are categorical and can fall into either one of the two categories. 
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The k-nearest neighbor method and the Naïve Bayes method are two popular supervised 

machine-learning techniques that produce nonparametric models. Naïve Bayes Classifiers is a 

classification based on the Naïve Bayes theorem, while assuming the predictors are independent. 

In Naïve Bayes classification, it is assumed that the availability of certain feature in a certain class 

is not related to the presence of any other feature. The algorithm works by counting and conditional 

probability (Murphy, 2006). The model is a probability table, which is updated depending on 

training data. Probabilities from the probability table based on the feature values are considered in 

prediction.  

 

The major advantages of the Naïve Bayes method are it is a fast, easy way to predict a class 

of dataset for testing. It can also be applied very well in the prediction of a multi class problem. 

When the assumption of the independence is true, the Naïve Bayes classifier works very well when 

compared to other models (Richards, 2018). The model requires less training data. The model 

performs better when the input variables are categorical than the numerical variables. In case of 

numerical variables, an assumption that the data set follows a normal distribution is to be made. 

 

The limitations of Naïve Bayes algorithm are that it makes an assumption on the shape of 

the data distribution which may not be true always. The other issues are data scarcity as needed 

for the model development and validation. The Naïve Bayes Algorithm can be advantageously 

applied to solve problems in real time prediction, multi-class prediction text 

classification/sentiment analysis/spam filtering and recommendation systems (Theobald, 2017). 

 

K-Nearest Neighbors (K-NN) is one of the simplest clustering algorithms used to classify 

new data points in relation to known and nearby data points. It is a non-parametric algorithm, in 

the sense that there are no underlying assumptions made regarding the distribution of the data 

(Harrison, 2018). This algorithm can be applied to either regression or to classification problems 

but is most widely applied in classification problems. When K-NN is used for classification 

problems, the output may be calculated as the class, which has the highest frequency from the k-

most similar instances. In order to identify the K instances in a training dataset, which are most 

similar to the new input, the distance measurement technique is used. For inputs, which are real 

values, the most common distance measure is the Euclidean distance. Other distances that can be 
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used include Hamming distance, Manhattan distance, and Minkowski distance. The kind of 

distance measure can be determined from the data set (Richards, 2018). The goal in K-NN is to 

determine the K similar data points from a training set, then use them for interpolating the output 

value, which can be an average for a numeric output, and a majority value for the categorical 

output. The K parameter is tunable, and should be cross-validated so that the best value can be 

picked. 

  

K-NN can be used for pattern recognition and statistical estimation. One of the downsides 

of K-NN is that it can be challenging to apply for high dimensional data (3D and 4D) with multiple 

features (Theobald, 2017). Measuring multiple data points in a three or four-dimensional space is 

a burden on taxing resources and complicated to perform accurate classification. Reducing the 

total number of dimensions, through a descending dimension algorithm such as Principle 

Component Analysis (PCA) or merging variables, is a common strategy to simplify and prepare a 

dataset for K-NN analysis (Loria et al., 2008, Bianchini, 2014, Lopes 2016). 

 

The advantages of K-NN algorithm is that it is an excellent algorithm for creating 

prediction models where the data is very noisy and when the available dataset is large. The 

limitation of K-NN algorithm is that finding an optimal K would be time consuming. Moreover, 

the cost of computation is very high, as distance of every query instance to all the training samples 

is to be found out, although it can be reduced via indexing. It is also not clear as to which distance 

measure is to be used as well as which are the attributes which should be used in the analysis to 

produce the results. 

 

2.10 Machine Learning Algorithm (Model) Evaluation Process 

 

In order to evaluate the machine learning algorithm/model and to determine whether it will 

predict the target results correctly when the present set of data are used as well as when future data 

are used, the performance of the models is to be evaluated. The process adopted for the model 

evaluation and validation are as follows. 
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Overfitting normally occurs when a model has memorized the patterns occurring in training 

and evaluation data sources, but it has failed to generalize the patterns in data. An overfitted model 

will perform satisfactorily during the evaluation, but will not be able to make accurate predictions 

on any unseen data. To avoid an overfitted model, some data are to be preserved for use in 

validating the performance of the machine learning model. About 60% of the data may be used for 

training, and 20% of the data can be used for evaluation, and the remaining 20% of the data can 

be used for validation. Once the model parameters are chosen for the evaluation the second 

evaluation can be run using the validation data to ensure that the machine-learning model performs 

satisfactorily. If the test meets the expectations using the validated data, it is not over fitted. If a 

third set of data are used for the validation, the right machine learning model parameters are to be 

chosen to prevent overfitting. However, if the data from training process are considered for 

validation and evaluation, it means that only lesser data will be available for training purpose. This 

is a problem with using small data sets. It is always good to use a large data set in machine learning. 

Laboratory-based experiments generally result limited  data set. However, if the laboratory-based 

models are used for field performance prediction, a large data set can be collected and can be used 

for the validation of the models. 

 

Cross-validation refers to the process of evaluating machine learning models in which 

several ML models are trained on the subsets of the available input data, then evaluating them on 

a complementary subset of the data. Cross-validation can be used to detect overfitting. The k-fold 

cross validation is a common method for cross-validation. In this method, the input data is split 

into k subsets of data, which are also known as folds. A machine-learning model is then trained on 

all except one of the data sets; that is, the training is done with k-1 datasets. The evaluation of the 

model is then done using the subset that was not used for training. The training process is then 

repeated several times, using a different dataset for evaluation each time. This means the process 

is repeated k times. 

 

Confusion Matrix also known as error matrix, is one of the ways to evaluate the prediction 

power of a classification model. Figure 2.5 shows a typical confusion matrix of a binary 

classification model. 
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  Predicted Class  

  Positive Negative  

Actual 

Class 

Positive True Positive (TP) False Negative (FN) Sensitivity 

TP / (TP+FN) 

Negative False Positive 

(FP) 

True Negative (TN) Specificity 

TN / (TN+FP) 

  Precision  

TP / (TP+FP) 

Negative Predictivity   

TN / (TN+FN) 

Accuracy  

TP + TN / 

(TP+TN+FP+FN) 

 

Figure 2.5: Confusion Matrix with Classification Metrics 

 

In the above figure, True Positive (TP) would indicate the total number of correct 

predictions i.e. the total number of positive class correctly identified as positive by the model. 

False Negative (FP) would indicate the total number of incorrect predictions made by the model 

i.e. total number of positive class incorrectly identified as negative (Type II error). False Positive 

(FP) would also indicate the total number of incorrect predictions made by the model i.e. total 

number of negative class incorrectly identified as positive (Type I error). True Negative (TN) 

would indicate the total number of   negative predictions i.e. the total number of negative class 

correctly identified as negative. The sensitivity also known as true positive rate is a measure of 

positive class identified as positive by the classifier. The specificity also known as true negative 

rate is a measure of negative class identified as negative by the classifier. In general, there should 

be high specificity. The precision is the ratio of total number of correctly classified class and the 

total number of predicted positive class. Accuracy is the proportion of the total number of 

predictions that the model is capable of identifying correctly. 

 

Principal Component Analysis (PCA) is a technique that is used to find the underlying 

variables that can best differentiate the data points within a data set. The principal components are 

the dimensions along which the data points are found to be most spread out. Each principal 

component is a weighted combination either of different variables, where the weights can be 

positive, negative, or close to zero. PCA usually works well when the most informative dimensions 
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have the largest spread and is orthogonal to each other. PCA is a multivariate statistical method 

that can be used for the reduction of high-dimension data to low-dimension and easily 

comprehensible data (that can be plotted on two or three axes) that retain factors that can explain 

most of the variance. PCA provides the covariance matrix (how predictors are associated with each 

other), eigenvectors (how the data are dispersed and the direction of dispersion), and eigenvalues 

(the relative significance of these directions) (Shlens, 2014) 

 

Limitations of PCA are that the interpretation of the generated components is a challenge 

and it is very difficult to explain as why the variables are combined in a particular format. The 

PCA assumes that the dimensions with the largest spread of data points are useful. Moreover, PCA 

generated orthogonal principal components which would mean that the components are positioned 

at 90° to each other, which may not be true. 

 

2.11 Conclusions from Literature Review 

 

The following findings are reported in the available literature:  

1. Moisture induced damage to the pavement system is due to several factors like binder type, 

composition, type of the asphalt mix, construction quality, duration of moisture on the 

pavement, intensity of rainfall, traffic level, pavement profile etc.  

2. Several researchers have developed test methods that can be used to predict the moisture 

induced materials and mixes. The prediction depends on the adopted test method.  

3. There is a need to identify suitable accurate method of predicting the moisture induced 

damage that may be adopted by State Departments of Transportation (DOTs) considering 

few variables that can be quickly measured in the field.  

4. Machine learning can be an effective and useful tool for the identification poor and good 

performing mixes in terms of moisture induced damages. 
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3.0 RESEARCH METHODOLOGY AND LABORATORY INVESTIGATIONS 

 

3.1 MATERIALS AND METHODOLOGY 

Thirty plant-produced asphalt mixtures were procured from two US state DOTs for use in 

this study, of which six were good performing mixtures and 24 were poor performing mixes. The 

details of the asphalt mixes considered in the present investigation are shown in in Table 3.1. 

 

The performance of the mixes was characterized as “good” or “poor” by the DOTs based 

on their experience and field observations regarding moisture induced damage. The poor mixes 

had shown premature failures in the field that resulted from moisture-induced damage. The mixes 

were heated and compacted to produce samples at the desired voids – 20 mixes from one DOT 

were targeted at 5 ± 1% air voids and ten mixes were targeted at 7 ± 1% air voids, according to the 

respective DOT specifications.  

 

3.2 Moisture Conditioning 

Moisture conditioning was carried out with the MiST. In the MiST conditioning system, a 

sample is placed inside a chamber that has a built-in bladder. The chamber is filled with water and 

maintained at the test temperature. The water is forced to flow in and out of the sample by 

pressurizing and depressurizing the bladder over a desired number of cycles. At the end of the 

desired number of cycles of pressurization, the sample can be removed and tested, and the test 

results can be compared with those from unconditioned samples to evaluate the moisture damage 

potential of the mix. The intensity of moisture-induced damage in MiST is reported to be 

dependent on the number of cycles and the duration of moisture saturation Tarefder et al. (2014). 

For this study, MiST test was executed at 3,500 cycles at 275 kPa and 60ºC for the PG 64-28 and  

PG 70-28 mixes and 50ºC for the PG 58-28 mix (ASTM 7870). A 20-hour dwelling period, in 

which the samples were kept immersed in water at the test temperature, was used prior to cycling 

in the MiST. The dwelling period was used to simulate the soaking period of water immediately 

after construction and before the passage of traffic. The use of the dwelling period was based on 

the work of LaCroix et al. (2016) and Varveri et al. (2014), who observed that the dwelling period 

allowed the diffusion of water into the asphalt-aggregate interface. The pre–MiST-conditioned and 

post–MiST-conditioned samples were subjected to different tests.  
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Table 3.1: Mix Information 

Mix No. 

/perfor-

mance 

Nominal 

Max Agg. 

Size 

(NMAS) 

(mm) 

Target 

construction 

voids (%) Binder type 
Percentage 

of binder 

Percentage of 

Reclaimed 

Asphalt 

Pavement 

(RAP) 

Additive 

1/poor 12.5 5±1 PG 64-28 5.4 20 No 

2/poor 12.5 5±1 PG 64-28 5.4 20 No 

3/poor 9.5 5±1 PG 64-28 4.5 10 No 

4/poor 9.5 5±1 PG 64-28 6.5 20 No 

5/Good 9.5 5±1 PG 64-28 4.6 20 Lime 

6/Good 12.5 5±1 PG 64-28 5.6 20 No 

7/poor 9.5 5±1 PG 64-28 5.7 0 No 

8/poor 12.5 5±1 PG 64-28 4.8 20 No 

9/Good 9.5 5±1 PG 64-28 5.4 15 No 

10/poor 12.5 5±1 PG 64-28 5.9 20 Lime 

11/poor 12.5 5±1 PG 58-28 4.4 20 No 

12/poor 12.5 5±1 PG 64-28 4.5 20 No 

13/poor 12.5 5±1 PG 64-28 5.4 0 No 

14/poor 12.5 5±1 PG 64-28 5.4 20 No 

15/poor 12.5 5±1 PG 64-28 4.5 10 Lime 

16/Good 9.5 7±1 PG 70-28 5.6 20 No 

17/Good 9.5 7±1 PG 58-28 4.6 20 No 

18/poor 9.5 7±1 PG 64-28 6.5 20 
Commerc

-ial 

19/poor 12.5 7±1 PG 64-28 5.0 20 No 

20/poor 12.5 7±1 PG 64-28 4.1 20 No 

21/Good 12.5 7±1 PG 64-28 5.0 20 No 

22/poor 12.5 7±1 PG 64-28 4.7 20 No 

23/poor 12.5 7±1 PG 64-28 5.4 20 No 

24/poor 12.5 7±1 PG 64-28 4.9 20 Novagrip 

25/Good 12.5 7±1 PG 64-28 4.6 20  

26/poor 12.5 5±1 PG 64-28 5.0 20 PaveGrip  

27/poor 12.5 5±1 PG 64-28 5.4 20 Zycosoil 

28/poor 9.5 5±1 PG 64-28 5.6 20 No 

29/poor 12.5 5±1 PG 64-28 4.6 20 No 

30/poor 12.5 5±1 PG 64-28 5.6 20 No 

31/poor 12.5 5±1 PG 64-28 5.2 20 No 

32/poor 12.5 5±1 PG 64-28 0.9 20 No 

33/poor 9.5 5±1 PG 64-28 0.8 10 Zycosoil 

34/poor 12.5 5±1 PG 64-28 1.0 0 No 

35/poor 12.5 5±1 PG 64-28 0.9 0 No 

36/Good 12.5 5±1 PG 64-28 0.9 20 No 

37/Good 12.5 5±1 PG 64-28 0.9 20 Zycosoil 

38/poor 12.5 5±1 PG 64-28 0.8 20 Zycosoil 



27 
 

3.3 Tests for Characterization of Moisture Conditioned Samples 

 

In order to evaluate the moisture susceptibility of an asphalt mixture, the mechanical 

capacity and integrity of the material needs to be evaluated pre- and post-moisture conditioning. 

The test procedures can be broadly classified as destructive versus non-destructive.  

 

3.3.1 Indirect Tensile Strength (ITS) 

 

The indirect tensile test (ASTM D6931) was used to determine the strength of the asphalt 

mixes. The test was conducted by loading a cylindrical across its vertical diametric plane at a 

specified rate of deformation (50 mm (2 in.) per minute) and at a test temperature of 25°C (77ºF). 

The peak load at failure was recorded and was used to calculate the ITS strength of the specimen. 

Tensile Strength Ratio (TSR) of the conditioned and unconditioned specimens are typically used 

as a measure of the moisture susceptibility and durability of asphalt mixtures. A higher ratio 

indicates a more moisture resistant mix. 

 

3.3.2 Ultrasonic Pulse Velocity (UPV) 

 

The UPV test is a method of non-destructive evaluation of an HMA specimen based on 

wave propagation techniques. Conventionally, UPV test has been extensively used as a measure 

to evaluate the quality of portland cement concrete mixes. The UPV test has a good potential to 

detect moisture susceptible HMA mixes because the measured seismic modulus (Es) is sensitive 

to both of the deterioration effects of moisture, i.e. due to the effect of pore pressure because of 

presence of water in the pores after moisture conditioning, and due to the loss of integrity of the 

mix, as a result of loss in its cohesion or adhesion (Birgisson et al., 2003, Nazarian, 2005). The 

UPV test is based on the idea that the speed of compressional waves (P waves) passing through a 

medium depends on the medium’s elastic properties and density. The time the wave travels through 

the specimen is measured as tv, which is then used to calculate the samples bulk-constrained 

modulus and also bulk density ( r ). The seismic modulus (Es) and design modulus of the sample 

can be derived from the calculated bulk-constrained modulus. The loss in Es can be used utilized 

to detect moisture susceptibility, and the Es values can also be transformed to design modulus (Ed) 
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to estimate the loss in structural capacity or service life as a result of moisture damage, with the 

help of available data/relationships as mentioned below.  

 

The specimen dimensions were determined for each sample, and the compression wave 

(P-wave) Velocity, Vp was then calculated from the equation: 

 
𝑣𝑃 =  

𝐻

𝑡𝑣
 (3.1) 

Where H is the height of the specimen and tv is the corresponding travel time (mean of four 

transmission time readings per sample). The constraint modulus, MV, was then calculated using: 

 

 𝑀𝑣 =  𝜌 × 𝑉𝑃
2 (3.2) 

 

Where ρ is the bulk density of the specimen in g/cc. The constraint modulus was then 

converted to Young’s modulus, EV, through a theoretically corrected relationship in the form of 

 

 
𝐸𝑣 =  𝑀𝑉 ×

(1 + 𝜇) × (1 − 2𝜇)

(1 − 𝜇)
 (3.3) 

 

Where Ev is Young’s modulus and μ is Poisson’s ratio. The Poisson’s ratio for all mixes 

was assumed to be 0.35. The Ev measured in this way is known as the seismic modulus, or Es, 

which can be used to estimate the design modulus, Ed (Aouad et al., 1993; Li, Y., & Nazarian, 

2006). 

 

 
𝐸𝑑 =  

𝐸𝑠

3.2 × 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟
 (3.4) 

 

3.3.3 Semi-Circular Bending (SCB): 

 

Fracture energy concepts have been widely used to link pavement cracking performance 

with an asphalt mix’s mechanical properties. Fracture tests can be conducted in either single mode 

or mixed-mode conditions (tension, shear, or both). At present most of the current test procedures 

focus on the tensile model (Mode-I) where peak load is used to determine the fracture toughness 
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of the material and the area under the load-displacement curve provides the fracture energy. This 

test was carried out according to the University of Illinois Method (AASHTO TP-124, Al-Qadi et 

al. 2005). Before conducting the test, a notch was cut using a tile saw blade at the center for all 

samples for a depth of 15 mm from the flat face of the specimen to initiate the crack propagation. 

The test was performed by imposing a small contact load of 0.1 ± 0.01 kN and then by loading at 

a rate of 50 mm/min. The test was stopped once the load dropped below 0.1 kN. The total work of 

fracture Wf was calculated by dividing the load-displacement data into two parts, that is, the curve 

prior to peak load and the curve after the peak load, and then numerically integrating the total area 

under the two parts. The total work of fracture is calculated using the integral equation  

 

 
W𝑓 = ∫ 𝑃1(𝑢)𝑑𝑢 +  ∫ 𝑃2(𝑢)𝑑𝑢

𝑢𝑓𝑖𝑛𝑎𝑙

𝑢0

𝑢0

0

 (3.5) 

 

Where Ufinal is the displacement at 0.1 kN cut-off load and U0 is the displacement at peak 

load (kN). The fracture energy Gf was then found by dividing the work of fracture by the 

ligament area of the SCB specimen prior to testing.  

 

 
G𝑓 =

𝑊𝑓

𝐴𝑟𝑒𝑎𝑙𝑖𝑔
× 106 (3.6) 

Where: 

Gf = fracture energy (Joules/m2) 

Wf = work of fracture (Joules) 

P =load (kN) 

Area lig = ligament length x×t, where t is the specimen thickness (mm) 

 

The Flexibility Index (FI) is calculated from the parameters obtained from the load 

displacement curve.  

 

 
𝐹𝐼 =

𝐺𝑓

|𝑚|
× 𝐴 (3.7) 

Where  

FI= Flexibility Index 
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|m|= absolute value of post-peak load slope m (kN/mm) 

A= 0.01 

 

Figure 3.1 and 3.2 show the SCB testing and schematics of the test parameters calculated. 

 

 

Figure 3.1: Semi-Circular Bending (SCB) Sample Test Setup  

 

Fig 3.2 shows the schematic of the various parameters showing the displacement in the specimen 

with the load level. 

 

 

Figure 3.2: Schematic of Fracture Energy and Flexibility Index Parameters 
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3.4 Effluent Analysis  

 

From the past moisture damage studies (Arepalli et al. 2017, Mallick et al. 2019) using 

MiST it has been reported that there is erosion of fine materials with increasing pressure cycles 

and also that there are traces of leached asphalt in water effluent after MiST conditioning. Field 

studies conducted by Maine DOT have reported loss of materials (both aggregates and asphalt) 

associated with moisture damage in HMA pavements (personal communication with Derek 

Nenerplante, Maine DOT, undated). Therefore, an effort has been made in this study to evaluate 

the type and the amount of both aggregate and asphalt binder lost from each sample during 

moisture damage conditioning using MiST equipment. For obtaining Dissolved Organic Carbon 

(DOC) DOC and Loss of materials (LOM) the ITS samples were individually tested using the 

Moisture Induced Stress Tester (MiST) and the effluent from the MIST were collected.  

 

The effluent consisted of water, aggregates (broken, coated, and uncoated), and asphalt 

binder. The LOM was obtained by passing the effluent through 75 μm sieves followed by oven 

drying the sieves at 45°C (113ºF) for four hours. The weight of the material retained on this sieve 

was then measured in milligrams. The remaining fraction of the effluent was then subjected to 

filtration with 45-μm sieve and the DOC analysis was conducted to determine the amount of 

dissolved hydrocarbon present in the effluent. For DOC analysis a Shimadzu TOC-5000A analyzer 

was used, which works on the principle of oxidizing the carbon in the effluent to CO2 and analyzing 

with a non-dispersive infrared (NDIR) gas detector to quantify the total carbon present. Similar 

research was performed by Zoftka et al. (2014), who found through spectroscopic analysis that 

results from MIST effluent contained peaks corresponding to asphalt as well as aggregates. 

 

3.5 Image Analysis 

 

Image analysis is a process of extracting meaningful information from a digital image using 

computer algorithms. The image analysis was performed in this study to quantify the impact of 

Moisture Induced Stress Tester (MIST) on the laboratory prepared HMA sample. For this, a two-

dimensional image processing software named “Pixels” was used. The software enables 

determination of the number of black pixels before and after MIST testing. Images of the asphalt 
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sample before and after MIST were taken using a high-resolution (16 megapixel) digital single-

lens reflex (DSLR) camera under standard lighting conditions and camera settings. All the digital 

images taken were in RGB (Red-Green-Blue), which means that each individual pixel of that 

image had their own intensity of each color. Since asphalt is black in color and has a low RGB 

value, a threshold value of 50 was selected as inputs for the red, blue, and green in this software. 

An external image-editing software (Photoshop) was used to manually crop the pre-and post-MIST 

images to remove any background noise. The cropped pre-and post-MIST images of the same 

sample were uploaded to the software. The software then determined the total number of black 

pixels in each image with RGB values less than 50 and gave the total number of counted black 

pixels as output. Figure 3.3 shows the picture of the Pixels software that was developed at WPI 

specifically for this purpose. The output (i.e. the total number of black pixels in each image) is 

displayed at the bottom of the software. The percentage change in the black pixels was then 

calculated for each sample by finding the difference between the pre-MIST and the post-MIST 

black pixels. 

 

 

Figure 3.3: Pixels-Image Analysis Software 

 



33 
 

3.6 Fourier Transform-Infrared Spectroscopy (FTIR) 

 

Asphalt essentially consists of a very large number of different hydrocarbons, heteroatoms 

(nitrogen, oxygen and sulfur) and/or metal traces (e.g. iron, vanadium and nickel). The 

heteroatoms form functional groups such as phenolics, pyrrolics, pyridinics, 2-quinolones, 

sulfoxides, ketones, carboxylic acids and anhydrides. Such functional groups play a major role in 

the interaction of asphalt and aggregate surfaces, thus determining the resistance of mixtures to 

damage to moisture. The strength of the interfacial bond depends on the relative tendency of the 

functional groups to adsorb on aggregate surfaces and relative water desorption. In general, the 

most adsorbed polar compounds (such as carboxylic acids and anhydrides) have been reported to 

be most easily displaced by water (Bagampadde 2005). Phenolics, ketones, and nitrogen bases 

(especially pyridinics) were associated with the highest resistance to water displacement. Asphalt 

rheology appears to influence the moisture sensitivity of bituminous mixtures during mixing and 

compaction. Viscosity must be sufficiently low to allow for proper wettability of the asphalt 

aggregate. High viscosity during service provides better resistance to damage to moisture than 

conversely. A high concentration of polar viscosity building asphalt components may increase 

moisture resistance. Carbonyls are typically found on the spectrum at 1700cm-1 and sulfoxides at 

1030cm-1in the FTIR spectrum. In this study, the carbonyl and sulfoxide groups are focused on, 

due to their ability to indicate stripping and aging in asphalt (Dony et al. 2016). In most asphalt 

binders, development of carbonyl and sulfoxide groups can be used to quantitatively assess the 

chemical interaction that has happened during the aging process. Determining carbonyl or 

sulfoxide indices (ICO and ISO respectively) by FTIR spectroscopy is used as a scientific tool in 

assessing the binder properties towards ageing of bituminous mixtures (Petersen et al. 2009, Hofko 

et al. 2018). Moisture damage in asphalt mixtures can cause stripping of asphalt materials, which 

in turn can increase the surface area to oxidation thereby increasing the Ico and Iso indices.  

 

FTIR testing was carried out using a PerkinElmer Spectrum Two spectrometer with a universal 

Attenuated Total Reflectance (ATR) accessory. Figure 3.4 shows the FTIR spectrometer used for 

the FTIR testing. Before carrying out the experiments using the FTIR, a background scan was 

performed to remove unwanted peaks from the sample spectrum. In this study, 17 mixes were 
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selected and the asphalt binders for these mixes were extracted using solvent extraction method 

(ASTM D5404).  

 

 

Figure 3.4: Fourier-Transform Infrared Spectrometer (FTIR) 

 

Around 0.1g of the extracted asphalt was rolled into a small ball and placed on the FTIR crystal as 

shown in Figure 3.5.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Extracted Asphalt Binder on ATR Crystal 

 

The ATR detector was then lowered to scan and the absorption spectrum was acquired. 

The absorption spectrum data collected was in the wavelength range of 2000 cm-1 to 500cm-1. The 

Asphalt Sample  
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experiment was repeated thrice using different samples to check the repeatability in the test results.  

The results of the FTIR spectra are shown in Appendix A. 
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4.0 TEST RESULT AND ANALYSIS 

 

4.1 Statistical Analysis 

 

The average and standard deviation values of the different test results are presented in Table 

4.1. For further analysis, the pre- and post-conditioned data from each test were used to calculate 

a ratio. The ratios are indicated in percentages for the ITS and the Es, and as absolute values for 

the other test properties. 
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Table 4.1: Average Values (Standard Deviation) of Various Test Parameters 

DOC=Dissolved Organic Carbon; LOM=Loss of Material; BP=Black Pixel; FE=Fracture Energy; FI=Flexibility Index 

Mix

No 

PreMiST

Es (MPa) 

PostMiST

Es (MPa) 

PreMiST 

ITS 

(kPa) 

PostMiS

T ITS 

(kPa) 

PreMiST 

FE ITS 

(J/m2) 

PostMiS

T FE ITS 

(J/m2) 

PreMiST 

FE SCB 

(J/m2) 

PostMiST 

FE SCB 

(J/m2) 

PreMiS

T FI 

PostMiS

T FI 

Effluent 

FM 

DOC 

(mg) 

LOM 

(mg) 

PreMiST 

BP 

PostMiST 

BP 

1 
13112 

(1486) 

13128 

(635) 

852 

(53) 

743  

(128) 

2087 

(193) 

2990 

(386) 

2587 

(1232) 

4681 

(1860) 

14.6 

(8.5) 

34.1 

(13) 

2.4  

(0.7) 

1.8 

(2.3) 

82.9 

(45.6) 

1063208 

(69009) 

1041372 

(82148) 

2 
13167 

(593) 

12893 

(337) 

1074  

(33) 

991 

(27) 

3534 

(571) 

3936 

(233) 

4851 

(2106) 

7240 

(2105) 

16.4 

(7.1) 

45.7 

(11.5) 

2.4  

(0.3) 

9 

(9.1) 

99.4 

(43.4) 

1051937 

(39056) 

960522 

(30532) 

3 
12309 

(499) 

10864 

(451) 

688 

(85) 

593 

(43) 

2360 

(198) 

3322 

(192) 

4483 

(1387) 

7251  

(996) 

20.7 

(7.2) 

95.9 

(29.3) 

2.1  

(0.2) 

6.7 

(5.8) 

113.3 

(28.4) 

1045671 

(36253) 

992049 

(23633) 

4 
12610 

(285) 

11778 

(712) 

780 

(98) 

738  

(140) 

2294 

(288) 

3034 

(261) 

3209 

(1613) 

5303 

(1001) 

15.5 

(9) 

35.3 

(15.2) 

3 

(1) 

11.6 

(1.3) 

130.7 

(24.5) 

789592 

(97652) 

751128 

(69122) 

5 
12397 

(555) 

11227 

(421) 

670 

(57) 

591 

(31) 

2131 

(226) 

2567 

(154) 

3461 

(547) 

3928  

(499) 

34 

(4.8) 

47.9 

(19.8) 

3.2  

(0.6) 

10.8 

(0.9) 

145 

(37.8) 

776914 

(100174) 

692640 

(67104) 

6 
14575 

(263) 

13449 

(284) 

697 

(21) 

534 

(19) 

2109 

(210) 

2386 

(9) 

5505 

(1498) 

4865 

(1897) 

56.2 

(31.9) 

71.2 

(63.7) 

3.5  

(0.6) 

10.3 

(2.2) 

138 

(29.7) 

937804 

(46491) 

922528 

(35054) 

7 
11384 

(463) 

8223   

(255) 

694 

(44) 

371 

(20) 

2343 

(104) 

1798 

(250) 

4407 

(466) 

2103  

(337) 

23 

(8.8) 

30.8  

(6.5) 

2.3  

(1.1) 

132 

(29.2) 

530.7 

(320.3) 

1128147 

(31354) 

1057240 

(74015) 

8 
13125 

(195) 

13251 

(261) 

852  

(229) 

770 

(87) 

2577 

(105) 

3949   

(94) 

4384 

(503) 

10105 

(444) 

15.7 

(4.1) 

69.8 

(13.7) 

2.8  

(0.1) 

11 

(13.6) 

104.9 

(57) 

1128147 

(37009) 

1057240 

(59697) 

9 
12094 

(20) 

10651 

(2) 

683 

(76) 

584 

(25) 

2428 

(168) 

3442 

(224) 

4380 

(343) 

8712  

(437) 

40.3 

(5.2) 

128.8 

(34.5) 

2.4  

(0.1) 

9.5 

(0.3) 

77.5 

(18.7) 

1081764 

(103213) 

1031301 

(45152) 

10 
12390 

(341) 

12302 

(847) 

610 

(79) 

539 

(22) 

1820  

(44) 

2643 

(137) 

2825 

(867) 

5579 

(1552) 

12.8 

(3.9) 

42.6  

(7.7) 

3.3  

(0.7) 

11.5 

(1.6) 

200.9 

(78.4) 

1155357 

(40011) 

936062 

(33197) 

11 
11642 

(816) 

11674 

(155) 

754 

(66) 

722 

(3) 

2437  

(92) 

3102   

(14) 

2700 

(275) 

5116 

(1456) 

15 

(3.3) 

40.1 

(33.2) 

2.7  

(1.3) 

10.5 

(1.7) 

278.7 

(129) 

1193266 

(280976) 

1093430 

(43029) 

12 
9474 

(111) 

12142 

(596) 

692 

(2) 

563 

(8) 

2015 

(100) 

2871 

(306) 

4146 

(1453) 

6403 

(1009) 

21.6 

(5.9) 

44.5 

(19) 

2.6  

(0.8) 

15.6 

(0.6) 

96.5 

(63.9) 

1526461 

(284257) 

1391515 

(206206) 
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Table 4.1: Average Values (Standard Deviation) of Various Test Parameters (Continued) 

Mix

No 

PreMiST

Es (MPa) 

PostMiST

Es (MPa) 

PreMiST 

ITS 

(kPa) 

PostMiS

T ITS 

(kPa) 

PreMiST 

FE ITS 

(J/m2) 

PostMiS

T FE ITS 

(J/m2) 

PreMiST 

FE SCB 

(J/m2) 

PostMiST 

FE SCB 

(J/m2) 

PreMiS

T FI 

PostMiS

T FI 

Effluent 

FM 

DOC 

(mg) 

LOM 

(mg) 

PreMiST 

BP 

PostMiST 

BP 

13 
13471 

(1342) 

12901 

(1034) 

716 

 (5) 

684 

 (7) 

2089  

(31) 

3412 

(306) 

3812 

(1719) 

9889 

(1429) 

27.3 

(13.1) 

89.9 

(31.7) 

2.2  

(0.6) 

14.8 

(0.6) 

184.7 

(174) 

1053014 

(110123) 

1145165 

(37727) 

14 
13213 

(613) 

12562 

(327) 

720  

(119) 

684 

 (26) 

1700  

(47) 

2754 

 (4) 

3297 

(732) 

6649  

(559) 

11.3 

(4.5) 

37.6  

(8.1) 

3.6  

(0.1) 

10.9 

(1.1) 

334.9 

(321.9) 

1141154 

(13203) 

1217756 

(57331) 

15 
13056 

(253) 

10345 

(281) 

588  

(216) 

433 

 (2) 

1885  

(16) 

2347 

(129) 

7598 

(1040) 

9162  

(873) 

45.6 

(8.7) 

93.5 

(17.4) 

3  

(0.1) 

11  

(2.6) 

104.9 

(90) 

1128147 

(31354) 

1057240 

(74015) 

16 
13727 

(534) 

14714 

(721) 

932 

 (49) 

931 

 (76) 

2912  

(46) 

3921 

(364) 

4118 

(441) 

6649  

(559) 

24.5 

(4.9) 

37.6  

(8.1) 

3.1  

(1.1) 

12.1 

(1.5) 

190.9 

(35.3) 

1113326 

(54664) 

1086906 

(52219) 

17 
12057 

(259) 

11287 

(414) 

546 

 (54) 

405  

(16) 

1932 

(101) 

2504 

(132) 

4753 

(386) 

6226  

(567) 

47.4 

(6.6) 

90.1 

(48.8) 

2.6  

(0.5) 

8.3 

(0.9) 

308.4 

(209.2) 

1042742 

(58201) 

992659 

(25024) 

18 
11694 

(569) 

11143 

(494) 

541 

 (99) 

484 

 (28) 

1622  

(80) 

2067 

(160) 

1548 

(456) 

2119  

(141) 

11.3 

(1.8) 

25.6  

(5.9) 

2.5  

(0.2) 

9.9 

(3.1) 

155.3 

(19) 

1106379 

(38458) 

977332 

(61942) 

19 
11697 

(523) 

10054 

(637) 

400  

(160) 

308 

 (2) 

1688  

(28) 

2259 

(157) 

1793  

(98) 

4045  

(633) 

23.8 

 (3) 

83.3 

(47.7) 

2.7  

(0.6) 

10.2 

(3.8) 

130.9 

(42.6) 

1193434 

(73273) 

1209652 

(51956) 

20 
12290 

(317) 

11275 

(414) 

647 

 (11) 

550 

 (22) 

2265 

(149) 

2549 

(406) 

2116 

(170) 

4414 

(2479) 

15.9 

(3.8) 

28.9  

(8.5) 

3 

 (0.2) 

10.1 

(0.7) 

50.5 

(8.8) 

1118450 

(52473) 

920488 

(75030) 

21 
12479 

(308) 

11301 

(234) 

650 

 (8) 

525 

 (34) 

2192 

(140) 

3209 

(106) 

2066 

(149) 

3969 

(1645) 

12 

 (1.1) 

42.9  

(7.3) 

2.6  

(0.3) 

10.5 

(1.2) 

65.1 

(18.5) 

1190532 

(28745) 

1148747 

(9819) 

22 
13895 

(790) 

12734 

(606) 

641 

 (85) 

622 

 (54) 

2399  

(21) 

2972 

(231) 

2403 

(300) 

4269  

(513) 

17.2 

(2.1) 

92.7 

(36.5) 

2.3  

(0.4) 

17.5 

(1.7) 

474.9 

(69.2) 

1068219 

(31375) 

1021573 

(41909) 

23 
11856 

(242) 

11410 

(437) 

504  

(136) 

397  

(14) 

2151 

(217) 

2902 

(210) 

2005 

(259) 

3077  

(404) 

25.7 

(8.1) 

69.2 

(27.5) 

2.6  

(0.2) 

11.1 

(0.5) 

102.6 

(16.1) 

1184374 

(78605) 

1193382 

(71180) 

24 
12245 

(450) 

11525 

(571) 

801 

 (29) 

750  

(34) 

2350  

(92) 

3207   

(86) 

1540 

(205) 

2251  

(125) 

7.1  

(2.3) 

17.8  

(1.9) 

2.8  

(0.3) 

10.8 

(0.7) 

96.2  

(27) 

1128147 

(31354) 

1057240 

(74015) 

25 
12229 

(647) 

12806 

(342) 

603  

(100) 

504 

 (80) 

2035 

(160) 

3085 

(261) 

2152 

(451) 

3050  

(764) 

11 

 (6.3) 

39.9 

(22.5) 

3.2  

(0.2) 

17.8 

(0.8) 

103.2 

(43.4) 

1238704 

(67104) 

1258733 

(46491) 
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Table 4.1: Average Values (Standard Deviation) of Various Test Parameters (Continued) 

Mix

No 

PreMiST

Es (MPa) 

PostMiST

Es (MPa) 

PreMiST 

ITS 

(kPa) 

PostMiS

T ITS 

(kPa) 

PreMiST 

FE ITS 

(J/m2) 

PostMiS

T FE ITS 

(J/m2) 

PreMiST 

FE SCB 

(J/m2) 

PostMiST 

FE SCB 

(J/m2) 

PreMiS

T FI 

PostMiS

T FI 

Effluen

t FM 

DOC 

(mg) 

LOM 

(mg) 

PreMiST 

BP 

PostMiST 

BP 

26 
12376 

(836) 

13341 

(338) 

950    

(31) 

883 

(16) 

3862 

(231) 

4432 

(414) 

2825 

(327) 

5116  

(615) 

12.8 

(4.5) 

40.1 

(12.4) 

2.4  

(0.1) 

20.1 

(0.2) 

111.5 

(320.3) 

1245242 

(57331) 

1165598 

(103213) 

27 
10928 

(332) 

11547 

(234) 

688    

(28) 

581 

(22) 

2903 

(250) 

3646 

(234) 

3209 

(494) 

5116  

(982) 

15.5 

(1.3) 

30.8 

(34.4) 

3 

(0.6) 

10.4 

(2.3) 

121.8 

(18.7) 

1275936 

(75030) 

1221627 

(54664) 

28 
12180 

(342) 

11955 

(425) 

614  

(149) 

585 

(20) 

1910 

(210) 

3198 

(100) 

3683 

(437) 

2175 

(1014) 

9.8  

(3.2) 

30.9 

(55.4) 

3.1  

(0.9) 

8.6 

(0.9) 

92.5 

(63.9) 

1190931 

(69122) 

1069193 

(100174) 

29 
10737 

(435) 

10621 

(321) 

608    

(66) 

520    

(21) 

2112 

(168) 

3123  

(46) 

1992 

(229) 

1895  

(871) 

10.5 

(5.2) 

16.7 

(17.6) 

2.9  

(0.7) 

12.8 

(1.7) 

89.6  

(19) 

1121847 

(57331) 

1075040 

(284257) 

30 
12032 

(433) 

11231 

(232) 

660 

(98) 

701 

(94) 

2491  

(46) 

3167 

(217) 

1579 

(160) 

1779  

(516) 

10 

(1.3) 

9.7  

(65.3) 

2.4  

(0.5) 

18.5 

(1.1) 

132.9 

(69.2) 

1025832 

(41909) 

1064303 

(52473) 

31 
11492 

(342) 

11411 

(326) 

728 

(92) 

682 

(46) 

2151 

(119) 

2574  

(94) 

2119 

(100) 

3297  

(817) 

15.9 

(2.8) 

21.6 

(43.8) 

2.8  

(0.6) 

15.2 

(0.8) 

180.6 

(27) 

1137560 

(31354) 

1120041 

(67104) 

32 
11577 

(143) 

12719 

(625) 

925 

(86) 

845 

(20) 

2778 

(168) 

3268 

(4) 

1689 

(149) 

2011  

(715) 

5.9  

(8.5) 

11.1 

(15.4) 

2.3  

(0.1) 

12.3 

(0.9) 

116.9 

(18.3) 

1234734 

(103213) 

1064744 

(57331) 

33 
10388 

(69) 

11652 

(394) 

985    

(22) 

982    

(86) 

3456 

(166) 

4579 

(244) 

6820 

(633) 

7743  

(717) 

18.6 

(4.2) 

27.85 

(43.6) 

3.1  

(0.3) 

7.5 

(0.7) 

165.2 

(16.1) 

1125671 

(28745) 

982149 

(9819) 

34 
12352 

(512) 

11835  

(83) 

846    

(62) 

729    

(27) 

2448 

(94) 

3794 

(2232) 

4185 

(652) 

6650  

(595) 

11.62 

(3.4) 

37.61 

(33.5) 

2.7  

(0.4) 

12.4 

(0.5) 

157.8 

(18.7) 

947814 

(31375) 

952518 

(46491) 

35 
12165 

(294) 

11705 

(545) 

755    

(26) 

616    

(44) 

2481 

(311) 

3903 

(330) 

5503 

(342) 

2685  

(943) 

15.1 

(5.4) 

11.19 

(23.7) 

3.2  

(0.6) 

9.5 

(1.2) 

120.4 

(18.5) 

1256357 

(78605) 

916032 

(54664) 

36 
11690 

(278) 

12207  

(24) 

849    

(28) 

859 

(39) 

3096 

(1816) 

4339 

(2552) 

4844 

(537) 

7032  

(842) 

13.4 

(4.3) 

48.5 

(25.4) 

2.1  

(0.2) 

11.4 

(0.8) 

86.25 

(63.9) 

1218603 

(67104) 

1258732 

(41909) 

37 
11356 

(39) 

12631 

(439) 

960   

(134) 

887 

(150) 

3228 

(1912) 

3472 

(2130) 

5102 

(519) 

7140  

(759) 

15.2 

(5.6) 

45.2 

(28.5) 

2.3  

(0.7) 

15.351 

(2.3) 

90.153 

(43.4) 

1236560 

(57331) 

1220240 

(71180) 

38 
10914 

(554) 

12702 

(231) 

1004  

(37) 

896 

(41) 

3197 

(149) 

4541 

(245) 

4293 

(236) 

5871           

(854) 

12.6 

(2.6) 

38.7 

(45.5) 

2.1  

(0.9) 

11.364 

(1.7) 

111.9 

(320.3) 

1221647 

(69122) 

1175139 

(103213) 
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4.2 Discussion 

 

The average values of pre-MiST seismic modulus ranged from 14,547 MPa (14.547 GPa) 

to 9,474 MPa (9.474 GPa) with mix no. 6 showing the highest value and mix no. 12 showing the 

lowest value. The standard deviation was higher for mix no.1, which is a poor mix compared to 

mix no. 9, which is a good mix. For the post-MiST seismic modulus, the average values ranged 

from 14,714 MPa to 8,223 MPa. mix no. 16 had the highest value and mix no.7 had the lowest 

value. The variance of the post-MiST seismic value was the highest for poor mix no.13 and lowest 

for good mix no.9. The mean pre-MiST ITS values ranged from 1074 kPa to 400 kPa. mix no. 2 

had the highest pre-MiST ITS value and the mix 19 had the lowest value. The standard deviation 

ranged from 229.0 for mix 8 to 2.0 for mix 12 both of which are poor mix. The mean for the post 

MiST ITS value ranged from 991 to 308 with the highest post-MiST ITS value for mix 2 and 

lowest being for mix 19. The standard deviation for the mixes ranged from 140.0 for mix 4 and 

2.0 for mix 19 both of which are poor mixes. For the pre-MiST ITS the average values for the 

mixes ranged from 3,862 J/m2 to 1,622 J/m2 with mix 26 having the higher value and mix 18 

having the lower value. The standard deviation for the mixes were in between 571 and 16. In the 

post-MiST FE ITS property we can see that mean was varying between 4,432 J/m2 to 1,798 J/m2for 

mixes 26 and 7, respectively, both being poor mixes. The standard deviation in this test property 

was in between 4 and 414  In the pre-MiST SCB-FE, the average values were in between 7,598 

J/m2 to 1,540 J/m2, with the highest value corresponding to mix 15 and the lowest corresponding 

to mix 18. The standard deviation for this test property ranged from 2,106 for mix 2 to 98 for mix 

9. For the post-MiST SCB-FE, the mean was from 10,105 J/m2 to 1,779 J/m2 with the maximum 

value corresponding to mix 8 and the lowest value corresponding to mix 30. 

 

4.3 FTIR Data Average Values and Discussions 

 

The FTIR spectra of all the extracted samples were carried out and absorption spectrum 

data collected was in the wavelength range of 2000 cm-1 to 500 cm-1. A sample spectrum of VTP2 

(poor performing mix) sample before and after conditioning is shown in Figure 4.1 and peaks of 

carbonyl and sulfoxide groups are highlighted. The carbonyl or sulfoxide indices (ICO and ISO 
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respectively) were determined from the FTIR spectrum using equations as shown below (Equation 

4.1 and 4.2).  

 

Figure 4.1 A Sample FTIR Spectra with Peaks at Carbonyl and Sulfoxide Groups 

(Highlighted) 

 

ICO is calculated according to the following equation (Dony et al. 2016): 

 
𝐼𝑐𝑜 =

𝐴1

𝐴0
 (4.1) 

A1is the peak area of carbonyl group at 1700 cm-1, Ao is the area of peaks referred to 

ethylene and methyl groups selected as reference peaks and centered at 1460 and 1375 cm-1 

respectively. ISO is calculated according to the following equation (Dony et al. 2016): 

 
𝐼𝑠𝑜 =

𝐴2

𝐴0
 (4.2) 

A2 is the peak area of sulfoxide group at 1030 cm-1. Table 4.2 represents the calculated ICO and ISO 

indices for all the 17 mixes used for the study. 
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Table 4.2 Indices from FTIR (Ico and Iso ) 

Mix 

ICO  ISO  

Pre-

MiST 

Post-

MiST 

Pre-

MiST 

Post-

MiST 

1 0.06 0.05 0.24 0.13 

2 0.06 0.05 0.15 0.11 

3 0.09 0.05 0.10 0.12 

4 0.07 0.08 0.28 0.27 

5 0.05 0.07 0.08 0.16 

6 0.07 0.05 0.10 0.14 

7 0.07 0.11 0.21 0.26 

8 0.06 0.04 0.20 0.12 

9 0.07 0.08 0.33 0.38 

10 0.04 0.04 0.09 0.08 

11 0.04 0.04 0.20 0.17 

12 0.06 0.08 0.18 0.24 

13 0.07 0.04 0.16 0.14 

14 0.06 0.09 0.24 0.25 

15 0.08 0.08 0.25 0.26 

16 0.10 0.09 0.28 0.28 

17 0.06 0.03 0.17 0.14 

 

The following observations are made: 

1. ISO values were found to be higher compared to ICO values for all the samples.  

2. For mixes seven and twelve, the Post MiST indices were found to be higher. These mixes 

were poor performance mixes and the slight increase in the indices can be attributed to the 

aging due to moisture conditioning.  
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Statistical analysis such as Analysis of Valiance (ANOVA) was carried out using the two 

indices. It can be seen from the statistical analysis in Table 4.3, that in most of the mixes no 

significant change was observed between the pre-MiST and the post MiST Ico and Iso indices. Thus, 

it can be inferred that moisture damage did not cause enough aging so as to see an increase in the 

ICO and ISO indices. 

4.4 Statistical Analysis and Results Including FTIR Data 

 

The results from all tests were analyzed using Analysis of Valiance (ANOVA) to detect 

significant difference between the pre- and post-MiST samples. The hypothesis was that poor 

mixes will show significant differences whereas good mixes will not. Table 4.3 shows a summary 

of these tests. The results show that significant differences were found between the mixes when 

the FTIR data were analyzed. There is no single test that is consistently accurate for detecting both 

good and poor mixes. It can be inferred from Table 4.4 that the properties can be listed in terms of 

their effectiveness., as: (from high to low): SCB-FI, SCB-FE, Es, ITS, ITS-FE, and BP. The 

prediction accuracy was computed as the sum of number of true positives (TP) and true negatives 

(TN) divided by the number of true positives, true negatives, false positives, and false negatives 

(Total Observations). 

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑜𝑡𝑎𝑙 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (𝑛)
 (4.3) 

 

 

For Example, from Table 4.3 the accuracy for Es is calculated as follows: 

The total number of True Positive (TP) = 6; (i.e. good mixes identified as good mixes by statistics) 

The total number of True Negative (TN) = 9; (i.e. poor mixes identified as poor mixes by statistics) 

Total number of observations (n) =38  

 

 
𝐸𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

6 + 9

38
= 39.5%  (4.4) 
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Table 4.3: Statistical Analysis Results 

(YES and NO indicates presence and absence of significant difference, respectively) 

Mix E
s
 ITS 

ITS – 

FE 

Black 

Pixels 

SCB-

FE 
SCB-FI 

FT-IR 

Performance 
Carbonyl Sulfoxide 

1 NO NO YES NO NO YES NO NO POOR 

2 NO YES NO YES NO YES NO NO POOR 

3 YES NO YES YES YES YES NO NO POOR 

4 NO NO YES NO YES NO NO NO POOR 

5 YES NO NO NO NO NO NO YES GOOD 

6 NO NO NO NO NO NO NO NO GOOD 

7 NO NO YES NO NO YES NO NO POOR 

8 YES YES YES YES YES YES YES NO POOR 

9 NO NO YES NO YES YES YES YES GOOD 

10 NO NO YES NO YES YES YES NO POOR 

11 NO NO YES NO YES YES YES YES POOR 

12 NO NO YES NO NO NO NO NO POOR 

13 NO NO YES NO YES YES NO NO POOR 

14 NO NO YES NO YES YES NO NO POOR 

15 NO NO YES NO YES YES NO NO POOR 

16 YES YES YES NO NO YES NO NO GOOD 

17 YES YES YES NO YES NO YES YES GOOD 

18 NO NO YES NO YES NO NO NO POOR 

19 YES YES YES NO NO YES NO NO POOR 

20 NO NO YES NO NO YES NO NO POOR 

21 NO YES YES NO NO NO YES NO GOOD 

22 NO NO YES NO NO NO NO NO POOR 

23 YES YES NO YES NO YES NO NO POOR 

24 YES YES NO NO NO NO NO NO POOR 

25 NO NO YES NO NO YES - - GOOD 

26 YES NO YES NO NO YES - - POOR 

27 YES NO YES NO YES YES - - POOR 

28 NO NO YES NO YES NO - - POOR 

29 NO NO YES NO NO NO - - POOR 

30 NO NO YES NO NO YES - - POOR 

31 NO NO YES NO NO YES - - GOOD 

32 YES NO YES NO YES YES - - POOR 

33 YES NO YES NO YES NO - - POOR 
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Table 4.3: Statistical Analysis Results (Continued) 

Mix E
s
 ITS 

ITS – 

FE 

Black 

Pixels 

SCB-

FE 
SCB-FI Carboxyl Sulfoxide Performance 

34 NO YES NO NO NO YES - - POOR 

35 NO YES YES NO NO YES - - POOR 

36 NO NO YES NO NO YES - - GOOD 

37 NO NO NO NO NO NO - - GOOD 

38 NO YES YES NO NO NO - - POOR 

 

The following accuracies were obtained for each of the properties. 

Table 4.4: Statistical Accuracy 

No Test Property Accuracy (%) 

1 SCB-FI 65.8 

2 SCB-FE 52.6 

3 Es 39.5 

4 ITS 36.8 

5 ITS-FE 73.7 

6 BP 34.2 

 

4.5 Use of Radar Chart to Evaluate Multiple Criteria Based on Multiple Test Properties 

 

The multi variate data can be displayed ina graphical form using a radar chart. The radar 

chart may display three or more variables that can be quantified. The axes for the variables start 

from the same point. In the graphical representation, the relative position as well as the angle of 

the axes are not important. The relative position of the points reveal the distinct correlations and 

other information which can be used to compare the importance of the different variable 

influencing the dependent variable.  

 

Since no individual property was found to have a high degree of accuracy, one option could 

be the use of multiple properties using radar charts, and comparing a radar chart of a good mix to 

any other mix in question. The radar chart was prepared to understand the relative difference 

between the mixes, by normalizing the values with respect to those of the best performing mix 
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(mix 16). Such a chart can be utilized by DOTs on a regular basis for comparative evaluation of 

mixes. For example, Figure 4.2 shows two radar charts – one for a good mix (mix 21) and another 

for a poor mix (mix 7). 

 

Figure 4.2: Radar Chart a) Good Mix; b) Poor Mix 

 It can be inferred from the figure that the imprints on the charts are different for the two 

mixes. The good mix 21 has post MiST black pixels, Es ratio, TSR, ITS-FE ratio properties similar 

to mix 16, whereas the poor mix 7 has lower values for the same properties in comparison to mix 

16. 
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5.0 APPLICATION OF MACHINE LEARNING IN MOISTURE INDUCED DAMAGE 

PREDICTION IN HOT MIX ASPHALT 

 

5.1 Study Approach 

 

The approach adopted in this research is illustrated with a flowchart in Figure 5.1.  

 

Step 1: A dataset of test properties of mixes and classifications were collected according 

to their field performance: In this step, the data on test properties of mixes and materials, and their 

performance, related parameters or actual performance in the field were compiled. This step forms 

the backbone of the entire process. The bigger the dataset, the more robust and reliable will be the 

predictions.  

 

Step 2: A correlation analysis was performed on the experimental dataset to isolate 

uncorrelated (relevant) properties: To identify the relevant variables, the test properties collected 

in Step 1 were subjected to a correlation analysis and pairs of properties whose correlation 

coefficient exceeds 0.8 were identified. For each of these pairs, the test property, which can be 

obtained relatively easily, was retained for further analysis. 

 

Step 3: A Principal Component Analysis (PCA) was performed. The purpose of the 

analysis is to reduce the dimensions and identification of the first three PCs that can identify most 

of the variance in the data.  

 

Step 4: Using the PCAs as predictors and performance as target, appropriate ML methods 

were used to identify the best model, with the highest accuracy  

   

Step 5: The ML model was developed in step 4 by building an App with features to check 

the quality of the mix with input parameters from the user. 

 

Step 6: The mixes were classified as “good” by the ML model, as a possible option for the 

designer to accept or reject a mix. 
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Figure 5.1 shows the overall framework for the application of Machine Learning technique 

to identify mixes that are susceptible to moisture induced damages. 

 

 

 

Figure 5.1: Flowchart of ML Framework Steps 

Experimental Data

Conduct correlation analysis to select un 
correlated properties

Conduct Principal Component Analysis

Select PCs whose cummulative explained 
variance is 90%

Build a ML 
classification model

Build an APP for use of 
the ML model 

Predict moisture 
suceptible  mix
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5.2 Results of ML Analysis 

5.2.1 Correlation Analysis 

 

The test data were first subjected to a correlation analysis to determine whether there are 

factors that are strongly correlated to each other. Figure 5.2 shows the results of the analysis where 

a higher correlation (R = 0.66) between the FE SCB Ratio and FI ratio was found. Therefore, in 

further analysis, only FI ratio was utilized. 

 

 

 

Figure 5.2: Correlation of Variables 

 

A number of variables were explored in this study, and it was necessary to determine which 

of them were important and which could be eliminated from further analyses without causing a 

significant loss of quality of the data. This was accomplished with PCA. First, PCA was carried 

out with all of the test property variables: Es ratio, ITS ratio, FE ITS ratio, FI ratio, BP ratio, DOC, 
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LOM, and FM. Figure 5.3 shows the results of PCA in the form of a Pareto chart, which highlights 

the most important set of factors that explain the effects. The x-axis shows the seven principal 

components obtained after the analysis, the bars show the individual variance, and the line shows 

the cumulative variance. The chart shows that the first three PCs can explain 70% of variance in 

the data. The coefficients of principal components 1, 2, and 3 can be seen  in Table 5.1. A 

contribution value was calculated by summing the products of the variance of each principal 

component with the coefficients of each of the variables. 

 

 

Figure 5.3: Pareto Chart Showing the Percent of Variance in The Data Explained by The 

First Six Principal Components (PC) 

 

Table 5.1: Coefficients for the Different Predictors for PC 1, PC 2, and PC 3 

PC Es ratio 

ITS 

ratio  FI ratio 

BP 

ratio DOC LOM FM 

1 -0.37 -0.43 -0.46 -0.11 -0.07 0.53 0.39 

2 -0.16 0.14 0.23 0.62 0.50 0.07 0.31 

3 -0.33 -0.15 0.31 -0.22 0.55 0.02 0.10 

 

Next, a contribution value was calculated by summing the products of the variance of each 

principal component with the coefficients of each of the variables (as shown in Table 5.1). The 

contribution value of each variable toward the composite principal component is shown in Figure 

5.4. This shows that Es ratio, DOC, ITS, BP ratio are the most significant variables in that they 

explain most of the variances in the data.  
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Figure 5.4: Contribution of the Different Variables Towards the Composite Principal 

Component 

 

Next, PCA was carried out again with only Es ratio, ITS ratio, DOC, and BP ratio as the 

variables. The Pareto chart (Figure 5.5) shows that principal components 1, 2, and 3 can explain 

90% of the variance. The coefficients of the first three principal components are shown in Table 

5.2. These coefficients were used to calculate the contributions of each of the variables, which are 

shown in Figure 5.6. 
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Figure 5.5: Pareto Chart showing the Percent of Variance in the Data Explained by the 

First Four Principal Components (PC) 

 

Table 5.2: Coefficients for the Different Predictors for PC 1, PC 2 and PC 3 

PC Es ratio ITS ratio FE ITS ratio BP ratio DOC 

1 -0.42 -0.52 -0.50 -0.12 0.54 

2 -0.42 -0.06 0.32 0.84 0.11 

3 0.76 0.00 -0.18 0.38 0.50 

 

Figure 5.6 shows the contribution value of each variable. The contribution values were then 

used to estimate the composite scores of the mixes by multiplying the normalized value by the 

contribution value as shown in Figure 5.7. Also, a high value of composite score was found for 

mix 17, which exhibited good performance in the field. 
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Figure 5.6: Contribution of the Different Variables Towards the Composite Principal 

Component 

 

Figure 5.7: Composite Score of Each of the 38 Mixes with Green Bars Indicating Good 

Mixes 
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While the use of ITS ratio is shown to be significant in this study, one concern is that poor-

performing mixes may show a high ITS ratio in spite of having actually low tensile strengths (both 

pre- and post-MiST). As has been done in prior studies (e.g, Choubane et al. 2000), an additional 

criterion of a minimum conditioned ITS can be utilized. For example, a study of field mixes from 

the Maine DOT (Arepalli et al. 2017; Veeraragavan et al. 2018) showed that moisture-susceptible 

mixes exhibit a post conditioning ITS value of <500 kPa, while those that are not moisture-

susceptible show a post conditioning ITS value of>500 kPa. Therefore, a minimum post 

conditioning ITS value of 500 kPa can be used, along with the suggested method, to ensure 

adequately moisture-resistant mixes. 

 

5.3 Application of Machine Learning Techniques: 

 

The most significant variables identified from the results of PCA (Es ratio, ITS ratio, FE 

ITS ratio BP ratio and DOC) were used to develop ML models to predict the performance of the 

mixes. A set of supervised machine learning algorithms based on the k-nearest neighbor and naïve 

Bayes methods were used in this study. 

 

5.3.1 K-Nearest Neighbor (K-NN) Method 

 

The data were divided into training and testing sets. The training data set consisted of 60% 

of the data, and k-fold validation was carried out. The model was run several times to get an 

optimized set of parameters by minimizing the validation error. Both k-fold and distance 

parameters were varied for the different models. The validation error was found to be minimized 

when the number of nearest neighbors was set at six. The optimized set of parameters for the k-

nearest neighbor model obtained from the results are as follows: number of nearest neighbors, six; 

distance, standardized Euclidean distance; distance weight, squared inverse; k-fold, three. The 

confusion matrix for the prediction from this optimized model showed an accuracy of 83% as 

shown in Figure 5.8.  
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Figure 5.8: Confusion Plot for NN Method 

 

5.3.2 Naïve Bayes (NB) Method  

 

The naïve Bayes method is commonly used for analyzing small data sets with many 

parameters. The process assumes that the features in a class are not related to each other. The 

training data set consisted of 60% of the data, and k-fold validation was also carried out. The model 

that gave the best accuracy was used to predict the test data. The confusion plot (Figure 5.9) 

showed an accuracy of 59%. 



56 
 

 

Figure 5.9: Confusion Plot for NB Method 

 

5.4 Application (APP) For the Use of ML Model: 

 

A Graphical User Interface (GUI) application was developed as a way for the user to 

provide complex instructions to communicate with the machine easily. MATLAB application 

offers a self-contained GUI program that is capable of executing complex machine learning 

predictions calculations without the need to learn computer coding (Pueyo, 2015). In order to build 

the application, MATLAB offers a variety of tools, one of them is the app designer tool 

(https://www.mathworks.com/products/matlab/app-designer.html). Figure 5.10 shows the app 

designer interface layout to design the app. The app designer interface consists of three columns 

namely component library at the left region, the canvas at the center and component properties on 

the right. Following are the steps followed for developing the app.  
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Figure 5.10: Layout of MATLAB App Designer Interface  

 

Step 1: For Designing a user interface using, various components are aligned in the design 

canvas to get the layout of the app. Various inputs such as E ratio, ITS ratio, FE ITS ratio, BP ratio 

and DOC are identified as the inputs to be provided by the user. The equations used to calculate 

the ratios are as follows: 

 𝐸𝑠 𝑟𝑎𝑡𝑖𝑜 =
𝑃𝑜𝑠𝑡 𝑀𝐼𝑆𝑇 𝐸𝑠

𝑃𝑟𝑒 𝑀𝐼𝑆𝑇 𝐸𝑠
    (5.1) 

 

 𝐼𝑇𝑆 𝑟𝑎𝑡𝑖𝑜 =
𝑃𝑜𝑠𝑡 𝑀𝐼𝑆𝑇 𝐼𝑇𝑆

𝑃𝑟𝑒 𝑀𝐼𝑆𝑇 𝐼𝑇𝑆
  (5.2) 

 

 𝐹𝐸 − 𝐼𝑇𝑆 𝑟𝑎𝑡𝑖𝑜 =
𝑃𝑜𝑠𝑡 𝑀𝐼𝑆𝑇 𝐹𝐸 𝐼𝑇𝑆

𝑃𝑟𝑒 𝑀𝐼𝑆𝑇 𝐹𝐸 𝐼𝑇𝑆
  (5.3) 

 

 𝐵𝑃 𝑟𝑎𝑡𝑖𝑜 =
𝑃𝑜𝑠𝑡 𝑀𝐼𝑆𝑇 𝐵𝑃

Pre MIST BP
  (5.4) 

 

Step 2: Standard components such as buttons and text fields are used from the library of 

the APP designer in MATLAB. Along with the input components, a 'Classify' button and a field 

'Performance' is used to show the predicted response.  
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Step 3: Callback functions are added that will execute the machine learning model, in this 

case KNN model, when the user uses the 'Classify' button. Thus, as per the input given by the user 

and the saved ML Model, performance of the mix is shown as 'Good' or 'Poor'. The detail code 

used as the call back function is given in the Appendix B. 

 

Step 4: The app can be shared with other MATLAB users. A freely available single 

MATLAB application installation file will enable others to access the application and use it for 

predicting the performance of the asphalt mixes 

 

For this App development from the PCA analysis run on the data, Es ratio, ITS ratio, FE 

ITS ratio BP ratio and DOC have been used as the significant variables which are necessary as 

inputs to classify a mix performance. From the PCA analysis the K-NN model was found to have 

a higher accuracy of 84%. Five inputs were therefore placed on the canvas for each individual ratio 

as inputs from the user, and a classify button was used to assign and run the K-NN machine 

learning model. The final predictor or the output from the model is displayed under performance. 

Figure 5.11 shows the MATLAB application user interface with Es ratio, ITS ratio, FEITS ratio, 

BP ratio and DOC as inputs and the performance of the mix predicted as the final output. 

 

 

Figure 5.11: MATLAB Application Interface to Classify Mix Performance 
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6.0 EVALUATION OF USE OF FIBERS FOR THE ENHANCEMENT OF RESISTANCE 

AGAINST MOISTURE DAMAGE 

 

6.1 Fibers in HMA for Improved Performance 

 

Several technologies have been developed over the years to improve the moisture 

susceptibility of HMA. It is reported that fibers when added to HMA can result in reduced moisture 

induced damages to the HMA.  The fiber is likely to enhance bonding between the aggregates and 

the binder into a dense mix resulting in reduced moisture induced damages.  Researchers have 

used polymers and glass fibers in their research investigations. Few researchers have also used 

natural fibers like coir, jute etc. In the present study, High Tenacity Polypropylene Fiber (HTPP), 

a synthetic fiber, is used. These polypropylene fibers are typically used in concrete mixes and are 

generally cheap and readily available (Kalbskopf et al., 2003). HTPP fibers have demonstrated an 

increase in tensile strength in concrete and hence an attempt is made in the present study to explore 

the benefits of reduced moisture induced damage in HMA. HTPP fibers are found to have a higher 

melting point, between 160°C (320ºF) and 170°C (338ºF) (Qin, Y. et al., 2019), which is the above 

the mixing temperature adopted for most commonly used HMA. The specific fibers used in this 

study were purchased from Staint Gobain Brazil and are 10 mm (0.39 in) in diameter and 12 μm 

(4.7 x 10-4 in) in length.  

 

Table 6.1 shows the physical properties of the HTPP fibers. 

 

Table 6.1. Physical Properties of HTPP Fibers 

Description Property values 

Titer 2, 8 to 6 dtex 

Cut-Length 40-120 mm 

Tenacity 3,8-5,4 cN/dtex 

Elongation >40%->80% 

Specific Weight 0.91 g/cm3 

Melting point 163℃ 

Color White 
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In the present investigation, one poor performing mix no. 3 was chosen. The dosage of 

HTPP fibers at 0.25% of total mass was added. If the dosage of the fibers is high, it was observed 

that non-uniform distribution of the fibers occurred in the mix resulting in wide variation in the 

obtained bulk densities. The mix was heated to 150°C (302ºF) for 2 hours. The hot mix was 

blended with 0.25% fibers in a mechanical mixer for 1 minute. Later the mix was conditioned in 

an over for 30 min and remixed in the mixer for one minute again and compacted. Figure 6.1 shows 

the pre- and post-MIST ITS results with and without HTPP fibers. 

 

Figure: 6.1: Pre-MiST and Post-MiST ITS Results with 0% and 0.25% HTPP Fibers 

 

The findings from this part of the study are as follows.  

1. Higher ITS strength of about 21% was obtained for the samples with 0.25% fibers, tested 

without moisture conditioning when compared with those without fibers.  

2. The retained ITS strength was about 79.6% (approx. 80%) after the post MiST 

conditioning. The desirable minimum retained ITS strength in the field is 80% 

3.  It was found that the samples prepared without the addition of the fibers showed a lower 

ITS strength of only 67.9% and hence they do not meet the minimum required retained ITS 

strength.   
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4. The ITS strength increased by 22.78% for the post MiST samples with 0.25% fibers, when 

compared to the samples without fiber.  

 

The addition of fibers resulted in increased resistance to moisture induced damage in the HMA. 
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7.0 CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Conclusions 

 

1. MiST conditioning process with the 20-hour dwell period prior to 3,500 pressure cycling 

at 275 kPa was found to be able to simulate field moisture damage conditions in the 

laboratory. 

2. Poor mixes are found to lose more finer aggregates during the MiST conditioning process 

than good mixes. 

3. Non-destructive testing using ultrasonic pulse velocity was able to identify moisture 

susceptible mixes. Seismic modulus and indirect tensile strength tests, used in conjunction 

with a MiST conditioning process consisting of a dwelling period followed by pressure 

cycles, have good potential for identifying moisture-susceptible HMA 

4. Test properties such as seismic modulus and indirect tensile strength after moisture 

conditioning can be used by agencies to predict the moisture damage potential of HMA. 

Statistical analyses of the seismic modulus and ITS of pre- and post-conditioned samples 

were able to differentiate between good- and poor-performance mixes with moderate 

accuracy. 

5. Principal component analysis identified the following properties as the primary factors that 

could explain most of the variance in the data: seismic modulus, indirect tensile strength, 

black pixels, and fracture energy from indirect tensile strength. 

6.  The models developed with two machine learning techniques, the K-Nearest Neighbor and 

Naïve Bayes (NB) method show excellent accuracy for classification of mixes into good 

and poor performing in terms of potential of moisture damage. 

7. The nearest neighbor model, a supervised machine learning technique, classified the good 

and poor mixes with 84% accuracy. 

8. The use of machine learning techniques and the app could help agencies to detect moisture 

susceptible asphalt mixtures and can be used to develop appropriate specifications that 

could be used to build moisture resistant pavement. 

9.  Although most of the mixes showed a decrease in black pixels content after moisture 

conditioning and the poor-performance mixes tended to show a higher change, statistical 
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analysis of the BP content of samples of these mixes failed to differentiate between good- 

and poor-performance mixes with high accuracy. 

10.  The machine learning model developed can be used for classification of good and poor 

performing HMA. The application of artificial intelligence in prediction of moisture 

susceptible asphalt mixtures and the App developed as an outcome of the present research 

work will help the state agencies identifying the good and poor mixes before construction. 

 

7.2 Recommendations 

 

Recommendations are made for utilizing the suite of tests identified in this research work 

along with models developed from machine learning techniques, to classify mixes in terms of their 

moisture susceptibility. A minimum value of post conditioned indirect tensile strength may also 

be used to identify good and poor mixes. The use of the indirect tensile strength test along with 

the ultrasonic pulse velocity test is recommended. 

 

7.3 Scope for Future Work 

 

It is acknowledged that the data used for this study are limited, and that the developed 

models could be improved significantly with more data, i.e., from a number of mixes with known 

field performance and laboratory test properties. Therefore, the developed method is proposed as 

a framework, which can be expanded and improved, by agencies and researchers with additional 

performance data.  
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APPENDIX A 

 

Appendix A consists of plots comparing FTIR absorption spectrum before and after MiST 

testing for each of the 17 extracted binders. The calculated Ico and Iso indices results are also 

presented as tables at the end of the plots. 
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A 1.1: FTIR Test Plots 
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A 1.2: FTIR ICO and ISO indices Results: 

Mix ID 
Pre-MiST 

ICO 

Post-MiST 

ICO 

Pre-MiST 

ISO 

Post-MiST 

ISO 
Performance 

1 

0.07 0.03 0.18 0.12 

Poor 0.06 0.05 0.37 0.07 

0.06 0.06 0.16 0.20 

      

2 

0.06 0.04 0.17 0.15 

Poor 0.05 0.06 0.14 0.07 

0.06 0.04 0.15 0.12 

      

3 

0.07 0.05 0.09 0.09 

Poor 0.08 0.00 0.11 0.16 

0.13 0.09 0.10 0.11 

      

4 

0.08 0.10 0.21 0.33 

Poor 0.05 0.07 0.33 0.12 

0.08 0.07 0.30 0.36 

      

5 

0.06 0.07 0.08 0.17 

Good 0.03 0.06 0.08 0.16 

0.06 0.07 0.07 0.14 

      

7 

0.07 0.04 0.10 0.15 

Poor 0.08 0.05 0.06 0.15 

0.07 0.05 0.15 0.14 

      

8 

0.07 0.08 0.21 0.26 

Poor 0.08 0.08 0.20 0.26 

0.07 0.09 0.21 0.27 

      

9 

0.07 0.11 0.30 0.42 

Good 0.06 0.11 0.35 0.36 

0.07 0.11 0.35 0.36 

      

11 

0.06 0.03 0.16 0.15 

Poor 0.07 0.04 0.16 0.11 

0.06 0.03 0.18 0.16 
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A 1.2: FTIR ICO and ISO indices Results (Continued). 

Mix ID 
Pre-MiST 

ICO 

Post-MiST 

ICO 

Pre-MiST 

ISO 

Post-MiST 

ISO 
Performance 

12 

0.09 0.08 0.28 0.29 

Poor 0.09 0.07 0.28 0.28 

0.11 0.12 0.28 0.27 

      

15 

0.07 0.04 0.16 0.17 

Poor 0.07 0.04 0.16 0.17 

0.07 0.04 0.16 0.17 

      

16 

0.05 0.04 0.10 0.08 

Good 0.04 0.04 0.09 0.08 

0.03 0.04 0.08 0.08 

      

17 

0.04 0.04 0.20 0.17 

Good 0.04 0.04 0.20 0.17 

0.04 0.04 0.19 0.17 

      

18 

0.07 0.08 0.18 0.23 

Poor 0.06 0.09 0.18 0.24 

0.06 0.08 0.18 0.25 

      

21 

0.07 0.09 0.21 0.24 

Good 0.08 0.09 0.24 0.26 

0.03 0.09 0.26 0.25 

      

23 

0.06 0.04 0.16 0.12 

Poor 0.08 0.04 0.16 0.16 

0.07 0.05 0.18 0.15 

      

24 

0.08 0.07 0.27 0.21 

Poor 0.07 0.08 0.22 0.27 

0.08 0.09 0.26 0.29 
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APPENDIX  B 

 

Appendix B consists of raw obtained from various mixture testing. These test results include: 

1. Seismic modulus (Es), from Ultrasonic Pulse Velocity (UPV) test.  

2. Indirect Tensile Strength (ITS) and Fracture Energy (FE-ITS) results obtained from tensile 

strength test. 

3. Fracture Energy (FE-SCB) and Flexibility Index (FI-SCB) from semi-circular bending 

(SCB) test . 

4. Black Pixels (BP) from image analysis. 

5. Loss of Material (LOM), Dissolved Organic Carbon (DOC), Fineness Modulus (FM) from 

MiST effluent analysis 
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B 1.1: Ultrasonic Pulse Velocity (UPV) Test Results 

 

Mix ID Sample No. 
Pre-MiST 

Es (MPa) 

Post-MiST 

Es (MPa) 
Performance 

1 

1 11,418 13,169 

Poor 2 14,196 13,741 

3 13,721 12,473 

          

2 

1 13,721 13,045 

Poor 2 12,542 12,507 

3 13,238 13,128 

          

3 

1 12,638 10,528 

Poor 2 12,555 11,376 

3 11,735 10,687 

          

4 

1 12,792 12,599 

Poor 2 12,282 11,403 

3 12,757 11,331 

          

5 

1 11,903 10,821 

Good 2 12,292 11,197 

3 12,997 11,662 

          

6 
1 14,389 13,650 

Good 
2 14,761 13,248 

          

7 

1 11,902 8,356 

Poor 2 11,009 8,384 

3 11,240 7,928 

          

8 
1 12,986 13,066 

Poor 
2 13,262 13,435 

          

9 
1 12,107 10,652 

Good 
2 12,080 10,649 

          

10 
1 12,631 11,703 

Poor 
2 12,149 12,901 
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B 1.1: Ultrasonic Pulse Velocity (UPV) Test Results (Continued) 

Mix ID Sample No. 
Pre-MiST 

Es (MPa) 

Post-MiST 

Es (MPa) 
Performance 

11 
1 11,064 11,564 

Poor 
2 12,218 11,784 

          

12 
1 9,395 12,563 

Poor 
2 9,552 11,721 

          

13 
1 12,522 12,169 

Poor 
2 14,420 13,631 

          

14 
1 13,646 12,330 

Poor 
2 12,779 12,793 

          

15 

1 12,878 10,522 

Poor 2 12,943 10,022 

3 13,344 10,492 

          

16 

1 13,570 15,532 

Good 2 13,288 14,173 

3 14,321 14,436 

          

17 

1 12,295 10,825 

Good 2 11,781 11,411 

3 12,093 11,625 

          

18 

1 11,293 10,930 

Poor 2 11,442 10,792 

3 12,346 11,707 

          

19 

1 12,270 10,790 

Poor 2 11,247 9,691 

3 11,573 9,681 

          

20 

1 12,588 11,702 

Poor 2 11,957 10,875 

3 12,324 11,247 
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B 1.1: Ultrasonic Pulse Velocity (UPV) Test Results (Continued) 

Mix ID Sample No. 
Pre-MiST 

Es (MPa) 

Post-MiST 

Es (MPa) 
Performance 

21 

1 12,790 11,065 

Good 2 12,472 11,305 

3 12,175 11,533 

          

22 

1 14,790 13,168 

Poor 2 13,601 12,991 

3 13,294 12,041 

          

23 

1 11,606 10,907 

Poor 2 11,872 11,710 

3 12,088 11,611 

          

24 

1 11,857 11,807 

Poor 2 12,739 11,898 

3 12,139 10,867 

          

25 

1 11,545 12,684 

Good 2 11,613 12,423 

3 13,531 13,311 

          

26 

1 12,428 12,647 

Poor 2 12,499 13,594 

3 12,200 13,783 

          

27 

1 11,097 11,388 

Poor 2 11,380 11,358 

3 10,307 11,896 

          

28 

1 12,346 12,087 

Poor 2 11,405 11,447 

3 12,788 12,333 

          

29 

1 11,115 10,234 

Poor 2 10,862 10,205 

3 11,633 10,111 
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B 1.1: Ultrasonic Pulse Velocity (UPV) Test Results (Continued) 

Mix ID Sample No. 
Pre-MiST 

Es (MPa) 

Post-MiST 

Es (MPa) 
Performance 

30 

1 13,947 11,450 

Poor 2 11,124 10,397 

3 11,024 11,848 

          

31 

1 11,935 11,912 

Poor 2 11,925 11,157 

3 10,617 11,164 

          

32 

1 12,047 12,707 

Poor 2 11,342 12,747 

3 11,343 12,702 

          

33 

1 10,325 11,442 

Poor 2 10,387 12,110 

3 10,883 11,410 

          

34 
1 12,714 11,776 

Poor 
2 11,990 11,893 

          

35 

1 12,475 11,507 

Poor 2 11,888 11,285 

3 12,133 12,320 

          

36 
1 11,886 12,227 

Good 
2 11,496 12,193 

          

37 
1 11,476 12,320 

Good 
2 11,385 12,944 

          

38 

1 10,528 12,969 

Poor 2 10,666 12,555 

3 11,549 12,583 
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B 1.2: Indirect Tensile Strength (ITS) Test Results 

 

Mix ID  
Pre-MiST 

ITS (kPa) 

Post-MiST 

ITS (kPa) 

Pre-MiST  

FE-ITS 

(J/m2) 

Post-MiST 

FE-ITS 

(J/m2) 

Performance 

1 

803 855 1,975 3,335 

Poor 909 772 1,976 3,061 

844 603 2,310 2,573 

            

2 

1,041 1,019 3,133 3,866 

Poor 1,074 989 4,188 4,196 

1,107 965 3,282 3,746 

            

3 

677 546 2,410 3,113 

Poor 778 631 2,528 3,365 

609 603 2,142 3,489 

            

4 

667 900 1,965 3,287 

Poor 846 665 2,415 3,050 

826 650 2,501 2,765 

            

5 

638 567 1,993 2,439 

Good 736 581 2,392 2,524 

636 626 2,008 2,738 

            

6 
691 547 2,087 2,393 

Good 
703 520 2,383 2,380 

            

7 

732 375 2,447 2,068 

Poor 667 349 2,344 1,573 

684 388 2,238 1,755 

            

8 
836 831 2,503 3,882 

Poor 
868 709 2,651 4,015 

            

9 
641 602 2,547 3,600 

Good 
725 567 2,310 3,283 

            

10 
618 524 1,851 2,546 

Poor 
601 554 1,789 2,740 
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B 1.2: Indirect Tensile Strength (ITS) Test Results (Continued) 

Mix ID  
Pre-MiST 

ITS (kPa) 

Post-MiST 

ITS (kPa) 

Pre-MiST  

FE-ITS 

(J/m2) 

Post-MiST 

FE-ITS 

(J/m2) 

Performance 

11 
713 720 2,502 3,111 

Poor 
795 724 2,372 3,092 

            

12 
702 558 2,085 2,939 

Poor 
681 569 1,944 2,803 

            

13 
684 689 2,066 3,629 

Poor 
748 678 2,111 3,196 

            

14 
741 702 1,733 2,751 

Poor 
699 665 1,666 2,757 

           

15 

601 435 1,895 2,270 

Poor 572 431 1,892 2,275 

592 432 1,867 2,496 

            

16 

956 970 2,963 4,276 

Good 930 842 2,873 3,549 

910 979 2,900 3,940 

            

17 

544 415 1,822 2,352 

Good 545 387 1,954 2,571 

550 415 2,020 2,588 

            

18 

530 452 1,668 1,934 

Poor 547 506 1,530 2,245 

546 494 1,668 2,023 

            

19 

375 305 1,700 2,383 

Poor 416 309 1,709 2,082 

410 309 1,656 2,311 

            

20 

691 564 2,423 2,890 

Poor 632 561 2,127 2,657 

617 525 2,244 2,101 
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B 1.2: Indirect Tensile Strength (ITS) Test Results (Continued) 

Mix ID  
Pre-MiST 

ITS (kPa) 

Post-MiST 

ITS (kPa) 

Pre-MiST  

FE-ITS 

(J/m2) 

Post-MiST 

FE-ITS 

(J/m2) 

Performance 

21 

638 509 2,161 3,244 

Good 662 501 2,345 3,292 

650 563 2,070 3,090 

            

22 

646 577 2,417 2,741 

Poor 618 682 2,377 2,971 

658 609 2,402 3,204 

            

23 

495 381 1,954 3,139 

Poor 525 408 2,384 2,736 

491 404 2,115 2,831 

            

24 

742 745 2,322 3,305 

Poor 811 718 2,453 3,164 

852 787 2,275 3,151 

            

25 

573 533 1,779 2,837 

Good 629 482 2,087 3,169 

607 495 2,240 3,250 

            

26 

949 873 3,489 4,305 

Poor 969 850 3,714 4,557 

932 926 4,383 4,434 

            

27 

715 580 2,838 3,485 

Poor 655 555 2,816 3,793 

695 609 3,053 3,662 

            

28 

636 596 2,557 3,213 

Poor 599 565 2,008 3,106 

606 594 1,164 3,276 

            

29 

569 450 1,968 2,604 

Poor 667 502 2,222 2,666 

588 512 2,144 2,739 
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B 1.2: Indirect Tensile Strength (ITS) Test Results (Continued) 

Mix ID 
Pre-MiST 

ITS (kPa) 

Post-MiST 

ITS (kPa) 

Pre-MiST  

FE-ITS 

(J/m2) 

Post-MiST 

FE-ITS 

(J/m2) 

Performance 

30 

578 665 2,276 3,089 

Poor 641 760 2,391 3,007 

761 678 2,807 3,406 

            

31 

738 677 2,040 2,445 

Poor 716 698 2,154 2,715 

731 671 2,259 2,563 

            

32 

868 865 2,543 3,304 

Poor 952 869 2,932 3,217 

953 801 2,861 3,282 

            

33 

978 883 3,398 4,373 

Poor 968 1,037 3,434 4,824 

1,010 1,026 3,702 4,761 

            

34 
802 710 2,514 5,372 

Poor 
890 748 2,382 2,216 

            

35 

727 625 2,171 4,346 

Poor 761 568 2,625 3,766 

777 654 2,767 3,784 

            

36 
828 837 3,158 4,220 

Good 
781 904 3,132 4,597 

            

37 
1,064 865 3,018 2,904 

Good 
917 875 3,542 4,151 

            

38 

1,035 888 3,078 4,396 

Poor 963 860 3,309 4,566 

1,013 941 3,358 4,880 
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B 1.3: Semi-Circular Bend (SCB) Test Results 

 

Mix ID 

Pre-MIST 

FE-SCB 

(J/m2) 

Post-MIST 

FE-SCB 

(J/m2) 

Pre-MIST 

SCB-FI 

Post-MIST 

SCB-FI 

Performanc

e 

1 

 

 

 

1,513 7,123 9.6 35.4 

Poor 
2,247 4,897 7.7 49.5 

2,224 2,706 14.5 17.8 

4,363 3,998 26.6 33.9 

      

2 

5,104 6,447 25.9 43.9 

Poor 
2,281 4,946 9.2 37.5 

7,415 9,932 17.1 62.5 

4,603 7,634 13.3 39.2 

      

3 

6,326 8,634 30.3 66.9 

Poor 
4,709 7,307 21.7 89.0 

3,758 6,426 16.7 136.7 

3,141 6,635 14.0 90.9 

      

4 

1,783 6,092 7.2 32.8 

Poor 
2,968 4,672 11.0 20.5 

5,512 4,230 27.8 31.6 

2,571 6,218 15.9 56.5 

      

5 

2,800 3,661 28.3 34.2 

Good 
3,238 3,380 35.6 39.3 

3,796 4,192 32.5 40.7 

4,009 4,481 39.7 77.3 

      

6 

6,783 5,894 30.2 90.7 

Good 5,686 3,275 69.3 17.2 

6,190 3,269 95.2 24.0 

      

7 

4,939 1,869 35.8 23.4 

Poor 
3,806 2,276 21.1 39.3 

4,394 2,490 18.6 30.0 

4,490 1,777 16.4 30.6 
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B 1.3: Semi-Circular Bend (SCB) Test Results (Continued) 

Mix ID 

Pre-MIST 

FE-SCB 

(J/m2) 

Post-MIST 

FE-SCB 

(J/m2) 

Pre-MIST 

SCB-FI 

Post-MIST 

SCB-FI 
Performance 

8 

4,100 9,642 11.8 83.0 

Poor 
4,122 9,864 12.7 50.8 

4,177 10,647 18.0 70.0 

 5,138 10,266 20.2 75.5 

      

9 

3,982 8,209 39.8 161.0 

Good 
4,644 8,636 36.3 134.0 

4,206 9,273 37.2 79.9 

4,686 8,731 47.8 140.3 

      

10 

2,862 7,762 16.7 41.1 

Poor 
2,030 5,596 8.8 53.8 

4,021 4,622 15.5 39.2 

2,388 4,336 10.1 36.4 

      

11 

2,487 6,742 12.2 78.4 

Poor 2,903 4,673 13.1 22.4 

2,971 3,933 19.7 19.7 

2,440  15.2   

      

12 

3,234 5,870 18.2 50.6 

Poor 
3,457 7,913 17.0 68.8 

3,578 5,831 21.2 28.7 

6,314 5,997 30.1 30.0 

      

13 

5,874 11,399 38.9 92.7 

Poor 
1,705 8,969 8.4 85.4 

4,128 10,783 31.3 52.1 

3,540 8,406 30.5 129.3 

      

14 

4,338 6,520 17.6 49.4 

Poor 
2,631 7,400 7.4 33.0 

3,174 6,624 11.3 36.4 

3,043 6,052 8.7 31.7 
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B 1.3: Semi-Circular Bend (SCB) Test Results (Continued) 

Mix ID 

Pre-MIST 

FE-SCB 

(J/m2) 

Post-MIST 

FE-SCB 

(J/m2) 

Pre-MIST 

SCB-FI 

Post-MIST 

SCB-FI 
Performance 

15 

8,289 9,256 47.9 106.4 

Poor 
7,350 9,379 34.4 97.5 

6,234 10,051 44.9 102.1 

8,518 7,963 55.3 68.1 

      

16 

3,764 6,520 20.5 49.4 

Good 
4,747 7,400 22.5 33.0 

4,096 6,624 23.5 36.4 

3,868 6,052 31.7 31.7 

      

17 

5,285 6,975 47.2 98.2 

Poor 
4,361 6,278 40.0 51.9 

4,701 6,030 56.0 54.4 

4,664 5,623 46.6 156.0 

      

18 

1,311 2,073 9.3 18.2 

Poor 
2,224 2,095 13.7 24.4 

1,409 1,988 11.6 32.1 

1,249 2,319 10.7 27.9 

      

19 

1,714 3,736 27.2 59.3 

Poor 
1,703 4,828 22.4 73.2 

1,889 3,371 20.5 153.2 

1,865 4,244 25.2 47.7 

      

20 

2,010 3,380 20.5 27.3 

Poor 
2,228 8,126 16.3 40.0 

2,290 3,053 15.7 29.1 

1,936 3,098 11.3 19.4 

      

21 

1,969 6,421 10.8 48.3 

Good 
1,919 3,227 11.8 32.3 

2,244 3,328 12.1 44.4 

2,131 2,902 13.4 46.8 
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B 1.3: Semi-Circular Bend (SCB) Test Results (Continued) 

Mix ID 

Pre-MIST 

FE-SCB 

(J/m2) 

Post-MIST 

FE-SCB 

(J/m2) 

Pre-MIST 

SCB-FI 

Post-MIST 

SCB-FI 
Performance 

22 

2,360 4,858 19.0 138.8 

Poor 
2,351 4,414 17.0 52.6 

2,812 4,178 18.4 78.8 

2,089 3,625 14.2 100.7 

      

23 

2,232 2,988 37.8 63.6 

Poor 
1,634 2,657 22.4 44.3 

2,105 3,036 21.3 108.4 

2,052 3,628 21.4 60.5 

      

24 

1,519 2,426 5.1 17.3 

Poor 
1,631 2,241 7.8 15.7 

1,745 2,130 10.0 18.2 

1,265 2,206 5.5 20.2 

      

25 
2025 2913 11.1 48.6 

Good 
2278 3187 10.9 31.3 

      

26 
2724 5076 11.5 38.9 

Poor 
2927 5156 12.5 43.2 

      

27 
2985 4983 18.2 29.6 

Poor 
3155 5242 12.5 31.5 

      

28 
3985 2101 32.7 15.9 

Poor 
3381 2248 22.1 13.5 

      

29 
2154 2511 14.2 29.1 

Poor 
1830 1279 6.8 4.3 
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B 1.3: Semi-Circular Bend (SCB) Test Results (Continued) 

Mix ID 

Pre-MIST 

FE-SCB 

(J/m2) 

Post-MIST 

FE-SCB 

(J/m2) 

Pre-MIST 

SCB-FI 

Post-MIST 

SCB-FI 
Performance 

30 
2116 1624 10.9 19.6 

Poor 
1868 2167 10.0 13.9 

      

31 
1656 1461 11.7 9.4 

Poor 
1501 2098 8.3 10.0 

      

32 
1618 2041 5.3 12.9 

Poor 
1760 1981 6.5 9.3 

      

33 
6373 7236 21.6 28.4 

Poor 
7268 8250 15.6 27.3 

      

34 
4647 6229 14 33.13 

Poor 
3724 7071 9.24 42.09 

      

35 
3472 3352 33 9 

Poor 
3908 2018 28 14 

      

36 
4464 7627 16.4 30.5 

Good 
5224 6437 10.4 66.5 

      

37 
4735 6603 19.2 65.4 

Poor 
5469 7677 11.2 25.0 

      

38 
4460 6475 10.8 35.5 

Poor 
4126 5267 14.4 41.9 
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B 1.4 Image Analysis Test Results 

 

Mix ID Pre-MiST BP Post-MiST BP Performance 

1 

1,010,291 978,408 

Poor 1,141,262 1,134,294 

1,038,071 1,011,413 

        

2 

1,007,005 925,790 

Poor 1,071,046 983,131 

1,077,759 972,644 

        

3 

1,033,228 972,356 

Poor 1,017,279 985,534 

1,086,507 1,018,256 

        

4 

814,911 706,196 

Poor 872,090 830,722 

681,774 716,465 

        

5 

693,578 629,041 

Good 888,052 762,772 

749,112 686,108 

        

6 
970,678 947,315 

Good 
904,930 897,741 

        

7 

1,137,475 1,038,928 

Poor 1,153,778 1,138,692 

1,093,188 994,099 

        

8 
956,945 788,959 

Poor 
904,607 873,384 

        

9 
1,154,746 1,063,228 

Good 
1,008,781 999,374 

        

10 
1,183,649 912,588 

Poor 
1,127,065 959,536 
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B 1.4 Image Analysis Test Results (Continued) 

Mix ID Pre-MiST BP Post-MiST BP Performance 

11 
1,391,946 1,063,004 

Poor 
994,586 1,123,856 

        

12 
1,727,461 1,537,324 

Poor 
1,325,461 1,245,705 

        

13 
975,145 1,118,488 

Poor 
1,130,883 1,171,842 

        

14 
1,131,818 1,258,295 

Poor 
1,150,490 1,177,217 

        

15 

1,137,475 1,038,928 

Poor 1,153,778 1,138,692 

1,093,188 994,099 

        

16 

1,174,631 1,145,773 

Good 1,095,687 1,046,168 

1,069,659 1,068,777 

        

17 

1,047,827 972,173 

Good 1,098,234 1,020,550 

982,165 985,254 

        

18 

1,150,506 938,538 

Poor 1,088,635 944,689 

1,079,996 1,048,768 

        

19 

1,277,342 1,248,508 

Poor 1,160,895 1,150,637 

1,142,066 1,229,810 

        

20 

1,060,752 839,974 

Poor 1,131,280 988,451 

1,163,319 933,039 
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B 1.4 Image Analysis Test Results (Continued) 

Mix ID Pre-MiST BP Post-MiST BP Performance 

21 

1,158,004 1,143,924 

Good 1,212,518 1,160,045 

1,201,074 1,142,271 

        

22 

1,051,077 1,047,136 

Poor 1,049,149 1,044,375 

1,104,430 973,207 

        

23 

1,191,804 1,128,308 

Poor 1,102,318 1,182,437 

1,259,000 1,269,401 

        

24 

1,137,475 1,038,928 

Poor 1,153,778 1,138,692 

1,093,188 994,099 

        

25 

1,216,311 1,173,882 

Good 1,268,376 1,335,062 

1,231,424 1,267,254 

        

26 

1,237,163 1,159,887 

Poor 1,221,850 1,139,165 

1,276,713 1,197,743 

        

27 

1,269,161 1,206,124 

Poor 1,279,569 1,239,816 

1,279,079 1,218,941 

        

28 

1,306,800 1,120,165 

Poor 1,126,651 1,043,230 

1,139,342 1,044,185 

        

29 

1,094,033 1,196,944 

Poor 1,083,729 1,278,013 

1,187,779 750,163 
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B 1.4 Image Analysis Test Results (Continued) 

Mix ID Pre-MiST BP Post-MiST BP Performance 

30 

1,020,421 1,063,842 

Poor 1,009,413 982,701 

1,047,661 1,146,366 

        

31 

1,126,095 1,038,668 

Poor 1,143,383 1,119,564 

1,143,202 1,201,890 

        

32 

1,176,559 1,139,186 

Poor 1,235,084 976,573 

1,292,558 1,078,473 

        

33 

1,157,109 984,341 

Poor 1,119,174 971,419 

1,100,731 990,687 

        

34 
969,999 985,392 

Poor 
925,629 919,644 

        

35 

1,172,117 978,559 

Poor 1,327,742 877,292 

1,269,212 892,244 

        

36 
1,266,053 1,229,098 

Good 
1,171,153 1,288,366 

        

37 
1,277,099 1,270,572 

Good 
1,196,021 1,169,908 

        

38 

1,210,191 1,171,279 

Poor 1,251,383 1,113,528 

1,185,414 1,160,795 
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B 1.5 MiST Effluent Analysis Results 

 

Mix ID DOC, mg LOM, mg FM Performance 

1 

0.01 52 2.2 

Poor 4.3 62 1.9 

1.1 135 3.2 

          

2 

19.5 53 2.2 

Poor 2.8 139 2.7 

4.8 107 2.2 

          

3 

11.9 108 2.0 

Poor 0.4 144 2.0 

7.7 88 2.3 

          

4 

10.7 131 2.5 

Poor 13.1 106 2.4 

11.0 155 4.1 

          

5 

11.7 188 3.7 

Good 10.7 118 3.3 

10.0 129 2.5 

          

6 
11.8 159 3.1 

Good 
8.7 117 3.9 

          

7 

104.7 471 3.4 

Poor 131.0 877 2.2 

163.0 245 1.3 

          

8 
32.5 48 2.9 

Poor 
13.3 129 2.7 

          

9 
9.7 64 2.3 

Good 
9.3 91 2.5 

          

10 
12.6 256 3.8 

Poor 
10.4 145 2.8 
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B 1.5 MiST Effluent Analysis Results (Continued) 

Mix ID DOC, mg LOM, mg FM Performance 

11 
9.4 187 1.8 

Poor 
11.7 370 3.6 

          

12 
16.0 142 3.2 

Poor 
15.2 51 2.0 

          

13 
15.2 308 1.7 

Poor 
14.3 62 2.6 

          

14 
10.2 107 3.6 

Poor 
11.7 563 3.5 

          

15 

13.7 208 3.0 

Poor 10.7 42 3.0 

8.5 65 2.9 

          

16 

13.8 208 2.1 

Good 11.7 150 4.3 

10.9 214 2.8 

          

17 

9.2 547 3.1 

Good 7.4 222 2.2 

8.4 156 2.5 

          

18 

10.1 153 2.6 

Poor 6.6 138 2.3 

12.9 175 2.7 

          

19 

6.4 173 3.3 

Poor 14.0 132 2.4 

10.1 88 2.3 

          

20 

10.4 51 2.8 

Poor 10.6 59 3.2 

9.3 41 3.0 
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B 1.5 MiST Effluent Analysis Results (Continued) 

Mix ID DOC, mg LOM, mg FM Performance 

21 

11.7 87 2.2 

Good 10.4 54 2.8 

9.3 55 2.7 

          

22 

15.7 555 2.6 

Poor 17.8 429 2.3 

19.1 441 1.9 

          

23 

10.9 92 2.5 

Poor 11.7 121 2.4 

10.7 95 2.8 

          

24 

11.5 122 2.9 

Poor 10.7 68 3.1 

10.2 98 2.5 

          

25 

16.9 109.9 3.4 

Good 18.5 56.8 3.0 

18.0 142.9 3.1 

          

26 

19.9 146.5 2.3 

Poor 20.1 105.1 2.4 

20.3 82.9 2.5 

          

27 

8.0 110.1 2.9 

Poor 12.5 111.9 3.6 

10.7 143.4 2.5 

          

28 

7.8 43.8 2.6 

Poor 9.6 164.9 2.6 

8.4 68.8 4.1 

          

29 

13.2 98.5 2.4 

Poor 10.9 67.8 2.6 

14.3 102.5 3.7 
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B 1.5 MiST Effluent Analysis Results (Continued) 

Mix ID DOC, mg LOM, mg FM Performance 

30 

19.0 128.7 2.4 

Poor 19.3 204.1 1.9 

17.2 65.9 2.9 

          

31 

14.4 176.1 3.2 

Poor 15.2 156.2 2.1 

16.0 209.6 3.1 

          

32 

12.8 100.8 2.2 

Poor 11.3 136.8 2.4 

12.8 113.1 2.3 

          

33 

8.1 148.5 3.1 

Poor 6.7 166.4 3.4 

7.7 180.7 2.8 

          

34 
12.8 171.0 2.4 

Poor 
12.0 144.6 3.0 

          

35 

10.9 116.7 3.2 

Poor 8.7 104.0 3.8 

8.9 140.5 2.6 

          

36 
12.0 131.4 2.2 

Good 
10.8 41.1 2.0 

          

37 
17.0 120.8 2.8 

Good 
13.7 59.5 1.8 

          

38 

11.6 136.6 2.3 

Poor 9.6 123.8 2.9 

12.9 75.3 1.1 
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APPENDIX  C 

 

Appendix C consist of the MATLAB script used in this study to perform Machine learning 

correlation analysis, PCA, K- Nearest Neighbor (K-NN) and Naïve Bayes (NB) model. 

Furthermore, MATLAB script to develop an app using exported NB model is presented below. 
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C 1.1: MATLAB Code for K-Nearest Neighbor Model 

 

data.Esratio = (data.PostMistEs)./(data.PreMistEs); 

data.ITSratio = (data.TSR)./100; 

data.FEITSratio = data.PostMISTFEITS./data.PreMISTFEITS; 

data.FESCBratio = data.PostMISTFESCB./data.PreMISTFESCB; 

data.FIratio = data.PostMISTFI./data.PreMISTFI; 

data.BPratio = data.PostMISTBP./data.PreMISTBP; 

save('data'); 

%convert performance column to categorical data 

Perf = categorical(data.Performance); 

%-----------------------ACTUAL DATA for MODELING-----------------------------

- 

% Create a numeric data with only ratios 

numData = data{:,{'Esratio','ITSratio','FEITSratio',... 

    'BPratio','DOC'}}; 

corrplot(numData) 

numData = zscore(numData); 

[coeff,scrs,~,~,pexp] = pca(numData); 

fig1 = figure(1); 

pareto(pexp) 

set(gca,'fontsize',12,'box','off'); 

xlabel('PC','Fontname','TimesNewRoman','Fontsize',15); 

ylabel('Percent variance','Fontname','TimesNewRoman','Fontsize',15); 

saveas(gcf,'Barchartv18.jpg') 

fig(2) = figure(2); 

scatter3(scrs(:,1),scrs(:,2),scrs(:,3)); 

saveas(gcf,'3Dv18.jpg') 

numData = 

array2table(numData,'VariableNames',{'Esratio','ITSratio','FEITSratio',... 

    'BPratio','DOC'}); 

%-------------------------MODELING------------------------------------- 

% randomnly selecting train, test data 

train = randsample(height(numData),24); 

% Take data other than train data 

test = setdiff(1:height(numData),train); 

% Name them from the actual data 

trainData = numData(train,:); 
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testData = numData(test,:); 

trainPerf = Perf(train); 

testPerf = Perf(test); 

  

kLosses = -1*ones(1,10); 

 % MODEL - here it is nearest neighbour 

 knnFit = fitcknn(trainData,trainPerf,'NumNeighbors',k);     

 % Carry out k-fold cross validation 

    CVmdl = crossval(knnFit, 'KFold', 5); 

    kLosses(k) = kfoldLoss(CVmdl); 

fig(3) = figure(3); 

bar(1:10,kLosses) 

% plotting 

set(gca,'fontsize',15,'box','off'); 

xlabel('No. of nearest neighbor','Fontname','TimesNewRoman','Fontsize',15); 

ylabel('Validation Error','Fontname','TimesNewRoman','Fontsize',15); 

saveas(gcf,'crossvalv18.jpg') 

  

%-------------------PREDICTION, ERROR AND PLOTTING------------------------- 

% predict the test data 

predPerf = predict(knnFit,testData); 

% testErr using loss function 

testErr = loss(knnFit,testData,testPerf,'Lossfun','classiferror') 

% Plotting confusion matrix 

conf = confusionmat(testPerf,predPerf); 

plotconfusion(dummyvar(testPerf)',dummyvar(predPerf)'); 
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C 1.2: MATLAB Code for Naïve Bayes Model: 

% finding the ratios 

data.Esratio = (data.PostMistEs)./(data.PreMistEs); 

data.ITSratio = (data.TSR)./100; 

data.FEITSratio = data.PostMISTFEITS./data.PreMISTFEITS; 

data.FESCBratio = data.PostMISTFESCB./data.PreMISTFESCB; 

data.FIratio = data.PostMISTFI./data.PreMISTFI; 

data.BPratio = data.PostMISTBP./data.PreMISTBP; 

save('data'); 

%convert performance column to categorical data 

Perf = categorical(data.Performance); 

%-----------------------ACTUAL DATA for MODELING-----------------------------

- 

% Create a numeric data with only ratios 

numData = data{:,{'Esratio','ITSratio','FEITSratio',... 

    'BPratio','DOC'}} 

corrplot(numData) 

numData = zscore(numData); 

[coeff,scrs,~,~,pexp] = pca(numData); 

fig1 = figure(1); 

pareto(pexp) 

set(gca,'fontsize',12,'box','off'); 

xlabel('PC','Fontname','TimesNewRoman','Fontsize',15); 

ylabel('Percent variance','Fontname','TimesNewRoman','Fontsize',15); 

saveas(gcf,'Barchartv18.jpg') 

fig(2) = figure(2); 

scatter3(scrs(:,1),scrs(:,2),scrs(:,3)); 

saveas(gcf,'3Dv18.jpg') 

%-------------------------MODELING------------------------------------- 

% randomnly selecting train, test data 

train = randsample(height(numData),19); 

% Take data other than train data 

test = setdiff(1:height(numData),train); 

% Name them from the actual data 

trainData = numData(train,:); 

testData = numData(test,:); 

trainPerf = Perf(train); 

testPerf = Perf(test); 

kLosses = -1*ones(1,10); 
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knbFit = fitcnb(trainData,trainPerf); 

% Carry out k-fold cross validation 

CVmdl = crossval(knbFit, 'KFold', 4); 

kLosses = kfoldLoss(CVmdl); 

% plotting 

set(gca,'fontsize',15,'box','off'); 

xlabel('No. of nearest neighbor','Fontname','TimesNewRoman','Fontsize',15); 

ylabel('Validation Error','Fontname','TimesNewRoman','Fontsize',15); 

saveas(gcf,'crossvalv18.jpg') 

%-------------------PREDICTION, ERROR AND PLOTTING------------------------- 

%predict the test data 

predPerf = predict(knbFit,testData); 

%testErr using loss function 

testErr = loss(knbFit,testData,testPerf,'Lossfun','classiferror') 

%Plotting confusion matrix 

conf = confusionmat(testPerf,predPerf); 

 plotconfusion(dummyvar(testPerf)',dummyvar(predPerf)'); 
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C 1.3: MATLAB Code for The App Development: 

 

classdef ramapp < matlab.apps.AppBase 

 

    % Properties that correspond to app components 

    properties (Access = public) 

        UIFigure                   matlab.ui.Figure 

        EsratioEditFieldLabel      matlab.ui.control.Label 

        Esratio                    matlab.ui.control.NumericEditField 

        ITSratioEditFieldLabel     matlab.ui.control.Label 

        ITSratio                   matlab.ui.control.NumericEditField 

        FEITSratioEditFieldLabel   matlab.ui.control.Label 

        FEITSratio                 matlab.ui.control.NumericEditField 

        BPratioEditFieldLabel      matlab.ui.control.Label 

        BPratio                    matlab.ui.control.NumericEditField 

        DOCEditFieldLabel          matlab.ui.control.Label 

        DOC                        matlab.ui.control.NumericEditField 

        ClassifyButton             matlab.ui.control.Button 

        PerformanceEditFieldLabel  matlab.ui.control.Label 

        Perf                       matlab.ui.control.EditField 

    end 

 

    methods (Access = private) 

 

        % Callback function: ClassifyButton, Perf 

        function ClassifyButtonPushed(app, event) 

            load('knbFit.mat'); 

            X = [app.Esratio.Value app.ITSratio.Value app.FEITSratio.Value 

app.BPratio.Value app.DOC.Value]; 

            z = predict(knbFit, X); 

            app.Perf.Value = z{1}; 

           value = app.Perf.Value;             

        end 

    end 

 

    % App initialization and construction 

    methods (Access = private) 
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        % Create UIFigure and components 

        function createComponents(app) 

 

            % Create UIFigure 

            app.UIFigure = uifigure; 

            app.UIFigure.Position = [100 100 640 480]; 

            app.UIFigure.Name = 'UI Figure'; 

 

            % Create EsratioEditFieldLabel 

            app.EsratioEditFieldLabel = uilabel(app.UIFigure); 

            app.EsratioEditFieldLabel.HorizontalAlignment = 'right'; 

            app.EsratioEditFieldLabel.Position = [165 396 43 22]; 

            app.EsratioEditFieldLabel.Text = 'Esratio'; 

 

            % Create Esratio 

            app.Esratio = uieditfield(app.UIFigure, 'numeric'); 

            app.Esratio.Position = [223 396 100 22]; 

 

            % Create ITSratioEditFieldLabel 

            app.ITSratioEditFieldLabel = uilabel(app.UIFigure); 

            app.ITSratioEditFieldLabel.HorizontalAlignment = 'right'; 

            app.ITSratioEditFieldLabel.Position = [160 351 47 22]; 

            app.ITSratioEditFieldLabel.Text = 'ITSratio'; 

 

            % Create ITSratio 

            app.ITSratio = uieditfield(app.UIFigure, 'numeric'); 

            app.ITSratio.Position = [222 351 100 22]; 

 

            % Create FEITSratioEditFieldLabel 

            app.FEITSratioEditFieldLabel = uilabel(app.UIFigure); 

            app.FEITSratioEditFieldLabel.HorizontalAlignment = 'right'; 

            app.FEITSratioEditFieldLabel.Position = [142 299 63 22]; 

            app.FEITSratioEditFieldLabel.Text = 'FEITSratio'; 

 

            % Create FEITSratio 

            app.FEITSratio = uieditfield(app.UIFigure, 'numeric'); 

            app.FEITSratio.Position = [220 299 100 22]; 

 

http://app.uifigure.name/
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            % Create BPratioEditFieldLabel 

            app.BPratioEditFieldLabel = uilabel(app.UIFigure); 

            app.BPratioEditFieldLabel.HorizontalAlignment = 'right'; 

            app.BPratioEditFieldLabel.Position = [162 255 45 22]; 

            app.BPratioEditFieldLabel.Text = 'BPratio'; 

 

            % Create BPratio 

            app.BPratio = uieditfield(app.UIFigure, 'numeric'); 

            app.BPratio.Position = [222 255 100 22]; 

 

            % Create DOCEditFieldLabel 

            app.DOCEditFieldLabel = uilabel(app.UIFigure); 

            app.DOCEditFieldLabel.HorizontalAlignment = 'right'; 

            app.DOCEditFieldLabel.Position = [176 209 32 22]; 

            app.DOCEditFieldLabel.Text = 'DOC'; 

 

            % Create DOC 

            app.DOC = uieditfield(app.UIFigure, 'numeric'); 

            app.DOC.Position = [223 209 100 22]; 

 

            % Create ClassifyButton 

            app.ClassifyButton = uibutton(app.UIFigure, 'push'); 

            app.ClassifyButton.ButtonPushedFcn = createCallbackFcn(app, 

@ClassifyButtonPushed, true); 

            app.ClassifyButton.Position = [223 131 100 22]; 

            app.ClassifyButton.Text = 'Classify'; 

 

            % Create PerformanceEditFieldLabel 

            app.PerformanceEditFieldLabel = uilabel(app.UIFigure); 

            app.PerformanceEditFieldLabel.HorizontalAlignment = 'right'; 

            app.PerformanceEditFieldLabel.Position = [185 78 74 22]; 

            app.PerformanceEditFieldLabel.Text = 'Performance'; 

 

            % Create Perf 

            app.Perf = uieditfield(app.UIFigure, 'text'); 

            app.Perf.ValueChangingFcn = createCallbackFcn(app, 

@ClassifyButtonPushed, true); 

            app.Perf.Position = [274 78 100 22]; 
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        end 

    end 

 

    methods (Access = public) 

 

        % Construct app 

        function app = ramapp 

 

            % Create and configure components 

            createComponents(app) 

 

            % Register the app with App Designer 

            registerApp(app, app.UIFigure) 

 

            if nargout == 0 

                clear app 

            end 

        end 

 

        % Code that executes before app deletion 

        function delete(app) 

 

            % Delete UIFigure when app is deleted 

            delete(app.UIFigure) 

        end 

    end 

end 

       


