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Abstract

Multicomponent diffusion and the time evolution of component concentrations are
analyzed mathematically and equations presented which describe the behavior both with
and without the need for the traditional interdiffusion coefficients. Both approaches were
simulated and predicted results for time-evolved concentrations from a known starting state
were compared to the results from a prior physical experiment involving the diffusion of
three metals. The results for both approaches generally agree with the experimental results.
The new approach bypassing the need for calculating the interdiffusion coefficients appears
viable.
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1 Introduction

At a high level, the topic of diffusion is concerned with the net movement of one

or more items of interest from one region to another over time. This core concept plays

an important role in a wide range of disciplines in the sciences, engineering, and beyond,

such as electrical engineering, physics, chemistry, biology, pharmaceuticals, sociology, and

economics. For example, the semiconductor and electronics industry depends on a firm

understanding of the diffusion behavior of atoms of different elements used in the design,

manufacture, and use of semiconductor components and metallic interconnects.

In general terms, components will tend to flow from areas of higher concentration to

those of lower concentrations (flux will be proportional to the negative of the concentration

gradient). In the simplest case, one is concerned with the diffusion of a single component,

such as a single metal. The behavior over space and time can be characterized with a

set of differential equations involving concentration (C(x, t)), flux (J(x, t)), and a diffusion

coefficient (D). This area has been studied extensively and the behavior is governed by a set

of equations described in section 2.1. The solution to the concentration is known in terms

of a standard function known as erf(x).

The situation becomes more intricate in a multicomponent situation with multiple

components all influencing each others’ diffusion and the behavior becomes more complex.

Section 2.2 describes the modifications to the key equations to extend the single component

case to multiple components. The current approach expands the single component concept

of a diffusion coefficient D to a set of interdiffusion coefficients Dij between the different

components. The focus of this report will be the multicomponent case in a single dimension

of space. The specific case used as an example will be that of interdiffusion between three

metals (Copper, Nickel, Zinc), for which physical experiments have been performed at Purdue

University [14] [5].

The theoretical basis for determining interdiffusion coefficients from a set of experi-
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mental data is given in Section 3. Finite element methods are used to estimate the spatial

derivative of concentrations at element nodes at a give time by performing a best fit of cubic

Hermite interpolation polynomials to the data as developed by Ram-Mohan, and then a

method of moments first developed by Dayananda is used to generate sufficient equations to

solve for interdiffusion coefficient values. The interdiffusion coefficients vary with concentra-

tion, but in small element regions they are treated as an average constant value. Simulations

were performed to apply this approach to a set of experimental data with results described

in Section 4.

Section 5 describes the theoretical basis and derivation of an equation to time-evolve

a system and predict the future concentration profiles of multiple components given their

known concentrations at an initial time along with their interdiffusion coefficients (deter-

mined earlier). Simulations were performed to apply this approach, with results described

in Section 6.

The ability to time evolve a system and predict future concentrations without first

determining interdiffusion coefficients is desirable, and the theoretical basis for the new

approach that may be able to accomplish this is described in Section 7.1. Simulations were

performed to apply this approach, with results described in Section 7.2.

The two different approaches are illustrated in Figure 1.

2



YES NO

Data Analysis

Boltzmann Scaling

Finite Element Method

(divide diffusion range into small elements)

Utilize Interdiffusion

Coefficients ?

Calculate Interdiffusion

Coefficients

(Method of Moments)

Calculate Time Evolution

Matrix

Calculate Time Evolution

Matrix

Evolve System Evolve System

Figure 1: Approach with and without calculating interdiffusion coefficients are shown.
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2 Diffusion Theory and Background

2.1 Single Component One Dimensional Diffusion

For the case of one component, the flux J is driven by the change in concentration

C as shown in Eq. 1, known as Fick’s Law (or Fick’s First Law) [1].

J(x, t) = −D∂C(x, t)

∂x
, (1)

Note that both J and C are functions of both space, x, and time, t. The variable D is the

diffusion coefficient and relates the flux to the rate of change in concentration with respect

to space. Eq. 2 is known as the Equation of Continuity and relates the rate of change in

flux with respect to space to the rate of change in concentration with respect to time.

∂J

∂x
+
∂C

∂t
= 0. (2)

Combining Eq. 2 with 1 leads to Eq. 3, known as the Diffusion Equation, or Fick’s Second

Law, for one component in one dimension.

∂C(x, t)

∂t
=

∂

∂x

(
D
∂C(x, t)

∂x

)
. (3)

This is a differential equation involving partial derivatives with respect to position (x) and

time (t).

For an example one dimensional case with x ranging from xL on the left to xR on

the right, the solution for concentration is

C(x, t) =
C(xL)

2

(
1− erf

(
x

2
√
Dt

))
, (4)
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where erf() is the function defined by

erf(x) =
2√
π

∫ x

0

exp(−α2)dα. (5)

The diffusion equation can be simplified with a change of variable suggested by

Boltzman [2] to substitute for the x/
√
t term. Utilizing λ as defined in Eq. 6

λ = x/
√
t, (6)

where

∂

∂t

∣∣∣∣
x

=
∂λ

∂t

∂

∂λ
=
−x
2t

3
2

∂

∂λ
, (7)

∂

∂x

∣∣∣∣
t

=
∂λ

∂x

∂

∂λ
=

1√
t

∂

∂λ
, (8)

and inserting into Eq. 3, one obtains

−x
2t

3
2

dC

dλ
=

1√
t

d

dλ

(
D(C)

1√
t

dC

dλ

)
, (9)

where the diffusion coefficient is more accurately represented as a function of the concentra-

tion, D(C(x, t)). Combining terms and substituting for x with λ
√
t yields

−λ
2

dC

dλ
=

d

dλ

(
D(C)

dC

dλ

)
, (10)

a simpler differential equation with respect to the variable λ.

2.1.1 Experimentally Determining Single Component One Dimension Diffusion Coefficients

As mentioned earlier, the diffusion coefficient D is actually a function of the concen-

tration, D(C), and the concentration is itself a function of space and time, C(x, t). Given

experimental data for diffusion of one component in one dimension, one could determine the

diffusion coefficients a follows. [13]

5



Assume an experiment with initially a known concentration of a component on the

left side and zero concentration of that component on the right side. At the start of the

experiment diffusion is allowed to occur, then after a known period of time the diffusion

process is halted, and the ending concentration is measured at various positions, so that C

is known at time tend for each x. Using the substitution described in section 2.1 of λ = x/
√
t

at the known time tend, the ending concentrations can be organized in terms of C(λ) instead.

The resulting curve will then actually be valid for different combinations of x and t as they

relate to λ; a given λ is equivalent to multiple different combinations of x and t.

After plotting the curve C(λ) of concentrations vs λs, one could numerically de-

termine the value for the diffusion coefficient at a given concentration, say C∗, by Eq. 11

D(C∗) = −1

2

(
dλ

dC

)
C∗

∫ C∗

0

λdC. (11)

To determine the value of the diffusion coefficient D(C) at each concentration value of

interest, the process would be repeated for different C∗ values.

2.2 Multicomponent One Dimensional Diffusion

For multicomponent diffusion, the single component equations must be modified to

account for the flux and concentration of n different components, and the diffusion coefficient

becomes an interdiffusion component between different components. Using the formalism

from Onsanger [4], with subscripts to indicate which component applies and assuming that

the values are scaled so that the sum of the n concentrations adds up to the constant 1, the

equations become:

Ji = −
n−1∑
j=1

Dij
∂Cj
∂x

, (12)

∂Ji
∂x

+
∂Ci
∂t

= 0, (13)

6



∂Ci
∂t

=
∂

∂x
(Dij

∂Cj
∂x

), (14)

n∑
i=1

Ci = 1. (15)

Since the n concentrations sum to 1, one of the concentration values is a dependent variable

of the other n− 1 independent concentrations.

3 Theoretical Approach To Determining Multicomponent Inter-

diffusion Coefficients

An approximate solution to the diffusion coefficients can be determined if they are

treated as an average value constant over a small range, and then analyze the overall system

as a number of consecutive elements of small range [5].

The diffusion flux, Ji, satisfies Eq. 12, where n is the total number of components in

the system. If the flux, J , and ∂C/∂x could be determined independently, then one could

determine the Dij coefficients.

The general approach requires knowledge of the concentration C values of a multi-

component system at given positions at a given time (this can be obtained experimentally),

along with the ability to determine the ∂C/∂x based on the values of C, and the ability to

calcuate J . The global position range from xL to xR is divided into small elements and an-

alyzed separately, but requiring that the concentration and first derivative of concentration

match at the node edges between each element. This is known as C1 continuity [6].

Given the concentration C values, cubic Hermite interpolation, which utilizes both

C and ∂C/∂x values at end nodes, is used to best fit a curve to the experimental data,

determining ∂C/∂x values at each node for the best fit.
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Then knowing ∂C/∂x values, Eq. 16

J(x) =
1

2t

∫ x

xL

(x′ − x′M)(
dC

dx
)dx′, (16)

is used to calculate J (where t is the time, xL is the lower limit of the range of x positions in

the experiment, x is the position of interest, and xM is the location of the Matano plane).

For the purpose of this report, the number of components, n, in the system is assumed

to be 3, and since by Eq. 15 they sum to 1, determinations need to be made for n− 1 = 2

component concentrations and the last component concentration is implied.

Expanding Eq. 12 results in the following (where D̄ij is the average value of Dij in

the range from x1 to x2):∫ x2

x1

J1dx = −D̄11

∫ C1(x2)

C1(x1)

dC1 − D̄12

∫ C2(x2)

C2(x1)

dC2, (17)

∫ x2

x1

J2dx = −D̄21

∫ C1(x2)

C1(x1)

dC1 − D̄22

∫ C2(x2)

C2(x1)

dC2. (18)

Equations 17 and 18 can then be evaluated to 19 and 20

D̄11(C1(x1)− C1(x2)) + D̄12(C2(x1)− C2(x2)) =

∫ x2

x1

J1dx, (19)

D̄21(C1(x1)− C1(x2)) + D̄22(C2(x1)− C2(x2)) =

∫ x2

x1

J2dx. (20)

The C values are known from the experimental data, and J values are calculated using

Eq. 16. This yields two equations but four D̄ unknowns. To overcome this, two additional

equations are generated using the method of moments [8] [9] [10] [11], multiplying both sides

of 17 and 18 by (x− xM) inside the integral [note xM is the position of the Matano plane].

∫ x2

x1

(x− xM)J1dx = −D̄11

∫ C1(x2)

C1(x1)

(x− xM)dC1 − D̄12

∫ C2(x2)

C2(x1)

(x− xM)dC2, (21)
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∫ x2

x1

(x− xM)J2dx = −D̄21

∫ C1(x2)

C1(x1)

(x− xM)dC1 − D̄22

∫ C2(x2)

C2(x1)

(x− xM)dC2. (22)

Using Eq. 16, equations 21 and 22 can be evaluated to 23 and 24

D̄11(2t)(J1(x1)− J1(x2)) + D̄21(2t)(J2(x1)− J2(x2)) =

∫ x2

x1

(x− xM)J1(x)dx, (23)

D̄21(2t)(J1(x1)− J1(x2)) + D̄22(2t)(J2(x1)− J2(x2)) =

∫ x2

x1

(x− xM)J2(x)dx. (24)

3.1 Approach To Calculate Interdiffusion Coefficients

To summarize the approach, given experimental data for concentrations C at known

positions at a known time,

1. Finite element techniques are used to split the overall position range into small elements

(each end of an element is known as a node)

2. Cubic Hermite interpolation curves are used to best fit the experimental concentration

data within an element to determine derivatives of Concentrations ∂Ci/∂x at each node

3. Equation 16 is used to calculate the fluxes Ji as needed

4. The average values for interdiffusion coefficients Dij are calculated using

� equations 19 and 23 for D11 and D12

� equations 20 and 24 for D21 and D22

The next section describes the practical application of this approach with a set of

experimental data to determine the interdiffusion coefficients.
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4 Practical Application and Multicomponent Interdiffusion Coef-

ficient Results

One of the dependencies in the approach described in Section 3 is knowledge of

∂Ci/∂x. Given experimental data for the concentrations of a component at several positions,

a cubic Hermite interpolation function can be fit to map to the data. This interpolation (Eq.

25) assumes that at two end nodes the value of the function is known as well as the value of

the first derivative of the function [6]

f(ξ) = f1N1(ξ) + (
df

dξ
)1N̄1(ξ) + f2N2(ξ) + (

df

dξ
)2N̄2(ξ). (25)

In this equation, f is the function being interpolated (Ci in this project), and Ni are the

various interpolation polynomials, shown in equations 26, 27, 28, and 29.

N1(ξ) = (2− 3ξ + ξ3)/4, (26)

N̄1(ξ) = (1− ξ − ξ2 + ξ3)/4, (27)

N2(ξ) = (2 + 3ξ − ξ3)/4, (28)

N̄2(ξ) = (−1− ξ + ξ2 + ξ3)/4. (29)

Instead of knowing the function and its derivative at each node and interpolating to

find a value for the function at a given location, the situation is slightly reversed. In this case,

the function values are known at a large number of positions and we know the interpolation

shape functions to apply at a given node, but at a node only know the function value and

not its derivative. However, since we know the function value at positions between nodes, we
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know what the interpolation result should be at those positions. Instead of using the cubic

Hermite interpolation to determine function values at arbitrary locations, we can fit the

curve of the cubic Hermite interpolation to best fit the known function values between nodes

by varying the assumed function derivatives at the nodes. Once this is accomplished and

∂Ci/∂x is known, we can then apply the equations in Section 3 to determine the interdiffusion

coefficients Dij.

The entire global range of positions from the experimental data is split into smaller

elements, with a node at each end. ξ is the position in local coordinates, ranging from −1 to

1 within a given element. Since the experimental positions are originally measured ”globally”

(using the x coordinate) from the beginning of the measured region (xL) to the end (xR),

this will require the coordinates to be converted from one coordinate system to the other.

The equations for doing this follow.

x(ξ) =
a+ b

2
+
b− a

2
ξ, (30)

ξ(x) =
2x− a− b
b− a

, (31)

dx

dξ
=
b− a

2
, (32)

dξ

dx
=

2

b− a
. (33)

Here, x is the global coordinate, ξ is the local coordinate, and a and b are the lower and

upper limits of the element (the end nodes) in global coordinates.

Experimental data was obtained from a diffusion experiment involving annealing two

alloys at 775◦ C for 2 days and specifying the concentrations of three metals (Copper, Zinc,

and Nickel) at x positions from 0 to 500 um [14] [5].

Implementing Step 1 and Step 2 of the approach, the global position range was

broken into different elements with a number of experimental data points between each pair

of nodes, and a cubic Hermite interpolation function curve for each component metal was

best fit to the data incrementally element by element with the right side node in one element
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becoming the left side node in the next, resulting in an estimated value for ∂Ci/∂x at each

node.

Figure 2 shows the experimental data as well as the interpolated concentration curves

generated using the estimated ∂Ci/∂x at each node.
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Figure 2: Experimental data and Interpolated concentration curves using calculated derivatives at nodes are
shown.

At this point, the position, concentration, and concentration derivative for each node

for each of the three metal types is known (the types were assigned as 1 - Copper, 2 - Nickel,

3 - Zinc).

Given the nodal values for position and concentration from the experiment and

now the concentration derivatives from steps 1 and 2, the interdiffusion coefficients can be

determined following steps 3 and 4 described in Section 3.

Simulations were performed to calculate the interdiffusion coefficients as the D̄ij

average value within an x1 to x2 range with those positions specified as input. Within each

pair of positions, the simulation implemented the equations and performed the integrations
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necessary to establish the equations described in Section 3 and then solved for D̄ij.

The interdiffusion coefficients are a function of the concentrations, although D̄ij is

treated as a constant average value in small regions. Figure 3 shows how the coefficients

vary with position.
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Figure 3: Interdiffusion coefficients variation with position is shown.

The interdiffusion coefficients were then examined in two broad sections, to the left

of the Matano plane and to the right of the Matano plane. The average D coefficients are

shown in Table 1.

Table 1: Average Interdiffusion Coefficients D̄
(3)
ij

Range of regions, µm D̄11,m
2/s D̄12,m

2/s D̄21,m
2/s D̄22,m

2/s
0, 250 7.51E-16 5.77E-16 1.44E-16 1.15E-16

250, 500 -2.23E-16 -4.80E-17 -3.28E-15 -7.27E-16

The values shown in Table 1 were calculated using 9 nodes (8 elements) from the

global left to global right position.

The calculations were repeated using a different number of nodes for the cubic her-
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mite best fit interpolation, ranging from 4 to 9 (so 3 to 8 elements), and we expect the results

to be more accurate with a higher number of nodes. With just a few nodes, the addition of

another node has a large impact on the calculations but once a sufficient number of nodes

is reached the calculated results converge. This can be seen in Figure 4 and Figure 5 with

large variations on the left but small variation in the results between using 8 and 9 nodes (7

and 8 elements).
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Figure 4: Convergence of Interdiffusion Coefficients as Number of Nodes Increases is shown.

5 Time Evolution Theoretical Approach

Knowing the interdiffusion coefficients and concentrations for a spatial region, one

can also analyze the overall system as it evolves through time. Eq. 34 describes the diffusion

system, incorporating time.

∂Ci(x, t)

∂t
= ∂xDij∂xCj(x, t). (34)

One can separate out the space and time aspects of the concentration with a represen-
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tation of the concentration as shown in Eq. 35 where Cα(t) accounts for the concentration

evolving over time and Nα(x) (a shape function) accounts for concentration varying with

position

C(x, t) =
∑
α

Cα(t)Nα(x). (35)

Here the degree of freedom at each node corresponds to the concentration and derivative of

concentration.

Applying Eq. 35 to Eq. 34 results in

∂

∂t

[∑
β

Cβ
i (t)Nβ(x)

]
= ∂xDij∂x

∑
γ

Cγ
j (t)Nγ(x) (36)

Using a Galerkin approach as in standard Finite Element Method analysis and mul-

tiplying both sides by a shape function and integrating over x results in

∫
dxNλ(x)

∂

∂t

∑
β

Cβ
i (t)Nβ(x) =

∫
dxNλ(x)

∂

∂x
Dij

∂

∂x

∑
γ

Cγ
j (t)Nγ(x). (37)

Dij’s are assumed known and constants within small sections or elements (as calcu-
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lated in the previous section); rearranging Eq. 37 to

∫
dxNλ(x)Nβ(x)

˙
Cβ
i (t) = Dij

∫
dxNλ(x)

∂

∂x

∂

∂x
Nγ(x)Cγ

j (t). (38)

Putting it into the matrix form

A · Ċβ
i (t) = K ·Cγ

j (t), (39)

with

A =

∫
dxNλ(x)Nβ(x), (40)

and integrating the right hand side of Eq. 38 by parts yields

K = −Dij

∫
dx

∂

∂x
Nλ(x)

∂

∂x
Nγ(x). (41)

Finally, invert A and multiply both sides of Eq. 39 to obtain

Ċβ
i (t) = (A−1βλKλγ)C

γ
j (t), (42)

or

Ċβ
i (t) = M ·Cγ

j (t). (43)

The solution to Eq. 43 describes how the concentration evolves through time. It

takes the general form of

C(x, t) = exp(Mt) ·C(x, t = 0) (44)

where

M = A−1βλKλγ. (45)

The next section describes the practical application of this approach with a set of

experimental data and the interdiffusion coefficients determined earlier to then time evolve

16



the concentration of the metals forward from their initial state at time 0.

6 Time Evolution Practical Application and Results

Simulations were performed to solve the equations described in Section 5 and assem-

ble the A and K matrices. M was then found by taking the inverse of A and multiplying

by K. Knowing M, the equation 44 was implemented to find the concentration values as

the system evolves through time. The time ranged from 0 to 48 hours, or two days.
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Figure 6: Time Evolution to 4 Hours is shown.

In Figure 6, the time-evolved concentrations after 4 hours for Cu and Ni are compared

to the initial experimental values for the concentrations at t0. The initial experimental data

resembles a step function, showing constant values to the left and right of the junction

between the metals at 250µm, and a vertical discontinuity at the junction, showing an

abrupt change between the bars. The time-evolved data is represented by shapes (triangles

or circles) at the nodes and dashed lines between them. The time-evolved data is beginning

to vary slightly from the original concentration values because the metals are starting to
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diffuse.
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Figure 7: Time Evolution to 24 Hours is shown.

In Figure 7, after 24 hours, the metals are continuing to diffuse. The concentrations

for the two metals are deviating more from the initial conditions.

In Figure 8, the time-evolved data at 48 hours is compared to the experimental

concentrations at 48 hours. The experimental data is represented by squares for copper and

’X’s for nickel, and the time-evolved data is represented by triangles for copper and circles

for nickel. After 48 hours, the results have some error compared to the experimental data,

but the general shapes agree.
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Figure 8: Time Evolution to 48 Hours vs Experiment Data at 48 Hours is shown.
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7 Avoiding Interdiffusion D Coefficient Calculations

The prior approach used moment analysis [11] to calculate interdiffusion coefficients

and then use them in the calculation of a matrix to time evolve the concentrations.

It may be possible to establish a time evolution equation in a different way which

bypasses the need to determine interdiffusion coefficients with more use of the equation of

continuity,

∂Ci(x, t)

∂t
+
∂Ji(x, t)

∂x
= 0. (46)

The details are presented in subsection 7.1.

7.1 Theoretical Considerations

Starting with Boltzmann scaling for the diffusion equation, and asserting [12] that

the scaled variable is λ = x/
√
t = x ∗ t− 1

2 , leads to

∂Ji(x, t)

∂x
=

(x− x0)
2(t− t0)

∂Ci(x, t)

∂x
. (47)

Here x0 refers to the location of the Matano plane in the laboratory coordinates, and t is the

diffusion time while t0 is the time at which diffusion begins. The 1
2

factor in Eq. 47 is due

to the time exponent in the Boltzmann scaling expression. In general, if λ = x · t−ν , then

the factor in Eq. 47 would be ν.

The flux Ji(x, t), could be determined from the experimental measured concentra-

tions via its gradient using

J(x, t)− J(xleft, t) =

1

2(t− t0)

∫ x

xleft

dx (x− x0)
∂Ci(x, t)

∂x
. (48)

As before, the range of the diffusion can be divided into a number of small finite

elements and then experimental concentration data can be fit using cubic Hermite inter-
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polation polynomials as described in Section 4 to determine the values of the derivative of

concentration C ′. With the value for C and C ′ determined, the concentration can then be

interpolated within an element using Eq. 35 and in more general terms in Eq. 49

C(x, t) =

ndof∑
α

Cα(t)Nα(x) (49)

where the nodal degrees of freedom (ndof ) in each element is the number of the concentra-

tions and their derivatives.

A finite element approach to solving Eq. (47) by the well-known Galerkin method

leads to the equations

∫
dx

(
Nα(x)N ′β(x)

)
Jβ(t)

=
1

2(t− t0)

∫
dx

(
(x− x0)Nα(x)N ′γ(x)

)
Cγ(t). (50)

Using a matrix notation whereM =
∫
dx

(
Nα(x)N ′β(x)

)
andB =

∫
dx

(
(x−x0)Nα(x)N ′γ(x)

)
,

this becomes

MαβJβ(t) =
1

2(t− t0)
BαγCγ(t),

(where the subscripts indicate nodal values) or, more compactly,

J(t) =
1

2(t− t0)
M−1B ·C(t). (51)

Here {C,J} are vector arrays of the nodal values for the concentration and the flux. Assum-

ing cubic Hermite interpolation as before, the arrays correspond to function value followed

by the derivative of the function at each node. This equation provides a relation between the

flux J and its derivative and the concentration and its derivative at each node. Inverting the

matrix M allow us to solve for the flux and its derivative at each node if C(t) was known.

Note that the above derivation assumes that Boltzmann scaling relation holds so
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that the diffusion partial differential equation reduces to a regular differential equation in a

single variable λ = x/
√
t (or λ = xt−ν).

The time evolution of the flux can also be obtained directly by solving the equation

of continuity, Eq.(46) using the Galerkin method. We have

∫
dx

(
Nα(x)N ′β(x)

)
Jβ(t)

+

∫
dx

(
Nα(x)Nγ(x)

)
Ċγ(t) = 0, (52)

and using matrix notation withM =
∫
dx

(
Nα(x)N ′β(x)

)
as before andQ =

∫
dx

(
Nα(x)Nγ(x)

)
leads to

MαβJβ(t) = −QαγĊ(t)γ. (53)

Note that Ċ is used for ∂Cγ(t)/∂t . The time evolution of C is given by solving the relation

Ċ(t) = −Q−1MJ(t). (54)

Conversely, the flux J(t) could be determined by Eq 55 if Ċ(t) were known.

J(t) = −M−1QĊ(t). (55)

The solution of the time dependence of the concentration obtained by direct inte-

gration is

C(t)−C(t0) = −
[
Q−1M

]
·
∫ t

t0

dt′J(t′). (56)

J would have to be determined independently. This could be done directly from experimental

data without invoking scaling. Alternately, by using Boltzmann scaling we can obtain it from

Eq.(48) from the experimental concentration curves.

Returning to the time evolution equation of Eq. 54, substitute Eq. 51 for J(t)
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yielding

Ċ = − 1

2(t− t0)
Q−1BC. (57)

Letting

R =
1

2
Q−1B, (58)

leads to

Ċ = − 1

(t− t0)
RC. (59)

In order to develop the general matrix solution, consider just one element in the array of the

vectors and collapse the matrix R into a single value r, so that

dC

C
= −r dt

(t− t0)
, (60)

leading to a solution

C(t) =
1

(t− t0)r
C(t0). (61)

This solution can be readily verified by substituting it back into the differential equation 60.

Generalizing to all the components, yields

C(t) =

[
(t− t0)−R

]
·C(t0). (62)

Verify by taking the time derivative of both sides, resulting in:

dC(t)

dt
=

(
−Rdt

1

t− t0

)[
(t− t0)−RC(t0)

]
, (63)

or

Ċ(t) = − 1

(t− t0)
RC(t), (64)

consistent with Eq. 59 as anticipated.

For the time evolution of concentrations as described by Eq. 62, instead of calculating
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the term (t− t0)−R, we can transform it to a matrix exponentiation. Let

T = (t− t0)−R, (65)

and then exponentiate the natural log to get

T = exp

[
ln(t− t0)−R

]
= exp

[
−R ln(t− t0)

]
. (66)

Substituting for T back into Eq. 62, a new equation for the time evolution of

concentration using matrix exponentiation is obtained

C(t) =

[
exp(−R ln(t− t0)])

]
·C(t0). (67)

Comparing to Eq. 44 from before, this one was derived without any reference to

interdiffusion coefficients.

Once C(t) is determined, Ċ(t) could be determined by Eq. 64, and then Eq. 55

could be used to determine J(t).

7.2 Application of Alternate Time Evolution Approach

Simulations were performed to solve the equations in Section 7.1, and assemble the

matrices Q and B, after which the matrix R was constructed, and Eq. 67 was implemented

using matrix exponentiation. The simulation evolved this equation through times from 0 to

48 hours.

Recall that in Eq. 58, the scaling factor of 1
2

was due to the time exponent in

λ = xt−1/2. If we let ν be the exponent (so λ = xt−ν), we can rewrite Eq. 58 as

R = νQ−1B. (68)

The calculations were run with an initial value of 1
2
, or 0.5 for ν (the Boltzmann value). The
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48-hour time-evolved concentration values were not accurate with this value; they converged

to an incorrect, fairly constant value. Then, ν was varied in a range from 0.6 down to

0.05 to determine a value that would give more accurate results that better matched the

experimental data.

The time-evolved concentration values became more consistent with the experimental

values at ν = 0.1 and below, with a good fit at 0.05.
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Figure 9: 48 Hour Time Evolution vs Experiment Data with ν ranging from 0.5 to 0.10 is shown.

Figure 9 displays the time-evolved concentrations at 48 hours (represented by dashed

lines) compared to the experimental values at 48 hours (represented by squares and ’X’s).

The time-evolved concentrations shown in this figure used ν factors of 0.5, 0.45, 0.3, 0.2, and

0.1. The calculated data is very inaccurate at ν = 0.5 and progressively becomes more

consistent with the experimental data as ν decreases.

Figure 10 shows the time-evolved curves for ν at 0.1 and 0.05, compared to the

experimental data. The two curves are similar to each other, meaning that either value of ν
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Figure 10: 48 Hour Time Evolution vs Experiment Data with ν set to 0.10 and 0.05 is shown.

can be used in calculations and still remain reasonably accurate. The time-evolved curves fit

the experimental data much better in this range of ν values than at ν = 0.5. In the following

figures, a ν value of 0.05 was used for the calculated data.
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The concentration values were time-evolved using Equation 67 with results shown

at times 4 hours, 24 hours, and 48 hours, as before, and compared to the experimental

concentration values. The time evolution at 4 and 24 is compared to the initial experimental

data at t0, and the time evolution at 48 hours is compared to the final experimental values

at 48 hours.
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Figure 11: Time Evolution to 4 Hours is shown.

Figure 11 shows the time-evolved data (represented by dashed lines and shapes)

compared to the initial experimental data for the concentrations at t0 (represented by solid

lines). As before, initially there is a sharp discontinuity at the junction between the two

bars. The time-evolved data is evolved after 4 hours and displays some deviation from the

original as the metals start to diffuse.

Figure 12 shows the time-evolved data after 24 hours, compared to the initial exper-

imental data. The metals continue to diffuse and deviate from the initial values.

Figure 13 compares the time-evolved data at 48 hours (represented by triangles and

circles) to the experimental data at 48 hours (represented by squares and ’X’s). The time-

evolved data follows the general shape of the experimental data.
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Figure 12: Time Evolution to 24 Hours is shown
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Figure 13: Time Evolution to 48 Hours vs Experiment Data at 48 Hours is shown.
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Similarly accurate results can be found whether we use the interdiffusion coefficients

or not; the research suggests that the new approach that bypasses the need for interdiffusion

coefficients is valid.

As has been historically the case, the use of interdiffusion coefficients for multicom-

ponent diffusion has been fraught with constraints; only the method of moments known as

Dayananda analysis [8] allows one to calculate all the diffusion paths with data from a single

experiment. In the new approach, the use of interdiffusion coefficients is avoided so the

issue does not arise and it appears to be a novel approach. It is interesting to see that the

experimental concentration curves appear to have information about the species of metals

that are co-diffusing together. There may not be a need to invoke the use of interdiffusion

coefficients for multicomponent diffusion.
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8 Summary and Conclusions

In this project, multicomponent diffusion and the time evolution of concentrations

was explored, mathematically analyzing and describing diffusion both with and without

interdiffusion coefficients, and simulations were performed to implement the theory and

numerically calculate results to compare with experimental data.

We started with data from a prior physical experiment which specified the concen-

trations of three metals (copper, nickel, zinc) at different positions after a known period of

diffusion, and used finite element methods with curve fitting of cubic Hermite interpolation

polynomials to determine the concentration derivatives at the element nodes.

Once the concentration values and derivatives were known at nodal positions, we

proceeded to utilize a method of moments to determine the interdiffusion coefficients, which

would be used in calculating the behavior of the concentration as time evolved. A matrix

equation describing the time evolution of concentration at the nodes was developed.

A new approach and set of equations that bypassed the need for interdiffusion coeffi-

cients was also used, and a different equation describing the time evolution of concentration

at the nodes derived.

Both methods of analysis produced results of similar accuracy to the original ex-

perimental data and the more straightforward approach which bypasses the need for an

interdiffusion calculation is viable.

9 Acknowledgements

I would like to thank Professor L. Ramdas Ram-Mohan for his help and guidance.

I would also like to thank the Center for Computational NanoScience (CCNS) and team,

Debanik Das and Sathwik Bharadwaj, for their support and assistance, as well as the support

of the Dean of Arts and Sciences summer research fellowships.

30



References

[1] A. Fick, Ann. Phys., 1855, 170, p. 59-86

Uber Diffusion

[2] L. Boltzmann, Ann Phys, 1894, 53, 959,

Zur Integration der Diffusiongleichung bei Variablen Diffusions-coefficienten

[3] C. Matano, Jpn. J. Phys. (Trans.), 1933, 8, p. 109-113

On the Relation between the Diffusion Coefficients and Concentrations of Solid Metals

(The Nickel-Copper System

[4] L. Onsanger, Ann. NY Acad. Sci., 1945, 46, p. 241-265

Theories and Problems of Liquid Diffusion

[5] L. R. Ram-Mohen and M. A. Dayananda, Journal of Phase Equilibria and Diffusion,

Vol 27, No 6, 2006

A Transfer-Matrix Method for Analysis of Multicomponent Diffusion with Any Number

of Components

[6] L. R. Ram-Mohan, Oxford University Press, Oxford, UK, 2002,

Finite Element and Boundary Element Applications in Quantum Mechanics

[7] M. A. Dayananda, Metall. Mater. Trans., 1996, 27A, p. 2504–2509,

Average Effective Interdiffusion Coefficients and the Matano Plane Composition

[8] M .A. Dayananda and Y. H. Sohn, Metall. Mater. Trans., 1999, 30A, p. 535-543,

A New Analysis for the Determination of Ternary Interdiffusion Coefficients from a

Single Diffusion Couple

[9] M. A. Dayananda, Metall. Trans., 1983, 14A, p 1851-1858

An Analysis of Concentration Profiles for Fluxes, Diffusion Depths, and Zero-Flux

Planes in Multicomponent Diffusion

31



[10] M. A. Dayananda, J. Phase Equilib. Diffus., 2005, 26, p. 441-446

Analysis of Multicomponent Diffusion Couples for Interdiffusion Fluxes and Interdiffu-

sion Coefficients

[11] K. M. Day, L. R. Ram-Mohan, and M. A. Dayananda, Journam Phase Equilib. Diffus.,

2006, 26, p. 579-590

Determination and Assessment of Ternary Interdiffusion Coefficients from Individual

Diffusion Couples

[12] M. A. Dayananda and C.W. Kim, Metall Trans, 1979, 10A:1333

Zero-Flux Planes and Flux Reversals in Cu-Ni-Zn Diffusion Couples

[13] L. R. Ram-Mohan,

Unpublished notes

[14] M. A. Dayananda, Purdue University,

Experimental data for concentration profiles of Cu-Ni-Zn couple α2 vs α7, annealed at

775◦ C for 2 days

[15] L. R. Ram-Mohan, K. H. Yoo, R. L. Aggarwal. Phys Rev B, 1988, 38:6151,

Transfer-matrix algorithm for the calculation of the band structure of semiconductor

superlattices

[16] B. Chen, M. Lazzouni, and L.R. Ram-Mohan,Phys. Rev. B, 1992, 45, p 1204–1212

The Diagonal Representation for the Transfer Matrix Method for Obtaining Electronic

Energy Levels in Layered Semiconductor Heterostructures

32


	Introduction
	Diffusion Theory and Background
	Single Component One Dimensional Diffusion
	Experimentally Determining Single Component One Dimension Diffusion Coefficients

	Multicomponent One Dimensional Diffusion

	Theoretical Approach To Determining Multicomponent Interdiffusion Coefficients
	Approach To Calculate Interdiffusion Coefficients

	Practical Application and Multicomponent Interdiffusion Coefficient Results
	Time Evolution Theoretical Approach
	Time Evolution Practical Application and Results
	Avoiding Interdiffusion D Coefficient Calculations
	Theoretical Considerations
	Application of Alternate Time Evolution Approach

	Summary and Conclusions
	Acknowledgements

