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Abstract

Online education technologies have provided support for teachers and students in a

plethora of ways. Teachers have, and continue, to utilize the automated support;

mainly, their automated scoring, feedback messages and student reports. Students

benefit from the support of automated scoring, immediate feedback, common wrong

answer messages, hints and scaffolding. However, most of the support has been

limited to questions with structured answers. Mainly, the support for these sys-

tems are widely limited to multiple choice or fill in the blank questions. Questions

which have well defined answers. While these provide insights into the students

learning and performance; understanding what the mistake was, or why, is based

on cumulative common wrong choices. Not every student will process information

the same way. While there are many common mistakes, why the student is making

this mistake is unique to them. For teachers, the language a student uses provides

deep insight into the students’ process of thinking, where they may be struggling

in the material, or what steps specifically may be causing the confusion. Requir-

ing students to elaborate their work, and write through their steps taken, assists

the teacher in identifying each student’s unique understanding of the materials and

requires a larger range of cognition from the student. For the student, the direct

communication through teacher feedback in open response questions provides them

with a more personalized explanation to why they scored what they did. However,



for a teacher to score open responses and reply to students, it’s inevitably a tedious

task. My research aims to utilize student language and teacher feedback to:

1. Develop open response support for teachers with a set of tools which utilize

natural language processing to automatically grade and suggest feedback for

student answers to open response questions.

2. Evaluate the potential unfairness of these predictive models.

3. Diversify this open response feedback by evaluating the sentiment teachers use

in their feedback.

4. Develop open response support for students and evaluate its effectiveness

with a randomized controlled trial on NITELITE (Nonsynchronous Integrated

Technology Environment - Learning from Interdependent Terminologies and

Explanations), a tool for utilizing open response rationale for asynchronous

collaborations within intelligent tutoring systems.
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Chapter 1

Introduction

Online educational technologies have provided automated support for both teachers

and students, alike. Teachers have spent years utilizing automated grading, reports

and feedback to students. Likewise, students have benefited from automated feed-

back from teachers, hints, common wrong answer messages, scaffolding, just to name

a few. While these have been shown to be beneficial, over the years the content is

limited to questions with structured answers. Mainly, support from online educa-

tional technologies have been limited to multiple choice or fill in the blank questions;

questions where there are easily programmable/identifiable correct answers.

While questions with easily defined answers, such as multiple choice or fill in the

blank, have their undeniable advantages (mainly efficiency) [SK05], teachers and

students both benefit from a diverse set of question types[Mar99][Ku09]. Teach-

ers are provided a deeper insight into the student’s process and their steps taken.

Instead of making correlational inferences from previous students, a teacher gains

individual insights into the students approach. Within mathematics, for instance,

this is beneficial because there are multiple correct approaches (albeit some are more

efficient than others) to solves an answers. This is, however, the beauty of mathe-
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matics. As long as you follow the correct foundational rules, you can take any series

of steps to arrive at the final answer. There are multiple steps and multiple varia-

tions within those steps a student can take. By utilizing open response questions,

teachers can utilize the student’s language to infer their confusion or knowledge.

However, even though there are a plethora of insights to be made within open

response answers, it is undoubtedly a laborious task to score and provide feedback to

students. While teachers clearly benefit from the deeper insights from open response

answers from students, the feedback students receive from teachers are equally as

beneficial. In the following chapters, it is clear that teachers aim to utilize open

response questions when available. As time continues, the numbers dwindle quickly.

What is more apparent is that while the teachers assign open response questions,

with the hopes of utilizing that information from student answers, a minuscule

percentage of those answers are ever graded or given feedback to.

There clearly is a dialogue missing between students and teachers within open

response questions assigned. As mentioned earlier, teachers have had vast support

systems when assigning questions with structured answers. Whether it be auto-

mated scoring, automated feedback to students or even automatically generated

student reports, there is a plethora of support. From this, teachers are drawn to

those multiple choice and fill in the blank questions. This, however, is not the

case for open response questions. This dissertation looks to utilize modern nat-

ural language processing to study student language and teacher feedback within

online educational technologies to help open up that dialogue between students and

teachers. From these studies, this work successfully developed an automated scoring

algorithm and a method for automatically suggesting feedback to students. This can

help to open back up that dialogue, by providing teachers with a support system

for open response questions similar to that of questions with easily defined answers.
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Automatically suggesting feedback can clearly help teachers efficiently score and

respond to students, but the question remains on what type of feedback are teachers

giving out. Recent advancements in natural language processing has brought pow-

erful pre-trained sentiment analysis tools to provide deeper insight into tonality of

language. Not only does this sentiment analysis provide this insight, it can be used

to help diversify the feedback suggested to teachers. As a supplementary filtering

step, sentiment can be used to suggest differing levels of sentiment in the automated

feedback.

Developing support for the teachers is imperative to helping teachers diversify the

content they provide students. With that being said, intelligent tutoring systems

current support for students, as mentioned earlier, are limited to questions with

easily defined answers. When a student works through an open response question,

they are on their own. This work looks to utilize collaborations as a means for

support for students. Collaborations have been researched for many years and have

shown to benefit learners [Gok95] [Gok95]. The question then becomes, how does one

utilize collaboration in an increasingly asynchronous learning environment? Within

collaborations, it not the live interactions that benefits the students, alone. It’s

being presented other student’s perspectives, answers and rationales. This causes the

students to think deeper about their work and the other student’s work. Requiring

themselves to justify why their work is best or why the other approach may be a

stronger method. This processes is what drives the main benefits of collaboration.

With that in mind, this work sets out to develop an asynchronous collaboration tool

deemed NITELITE. This tool utilizes modern natural language processing, which

was discussed earlier, to power NITELITE.

Finally, while all these predictive and exploratory models are all very powerful,

attention needs to be paid to any potential unfairness that may lie within these

3



approaches. In this work, all natural language processing, and models built utilizing

NLP, use only the text as input. Demographics on the students themselves are left

out. However, research has shown that many common approaches, such as working

with pre-trained embeddings, can have inherent bias within themselves [BCZ+16].

This doesn’t mean models trained with those embeddings elicit bias predictions,

however. Within this work, emphasis is put on fairness.

Overall, this dissertation focuses on utilizing student language and teacher feed-

back to develop support for both teachers and students alike. Each chapter consists

of publications and submitted works which all have the overarching goal of utilizing

teacher and student language to build such support. All the works then culminate

in the final chapter of the dissertation which deploys a pilot study with my tool

NITELITE to provide support for students via asynchronous collaborations. This

tool embodies aspects of many of the chapter presented. In acknowledgement of all

the support I have gotten along the way, each chapter has a citation with a list of

authors and the abstract.
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Chapter 2

The Automated Grading of

Student Open Responses in

Mathematics

Erickson, J. A., Botelho, A. F., McAteer, S., Varatharaj, A., & Heffernan, N. T.

(2020). The Automated Grading of Student Open Responses in Mathematics. In

Proceedings of the 10th International Conference on Learning Analytics and Knowl-

edge (LAK ’20), March 23–27, 2020, Frankfurt, Germany. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3375462.3375523

Abstract

The use of computer-based systems in classrooms has provided teachers

with new opportunities in delivering content to students, supplementing in-

struction, and assessing student knowledge and comprehension. Among the

largest benefits of these systems is their ability to provide students with feed-

back on their work and also report student performance and progress to their

teacher. While computer-based systems can automatically assess student an-
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swers to a range of question types, a limitation faced by many systems is in

regard to open-ended problems. Many systems are either unable to provide

support for open-ended problems, relying on the teacher to grade them man-

ually, or avoid such question types entirely. Due to recent advancements in

natural language processing methods, the automation of essay grading has

made notable strides. However, much of this research has pertained to do-

mains outside of mathematics, where the use of open-ended problems can be

used by teachers to assess students’ understanding of mathematical concepts

beyond what is possible on other types of problems. This research explores the

viability and challenges of developing automated graders of open-ended stu-

dent responses in mathematics. We further explore how the scale of available

data impacts model performance. Focusing on content delivered through the

ASSISTments online learning platform, we present a set of analyses pertain-

ing to the development and evaluation of models to predict teacher-assigned

grades for student open responses.

2.1 Introduction

With classrooms progressively adopting free online educational resources (OER’s)

and curricula, such as Engage New York (EngageNY), Illustrative Mathematics, or

Utah Math, a large number of teachers and students are gaining access to expert-

authored content. The benefit of using such resources extends to give teachers the

ability to assign content aligned with developed standards, supplying them with a

range of problems which can be used to provide students opportunities to practice

each skill and also can help to assess students’ knowledge and understanding of such

skills. While the resources themselves provide promise to help teachers gain these

benefits, OER’s are merely content-based and are not a technology aimed at helping

6



teachers beyond providing the problems and suggested structure of the curriculum.

Conversely, one of the goals of computer-based learning platforms is to help

teachers deliver content to students in order to supplement instruction, provide aid

to students, and report student learning progress and assessment to the teacher.

In doing so, these systems often record large amounts of fine-grained student data

to help the teacher make more data-driven decisions in the classroom (e.g. helping

to identify which homework problems on which to focus a class discussion). In

many cases, this is accomplished through the system’s ability to automatically grade

student content in order to then report that information back to the teacher.

As open educational resources such as EngageNY, Illustrative Mathematics and

Utah Math are more content-focused, and computer-based learning platforms are

more instruction-, assessment-, and feedback-focused, the incorporation of OER

content into these systems can wed the benefits of each to support both teachers

and students. ASSISTments, the learning platform from which we have acquired the

data used in this work, is one such system that has incorporated such content. While

these learning platforms have many strengths, a current limitation exists in many

systems regarding the support for open response questions which comprises a large

percentage of the content within these OERs, but of course open-ended problems

are not limited to these content sources alone.

The task of automating the grading of student responses to problems in computer-

based learning platforms has largely been limited to well-defined or well-structured

types of problems. These types of questions include, for example, those problems

which have a standard correct response, such as solving a simple mathematical

expression (i.e. 6 * 6 = ?). Likewise, there are those problems which could be rep-

resented by a mathematical expression (i.e. solve for x: 8x + 3 = 7) where the

correct answer could take the form of a fraction or a decimal value (i.e. 0.5 or 1/2),
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where either would be considered correct. While these problem types aim to evalu-

ate students’ knowledge of a given topic, questions that require students to explain

their reasoning further provide the opportunity to assess students’ understanding of

the assigned concepts. In order to do so, however, the grader needs to be able to

parse and, to some degree, understand the semantics of each response to measure

the student’s comprehension of the material.

Many of the widely used Intelligent Tutoring Systems, such as McGraw Hill’s

ALEKSTM and Carnegie Learning’s Cognitive TutorTM, have no concept of open

response questions, likely due to their inability to automatically assess students’

responses. Others, such as ASSISTments, do provide a tool for teachers to grade

student responses but make no attempt to automatically grade them. While a

wide range of automatic short answer grading systems have been developed and

documented [BGS15], grading responses to open-ended questions in mathematics

remains a task that teachers predominantly do manually.

In ASSISTments, the manual grading of open responses is not common, likely

due to the arduous nature of reading and assessing student work. Figure 2.1 illus-

trates the percentage of open response problems in ASSISTments that are ultimately

graded by teachers as well as the percentage of such problems where the teacher has

provided feedback (i.e. in the form of a comment or message) for the work. In

that figure, it is apparent that less than 15% of assigned open response problems in

the system are given a grade by the teacher and even fewer (less than 4%) receive

feedback. Furthermore, this percentage decreases over the course of the school year,

presumably as teachers realize how much time it takes to properly attend to student

responses. This figure illustrates the need to provide teachers with better support

in assessing student work.

In this paper, we study the viability and challenges of developing models for the
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Figure 2.1: Percent of Assigned Open Response Problems with Grades and Feedback
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automatic grading of mathematics open response questions using data collected from

real teachers assigning content within the ASSISTments online learning platform.

Toward this goal, we seek to:

1. Examine variations in teacher grading policies of open responses within AS-

SISTments

2. Evaluate how well models are able to predict teacher-assigned grades of student

open responses given the currently available data from within ASSISTments.

3. Investigate how the performance of our models are affected by the scale of

available training data.

The goal of this research is to serve as tool and framework for future studies

and experiments involving the automated grading of and generation of feedback for

open response questions in computer-based learning platforms

2.2 Background

There have been many previous works utilizing natural language processing (NLP)

to provide feedback on responses to open-ended short answer essay questions; the

specific NLP techniques used in these works, however, have ranged in complexity in

an attempt to extract information from the language. Studies such as [SPR03] have

developed systems which use hand-crafted pattern matching to grade one-to-two sen-

tence student responses to open-ended questions. Others, like c-rater [SB09], make

use of grading rubrics breaking down scores into multiple knowledge components for

evaluation; student responses are parsed to detect the presence of either a paraphras-

ing of a concept or statements that infer a concept pertaining to such knowledge

components. Recent studies like [RHC+17] have also shown promising results using

10



neural network models with no need for feature engineering. In many recent works,

several deep learning methods, such as Word2Vec [MCCD13] and GloVe [PSM14],

have been used for their ability to capture the semantic and contextual informa-

tion of words, while another approach has attempted to use memory-augmented

networks to better incorporate labeled examples of essays [ZZX+17].

While these deep learning methods have gained popularity for use in NLP tasks,

the methods often require large amounts of language data to train and pre-trained

models may be limited to words that were in the original corpus (which often ex-

cludes the specific math words and symbols that may be found in student responses

to open-ended questions). It is for this reason that another, albeit much simpler

technique, known as ”bag of words” has been applied with some success in certain

NLP tasks; this method observes the frequency of each word within and across the

given samples, generating a weight measure representing the prominence of that

word. While bag of words is a simplistic approach, it is one that has been around

for a long time with studies such as [Joa96]. Today, bag of words is the foundation

of many studies and strategies. Studies such as Alessandro Sordoni’s dynamic con-

text generative models utilize bag of words as an input to their RLMT generating

responses from text [SGA+15]. In addition, one of the more common approaches,

latent semantic analysis, is based on the bag of words approach, essentially allowing

for the comparison of the K-dimensional vectors of two bag of words representations

and evaluating the match between these vectors [GWHWH+00].

While most of the discussed non-deep learning approaches utilize bag of words,

a known flaw is that the structure of the sentence is not understood. A simple

approach is a n gram model. This will allow the model to save and understand

spatial information of the sentences. Studies such as [RYR+16] utilized this approach

to create the variables within their logistic regression to predict course completion.
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Although the majority of research pertaining to the automatic grading of student

open-ended responses has largely focused on non-mathematical content, there have

been several works applied within the domain of mathematics. [LVWB15] have ex-

plored mathematical language processing for open responses by utilizing clustering

methods and bag of words. However, in the case of that study, the focus was on

limiting the model to analyze only the mathematical expressions while disregarding

text; when the independent variables (i.e. the corresponding prominence of each

word) were generated for the model, all non-algebraic text was omitted. This cur-

rent work, which will be discussed further in the Methodology Section, uses multiple

of these approaches including bag of words to include both mathematical expres-

sions and non-algebraic text, and utilizing pre-trained word embedding within deep

learning methods to help find the semantics within the open response text.

As it will become more apparent by the description of our data in the Dataset

Section, there are several factors that differ between the task described in this work

and that of previous related works. These factors can be summarized in terms

of the domain of focus, the scale of available data, and the consistency of grading

(outcome label). The work of [RHC+17], for example, used datasets from state-level

assessments spanning science, biology and ELA (English Language Arts), with an

average of 2200 responses for each question; in addition to this, the consistency of

labels within the data were arguably more consistent as they were scored by two

human annotators. Other studies such as [GF12] and [SSS16], consist of equally large

datasets of 80 questions and 2273 student responses (approximately 28 responses for

each question) from ten assignments consisting of four-to-seven questions each, and

two exams containing ten questions each. Similar to the Riordan study, two human

judges were used to score the student responses. In the case of [LVWB15], the

dataset consisted of 116 learners solving 4 open response mathematical questions (2
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high school level math questions and 2 college level signal processing questions) in

an edX course. Similarly, [RYR+16] utilized a single education focused HarvardX

course to collect data from 41,946 enrolled students.

This study aims to enable the ability to automatically grade student open re-

sponses within online tutoring systems. As discussed prior, support for open re-

sponse questions on current platforms, such as ASSISTments, are limited and au-

tomatic grading is lacking. As shown earlier, the lack of automatic grading leads to

a sharp decline in open response questions as the year gets busier and the efficiency

of multiple choice questions becomes more enticing. Studies such as [SK05] support

this, discussing how multiple choice are prioritized for the ease, accuracy and speed

of grading. [Ku09] highlighted the advantages to a wider variety of question types;

that providing evaluations of just one question type is insufficient in testing the

students true critical thinking and understanding. Other studies [Mar99] discussed

how constructed response questions (open response questions) elicit a larger range

of cognition’s than that of just multiple choice.

In the case of standard essay grading (e.g. pertaining to non-mathematics con-

tent and ranging from one sentence to multi-paragraph), there are often very large

datasets on which to train NLP models as it is understood that large scale is often

necessary; the ASAP Kaggle competition [Pri] is an example of such data that has

been made publicly available. Open ended responses in the context of mathematics,

however, differs greatly from those observed in other domains as the structure of the

language is often secondary to the students’ ability to demonstrate knowledge and

understanding of the concepts in regard to what is considered when determining

appropriate scores. The lack of publicly available data on which to build automated

graders of student open-responses, within the domain of mathematics, further makes

it difficult for the field to progress in this task. It is for this reason that we not only
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focus on teacher generated content, but also on OER content. As it is widely used by

teachers, supporting an opportunity to make meaningful strides to support teachers

on material already being used in real classrooms. While many previous works used

a larger pool of data per question or better consistency across labels, our dataset

is comprised of student responses to content assigned in true classroom settings by

teachers, and is therefore representative of the type of information that would be

available to models deployed in such settings.

2.3 Pilot Study: Variations Amongst Graders

Among the largest challenges in developing models to automate the assessment of

student open responses is the subjective nature of grading labels. In systems that

allow teachers to manually grade responses to open-ended problems, such as in

ASSISTments, such teachers are not prescribed a rubric to follow or a set of criteria

by which they must assess students; teachers grade their own students based on

how well they feel the student has met their own requirements. In most cases,

teachers presumably assess students based on how well they are able to articulate and

demonstrate their knowledge of assigned content. Others, however, may also grade

based on effort, perhaps based on grammar, or even based solely on completeness

rather than the content of the response. While some of these cases can be detected

(i.e. teachers who only grade based on completion of the problem), other causes of

variation are likely more difficult to detect and normalize to help a model learn to

assess students on a common scale.

In order to better understand the degree to which teachers’ grading policies vary,

we conducted a pilot study with 14 teachers1 who use ASSISTments to regularly

1The teachers in this pilot study were recruited through a funded NSF grant

14



assign content from open educational resources. As it is normally difficult to measure

variations in grading due to differences in both assigned content and the wording

of student responses, we presented these teachers with a subset of a group of 125

student responses to a set of 3 problems that had been assigned in the previous

month; each teacher was given a random subset of 25 responses from their own and

other teachers’ students plus an additional set of up to 10 anonymized responses

from their own students (e.g. if the random set of 25 student responses contained 5

responses from a teacher’s own students, an additional 5 responses from their class

were selected for that teacher). This selection process allowed for multiple teachers

to grade a same subset of student responses as well as re-grade a subset of their own

student responses in an anonymized manner (as the pool of responses were selected

from those that had been assigned and graded by the 14 teachers previously).

From this data, we were able to calculate inter-rater agreement on the set of

teachers to understand how much variation existed in how teachers assess student

open-ended work. We apply Fleiss’ Kappa as we have more than two raters per

response and found that there was just under 17% agreement above random chance

on grades between the teachers (kappa=0.167) when assessing on the 5-point scale.

When the grades are dichotomized into a binary value (where a grade less than 2

is treated as a 0 and grades equal to or greater than 2 are treated as 1), the agree-

ment rises to 41% above random chance (kappa=0.417). These levels of agreement

are surprisingly low, suggesting that there is very large variation in how teachers

approach grading these open responses questions. It was also found, when looking

at the internal consistency of teachers’ grades of their own students, their Cohen’s

kappa ranged from 23% agreement (kappa=0.231) to over 67% agreement above

chance (kappa=0.677); again, these later kappa values are calculated by observing

the agreement between the given grades with those previously given for the re-
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sponses of their own students (all presented anonymously). In following interviews

with these teachers, it was suggested that this low internal consistency may be

attributable to other contextual factors that are considered when grading students.

The large variation in grades and potential contextual factors that may exist

external to the content of a given open response highlight potential challenges faced

in developing models that seek to automate this process; such models need to be

able to generalize across teachers and students, and the results of our pilot study

suggest that this will be difficult. It is for this reason that we include a teacher-level

factor in our analysis described in Section 5.4 and discussed further in the Results

Section.

2.4 Dataset

For the goal of developing models to automatically assess student open responses in

mathematics, we collected a dataset comprised of authentic student answers to open

response questions within ASSISTments[HH14] [RFMM16]; while the source of con-

tent does vary, a large portion of the open response problems contained within the

dataset are from open educational resources such as EngageNY, Illustrative Math-

ematics, and Utah Math. ASSISTments is used by real teachers and students for

classwork and homework, and is developed around the idea of providing immediate

feedback to students (on all but open-ended problems) and the reporting of student

performance for teachers. As stated in the Introduction Section, ASSISTments has

incorporated several OER curricula into its available content, providing the means

to collect the student responses to EngageNY, Illustrative Mathematics and Utah

Math open-ended questions (as well as others) as they were assigned and graded by

teachers.
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In the raw and unfiltered state, the dataset consisted of 27,199 unique students

with 150,447 total student responses to 2,076 unique problems, and graded by 970

unique teachers. In the data, there were a number of empty responses provided by

students caused by either a student submitting nothing (i.e. submitting an answer

consisting of only a ‘space’ character) or by a student submitting an image as their

response; images were not included in the data resulting in what appears to be an

empty response. As such, any empty responses are omitted from the dataset for

the analyses described in subsequent sections, as it is also the case that few would

argue that a truly empty response should be given a grade of 0, and the omission of

such cases will avoid inflating model performance. Once the filter was applied, the

total number of graded student responses dropped to 141,612, the number of unique

problems was decreased to 2,042, and left 25,069 unique students and 891 unique

teachers. An example of the types of responses and their variations can be seen in

Table 2.1. What is clear is that there are a wider variety of responses from students,

with inconsistent spelling, mathematical functions written differently and random

text. This is one of the main challenges of this study. Another challenge presented

in the dataset, and of this study, is that each student response is graded by one

teacher with the exception of a small number of samples where multiple teachers

assessed the same student responses.

2.4.1 Response Feature Extraction

To support our model development, we take two steps to extract features from the

text of the student responses: we first tokenize the student responses and then cre-

ate a numeric representation of these parsed words using one of several methods.

It is common in natural language processing approaches to tokenize, or identify in-

dividual words from provided text. For instance, a student may respond with “I
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Table 2.1: Sample Responses from Example Problem Selected from Illustrative Math
open educational resource

Grade Example Responses

5 Because B is 2x biggest than A
4 I didn&rsquo;t understand ?
5 Because 2/12 time 2 equals 5
5 2.5 x 2=5
5 2.5 times 2 is 5 so the scale factor is 2 oops that is what I meant
5 Cause 2.5 divided by 5 is 0.5
3 Because the top one is 2.5 and 1.5 goes to 2.5
1 I guessed
3 Because the part on a is half the size of the one on part b.
5 2.5 times 2 is 5.
5 A has 2.5 on top and B has 5 2.5 x2is withc means that it was 2
2 I said that because two of them are equal

didn’t know the answer, so I guessed 4” where the text would be divided into each

component; a simple approach here would be to simply split the text using spaces,

but other approaches may attempt to additionally separate punctuation or contrac-

tions into separate components. Within this analysis, the text is tokenized utilizing

two different approaches: what is known as standard count vectorizer splitting, as

well as the Stanford Tokenizer[MSB+14]. This later tokenizer was applied to better

support our deep learning approach described later in this section.

To describe the standard count vectorizer, this approach will take our full corpus

of responses, split the words and create a list of those words. Table 2.2 shows an

example of the initial processing to extract words/features from student responses.

From there, the text which is being trained on is passed through this list, creating a

RxW matrix where R is the number of responses by students in the training set, and

W is the number of unique words within the overall corpus. Then in each column

of W, a count of the occurrence of the word in the student’s response is tallied.

In the end, the final RxW matrix acts as the bag-of-words approach described
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in Section 2; by adding the frequency values, a numeric representation is given to

each word describing its weight amongst other words in the corpus. While this

representation approach could result in undesirable omissions, where, for example,

the method may partition an equation contained in a student response (as shown

in Table 2.2 with 6x4 = 6 recognized as simply 6x4 ); it does, however, allow for

more flexibility in capturing similar numeric occurrences. As is the case in a bag-

of-words approach, the ordering of words within each response is not maintained by

the representation and instead relies on a measure of word prominence. With just

the count, it is apparent that certain ‘stop’ words such as ‘i’, ‘me’, ‘my’, ‘it’, ‘this’,

‘that’ would carry more weight given that the words are used often. To combat

this, the term frequency-inverse document frequency (tf-idf) statistic is calculated

across the matrix. These features will later be used in the non-deep learning models

described in the next section.

The other approach to extracting the features from text utilized in this study is

the Stanford Tokenizer [MSB+14] combined with Global Vectors for Word Repre-

sentation (GloVe)[PSM14]; GloVe word embeddings, pre-trained on large datasets,

have been made openly available to researchers conducting natural language pro-

cessing research. In the pre-trained embeddings used in this work, the Stanford

Tokenizer was used in the generation of such word representations, so the same

tokenizer is applied to maximize the number of words recognized by that model.

The Stanford Tokenizer was applied, which increases the amount of words which

are able to be respresented by a GloVe vector. For example, the Stanford Tokenizer

will represent “didn’t” as “did” and ”n’t” which is necessary for the pre-trained

GloVe model to recognize each component (i.e. there is no pre-trained GloVe repre-

sentation for “didn’t” but there are representations for “did” and “n’t”). We used

the 100-dimensional GloVe vectors pre-trained on a large Wikipedia dataset with
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the hypothesis that such a corpus is more likely to include mathematics terms than

other pre-trained models using, for example, news sources.

2.5 Methodology

To develop our models, we use both traditional machine learning techniques and

more complex deep learning algorithms combined with natural language processing

approaches. The range of models observed in this work is intended to compare

models of varying complexity and flexibility in regard to how such models represent

the presented data. Specifically, we compare two decision tree-based models with a

deep learning network within the context of a probabilistic baseline model.

With the tree-based machine learning approaches including random forest and

XGBoost, each described within this section, there is a decrease in flexibility of

the model (in comparison to deep learning algorithm’s such as a neural network

or LSTM), but greater likelihood in being able to interpret results and identify im-

pactful words/equations within the student’s response in order to justify the model’s

prediction (a potentially desirable quality of a model that will be suggesting grades

to teachers). With the inclusion of deep learning, our analysis is taking advan-

tage of the newest approaches and allows us utilize embedding’s to help our models

understand the semantics of the words/equations within the student’s response.

Additionally, the final models utilize the predictions from the traditional machine

learning and deep learning models as covariates within a Rasch model. The follow-

ing sections detail the methodologies applied to address the goals outlined at the

end of the Introduction Section.
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2.5.1 Random Forest

While there has been an expansion of deep learning models (and we attempt as

well) within natural language processing, mathematics student open responses are

not necessarily comparable to the corpus in most prior analyses. For example, the

datasets made available through competitions (cf.[Pri]) have largely focused on non-

mathematics content to which others have been able to explore a range of methods

including that of deep learning[TN16]. However, the differences in data sources

may be worth noting in comparing this to prior works. Namely, many deep learning

methods, particularly those using pre-trained embedding models as we describe later

in this work, are unable to effectively represent numbers and equations well in the

context of other words; while such representations recognize some numbers, the

corpus is limited. It is for this reason that a bag-of-words type of approach begins

to make more sense as it is easier to train such a method to recognize all words

within our specific context. Additionally, the tree-based methods likely require

fewer training examples than a complex deep learning model but still offer a large

degree of non-linearity in their representations of data.

In regard to the random forest model explored in this work, as discussed earlier,

the input of this model is the term frequency inverse document frequency value.

This assists in lowering the weight of less important stop words. We allowed the

forest to contain 100 decision tree’s. By having a more slightly more robust dataset,

there is less of a chance of over fitting. Additionally, this allows the forest to identify

as many important words within the student responses. For each of the 100 trees,

pruning is not performed. This allows for each of the trees to expand out and identify

as many words as impactful. Once again, this does bring in the risk of overfitting.

Training and testing is performed with a 10-fold cross validation. The model then

output a probability that the grade would belong to each of the 5 categories. These
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probabilities are then used as covariate within the final Rasch model described later

in this section.

2.5.2 XGBoost

Continuing with the tree approachs, XGBoost was another flexible model applied.

This method will apply gradient boosted decision trees. As [CG16] describe, there

are three parts to the tree boosting. First, a regularized learning objective is cal-

culated to prevent overfitting. It starts by calculating a prediction thru summing

all the independent tree structures and leaf weights from ensembled decision trees.

From there, the model attempts to understand what were the effective set of func-

tions learned within the model by minimizing the loss function. This function is

calculating the difference between the predictions and the targets, while attaching

a complexity penalty. By attaching this penalty, as the authors discuss, the final

weights of the ensembled trees are smoothed to avoid overfitting.

From there, the model aims to optimize the ensembled trees, but the authors

[CG16] noted that with functions as the parameters, a traditional euclidean space

is not able to be used for the optimization. This lends itself to an additive modeling

approach by adding more functions and calculating the loss function. The model

adds the functions which minimise the loss function and most improves the current

model.

Additionally, the model aims to combat overfitting by utilizing shrinkage, also

commonly referred to as regression to the mean. As the authors note[CG16], by

utilizing the shrinkage, it can help to reduce how much influence each tree has

on the overall ensembling. This then can help create more room for additional,

potentially stronger trees, thus improving the model while reducing the chances of

overfitting. Lastly, the XGBoost takes one aspect from the Random Forest model,
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and that is feature subsampling.

Similar to the Random Forest, the term frequency inverse document frequency

matrix is used as input to the model. We set the model to perform multi-class

classification with a softmax probability learning task. This then allows the model

to produce a separate probability for each possible grade. Once again, all training

and testing is performed using 10-fold cross validation.

2.5.3 LSTM

The final student grade prediction model for comparison is a deep learning long-short

term memory (LSTM) network [HS97]. As mentioned previously, deep learning

has been on the forefront of recent advancements in natural language processing.

Such models differ from the more traditional methods described above in that such

networks consider the ordering of words. Contrary to approaches using a bag-of-

words approach, LSTMs recognize that the ordering of words may contribute to the

interpretation of the responses and considers this within the network structure.

Before modeling, each sentence is first processed to remove unwanted characters

such as line endings. Next, stop words are removed from each sentence to help reduce

the sentence to only the most representative words; by shortening the sequence of

words it is also believed that the model will be able to more efficiently learn from

the data in that it will not need to learn to ignore such common words. From here,

each sentence is tokenized using the Stanford Tokenizer and subsequently vectorized

using the pre-trained 100-dimensional GloVe embeddings described in Section 4.1.

We apply a bi-directional LSTM model consisting of 3 layers: a 100-dimensional

input layer that accepts the pre-trained GloVe vectors of each word, a 40-node hid-

den LSTM layer (20 nodes that observe the sequence in order and 20 nodes that

observe the sequence reversed), and finally a 5 node output softmax layer corre-
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sponding to each of the 5 possible grade values with a cross-entropy loss applied.

The application of a bi-directional network is believed to help the model learn or-

der dependencies between words as well as help it learn more prominent long-term

dependencies at the beginning and end of each response.

The model is trained using a 10-fold cross validation with an Adam optimizer

with a step size of 0.03. The small step size combined with the comparably small

network size (it is not uncommon for such networks to contain many more layers

with hundreds of nodes per layer) is meant to help reduce model overfitting; while

the overall dataset is arugably large enough to support deep learning models, a

separate model is trained per problem which, in some cases, exhibit smaller sample

sizes than would normally support a deep learning model. However, given the model

size and the pre-trained nature of the GloVe embeddings (the model does not need

to learn new word representations), we feel that the application of this model is

justified for the given prediction task.

The model is trained using a variable stopping criterion based on the performance

of a holdout validation set consisting of 1-fold’s worth of data (approximately 1/9th

of the available training data). The model is trained over many epochs, or cycles

through the training data, until the performance on the validation set plateaus.

Similar to the other previously described models, the LSTM treats each grade

as mutually exclusive classes for training; despite the ordinal nature, this aspect of

the output is not explicitly included in the model

2.5.4 Rasch Model

While the previously described machine learning and deep learning models are the

focus of comparison for this work, we utilize one final model as a baseline and a

means of more fairly evaluating the performance of the previous models. For this,
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Table 2.3: Rasch Model Performance
Model AUC RMSE Kappa

Rasch Model with teacher component 0.696 1.09 0.162
Rasch Model without covariates 0.827 0.709 0.370

Rasch Model with number words covariates 0.829 0.696 0.382
Rasch Model number words and Random Forest covariates 0.850 0.615 0.430

Rasch Model number words and XGBoost covariates 0.832 0.679 0.390
Rasch Model number words and LSTM covariates 0.841 0.637 0.415

we use a two- and three-component Rasch model. A Rasch model, commonly applied

in item response theory (IRT), is a probabilistic model (in this case, a variational

bayes model) that uses fully connected data to learn components that describe the

users and content independently of each other. In IRT, it is common that such a

model may learn a student ability parameter for each student as well as an item

difficulty parameter describing each problem. In our specific application, we use the

Rasch model to learn a student ability parameter, item difficulty parameter, and,

for an additional comparision, a teacher strictness parameter following the results

of our pilot study described in Section 3.

The formulation of the Rasch model is as follows:

grade = ordered logistic(student ability − item difficulty

+ β ∗X)

(2.1)

grade = ordered logistic(student ability − item difficulty

− teacher strictness+ β ∗X)

(2.2)

In the first Rasch model in Equation 2.1, it is formulated as an ordinal logistic

regression observing a learned value per student and a learned value per problem.
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In addition to this, a set of covariates X will be used to evaluate the previously

described machine learning models. Since the base Rasch model, where X is an

empty matrix, observes no information of the problem text itself, a model that is able

to effectively learn from student response text should lead to notable improvements

in model performance. It is for this reason that we use this model as a means of

comparison. The predictions of each of the previous models will be incorporated into

the Rasch systematically to compare the added benefit (if any) beyond the attributes

of student ability and item difficulty. For example, the 5 predicted probabilities

produced by the LSTM model are presented to the Rasch model as X and the

performance of such a model is compared to the Rasch model without such covariate

data (as well as compared to the Rasch model containing the other machine learning

predictions).

The Rasch model in Equation 2.2 incorporates an additional learned parameter

of teacher grading strictness, in observance of the results of our pilot study. By

including this term, we should gain an understanding of how well such a model is

able to perform when observing that different teachers grade with different policies,

particularly in regard to being more or less strict (i.e. a less-strict grader may apply

higher grades on average than a more-strict grader).

In both of these cases, the Rasch model helps to observe the model performance

independent of student “goodness” and item difficulty that may otherwise inflate or

deflate model performance. In addition to this, the Rasch incorporates an ordinal

regression which was not observed by any of the other machine learning models; as

such, the combination of the two methods holds promise to produce better results

by observing the ordered relationship between grades.

As one additional baseline model, we include the Rasch model with a single co-

variate representing the number of words in the student response. It seems plausible
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that longer responses may, on average, receive higher grades, so we include this term

alongside the others as a more appropriate baseline of comparison.

2.6 Results

We report three evaluation metrics with which to compare each model: AUC, RMSE

and Cohen’s Kappa. AUC is calculated using a simplified multi-class calculation of

ROC AUC [HT01], where values close to 0.5 represent performance at chance and

values close to 1 represent higher performance. RMSE is calculated as the root

of average squared errors when observing the ordinal predictions and labels (i.e.

observing that the difference between a prediction of 3 and an actual grade of 4 is

a value of 1); this differs from the other metrics that observe the 5-point labeling

scale as a multi-class classification problem. Finally, we observe multi-class Cohen’s

kappa as a measure of inter-rater agreement above random chance (observing that

some labels such as 4 and 0 appear more frequently than others.

Overall, each of models managed to predict student open response better than

the simple Rasch model baseline. The baseline model, of just a basic Rasch model

without any additional covariates, managed to classify students’ open response

grades with an AUC of 0.827, as shown in Table 2.3. In fact, all models man-

age to classify student grades with an AUC greater than 0.820 aside from the Rasch

model incorporating a teacher strictness component; it is possible that the model

is either unable to learn three parameters from the given data or the influence of

variations in teacher grading are not as impactful as the pilot study suggested. Like-

wise, aside from the identified Rasch model, the Kappa values are moderately high,

all models are able to classify and predict the student’s grade at least 37% above

chance.
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However, its is apparent that the incorporation of the machine and deep learned

grade prediction covariates provide the Rasch model with insight previously not

identified. While the LSTM and XGBoost manage to improve the models perfor-

mance, Random Forest managed to provide the most additional insight to the Rasch

model. What is also evident is our model’s ability to become more confident in our

predictions with more covariates. Our RMSE manages to drop in the Rasch model

with any of our additional covariates and, once again, the Random Forest managed

the lowest RMSE.

In the end, it is clear in Table 2.3 that the best overall model was the Rasch model

with Random Forest covariates. This model was able to classify/predict student’s

open response grades with an increase in the AUC of 0.023, a drop in error rate

(RMSE) of 0.094, and an increase in the kappa of 0.060 over the baseline Rasch

model without additional covariates.
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Figure 2.2: Example Problem Selected from Illustrative Math open educational

resource
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2.7 Exploration of Sample Sizes

While the results in the previous analysis suggest that the models are performing

moderately well in comparison to our baseline, this research aimed to explore the

impact the amount of data has on our performance. It is unclear if, given more

data, we would expect to see large increases in model performance. We selected a

problem from our dataset to exemplify this process here, but it is intended that this

analyses can be repeated on all problems to assess the impact of available data at a

finer level of granularity. Of the 10 problems with the closest grade distribution to

that of the overall population, we selected the problem with the largest sample size

(shown in Figure 2.2).

This last analysis was performed with a leave one out cross validation and an

increasing training set sample size. Starting at 5 training points, we train and

predict the test point. We repeat this sampling 10 times to allow us to calculate our

confidence intervals. Following the 10th iteration, the sample size is increased to

15, and the process repeats for the same test point. This is repeated, increasing the

sample size by 10 until it can’t sample anymore. Once this is finished, the model

moves to the next test point of the leave one out cross validation and repeats. In

this way, we create a bootstrapping example of how model performance changes at

each sample size; where we see the model performance stabilizing and beginning to

plateau, it is suggestive that additional data would not lead to substantial gains

in model performance. For this analysis, we used the random forest model alone

without the Rasch for exemplary purposes.

In terms of the sample size and its effect on our ability to predict a student’s

open response grade, it is clear from Figure 2.3 and the confidence that we see a

statistically significant improvement in the performance from sampling 5 training
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points to just under 55 training points. However, what is evident is that the model

has maxed out its potential in its current form at just under 55 training points, and

that additional data is not significantly improving the ability to predict the student’s

grade. With plots such as Figure 2.3 it suggests that any further improvement’s

would require updates to the model and data representation rather than simply

collecting more data.

2.8 Discussion

Overall, the study aimed at utilizing modern machine and deep learning approaches

to predict grades from authentic student open responses. With the ensembling of

machine and deep learning with Rasch models, we have shown a strong ability to

predict a students grade. Additionally, this study showed that in some cases more

data wouldn’t necessarily improve performance. Thus providing us the understand-

ing that our ability to predict a grade, for a specific problem, may or may not

improve with more data. However, given there are 2,042 unique problems, a limi-

tation of this part of the study is that it’s difficult to ascertain this information for

each individual problem.

2.9 Future Work

With the overall strong model performance, there are a couple next steps we wish

to address in future work. There is still a weakness in our model’s ability to under-

stand text. Currently, the best performing model, the Random Forest, is utilizing

a bag of words approach, counting the words within student responses. There is

no consideration of the structure of the student’s response or what words relate to

other words within the student’s response. We attempt to combat this hindrance
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by utilizing the LSTM, but the lesser results of that model in Table 2.3 suggest that

either the semantics and context of the words did not provide additional insight to

the model, or, more likely, there is not enough data within each problem for such a

model to effectively learn. The representation of data may also be an issue across

these models, specifically in reference to the pre-trained GloVe embeddings. While

a very powerful tool, as shown in previous research and discussed in this paper,

models which utilize this are bound to the words in the pre-trained corpus. Even

with the use of a Wikipedia trained GloVe embedding, our LSTM did not gain much

in terms of additional information. Understandably, many functions and formulas

students write aren’t represented in the pre-trained embeddings. Currently, our

team is developing an approach to expand these pre-trained embeddings to account

for missing words, functions or math terms without requiring re-training of a GloVe

embedding.

It is our goal to use these findings and the continued development of these grading

models to deploy tools that can help teachers save time in assessing their student

work so that they may direct their attention to the students who would most benefit

from additional feedback.
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Chapter 3

Is It Fair? Automated Open

Response Grading

Erickson, J. A., Botelho, A. F., Peng, Z., Huang, R., Kasal, M., & Heffernan, N.

T. (2021). Is It Fair? Automated Open Response Grading. In Proceedings of the

Fourteenth International Conference on Educational Data Mining, June 29 - July

2, 2021. Paris, France. Poster.

Abstract

Online education technologies, such as intelligent tutoring systems, have

garnered popularity for their automation. Whether it be automated support

systems for teachers (grading, feedback, summary statistics, etc.) or support

systems for students (hints, common wrong answer messages, scaffolding),

these systems have built a well rounded support system for both students

and teachers alike. The automation of these online educational technologies,

such as intelligent tutoring systems, have often been limited to questions with

well structured answers such as multiple choice or fill in the blank. Recently,

these systems have begun adopting support for a more diverse set of ques-

tion types. More specifically, open response questions. A common tool for
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developing automated open response tools, such as automated grading or au-

tomated feedback, are pre-trained word embeddings. Recent studies have

shown that there is an underlying bias within the text these were trained on.

This research aims to identify what level of unfairness may lie within machine

learned algorithms which utilize pre-trained word embeddings. We attempt

to identify if our ability to predict scores for open response questions vary for

different groups of student answers. For instance, whether a student who uses

fractions as opposed to decimals. By performing a simulated study, we are

able to identify the potential unfairness within our machine learned models

with pre-trained word embeddings.

3.1 Introduction

In recent years, natural language processing (NLP) has been at the forefront of

machine learning in multiple fields. Whether it be within corporations or within

the scientific community, NLP has provided deeper insights into consumer and user

behaviors. Linguistics provides another source of information outside the standard

data from user logs. Instead of relying on correlational assumptions from this data,

inferences can be deduced directly from the users linguistics. While utilizing lin-

guistics in education isn’t genuine, modern machine learning and natural language

processing has helped to automate the analysis and provide effective tools for learn-

ing. Especially within the online educational technology environment.

While online educational technologies has embraced linguistics, more specifically

linguistics of teachers, students and chat systems; in recent years, the development

of more advanced deep learning has brought a deeper semantic understanding of

words within these linguistical models. More specifically, there has been a rise

in sequential models which utilize word embeddings and vector spaces to develop
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algorithms which understand the semantic meaning of the words in sentences. To

be able to infer more accurate predictions.

With the emergence of word embeddings and their vector spaces, many re-

searchers have looked to utilize these approaches in their analysis in multiple fields.

However, there is one shortcoming of word emnbeddings; to develop an accurate

word embeddings which allows for accurate semantic understanding of words (based

on their location within the embedding vector space), a researcher requires copi-

ous amounts of data. Without these large datasets, the vector spaces may provide

very inaccurate semantic relationships of words. Thus, companies and universities

sought out to utilize their own, or crawl the internet for their own, larger datasets

to generate their own word embeddings. They would then publish them for public

usage.

The emergence of word embeddings was an important development in machine

learning and NLP, but the publishing of publicly available pre-trained word em-

beddings provided researchers with a powerful tool for optimizing algorithms with

linguistics. While word embeddings were powerful for studies within areas such

as MOOCS (i.e [KIK20][OT20]), smaller studies with less robust linguistic data

were unable to utilize this modern approach for semantic relationship of words.

Pre-trained word embeddings cut through that by providing researchers with more

robustly trained word embeddings. Thus, researchers had a vector space which al-

lowed for semantic relationships of words which their algorithm wouldn’t have been

able to generate on their own.

Its undeniable that having a word embedding trained on larger datasets, such

as GloVe[PSM14] being trained on data from Wikipedia or Word2Vec[MCCD13]

being trained on all of GoogleNews, provides deeper insights for the algorithm into

the semantic meaning of words. Research has shown that the language which those
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embeddings were trained on provided underlying known biases [BCZ+16]. For in-

stance, Word2Vec, as mentioned earlier, was trained on GoogleNews. The language

utilized within the articles influenced the word embeddings to relate words in a bias

way.

Since research has shown that some of the semantic meanings inferred from

pre-trained word embeddings can elicit undesirable biases, the major question then

becomes, does this underlying bias suggest the algorithm or predictive model will

make unfair decisions? For instance, if an algorithm utilizes linguistics and NLP

with pre-trained word embeddings will the predictions be unfairly made from those

underlying biases (i.e. a scoring mechanism changing scores for certain groups of

students). Our research attempts to explore:

1. Whether, through 3 simulated studies, the format a student writes an answer

(i.e. fractions vs. decimals) effect the scoring model and potentially elicit

unfair scoring?

2. What effect, through 3 simulated studies, if any, do ‘distractor’ words have on

the unfairness?

3. Whether or not underlying bias in pre-trained word embeddings can lead to

unfairness in open response scoring models in middle school mathematics?

The simulated study and the analysis of the genuine middle school mathematics

data utilize the recently published approach, termed ABROCA [GBB19], to evaluate

what level of potential unfairness is present.
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3.2 Background

3.2.1 Online Educational Technologies: Intelligent Tutoring

Systems

In recent years, online educational technologies have been on the forefront of learn-

ing for students. While most learning with these systems have been supplemental

to in-person learning, most recently, these systems have become more relied upon to

deliver an effective education. A common online educational technology, intelligent

tutoring systems (ITS) [CKA97], has been prevalent in education for many years.

Some of the most common ITS are ASSISTments[HH14], McGraw Hill’s ALEKSTM

and/or Carnegie Learning’s Cognitive TutorTM. These systems aim to support both

students and teachers through automated summaries of student performance, au-

tomated feedback and grading to students, hints, scaffolding, and common wrong

answer messages. Through the use of both machine learning and software engi-

neering, these systems have been shown to be effective at increasing the scores of

students with end of the year standardized math exams[RFMM16] and the effects

of their intelligent tutoring closely resembles the effect face to face tutoring has on

students[Van11]. Other ITS, such as AutoTutor[GVR+01],have attempted to resem-

ble the face to face tutoring more directly by developing automated conversations

and dialogues between students and ITS [GVR+01]. However, most of the support

and benefits of these ITS have been limited to questions with structured answers

(i.e. multiple choice or fill in the blank questions).
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3.2.2 Automation of Intelligent Tutoring Systems

While there are a plethora of ITS offering automated support for both students

and teachers, this is mostly limited to questions with structured answers. Mainly,

multiple choice or fill in the blank. It should be noted, that some of these systems,

such as ASSISTments, support open response or short answer questions. However,

the automation is limited to questions with structured answers. For a system such

as ASSISTments, McGraw Hill’s ALEKSTM and/or Carnegie Learning’s Cognitive

TutorTM, it is straight forward to teach a system that A is the correct answers. Thus,

if a student selects B, a system can easily score and suggest formulated feedback to

that selection. The answers are finite.

Automated support of ITS is a draw for many teachers; one study noted that

many utilize multiple choice questions for the efficiency and accuracy of grading

[SK05]. However, since most of the automation is limited to questions with struc-

tured answers, the content which teachers provide is limited. To be able to ex-

pand the system’s automation purview, natural language processing (NLP) has been

brought to the forefront. Studies have looked to utilize NLP to automatically evalu-

ate work or questions which require a student’s unique linguistics (i.e. open response

questions, or essays) including [SPR03][SB09][RHC+17][AB06][FLL99][TN16][LXZ19].

While most of this research has been primarily focused on content outside of math-

ematics, our previous research, [EBM+20], looked to help teachers diversify the

content which they provide students in middle school mathematics by utilizing tra-

ditional and modern NLP to develop an automated scoring model for open re-

sponse middle school mathematics questions. A more diverse set of question types

can be beneficial to students and can elicit differing levels of cognition, as studies

[Mar99][Ku09] note.
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3.2.3 Natural Language Processing

Towards the goal of automating open response questions, or any linguistical/NLP

prediction task, the major task is in how to numerically represent words thus a

machine learned algorithm can generate an accurate prediction. One of the more

simplistic approaches utilizes the frequencies of each unique word within the corpus,

whats commonly known as a Bag of Words approach. While undoubtedly easy

to interpret and not computationally intensive, this approach has been utilized in

studies such as [Joa96] and is the foundation of more advanced approaches such

as[SGA+15][GWHWH+00].

While frequency based approaches, like bag of words, are simplistic in nature

and can provide insight, a major pitfall is that they begin to weight words more

that occur more frequently. However, words occurring most often aren’t always the

most important or most informative. A common approach to combating this is to

utilize term frequency inverse document frequency (TF-IDF). One study was able

to use TF-IDF to accurately match words written in a query to the documents that

are the most closely related[R+03].

Eventually, with the advancement of machine learning and deep learning, more

modern approaches have gone to utilizing embedding vectors to represent words.

Essentially, each word will have an attributed list of numbers which places that word

in the embedding vector space. From this vector space, deep learning can utilize

their locations within the vector space to understand the semantic relationship of

words. As mentioned earlier, GloVe[PSM14] and Word2Vec[MCCD13] are two of

the most common word embedding algorithms. However, for these approaches to

be effective, there needs to be enough data present to generate the proper semantics

of words. Without enough data, it is likely any semantics are incorrectly identified

and the embedding space is ill defined. From this, it is difficult for an algorithm
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to utilize the generated embedding space to accurately comprehend what the text

means or what it is inferring.

3.2.4 Pre-Trained Models

While word embeddings have been some of the most prevalent NLP techniques in re-

cent years, there is a hindrance to this approach, data. To develop an accurate word

embedding, with accurate informative semantics of words, there needs to be enough

data with robust enough text. As mentioned earlier, if there isn’t enough data,

incorrect semantics of words can be inferred and the algorithm will incorrectly in-

terpret text and linguistics. However, efforts have been made to combat this through

pre-trained models. Instead of generating word embeddings from scratch, those with

access to larger corpuses and datasets, such as Google and Stanford, trained their

own Word2Vec and GloVe embeddings on GoogleNews and Wikipedia, respectively.

This undoubtedly provides researchers with a very powerful asset to their NLP. Now,

researchers can use pre-trained word embeddings with smaller corpuses and develop

predictive models with embeddings generated from datasets that dwarf their own.

This means a study which wouldn’t be able to accurately utilize word embeddings

in their predictive model, now can. As these pre-trained word embeddings have

grown in popularity, word embeddings have expanded to utilize bidirectional en-

coder representations from transformers (referred to as BERT[DCLT18]) to create

pre-trained word embeddings, as well.

With the success of word level embeddings, researchers looked to develop sen-

tence level embeddings. Similar to the word embeddings, sentence level embeddings

utilize deep learning to generate embedding vector spaces and embedding vectors

which represent entire sentences. Two common approaches used are SBERT[RG19a]

and the Universal Sentence Encoder[CYK+18] (often referred to as USE). Addition-
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ally, embeddings have expanded from the word and sentence level to document level

embeddings. Approaches, such as Doc2Vec [LM14], are able to generate a single vec-

tor representation of entire documents. These more generalized embeddings allow

for simpler direct comparisons of sentence and documents versus individual word

embeddings. Similar to the word embeddings, these approaches are often pre-trained

and released for public use.

3.2.5 Fairness

There are clear advantages to word embeddings and even more advantages to pre-

trained word embeddings. This is also clear with sentence and document level

embeddings as well. As discussed earlier, not everyone will have the resources to

pull and analyze massive datasets to be able to accurately generate embeddings

at the word, sentence or document level. With Google utilizing GoogleNews and

Stanford utilizing Wikipedia, researchers have the opportunity to utilize semantics

where they wouldn’t have been able to previously. However, all of these pre-trained

algorithms beg the question, what is being inferred from the data which is was

trained on?

When it comes to linguistics, the way someone speaks, the way someone artic-

ulates, can be unique to themselves. Similarly, the way someone writes is personal

to themselves and specific to their topic. So when algorithms are being pre-trained

on data which isn’t the researchers own data, there are questions to be asked. For

instance, while there is more data, what are some of the semantic relationships these

embeddings are identifying? From the word level, if the embeddings are developed

from GoogleNews or Wikipedia, what is being identified? A recent study [BCZ+16]

looked to identify the semantic similarities.

Research[BCZ+16], has been able to identify some potentially harmful seman-
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tic relationships present in common pre-trained word embeddings. For instance,

[BCZ+16] was able to identify that Google’s pre-trained Word2Vec on GoogleNews

elicited some harmful stereotypes. As the title of their research states, Google’s pre-

trained Word2Vec on GoogleNews closely associates Man with Computer Pro-

grammer and Woman with Homemaker . Similarly this study looked to see

what other potential gender stereotypes could be present within these pre-trained

word embeddings. The authors managed to see that, for instance, occupations most

closely related to the pronoun She were nurse, receptionist, socialite, housekeeper,

nanny; and the occupations most closely related to the pronoun He were maestro,

captain, skipper, boss and protege, just to name a few. There is clear evidence, that

the language used within GoogleNews perpetuates certain stereotypes and undesir-

able biases.

While its clear that undesirable bias and harmful stereotypes are present in the

pre-trained word embeddings, it doesn’t guarantee that predictive models which

utilize these are inherently biased. It may be the case that the algorithm could

potentially be inferring dangerous semantic relationships, but the questions is will

it effect the decision the algorithm makes. In education, this needs to be explored

deeper. Automated scoring algorithms should be developed with the intention of

scoring students without bias or harmful stereotypes being considered. That’s why,

for instance, in our past research [EBM+20], all demographics were left out of the

automated scoring model. It was our goal to score the student on their content;

and content alone. There in lies the important question, while omitting variables

which could cause unfairness in the automated scoring, are we continuing to avoid

unfairness if we utilize pre-trained word embeddings.

Naturally, the next question becomes, how does one identify potential unfair-

ness in their algorithms or predictive models? For instance, how can you iden-

44



tify if an open response answer automated scoring model is unfairly scoring? Re-

cent work,[GBB19], developed an approach called Absolute Between-ROC Area

(ABROCA). This approach utilizes the areas between two ROC curves to iden-

tify a model’s ability to perform a classification task between two different groups of

data. For instance, with open response answers, some students may write answers

with mostly fractions and another group of students may use decimals and fractions.

By generating the ROC curve of the prediction task for each group, you can utilize

the area under the curves to identify the potential unfairness. So if there is a small

area between the two ROC curves, one for the prediction task for each group, the

less unfairness. However, if there is a large area, there is more unfairness in the pre-

diction model. This research aims to develop a simulated study to examine whether

the utilization of the pre-trained GloVe word embeddings within an automated open

response scoring model can elicit unfair scoring, and whether or not there is evidence

of unfairness with our previously developed open response scoring model in middle

school mathematics by utilizing ABROCA as the evaluation metric.

3.3 Study 1: Simulated Study of Fairness in Au-

tomated Scoring

It is clear that embeddings have become an integral part of NLP and those hoping

to develop predictive models utilizing linguistics are often drawn to the semantic

properties which your model can utilize and learn. While researchers have noted that

pre-trained embeddings are very powerful in providing an embedding vector space

developed from robust datasets, and its clear there are undesirable biases built into

those embedding vectors, its unclear as to whether or not those undesirable biases or

stereotypes influence algorithms unfairly. Thus, this research developed a simulated
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study to attempt to identify if pre-trained word embeddings are utilized within an

automated scoring model for open response answers, do they influence the model

to make unfair predictions. As mentioned earlier, an example of this would be if

a group of students states their answer with a fraction and surrounding text, does

the predictive model generate scores similarly for those students that use decimals

along with surrounding text? Through this simulated study, we are able to gain a

deeper insight into what/if any unfair scoring occurs when utilizing the pre-trained

GloVe word embeddings trained on Wikipedia.

There are 3 studies within this simulated study to help achieve this goal. First,

we develop answers which contain differing distributions of answers which contain

fractions and decimals and generate the ABROCA value at the differing distribu-

tions. Second, we attempt to see if decimals and fractions alone generate differing

ABROCA values. Third, we attempt to see if additional ‘distractor’ words replace

decimals in the text, do the ABROCA values differ at differing distributions? These

studies will help provide deeper insight into the potential unfairness an automated

scoring model can be producing when utilizing pre-trained word embeddings

3.3.1 Data Generation

At the foundation of this simulated study is the generation of the student dataset.

The goal of this process was not to just generate 4 or 5 unique answers and randomly

select 100 of those. This study set out to generate answers with more variability in

their content and linguistics. To accomplish this, the generation was split into two

facets, the training dataset student answers and the test set student answers. This

was performed such that the model would not be able to have any identical answers

between the training set and the test set. While this does create more noise, it helps

to isolate what correlations our scoring model will eventually identify and predict
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from. Essentially, that the predictions aren’t being made because the model has

already seen that exact series of embeddings associated with a certain score.

Training Data: Corpus Generation

Table 3.1: Sample of Phrases and Their Associated Avg. Score
Generated Phrases Avg. Score

my answer is 0.718750
i picked 0.622222

i guess the answer is 0.600000
i think it is 0.600000

i think the answer is 0.590909
i worked out 0.585366

Towards the goal of generating student answers with enough variability in their

content, the generation of the corpus was founded on the goal of utilizing random

selection. From this randomization, this study can mimic real open response student

answers. This was based on the intuition of what makes open response answers

unique is the variability within the answers. In our previous study, discussed further

in chapter 4, we were able to infer that many answers were similar, but not fully

identical. First, as Table 3.2 shows, there are 4 different length student answers in

this corpus. There are answers which are 6, 5, 4 and 3 word length answers. The

generation of the student answers can be surmised into 4 steps and visualized with

Table 3.2:

1. Select whether it will be a student answer which uses decimals or fractions

2. Randomly select what length the answer is.

3. Once a length is randomly selected, another random selection is made between

the two structures (i.e. ‘Answer Structure’ in Table 3.2)
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4. Randomly select text from Fill “1” and Fill “2” Fractions or Fill “2”

Decimal to fill the identifiers ‘1’ and ‘2’

To summarize, the first step of the generation of the student answers is to decide

whether the answer will contain a decimal or a fraction. This is followed by ran-

domly selecting what length the answer is. Once a selection is made, there are two

potential answer structures to choose from. In Table 3.2, this is the column ‘Answer

Structure’. For all length answers, there are two types of answers with different

structures. Another random selection is made between the two structures. From

there, ‘1’ and ‘2’ are filled with random selections made from the available text (i.e.

Fill “1” and Fill “2” Fractions or Fill “2” Decimal in Table 3.2). Another way to

describe the text and language used in Fill “1” are ‘distractor’ words.

Test Data: Corpus Generation

With a corpus generated to simulate training data, the next step includes generating

a testing corpus of student answers to select from. The steps are the same as the

generation of training dataset steps listed above. However, Table 3.3 shows there is

one key distinction between the training and test generation, the text which can be

filled (Fill “1”). More specifically, the answers which are generated for the test set

will never occur in the training set. As mentioned earlier, this was performed for two

reasons. One, this allowed for a more realistic distribution of student open response

answers. Often times, answers are similar, but few are identical. This is what makes

automatically scoring open responses questions difficult. There are a infinite set of

answers. Therefore, this variability helps to simulate data genuine student answers.

Secondly, by having different text and phrases to select from that are different than

the training set corpus, guarantees that our automated scoring model will not be

identifying sequences of words, or phrases, that are identical in the training and test
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set. This allows us to understand, more specifically, what our algorithm is making

decision on and what correlations its finding. If it see’s the exact same answer it

was trained on and predicts a score, that doesn’t provide insight to whether the

word embeddings are impacting the fairness of the algorithm, rather that it has

identified an identical answer. Without this step, it would be difficult to identify

if any changes in predictability between two groups are from one group having the

identical answers and scores, the ‘distractor’ words, or the math terms.

It should also be noted that the Answer Structure for the test corpus is also

different than the training corpus. In the training dataset, words were being selected

and placed in the answers for the ‘distractor’ words. Whereas in the test dataset,

whole phrases are being selected for the ‘distractor’ words. Again, this allows for

variability in the answers between the training and test datasets.

In the end, a separate corpus of student answers was generated which contain

decimals and fractions, separately. Therefore, an individual corpus of generated

student answers using fraction for both training and test and an individual corpus

of generated student answers using decimals for training and test datasets were

generated. These corpuses are what will be used to select the final training and test

data.

As for the scoring of the simulated student answers, a general rule was set that

any answer that contains 3/4 or 0.75 is considered correct. All other answer are

considered wrong. Partial credit is not considered in this simulation study. Thus

this is a binary classification task.

3.3.2 Methodology

Once the corpuses have been generated, the process of selecting data can begin. This

can be surmised by the overall goals of this study. This study sets out to identify if
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a automated scoring model for open response questions, which utilizes pre-trained

word embeddings, elicit unfair scoring. To accomplish this analysis, there needs

to be an identifiable difference, outside of the ‘distractor’ words, between student

answers. In this case, each student open response answer has ‘distractor’ words and

either a decimal or a fraction (as discussed in the previous section). Inversely, our

goal of this simulation study is to also extrapolate whether the ‘distractor’ words,

not the fractions or decimals, influences any unfair tendencies in the scoring of the

simulated student open response answers.

For the sampling (as shown in Figure 3.1) of the simulated student open response

answers, we set out to simulate data which consists of a balance of student answers

which utilize fractions and decimals. The training set is made up of simulated

student answers from both the answers which contain fractions and contain decimals

separately. The steps to the selection process is as follows, at an instance a simulated

student answer is to be selected:

1. a student answer is always drawn from the training dataset of simulated an-

swers which contain a fraction. This is considered Group A students.

2. a random integer is drawn

3. if the integer is below our specified threshold (T in Figure 3.1), another se-

lection is made from the training dataset of simulated answers which contain

a decimal. This is then considered an answer from Group B students.

4. if the integer is above our specified threshold, another selection is made from

the training dataset of simulated answers which contain a fraction. This is

also considered an answer from Group B students.

A threshold was set for selecting decimals and fractions to control the balance

of answers. This lends itself to our goal of being able to identify whether or not the
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format a student writes an answer, i.e. using factions vs. decimals, effects our ability

to score student open response answers. By having a threshold, we can increase the

threshold incrementally and see what is the model’s ability to score the simulated

student answers. So as the threshold increases, more and more answers that contain

decimals (Group B students have more and more answers containing decimals) are

selected and trained upon. Thus, with ABROCA, fairness can be identified.

For the test set, a similar approach is taken. Since the training set contains

answers of both Group A students, which are students who all answered with a

fraction in their text, and Group B students, which some student used fractions

and some used decimals, the test set will contain the same Group A distribution

of answers containing fractions only, but with different content making up those

answers, and the same Group B distribution of answers containing decimals.

Figure 3.1: Train Test Data Sampling Process with Threshold

While it was emphasized that the training and test sets have similar distribu-

tions of answers containing decimals and fractions, the two datasets have identical

distributions of grades. This was done to remove outside influence on the automated

scoring model. If there is an unbalanced grade distribution, then the performance
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of the model could be driven by more scores of 0.0 or 1.0. By balancing the grades

across both the training and test datasets, this uncertainty is removed.

If an automated scoring model is fair, as the distribution of student answers which

fractions and decimals changes within the training and test dataset (as mentioned

earlier, the distribution is the same for both training and test), the model’s ability to

score them should not change. Again, this is utilizing ABROCA. In simplest terms,

the absolute difference between the area under the ROC curves should be minimal

between two groups in a prediction task to be considered fair. This shouldn’t change

given a distribution or more answers which contain decimals or fractions.

To improve the reliability of the results, we re-sample/re-select the test dataset

10 times and evaluate the model’s ability to score an open response answer. This

form of cross validation allows us to see if the ability to predict the score was only

for that unique set of words, or was the performance consistent across multiple

iterations.

To summarize, the training dataset is a selection of both answers which contain

fractions and decimals (Group A student answers and Group B student answers),

using the specified sampling/selection method mentioned above. The test dataset

contains the same distribution of data, Group A students, who always use fractions,

and Group B students, students who use both decimals and fractions. Again, to

reiterate, the balance of Group B in the training and test set are the same. Thus, this

can narrow down, if there is a large ABROCA value at different thresholds (more

and less decimals/fractions), there is evidence that the fractions and decimals are

not impacting the algorithms ability to score the open response answers. If there

is a large ABROCA value, there is evidence that there is unfairness in the model’s

predictions.

As mentioned earlier, the threshold was set to decided whether or not an answer
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which contains a decimal or fraction is sampled. To reiterate, this is performed

by randomly selecting a value between 0 and 1, and if the value falls below the

threshold, an answer which contains a decimal is sampled, otherwise, an answer

with a fraction in the answer is sampled. We take an incremental approach to the

threshold, starting off with a threshold of 0.0, and increasing by 0.10 until a threshold

of 1.0 is reached. Again, this allows us to see if there is evidence of unfairness, in

terms of ABROCA, at each of the levels. Additionally, if there is evidence, is it

occurring with more decimals or fractions?

Figure 3.2: Study 1: ABROCA Values at Incremental Fraction/Decimal Thresholds

All of the studies will incorporate a Long Short Term Memory (LSTM) [HS97]

model which utilizes the pre-trained word embeddings to automatically score open

response answers. An LSTM model is appropriate here for its sequential attributes.

We are able to feed in sequences of words which the LSTM can reference the pre-

trained word embeddings to garner semantic meanings of words and the order which
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they are used. To identify whether or not unfairness is present in an automated open

responses scoring model utilizing pre-train word embeddings, we constructed 3 sim-

ulated studies with the artificially generated student answers. First, a study which

utilizes the similarly balanced simulated training and test datasets, and predicts

Group A scores (the group of students who all used fractions within their answers)

and Group B (a split of students utilizing fractions and decimals in their answers).

Then, we incrementally increase the threshold controlling the split in Group B data

(which is similarly controlling Group B threshold in the training set), and utilize

ABROCA to directly compare our LSTM’s ability to score the student’s answers

in Group A and Group B separately. We increase the threshold, and repeat. This

continues while the threshold increases by 0.1 until a threshold of 1.0 is met. With

this, we can gain insights into whether or not the automated scoring of answers of

each group is unfair and if so, evidence could be that the use decimals or fractions

could be to blame.

Figure 3.3: Study 3: ABROCA Values at Incremental Fraction/Decimal Thresholds
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The second study looks to identify, if there is variation in our ability to predict

scores for Group A and B, whether or not fractions or decimals are the culprit of

the potential unfairness in the automated scoring model. In the simplest approach,

we remove all non-fraction and non-decimal text from the student answers. Thus,

leaving just a fraction or a decimal in the testing dataset. We then develop predic-

tions in the same fashion in the first simulated study mentioned above. This allows

us to identify whether or not the pre-trained word embeddings associated with the

training data causes the LSTM show unfairness to those using decimals vs. frac-

tions in their answers. Ideally, the ROC curves should be similar. If not, this would

suggest that the surrounding ‘distractor’ words could be influencing the unfairness.

This then leads into the final simulated study. While holding the training and

testing of the LSTM constant with the previous two simulated study, this final

study replaces the decimals with ‘gibberish’, or words which are not recognized by

GloVe as a pre-trained word embedding. These were chosen by randomly selecting

a string of characters. This would increase the amount of ‘distractor’ words in the

text. From this, we can identify whether or not there is unfairness in the LSTM

in predicting Group A and Group B scores. If there is unfairness, large ABROCA

values, this would suggest that the ‘distractor’ words are influencing the unfairness.

Mainly, the ‘gibberish’ added does not provide additional information to the LSTM

because there aren’t pre-trained embeddings associated with those random strings

of characters. Thus, a list of 0’s is passed through the LSTM and no inferences

can be made from those words. Also, since we are only replacing decimals, as the

threshold increases, fewer fractions will be available for the LSTM to learn from.

So as the fractions drop, so should the ABROCA score. If the ABROCA score

increases, there’s evidence supporting that unfairness is present from the differing

coverage of answer-related tokens within applied methods utilizing pre-trained NLP
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embedding methods.

From all 3 of these simulated studies, a picture can be painted if the bias present

in pre-trained word embeddings causes automated open response scoring models,

such as our LSTM, to unfairly grade different groups of students. Similarly, if there

is unfairness present, the combination of these 3 studies will allow us to identify what

may be causing or influencing the unfairness within our model. Is it the model, is it

the embeddings, is the word usage, is the use of decimals vs. fractions? These are

the questions which these simulated studies can help to answer.

3.3.3 Results

First, the results from the standard prediction task of taking the artificially gener-

ated student open response answers, in their original form and utilizing pre-trained

word embeddings, and utilizing a LSTM to predict what score a student will re-

ceive. From our simulated study, Figure 3.2 presents the ABROCA values at each

incremental threshold. Reminder, as the threshold increases, more student answers

contain decimals instead of fractions (and vice versa). What is apparent in Figure 3.2

is that the ABROCA values ever so slightly increase with the more answers which

include decimals. However, the amount is almost negligible. Producing ABROCA

values near 0.02 and just over 0.04. This is minimal, that means that the abso-

lute difference between the area under the ROC curves is around 0.04. The model

appears to be able to accurately predict the score a student will receive quite simi-

larly for both groups when decimals, fractions and ‘distractor’ words are within the

answers.

For the second study, which attempts to identify if any unfairness is present

when training on answers which contain fractions, decimals and ‘distractor’ words,

but the test dataset only consists of answers with just a fraction or a decimal. This
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could help to again identify whether or not our ability to score Group A or Group

B of students, which use differing levels of fractions and decimals, changes with

differing levels of decimals and fractions in the training and testing data. In the

end, the ABROCA score was consistently 0 across all thresholds. This meant that

no mater the distribution of fractions, decimals and ‘distractor’ words in the training

set, and the distribution of fractions and decimals in the testing dataset, the LSTM

with pre-trained word embeddings predicts the score equally for both groups. The

LSTM appears to pick up on the rules that answers with 3/4 or 0.75 are correct.

Whether decimals or fractions are used doesn’t change the LSTM’s ability to score

different groups with different distributions of fractions and decimals being used.

In the final simulation study, we attempt to identify if the ‘distractor’ words

elicit unfairness in the LSTM utilizing pre-trained word embeddings. By removing

all decimals and replacing them with strings of characters that are unidentifiable

by GloVe’s pre-trained embeddings, we can isolate the model to generating pre-

dictions based solely on the surrounding ‘distractor’ words. Figure 3.3 shows that

the ABROCA score does indeed increase with more unrecognizable words within

GloVe’s pre-trained word embeddings. When the threshold is set to 0, all the an-

swers contain fractions, and again, we can clearly see that the ABROCA score

is quite low, near 0. This is because of the fractions being recognizable to the

LSTM. So when attempting to predict scores for Group A and B (B in this case

is a split of random characters in place of decimals and fractions), there isn’t un-

fairness present. However, as the fraction wane and disappear, the ABROCA score

increases and continues to increase close to 0.18. This may be a bit of a surprise

because as the threshold increases, and the number of answers with fractions drops,

the LSTM should be able to only identify the similar amounts of words which were

randomly selected. In this case, this didn’t happen, because Table 3.1 shows some of
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the phrases used in the generated student answers were commonly associated with

more correct answers. So the LSTM was able to pick up on some of these trends

and identify those correlations.

In the end, these simulated studies proved the largest risk for unfairness exists

when there is differential coverage of answer-related tokens within applied methods

utilizing pre-trained NLP embedding methods. So when answers consist of equally

recognizable words within GloVe’s pre-trained word embeddings, there’s unlikely to

be unfairness in the grading. There wasn’t evidence that the inherent bias built into

the pre-trained word embeddings elicited more unfair scoring of student answers in,

in terms of this simulated study. But if there are unbalanced recognizable words and

tokens in the student answers, attention needs to be paid to potential unfairness in

the automated scoring.

3.4 Study 2: Middle School Mathematics Auto-

mated Scoring Fairness

While a simulation study is powerful on its own, it is difficult to recreate authentic

student data. For the final overall study of this research, we look to once again

utilize ABROCA to identify if our own algorithm, trained on genuine student open

response answers within ASSISTments, is unfair in its grading of women and men.

3.4.1 Data

The data consists of two separate datasets consisting of open response questions with

associated teacher scores. In its raw state, the dataset consisted of 150,477 total

student answers. Within these student answers, 27,199 unique students provided

the answers and 970 teachers graded them. These grades and answers span across
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2,076 unique problems. It should be noted, that this is the same dataset we used in

our study [BBE+21]. All of this data comes from middle school mathematics.

However, in its raw state, this data needed filtering down. We make sure to

remove any student answers that are empty strings or contained only an image.

These filtration steps condensed the dataset down to a total of 141,612 graded

student open response answers. In the end, there were a total of 25,069 unique

students who answered and 891 teachers graded those answers. After the filtering,

there were still 2,042 unique problems attempted. Lastly, the scoring. This was

performed on a 5 point scale, where students receiving a 4 is a perfect score.

It should be noted, to be able to perform the fairness analysis using ABROCA,

gender was inferred. This performed by cross checking names with the census data.

If the name was found only on the women or only on the men’s list, it was labeled

as such. If any names fell into multiple genders, it was labeled as unknown and

excluded from this analysis.

3.4.2 Methodology and Results

Towards developing our predictions, we utilized another pre-trained algorithm, men-

tioned earlier, called SBERT. This is a pre-trained sentence embedding algorithm

which allowed us to generate a single vector representation of each student answer.

We then utilize a Canberra distance to identify which student answers are the most

similar. Whichever was the most similar, that was the score we would assign. This

approach managed to out do our previous models [EBM+20][BBE+21].

While utilizing, once again, ABROCA to identify potential unfairness, we apply

this to our algorithm. We were able to show that our SBERT model with Canberra

distance manages to fairly score both Male and Female student open response an-

swers. Our model managed an ABROCA of 0.007, which is quite small. Suggesting
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that our algorithm is indeed scoring Men and Women fairly.

3.5 Limitations and Future Work

While there were indications of unfairness in cases where there were unbalanced

identifiable tokens within the student open response answers, this analysis is strictly

middle school mathematics. This type of analysis would need to be applied to

additional datasets to get a broader understanding of the potential unfairness in

other subjects and age ranges. In terms of our analysis of our SBERT model for

scoring student open response answers, while there wasn’t unfairness identified, more

work needs to be done to explore the embeddings themselves. Pre-trained word

embeddings have been shown to have bias built in, but what bias is present in the

pre-trained sentence embeddings? This is a question we look to explore further.

3.6 Conclusion

Overall, this study set out to run a simulated study to help identify potential un-

fairness within models utilizing pre-trained word embeddings. While there is bias

present in the embeddings themselves, our simulated study didn’t show this bias

causing unfair scoring. However, our analysis did show that when developing models

with pre-trained embeddings, unfairness can begin to occur when there is an imbal-

ance of recognized tokens in the student answers. More specifically, our simulated

study showed that when groups within the data use differing levels of recognized

tokens, it increases the chance for unfair scoring.

While our simulated study showed how unfairness can present itself within a

scoring model, our model did not show this unfairness. We were able to conduct an

analysis of our model with ABROCA to compare our performance scoring Men and
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Female. In the end, the ABROCA values was nearly 0 at 0.007.

In the end, we were able to utilize a simulated study to help identify potential

unfairness in automated scoring models which utilize pre-trained word embeddings.

Its been widely noted that those embeddings have bias built in, but our simulated

study couldn’t show unfairness in the scoring of differing groups of simulated student

answers. However, this study did show that when student answers have differing

levels of tokens recognized, automated scoring models which utilize pre-trained word

embeddings can start to unfairly score.
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Chapter 4

Are These Similar? The

Development and Evaluation of a

Feedback Recommendation

System

Erickson, J., Botelho, A. F., Alphonsus, A.G., Benachamardi, P., Swinger, N., &

Heffernan, N. T. (2020). Are These Similar? The development and Evaluation of a

Feedback Recommendation System. Manuscript prepared.

Abstract

The practice of identifying and quantifying the similarity between two or

more artifacts is often at the foundation of a recommendation system. In

such systems it is often important to be able to effectively compare a given

scenario or artifact with a pool of known data in order to make inferences

into the most appropriate course of action. This comparison, between what is

currently observed and what has been observed in past examples, is also often
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very difficult when considering abstract or ill-structured data such as natural

language. While recommendation systems are by no means novel concepts

within the context of educational technology, such systems have been devel-

oped and applied in areas of course selection in higher education or even to

help teachers deliver content to their students. Similarly, educational tech-

nologies have devoted large amounts of research and development to leverage

statistical methods and machine learning to help teachers score and assess

student work. However, in both of these areas, online learning systems of-

ten lack in supporting the recommendation of meaningful feedback to student

work, particularly when that work is in the form of natural language. In this

paper, we explore this intersection of natural language processing, machine

learning, and education with the goal of developing a system to help teachers

provide feedback to their students’ work. Toward this goal, we explore sev-

eral methods used to identify the similarity of natural language artifacts and

develop a metric which we use to evaluate these methods as recommendation

policies in an offline manner.

4.1 Introduction

Technologies designed to augment humans’ decision-making processes often rely

heavily on their ability to effectively compare new experiences with historic data.

If a particular observed scenario has been seen in the past, it is likely that a course

of action that was previously successful in such a case may be appropriate in the

present as well. In the context of education, for example, if a student underper-

formed in mathematics classes in high school, it may be appropriate to recommend

that student enrolls in a remedial math course in college based on similar students

benefiting from such a selection in the past. In such a practice, however, the success
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of the recommendation is based on the system’s ability to compare and quantify

similarities between two artifacts (i.e. the system needs to be able to find historic

examples that are similar to what is currently being observed). In the course recom-

mendation example, the system needs to be able to quantify and compare student

performance in high school mathematics courses using, for example, letter grades or

students’ grade point averages.

While the manner in which a system may ultimately compare artifacts varies

greatly by domain and context, it is often much easier to compare well-defined

artifacts than it is to measure similarities and differences between more abstract or

loosely-structured cases. If a student has an average grade of C in their high school

mathematics courses, it is easy to compare this student to others who also received

an average grade of C in their high school coursework. It is this type of comparison

that existing learning systems are also able to leverage when providing feedback to

students.

One of the largest benefits provided by computer-based learning systems in class-

room settings is the ability to provide immediate feedback to students. In the domain

of mathematics, even simple correctness feedback can be beneficial [KKH13]. Be-

yond correctness feedback, these systems may be able to provide further aid through

scaffolded problems [RV06], worked examples [RAMK11], or even answer-specific

feedback to help remedy known common errors [SH14]. In all of these examples,

however, support from such learning systems is generally confined to close-ended

problem types with structured answers; these types of problems include those such

as multiple choice and fill-in questions where there are a finite and often small num-

ber of acceptable correct responses. For instance, it is easy for a learning system to

understand that the accepted value for x in the equation x + 4 = -8 is -12. If a

student were to answer with the value of -4, for example, the system may be able
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to provide correctness feedback along with a message that highlights the student’s

mistake.

While there is notable support by these systems for closed-ended problems, there

is often lacking support for open-ended problems that require students to use natural

language to describe their work or otherwise answer the question. In such cases,

teachers must often manually score and provide feedback to students (a task that is

undoubtedly tedious and time-consuming). While prior research has been conducted

toward automating the scoring of student open-ended answers, this work is focused

on developing a method of providing suggested feedback that a teacher may give in

response to their students’ work.

Considering the growing diversity and advancement of natural language process-

ing (NLP) methods used to quantify syntactic and semantic attributes of written

language, this work seeks to explore these methods within the context of educa-

tion. Toward the ultimate goal of developing a system that helps teachers provide

feedback to students, this paper presents three contributions

1. We propose a method of providing teachers with automated feedback messages

for their students’ work based on measuring the similarity of student responses.

2. We develop a data-driven metric and procedure to evaluate automated feed-

back recommendation policies in an offline manner.

3. Leveraging traditional and state-of-the-art NLP and machine learning meth-

ods, we conduct an empirical analysis to compare these methods as feedback

recommendation policies.
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4.2 Background

4.2.1 Intelligent Tutoring Systems

Intelligent tutoring systems (ITS) and other computer-based learning systems have

existed for several decades [CKA97]. As is apparent today with systems such as AS-

SISTments [HH14], McGraw Hill’s ALEKSTM, and others becoming more ingrained

in education systems, the role of feedback, both to students and to teachers, has

been highlighted for its importance. Recent studies such as [RFMM16] found that

ASSISTments (the learning system from which the data of this current research

was derived) significantly increased scores of the students on end of the year stan-

dardized mathematics exams as compared to traditional homework students. When

students worked on homework, those who were provided immediate feedback per-

formed significantly better than those who had to wait for traditional grading and

feedback. Similarly, as the study from [Van11] highlighted the often positive effects

of intelligent tutoring systems on student learning. This study found that intelligent

tutoring systems have the opportunity to be almost as effective as human tutoring.

Additionally, the authors noted that while ITS have not replaced human tutoring,

improvements to the ITS, as compared to a human tutors, potentially could be

attained more easily. In the end, all of these systems look to provide immediate

feedback to students given close-ended questions while providing timely reports to

teachers of their student’s performance.

4.2.2 Close-Ended vs Open-Ended Questions

As discussed earlier, these systems mostly focus on close-ended problem types with

structured answers (although some exceptions are observed). While not restricted

to such problem types, content commonly consists of multiple choice, select all that
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apply, and fill-in types of questions. Again, these question types are easy to support

as they are fast to automatically grade and notable research has been conducted

to improve feedback to students. However, [Ku09] discussed that providing only

one question type, such as multiple choice, would be inadequate in capturing the

students rationale or process of thinking. Similarly, when comparing close-ended

questions (such as multiple choice) and open-ended questions, [Mar99] describes the

different levels of cognition required for each question type. Mainly, the authors

discussed how open-ended questions require a wider spectrum of cognition than

that of a close-ended question. Another study, [BS06], discussed the importance of

having students generate their own responses and creating their own connections

between economic theories. However, while the paper acknowledges the importance

of creating these connections on their own; the authors concede to the affordability

of grading close-ended questions versus open-ended questions.

While ITS systems offer some support for open-ended questions, there is rarely

any automation provided. This is the appeal of close-ended questions, similar to

[BS06], as its more economical to provide close-ended questions to students because

of the built-in automation. It is true that there is growing attention to this prob-

lem and efforts are being made to automate the assessment of open-ended answers

(c.f. [AB06],[FLL99],[ZZX+17]), there is still little support for teachers to provide

feedback to such responses. With this study, we present an approach to enable

teachers the opportunity to diversify their questions to students while providing the

automation they have come to enjoy from close-ended questions.

4.2.3 Word Representations

One of the most common first steps in natural language processing (NLP) is to

decide how to numerically represent the content. There have been many methods
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proposed in the past as to how to best represent text in a manner that captures

syntactic as well as semantic meaning. The simplest way to represent language is

perhaps with a bag of words approach. By adding up the number of times the word

occurs, that can be the number which represents said word. While this has been

apart of, and the foundation of, recent studies, [SGA+15] [GWHWH+00], the bag of

words approach tend to act as a baseline of comparison for more complex methods;

this is often as it is a strong foundational step, however, rather than as a strawman

comparison. Similarly, some research utilizes n-gram approaches [CT+94] for text

classification. Where instead of having a list of individual words, a list of grouped n

words could be counted. Helping to provide some sense of context in the words. Not

only is this being used in interpreting speech or text, its been utilized in detecting

malicious code [AACKS04]. While counting the words provides insight into the

most commonly used words, there was the concern that these words weren’t the

most relevant. Term frequency inverse document frequency, TF-IDF, was developed

to lower the weight less relevant words [R+03]. A recent study showed success in

automatically grading student open-ended questions using TF-IDF [EBM+20].

What is clearly missing from the bag of words based approaches is any relational

or contextual understanding of the words. Bag of words gives provides the under-

standing of which words were used the most or most in relation to a document, but

it fails to provide and relational information. With the recent advancements in deep

learning, word embeddings have gained momentum. Two methods are the lead-

ing choice in word embeddings, Word2Vec [MCCD13] and GloVe [PSM14]. Each

of these provide an opportunity to utilize deep learning to train models to create

vector word representations. Once trained, sentences can be fed into the model and

each word will retain a vector representation. Thus allowing models to gain rela-

tional understanding of words. For instance, given two different words accompanied
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by two different vectors, where these words reside within the vector space indicate

how similar they are. If the two vectors are far apart within the vector space, they

are less similar. An additional benefit to word embeddings is the availability of

pre-trained word embeddings. It is the case that many NLP studies do not have

overly robust corpus. This provides a large road block for many studies. However,

publicly available pre-trained word vectors allow smaller corpus’ to gain a more ac-

curate dataset of vectors in comparison to training and generating the embedding

from itself.

In recent years, word embeddings have evolved into sentence and document em-

beddings. Instead of developing a vector representation of each individual word,

approaches such as Doc2Vec [LM14], aim to generate a single embedding to rep-

resent an entire document or sentence. Likewise, other approaches such as the

Universal Sentence Encoder [CYK+18] and SBERT [RG19a] have gained popularity

in their ability to represent sentences as a single vector. Thus, the vectors provide

insight into how similar two sentences, phrases, or paragraphs are.

4.2.4 NLP for Recommendation Systems

Perhaps one of the most widely recognized examples of natural language process-

ing and machine learning used in a recommendation system is that of Google’s

SmartReply tool [KKR+16]. As this and similar technology has become common

in the context of email, many are familiar with this type of tool being used to

help users respond to email. In this way, the tool utilizes natural language process-

ing along with several other machine learning methods such as Long Short Term

Memory (LSTM) deep learning networks [HS97] to “read” email and recommend

appropriate responses.

While the original SmartReply paper describes a generative approach (where re-
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sponses are being generated word-for-word), many similar recommendation systems

instead rely on a case-selection method (i.e. from a pool of known possible artifacts,

select the one that best applies). In either case, however, this technology, like other

recommendation systems, relies on the method’s ability to identify similar known

examples in order to make informed recommendations as to how to proceed.

This technology forms the inspiration for the feedback recommendation system

described in this paper. It is our ultimate goal to develop a system that is able to

suggest teacher feedback in a similar manner as SmartReply is able to suggest email

responses. This paper represents a step toward this goal.

4.3 Defining Similarity

As the concept of “similarity” is an prominent aspect of this current work, it is

important to discuss our definition of this term, or more precisely, acknowledge that

there are multiple definitions of this term.

Figure 4.1: Example of how similarity can be defined along multiple dimensions of
comparison.

Consider the example illustrated by Figure 4.1. Which of the three objects, A,

B, or C, is most similar to the target object in the upper left? Is it possible to order
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these artifacts from most similar to least similar? Ignoring context, it is not likely

that readers would unanimously agree on the answers to these questions due to the

number of dimensions in which the artifacts can be compared. Similarity here can be

expressed in regard to shape, rotation, color, or any number of other attributes, and

each artifact exhibits similarities and differences along each of these dimensions;

without more information (or more structure to the problem) it is impossible to

know which dimensions should be given higher importance. The difficulty of this

task stems from the combination of the dimensionality of the artifacts and the

unknown weights of these dimensions for comparison.

In a practical sense, this challenge is even greater when even the artifacts are

difficult to describe, such as natural language. Consider, for example, the sentences

”see Spot run” and ”Spot runs fast” for comparison. In what ways are these sen-

tences similar? Semantically, they both refer to “Spot” and describe Spot’s action

of running, but there are many other ways to compare these. Both of these are

similar in their count of the letter “s,” both use the same number of spaces and

have the same number of words. Likewise, apparent similarities could be viewed as

differences; the word “Spot” appears earlier in the second sentence. In this way,

there are multiple “correct” ways of measuring the similarity of these sentences;

it is just likely the case, however, that some methods are more useful than others

depending on the context.

In the most abstract sense, similarity can be defined as the distance between

quantified, or more specifically, vectorized artifact representations. Once an artifact

can be quantified along its various attribute dimensions, these values then represent

the artifact’s point within a representation space. Measuring the distance between

these points reveals the similarity of the given points. Using Euclidean distance, for

example, is one particular method that measures the similarity of two points based
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on how far they are from each other in a geometric sense. Alternatively, cosine

similarity is a common method that essentially measures the distance between the

angles of two vector representations.

To clarify, there are countless ways of building numeric representations of text,

just as there are many common methods that can be used to determine the similarity

or “distance” between representations. The problem is not in our ability to quantify

attributes that describe these artifacts or even in our ability to compare quantified

representations, but rather the question is how to do this in a way that provides the

most utility for a particular application.

4.4 A Method for Recommending Feedback

We propose here a method for recommending feedback messages for teachers in

response to their student open-ended work. As described in earlier sections, the

challenge here is largely in the structure of the data. Essentially, for an observed

open response problem P0, we begin with a new student answer An for which we

need to recommend an appropriate feedback message. As we have never seen An

before (i.e. problem P0 has never been answered with the exact response of An in the

history of the learning system), we are unable to simply apply a “lookup” process;

there do exist some cases where this may be possible (considering the cases where

An is a blank response or simply “idk”), but for this formulation we will assume that

An is not among these special cases. Instead, we must compare this student answer

to all other known student answers for which we have a paired feedback message:

(A,F )0...n−1.

For each of these prior answer-feedback pairs, we compare the quantified repre-

sentations of An and A0...n−1 using similarity procedure S to calculate a single-valued
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distance measure Dn,0...n−1 for each pair-wise comparison. These distance measures

are then sorted from most-similar to least-similar and the top R are selected as rec-

ommendations to the teacher; following the format of Google’s SmartReply, R here

would equal 3, meaning the feedback associated with the three most-similar prior

answers are selected to display to the teacher.

In describing this proposed method, we must also make some reasonable as-

sumptions. First, we must assume that we have a sizeable pool of collected student

answers for a particular problem of interest, and that those student answers also

be accompanied by appropriate feedback messages; as in the case of many systems

that support open-ended problems and the writing of teacher feedback, this pool of

appropriate answer-feedback pairs is likely to vary in size depending on the prob-

lem and may be a limiting factor of the method’s effectiveness. Second, we must

make the assumption that a feedback message given to one student answer is also

appropriate for a “similar” student answer; while this definition may vary, as previ-

ously described, we further present and apply an evaluation procedure that allows

for further comparison into the utility of different methods. The risk of this last

assumption can also be mitigated through a human-in-the-loop design where the

feedback is recommended for the teacher rather than being fully automated.

A further assumption here is that we have an appropriate similarity procedure

S that produces a meaningful distance value for each comparison. While this is

perhaps the largest assumption, it is also one that can be tested and evaluated. In

reality, we have access to a large number of procedures, S0...s, each representing a

potential “recommendation policy” to identify appropriate feedback messages. In

comparing different policies, however, we need a ground-truth value of similarity as

defined by teachers with which we can compare. The method by which we calculate

this value is described in the next section.
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4.5 Evaluating Recommendation Policies

In order to evaluate recommendation policies, defined in the previous section as

S0...s, there are potentially online and offline methods that can be used. To evaluate

the policies in an online sense, we could simply build the proposed system, and

compare the effectiveness of policies based on how often the recommendations are

chosen by teachers. There are of course several issues with this method in that it

could take a long time to evaluate a large number of policies. Ideally, we would

want to use an offline method, effectively simulating or approximating teachers’

choices of recommendations; in this way, a large number of policies can be evalu-

ated simultaneously using a common dataset. While only an approximation of how

teachers would utilize recommendations, offline methods are often used to first filter

the number of likely-optimal policies to a small number of candidates that are then

further evaluated in an online manner.

In this work, we evaluate the proposed policy in an offline manner using a dataset

constructed through close collaboration with a cohort of 17 teachers from across the

United States. The goal in constructing this dataset was to develop a measure

representing similarity as defined by the group of teachers as a whole. Having such

a measure provides a ground-truth value of similarity with which we can compare

our recommendation policy distance values.

The data was constructed by first sampling student answers to open-ended prob-

lems from widely-assigned open educational resources (OER) in the context of mid-

dle school mathematics. We then randomized these responses, grouping them with

other student answers from the same problem and presented them to subsets of the

teachers. With these responses, per problem, we asked the teachers to group the

responses into any number of desired categories. We gave no further instruction
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regarding how to group the student answers nor the number of categories to use.

In this way, the teachers could decide, through any conscious or subconscious pro-

cesses, how to identify “similar” answers by placing them within the same abstract

category. Not only this, but since multiple teachers performed this categorization for

the same set of responses and problems, we also are able to capture variation in how

teachers define and identify similarity. There were initially 78 distinct open-ended

problems with sampled student answers, but was ultimately filtered to 67 problems

due to some problems having been categorized by fewer than 2 teachers. As a final

filtering step, empty student responses were also dropped from the dataset. After all

filtering, there were a total of 5,539 student answers across 67 problems. A sample

of these responses and their associated teacher response categories are presented in

Table 4.1. The category name in that table, denoted by a letter, has only abstract

meaning within that teacher’s set of categories (i.e. Teacher 3’s “A” category in the

first row is distinctive from Teacher 2’s “A” category in the last row).

From Table 4.1 3 separate student responses are presented from the same prob-

lem. In this case, 34.5 is the correct answer. Within the table you can see for

this problem, Teacher 1 has used the category C when a student provided a correct

answer. Therefore we can infer student answers with the category C, the teacher

considered similar, and would elicit a similar response.

With this data, we constructed a metric which we call the Teacher Agreement

Score (TAS). This value is calculated for a given recommendation policy by first

applying the proposed recommendation method presented in Section 4.4 to generate

the top R most-similar responses (where R = 3 in our particular evaluation) from a

selected holdout answer as An. From these selected answers, the sample-level TAS
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is calculated as follows:

TASi =
R∑

j=0

1

T

T∑
t=0

int(Ci = Cj) (4.1)

This equation calculates TAS for holdout sample i by comparing the teacher-given

categories of this response in comparison to the categories provided for the selected R

responses for all teachers T with provided categories. This process is then repeated

in a hold-one-out manner (observing each student answer as the selected holdout)

and an average TAS is calculated for the observed policy in regard to the given

problem. Finally, this process is repeated across all 67 problems and an average and

per-problem TAS is used to compare each policy.

To give an example of this calculation, consider Table 4.1. If the last row was used

as a holdout sample and the first 3 rows were the identified 3 most-similar responses,

the calculated TASi for this sample would be 0.556. This is, again, calculated

by comparing for matching categories within each teacher for each response; the

categories match for 2/3 teachers when comparing to the first row, 0/3 for the

second row, and 3/3 when comparing to the third row. These values are then simply

averaged to find the 0.556 value. The process would then continue by rotating the

holdout sample.

Ultimately, a TAS close to 1 suggests that the observed policy agrees with how

teachers would define similar student responses. In this way, policies exhibiting

higher scores are, in theory, more likely to be utilized by teachers. This theory can

be tested through online evaluation once a number of policies have been evaluated.
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4.6 Empirical Analysis: Comparing Recommen-

dation Policies

Now that we have defined both our proposed method for recommending feedback

as well as our evaluation derived from real data, we present an empirical analysis to

both exemplify these methods as well as compare several potential recommendation

policies of varying complexity. The methods explored in this analysis are described

in this section.

4.6.1 Universal Sentence Encoder

As introduced in the Background Section, several NLP methods of representing text

have grown in popularity for their ability to capture the semantic meaning of not

only words, but also full sentences and even paragraphs. The first method that we

explore within our empirical analysis is the Universal Sentence Encoder [CYK+18]

(USE). While other NLP methods often build numeric representations of individual

words, the USE builds a single vector representation for a given sequence of words

within a high-dimensional vector.

Once a sentence-level embedding is generated for each response, a distance mea-

sure (described below) can be applied to measure the “closeness” of other student

answers in vector-space. As this method is meant to capture the semantic meaning

of the sentence, and leverages complex deep learning methods to do so, this method

has the potential to allow for comparisons beyond the surface-level features of the

text.
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4.6.2 Sentence-BERT

Developed even more recently and arguably considered to be the current state-of-

the-art of sentence representation is the second method of comparison: Sentence-

BERT [RG19a]. Developed from the word-level representation method of BERT,

this method constructs a high dimensional vector representation of sentence- or

paragraph-level text similar to that of the Universal Sentence Encoder. This method,

however, is based on what is known as a “siamese network” architecture. This type of

network attempts to incorporate textual and semantic similarity into the generated

embeddings. In this way, this method represents the most complex of representation

methods compared in the current analysis.

4.6.3 Levenshtein Ratio

Among the simplest methods of comparing the likeness of two samples of text is

that of Levenshtein Distance. This approach examines strings of characters and

calculates a distance based on how many need to be changed to turn one string

into its comparison string. For example, if a student A said ‘the answer is 45’

and student B submitted an answer with ‘the answer is 46’, the distance would be

1. However, if student B answered with ‘I think the answer is 46’, the distance

would be 9. Clearly, there are disadvantages to this approach, mainly the distance

could be larger between two answers, but their content is the same. However, when

considering a character level distance metric, could this out perform more modern

approaches? For the purposes of the paper, we utilize the Levenshtein Ratio which

calculates the distance and converts it to a similarity ratio which is meant to account

for the comparison of strings of different lengths.

This method acts as a baseline comparison method due to the simplicity of
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the approach. However, it is likely that surface-features of text (i.e. the use of

particular key words within student answers) may actually prove to be a highly-

weighted attribute among the teacher comparisons.

4.6.4 Distance Metrics for Similarity

While the above methods generate representations of student answers, the method

of calculating the distance between representations is still needed. In this regard,

we observe three different methods within this analysis: Euclidean Distance, Cosine

Similarity, and Canberra Distance; these were chosen both for their prominent us-

age in previous NLP research and also for their notable differences in meaning. As

described in an earlier section, Euclidean Distance observes the magnitude of the

geometric distance between two vectors while Cosine similarity observes the differ-

ence in angles produced by two representation vectors. Canberra Distance, while

not as widely known as the other two, has been applied in areas of computer science

as a means of comparing ranked lists [JRVF09]. Each of these distance measures

are applied to the above representation methods (excluding the Levenshtein Ratio)

and the TAS measure is calculated for each as described in Section 4.5.

4.7 Results

As mentioned earlier, after all the filtering, there were 67 total problems with 5,539

student answers. From this, we calculated the overall teacher agreement scores

for each approach and distance measure as shown in Table 4.2. First, it is clear

that, in general, a contextual approach like sentence and paragraph embeddings

1It should be noted that the ‘Number of Times Best Teacher Score Agreement Score’ sums to
over 76/67. This occurs because there were 9 cases where two approaches scored the same Teacher
Agreement Score for that problem. Thus, either of the approaches would be considered acceptable.
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performed stronger than a character level model like Levenshtein ratio. Overall,

each embedding vector approach outperformed the Levenshtein ratio in terms of

selecting similar student answers with the same teacher categories (per our TAS

measure). Table 4.2 indicates that when utilizing a Levenshtein ratio for identifying

similarity amongst student responses, it manages to agree with teachers in about

53.6% cases. While the character level Levenshtein approach managed to agree with

teachers over half the time, it was below all embedding vector approaches.

With the well known universal sentence encoder, there was a bump in the abil-

ity to identify similar student answers which teachers agree are similar. When

using cosine and euclidean distance measures, the universal sentence encoder saw

its largest jump from Levenshtein, amassing an average overall teacher agreement

score of 55.6%. However, when using the canberra distance measure there was a

drop of 0.2% in the universal sentence encorders ability to select similar student

answer which teachers agree; obtaining an overall teacher agreement score of 55.4%.

It should also be noted that with the canberra distance measure the universal sen-

tence encoder experienced its largest standard deviation across any approach with

a standard deviation of 0.112. While it still selected similar student answers, that

teachers agreed with 55.4% of the time, it varied more often in its ability to agree

with teachers per each problem.

Overall, the strongest performing approach, in terms of teacher agreement scores,

was Sentence-BERT. Consistently, Sentence-BERT managed the highest average

teacher agreement score across all the problems with all distance measures. Ad-

ditionally, it generated the lowest variation in teacher agreement scores. With a

standard deviation of 0.105, 0.106 and 0.105 for euclidean, canberra and cosine

distance measures, respectively, sentence-BERT more consistently selected similar

responses which teachers agreed with as compared to all other models.
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What is evident is that different combinations of sentence/paragraph embedding

vector representations and how the distance is calculated varies our ability to suggest

suitable similar student answers. Table 4.2 clearly shows this. While this exhibits

our ability to evaluate our similarity calculations, and could be scaled to future

answers within the same problem, we set out to see how the models performed not

just overall, but on a per problem basis. Table 4.3 provides a breakdown of the

performance of each combination of sentence/paragraph embedding vectorization

and distance metrics at a per problem level. What is apparent is that there is not

a policy which dominates all other methods. Every approach, from combination

of sentence/paragraph embedding vectors and multiple distance measures to just

using a simple Levenshtein ratio, manage to agree with teachers the most on at least

one problem. Even though it may only be one problem, until the other approaches

manage to agree with teachers more often, and beat the Levenshtein ratio approach,

the Levenshtein ratio would continue to be used. Overall, utilizing sentence-BERT

managed to have the most agreement with teachers on which student answers were

similar. What is also apparent is the number of problems which sentence-BERT

performed well varied amongst distance measures. When using canberra to calculate

the distance between the vectors, it managed to have the highest Teacher Agreement

Score with 27 out of the 67 problems. As compared to utilizing cosine and euclidean

distance measures, which only managed to have the highest Teacher Agreement

Score on 17/67 problems and 12/67 respectively. It should also be noted that the

Number of Times Best Teacher Agreement Score for Problem in Table 4.3 will total

to over 67 problems by 9. This is because there were 9 cases where two policies

could be deemed acceptable for a problem; they had the same teacher agreement

score.

In the end, it is evident that there is not a single policy which agrees the most
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with teachers on which student answers are the most similar, but sentence-BERT

combined with Canberra distance is perhaps the closest of those methods explored

in this work. There is a wide distribution of problems which certain method com-

binations out perform others, but then there are many problems in which they

struggle. From this study we are able to identify those methods and problems and

select when the Levenshtein ratio should be used vs universal sentence encoder or

the sentence-BERT. We can use these approaches with future unseen responses (for

this set of problems). By utilizing our validation results from the teacher agreement

scores, we can choose the best method, find the most similar current problem we

have seen and select the teacher responses associated with that student answer as

the teacher response for the new answer.

4.8 Discussion

In this research we set out to develop a system to assist teachers in providing feed-

back to their students within open-ended questions in mathematics. To that end,

we have shown our dataset collected enabled us to evaluate our suggested similar

student answers. By being able to compare our suggestions to real teacher choices,

we can effectively choose which policies are best for each problem. This automated

approach sets forth a strategy which can be used to suggest teacher responses to an

incoming new student answer.

It is apparent that this strategy is beneficial to developing a quality teacher

response to a student’s answer. What was evident was that there wasn’t a single

policy that outperformed all the other policies. There was a large distribution across

all the policies. It was so wide spread that even a simple policy, such as utilizing

just Levenshtein ratio, managed to beat out other, more complex, policies on a
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problem. With this information in hand, when a new student answer comes in for

said problem, the system would look to the most similar answers when utilizing the

Levenshtein ratio.

4.9 Limitations and Future work

While our approach is a jump in the right direction for automatically suggesting

teacher responses to student answers, we are limited to the set of problems which

we have already seen. It is the case if an answer comes through which hasn’t been

seen before, we will be unable to suggest a comment.

Also as it pertains to handling answers to problems we haven’t seen, its clear

that’s something this approach can not handle. However, our future work looks to

try and utilize the problem body’s to find similar problems and explore their answers

we have seen.

Currently, we are able to clearly evaluate our policies, and while all of them

agree with teachers more than 50% of the time, our best performing policy agrees

with teachers 62.3% of the time. While this is a good result, we hope to continue

increasing that percentage. We hope to continue adapting our similarity calculations

to more accurately identify similar answers. There are additional approaches which

we could explore as well, such as Doc2Vec.

4.10 Conclusion

In the end, this study presented three main contributions, developing a method

which provides teachers with automated feedback messages, developing an evalua-

tion procedure to validate our automatically generated feedback policies in an offline

manner, and finally, comparing these different policies. We have shown that our
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procedure can identify, offline, which policies provide the most accurate automated

feedback to students.

While more modern natural language processing methods performed better over-

all in suggesting teacher comments to new student answers, our new validation

method enabled us to identify those problems where a simpler policy may perform

better than a more modern, deeper, approach. This way we can tailor our suggested

teacher responses to student answers with the strongest performing policy for that

problem.

By automating open-ended questions, teachers can utilize a more diversified set

of questions. With a procedure in place that accurately, automatically and imme-

diately suggests a response for a teacher, ITS can utilize this procedure to wed the

benefits of a close-ended questions and open-ended questions. With modern natu-

ral language processing, this automated suggestion system can make a, previously,

more costly problem type more attainable.
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Chapter 5

What Kind of Tone is That? A

Sentiment Analysis of Teacher

Feedback

Erickson, J. A., Botelho, A. F., & Heffernan, N. T. (2021, April) What Kind of Tone

is That? A Sentiment Analysis of Teacher Feedback. Manuscript prepared.

Abstract

In recent years, intelligent tutoring systems have begun to expand their

question type support from structured questions, with easily identifiable an-

swers, to open response questions. While these systems continue to adopt

tools and algorithms to create automation within open response questions,

teachers continue to primarily write genuine feedback to students. With these

questions, the different answers students could provide are infinite and the

types of feedback teachers could provide are infinite. So to be able to de-

velop impactful and useful tools to automate this process, it is imperative

to undestand what types of feedback do teachers provide. Mainly, are they
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positive or negative in their feedback to students. Understanding this can add

a useful variable for use in this automated process. This research performs an

exploratory analysis of the feedback teachers are providing students within

open response mathematical questions. More specifically, this research aims

to generate and explore the sentiment teachers use when providing feedback.

We explored the distribution of the sentiment associated with each teacher

and whether teachers show any identifiable patterns or variations with the

sentiment they use in their feedback. Additionally, we explore whether the

scores students are receiving influences or elicits different levels of sentiment

in teacher feedback. Essentially, asking the question whether teachers are

more positive, negative, or neutral when responding to a student’s answer

within an open response question and whether or not the sentiment a teacher

uses is impacted by the grades. Lastly, we attempt to utilize the sentiment

categories to generate an algorithm which takes a student’s answer and sug-

gests the sentiment it will elicit from a teacher. Additionally, we look to see

how accurately we can predict the sentiment each student answer would evoke

from a teacher. An effective predictive model of sentiment of teacher’s feed-

back would be a strong supplemental variable for an automated open response

tool. In the end, we were able to show that there are identifiable patterns

which suggest teachers sentiment in feedback to students is impacted by the

grades. In addition, we found that there is variation amongst teachers in

the type of sentiment used in their feedback. Formally, we developed models

which can automatically, and accurately, identify what sentiment a teacher

would use.
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5.1 Introduction

Intelligent tutoring systems have been around for a time [CKA97] and have garnered

popularity in recent years. Recently, that popularity has exploded and teacher’s re-

liance on the systems have grown given the current state of the world. With this

reliance, teachers have looked to intelligent tutoring systems (ITS) such as ASSIST-

ments, McGraw Hill’s ALEKSTM and/or Carnegie Learning’s Cognitive TutorTM to

ease the hindrances of online teaching and enable more automation. These systems

look to utilize machine learning and computer engineering to develop tools which

immediately provide feedback to students, automate the grading process, and gen-

erate detailed reports on student performance. While these systems have lived up to

their promise to provide these tools, most have been limited to questions with well

defined answers such as multiple choice or fill in the blank. However, once a teacher

wishes to expand the question types which they are assigning students, most the

benefits of an online ITS begin to wane.

While questions with well defined answers benefit teachers because of the associ-

ated automated tools, its difficult to directly infer a student’s comprehension aside

from the general assumption that other students who have selected the same an-

swer have often misunderstood a common concept. In our previous work, [EBM+20]

we identified that teachers within ASSISTments wanted to expand their assigned

question types from well defined to less defined open response questions which al-

low students to explain their answers and reasoning. Many teachers assigned open

response questions, but a large number of them were never graded and even more

didn’t receive feedback. As the school year proceeded and teachers became busier,

they began to rely more heavily on well defined questions. So while teachers wanted

to gain a deeper insight into the students processes of thinking with open response
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questions, they were drawn back to well defined questions. To bridge this gap, tools

need to be developed support the automation of less defined questions to a level

similar in which current ITS support well defined questions.

In recent years, many ITS systems have adopted support for less defined, open

response, question types for teachers to assign. To develop an effective tool which

helps to bridge the gap between the automation of well defined questions and less

defined open response questions, there are two aspects which need to be addressed:

automated grading and automated feedback which a teacher can present a student.

Our past research [EBM+20] addressed the automatic grading of open response ques-

tions. As we have turned our focus to providing automatic feedback to teachers,

we began to ask the question, what type of feedback are teachers providing? In re-

cent years, natural language processing (NLP) has been utilizing sentiment analysis

across various fields. To gain a deeper understanding of the type of feedback teach-

ers are providing, this research will be adopting sentiment tools to explore whether

there are identifiable patterns, or levels of variations, within the type of sentiment

a teacher uses in feedback and if the grades student’s receive impact the level of

sentiment which a teacher will provide. So we look to identify whether teachers

tend to provide feedback with a negative, neutral or positive sentiment and whether

or not that sentiment utilized is impacted by the grade the student received.

To generate an effective tool for automatically suggesting feedback for teachers,

it isn’t enough to just identify the trends and variations with sentiment, but be

able to automatically predict what level of sentiment a student’s response would

elicit from a teacher. For an automatic feedback system to be impactful or useful

for a teacher, it should not solely suggest similar, generic, feedback. There needs

to be diversity amongst the suggested feedback. Not only should the diversity be

amongst the content, but the tone in which feedback is being provided. By having a
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tool which can identify what level of sentiment a teacher should provide, suggested

responses can be filtered down another level to have more diverse and more specific

feedback.

The automation of feedback is a multi layer task, with multiple filtering steps and

multiple machine learned properties. By accounting for sentiment, a more accurate,

useful and impactful tool can be developed. This paper aims to present and explore:

1. Whether there are identifiable trends or variations associated with the senti-

ment teachers use when providing feedback

2. Whether or not different grades elicit different levels of sentiment and can we

identify them

3. Whether we are able to develop models which can predict what level of senti-

ment a teacher should use within their feedback

5.2 Background

5.2.1 Open Response v Multiple Choice

As it has been noted, most ITS systems have adopted support for open response

questions and that there are a growing number of systems which are attempting

to integrate the automation of open response question assessment and feedback

c.f. [AB06],[FLL99],[ZZX+17]. This is because many of these systems are hoping to

become a more well rounded system. To achieve this, systems must treat the student

holistically, and aim to support different types of problems. This is echoed by studies

studies such as [OBKM13] which showed when open response and multiple choice

questions are provided, each will extract different aspects of the student’s learning

process and understanding of the materials.
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Another work [RIM05] presented a study that showed when students worked on

multiple choice questions, they were more likely to gain a sense of being correct even

when they are wrong. The authors noted that when the students are being presented

incorrect answers, and choosing those answers, it may create a false sense of security

and imprint the wrong answer in the student’s mind. This occurs because multi-

ple choice questions explicitly and intentionally show wrong answers and attempt

to convince student they’re correct. As [BR08] noted, this approach is performed

to lower the likelihood that students are able to guess the right answers; however,

there is a balance that needs to be struck because their study found that these ‘lure

answers’ in exams can lead to students holding onto incorrect answers. It should be

noted, however, that [BR08] found that the negative effects, students holding onto

purposefully presented incorrect answers, can be alleviated by providing feedback to

students. This is the main feature of ITS systems such as ASSISTments [HH14]. Ad-

ditionally, this ITS was proven to significantly increase end of the year test scores on

standardize mathematics exams in comparison to traditional homework[RFMM16].

5.2.2 Word and Sentence Representations

In recent years, NLP has made great strides with numerical representations of cor-

pus’ for machine learning tasks. From the beginning, there were simplistic word

level numeric representations such as a simple word count (often referred to as a

Bag of Words approach (BOW)). As the method states, this approach takes the text

and counts the number of occurrences within the entire corpus each individual word

occurs. Then a list containing the count for each word is used and modeled with.

Even though BOW is a simplistic method, there are numerous studies which utilize

this method as the foundation of their extended work [ZJZ10][ZM17][SSW+11].

However, there is a clear negative to such a simplistic approach. Words which
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occur most often will be given the most weight in the model. While on the surface

this approach holds water, words which occur frequently do not provide insight

into what the text means, just that they are more often used and most likely to

impact a model’s analysis. These words are commonly referred to as stops words

[WS92] and these are often just dropped; however even with the words dropped,

there’s a large chance other words, that should have lower impact on the models

decision making, will still have a larger count value. From this, a variation of the

word count approach was adopted called the Term Frequency Inverse Document

Frequency (often referred to as TF-IDF) calculation. In short, the TF-IDF will

start by counting the occurrences each word (the term frequency) in each of the

documents (as an example, we will refer to this as the student answer), then those

frequencies are multiplied by the inverse document frequency, or the log inverse count

of the number of student answers which the word occurs in. This approach has been

utilized in natural language processing for years in studies such as [TMD14].

While these BOW based approaches have the benefit of simplicity, and easy in-

terpretation, they are unable to provide any sort of relational information. With

a standard BOW based approach, there isn’t any relation or contextual inferences

that can be made based on the values. The word ‘dog’ occurring frequently and

the word ‘table’ occurring equally as frequently does not mean these are similar

words. However, a machine learned algorithm would consider them closely related

based on their weight (with a simple BOW approach). Deep learning has provided

a solution for this, with the development of word embeddings. Simply put, a deep

learning algorithm performs unsupervised learning to develop n-dimensional (can

choose the size of the vectors) vector representations of words. From this, where

the words lie within the vector space provides the contextual and relational infor-

mation to a machine learning algorithm. For instance, if two words are close within
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the vector space then they are considered closely related. There are two common

paths to working with embeddings, either researchers have enough data to generate

their own embeddings, or they can utilize pre-trained embeddings. Luckily Stanford

researchers developed their own approach for generating word embeddings, referred

to as GloVe [PSM14], and shared a pre-trained model trained on either Wikipedia,

Common Crawls, or Twitter. Similarly, google developed an algorithm to generate

word embeddings referred to as word2vec[MCCD13] and release pre-trained embed-

dings trained upon google news. More recently, BERT [DCLT18] has become a

popular word embedding algorithm as well and also has a pre-trained version. With

the publication of these freely available pre-trained embeddings, researchers with less

robust datasets and corpuses can utilize these embeddings to represent the words.

Thus, generating much more accurate representations of words and consequently

more accurate contextual inferences can be made about the word.

Not all is perfect, however, with these pre-trained word embeddings. Precautions

need to be taken because research has been done [BCZ+16] to show that there

are implicit bias in the pre-trained embeddings from the datasets which they were

trained on. This study managed to show that within the pre-trained word2vec

embeddings there were biases which researchers may not want within their modeling.

Mainly, the research discovered that when the embeddings were developed from

google new, words were being related in a very bias way. Often, gender bias were

present, for example he was most closely related to doctor and she was closely

related to nurse.

Not only are embeddings at the word level, recently, sentence embedding al-

gorithms have gained popularity for their ability to generate single vector repre-

sentations for entire sentences. This greatly simplifies the training data. Instead

of having, for instance, a 300-dimensional vector for each word in every sentence
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within the entire document, there will be a single n-dimensional (changes size based

on what algorithm or pre-trained approach utilized) vector for each sentence in the

entire corpus. The two most pronounced approaches utilized today are the Universal

Sentence Encoder (USE) [CYK+18] and SBERT (sentence BERT) [RG19b].

5.2.3 Types of Teacher Feedback

As teachers provide feedback to students, some teachers may provide a little more

detail and other may be a bit more general. Many variables can affect a teach-

ers feedback, but studies such as [Wea06] found that not all feedback were equal;

there was a clear hindrance of feedback to students which was either considered

too simplistic or vague. Additionally, the [Wea06] study found that students felt

that detailed constructive feedback was the most helpful. Again, this shows that

a generic feedback isn’t always going to benefit students and that time should be

spent personalizing and varying the levels of sentiment in feedback. The students

in that study echoed the same thoughts, that there needs to diversity amongst the

sentiment provided within feedback.

Another study focused on the type of feedback students respond to best [YPVG+14].

More specifically, this study provided minority students with feedback which is more

blunt and states clearly that the teachers expected a certain level of performance

from the students. The study exhibited that minority students managed to trust

their teachers more when they use straight forward feedback which states their ex-

pectations of the students. While the minority students gained more trust, they

showed improvement in their work as well.
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5.2.4 Sentiment Analysis

While its clear that there are many different types of feedback that can impact a

students learning, and that there are debates over which helps students learn the

most, it is evident that the way a teacher responds to a student affects the student.

This is why sentiment analysis of teacher feedback is imperative.

NLP has taken many strides in developing tools to interpret the sentiment of

sentences and corpuses. A well known approach, the Valence Aware Dictionary and

sEntiment Reasoner (also known simply as VADER) is a rule based algorithm, devel-

oped with social media data [GH14], that manages to beat out many more complex

approaches. Social media is a common place for sentiment analysis, another study

[AXV+11] pulled 11,875 tweets from Twitter and had them labeled manually. This

was then used to develop and compare 3 different sentiment approaches, including a

tree based kernal approach (similar to a rule based approach), a unigram model and

a feature based approach. Both the feature based and tree based approaches man-

aged to outperform the baseline unigram approach. Similarly, another study [PP10]

utilize data collected from Twitter, and tagged the part of speech with a TreeTagger,

to develop their own sentiment classifier using Naive Bayes and a Support Vector

Machine models.

Another well known sentiment tool was developed by Stanford which combined,

what they referred to as, the Sentiment Treebank and their own Recursive Neural

Tensor Network[SPW+13]. The Stanford Sentiment Treebank is a large corpus with

completely labeled parsed trees of movie reviews. These are then used within the

Recursive Neural Tensor Network to more accurately decode intricate sentiment.

In the end its clear that many sentiment analysis have a foundation of rule based

or tree structures. Additionally, a good amount of them are trained at some point

from social media data to accurately categorize sentiment. Approaches, such as the
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Stanford Sentiment Treebank and VADER have the added benefit of making these

models publicly available. Thus, the models can be utilized by any researcher to

help interpret and identify sentiment within their own corpus.

5.3 Dataset

For this research, we look to analyze the sentiment of feedback from 17 teachers

across the United States. This dataset was collected to identify and explore the

variations within teacher feedback sentiment given a students open response answer.

From this, teachers were given a students answers and were expected to write what

they would provide as feedback to the student.

The collection of this data set started by generating our own corpus of student

answers to less defined open response questions in mathematics. Of these prob-

lems, all of them were selected from open educational resources (often referred to

as OER’s), a common resource in education today. We collected data from middle

school students. From there, we took all the student answers, randomized them,

and grouped them together by the problem. Thus each student answer was grouped

with all other answers from the same problem. Each of the teachers were split into

subset groups and received a set of student answers. The subset would then generate

a feedback message (required) and grade (not required) to the student.

An imperative part of this dataset, and for this study, is that for each student

answer, all teachers would generate feedback. This meant that each student answer

would elicit a feedback message from each of the teachers within the subset. So if

the randomized student answers in problem A were given to the teachers in subset

4, and this subset had 3 teachers, all 3 would provide their own genuine feedback for

each given answer. With this, we could account for more of the variability within
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teacher feedback by being able to observe multiple teachers perspectives for a single

student answer. This would allow us to identify how, or if, there were identifiable

variances in the types of sentiment teachers provided. Additionally, this would allow

us to examine whether there were there teachers who predominately showed more

negative, neutral, or positive sentiment.

In the raw state, the dataset consisted of 78 unique problems. All of these were

open response mathematics questions. This dataset was eventually filtered down

from the 78 unique problems to 67 to account for the 11 problems in which fewer

than 2 of the teachers performed the task of providing feedback. After all the filtering

was completed, within the 67 unique problems there were a total of 5,539 student

answers, 5,038 of which were unique. This difference was because some students

answered with the same content. Additionally, the total number of teachers who

provided feedback was filtered down to 11. A sample of authentic student answers

and teacher feedback to the same question are presented in Table 5.1.

5.4 Exploratory Analysis of Teacher Feedback Sen-

timent

With a dataset consisting of multiple detailed teacher feedback for each student

answer, as shown with examples Table 5.1, we have the ability to explore the different

levels of sentiment teachers provided students. Additionally, Table 5.1 shows not

only the detail, but the variation in the content. The way each teacher approaches

the student’s response is unique. We attempt identify whether teachers showed any

variation amongst these feedback not just in content, but by attempting to identify

if teachers use positive feedback as compared to others or if there are teachers who

tend to provide negative sentiment.
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Additionally, we explore whether there is evidence to suggest the sentiment

teachers utilize on feedback is impacted by grades. Essentially, we are attempt-

ing to explore whether a student receiving a grade of 0 receives differing levels of

sentiment in feedback as compared to a student getting a 75% or higher? An ability

to identify variant levels of sentiment across teachers would support the adoption of

sentiment in tools attempting to automatically suggest diverse tailored feedback to

student open response answers within ITS.

5.4.1 Methodology

VADER

As mentioned earlier, recent advancements in NLP has seen an increase in sentiment

analysis studies and pre-trained models which have been trained on large social

media datasets. For this analysis, our corpus wasn’t robust enough to warrant

training our own sentiment model. Additionally, while our corpus is decently sized

in the number of total student responses and teacher feedback, the length of the

content isn’t usually more than a sentence or few. Thus, training our own sentiment

model would likely struggle to identify sentiment accurately.

To develop VADER, the authors [GH14] generated a list of over 9,000 lexical

features (words). The authors had Amazon Mechanical Turk workers rate the sen-

timent of each of these lexical features, providing the authors a labeled dataset of

90,000+ labeled lexical features. Additionally, [GH14] used two human raters to

review 800 tweets and evaluate the level of sentiment each tweet carried. From this,

the authors managed to identify 5 aspects of the tweets which caused the level of

sentiment to change (a negative to a more positive sentiment for example). First,

the use of punctuation’s, for example, can directly impact the sentiment of a mes-
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sage. A sentence which ends with a ‘!’ projects a very different sentiment than

‘.’. For instance, ‘I can’t wait to see you!!’ vs. ‘I can’t wait to see you.’ projects a

different level of intensity in the sentiment. Other rules [GH14] noted were: the cap-

italization greatly changes the intensity of the sentiment, contrastive conjunctions

(‘but’) can be used to identify a change in the tone and sentiment, the use of more

intense words (the authors referred to them as ‘Degree Modifiers’) such as ‘very’ can

impact the sentiment, and when examining the previous 3 words (tri-gram) (before

an identified lexical feature by the authors) over 90% of the time it can identify a

change in the sentiment.

VADER produces numerous outputs, namely, a value for negative, neutral and

positive sentiment. Each of these are calculated as the percentage of words within

the sentence that are either considered negative, neutral or positive. For this work,

we will be exploiting the Compound Score, which utilizes the rules mentioned above

to generate and adjust the sentiment scores. They are then normalized between the

values of -1 to 1 such that -1 is the representation of the extreme negative and 1

the extreme positive sentiment. Once generated, the VADER compound score can

be categorized into 3 distinctive categories; negative, neutral and positive sentiment

when the score is less than or equal to -0.05, greater than -0.05 and less than 0.05,

and greater than or equal to 0.05, respectively.

Generating the Sentiment Scores

To perform our exploratory analysis, VADER was applied to all the teacher feedback

across all 68 problem’s. However, it should be noted that VADER performs best

when applied at a sentence level. With this as the case, any teacher feedback with

more than one sentence was split at the sentence level. For example, Table 5.2

shows the 3 sets of teacher feedback from 3 different teachers in Table 5.1. Each of
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the feedback were split to the sentence level and run through VADER to generate

an individual compound score for each sentence of the teacher’s feedback. When

looking at Table 5.2, the first two teacher’s feedback each had two sentences within

their feedback, thus, each individual sentence was fed through VADER and given

a resulting sentence level compound score. For the other teacher’s feedback, 3

compound scores were generated. At the sentence level, those compound scores only

provide part of the picture. To get the overall sentiment of each of teachers feedback

an overall score needs to be developed for the entire feedback. To accomplish this, we

simply took the average of all the sentence level compound scores for each teacher.

An example of this is presented in Table 5.2. After this entire process, there were a

total of 17,480 teacher feedback messages and compound scores.

5.4.2 Exploratory Results

Once the compound scores for each sentence of each teacher’s feedback was aggre-

gated to the teacher level, the analysis could proceed. We initially analyzed the

overall distribution of sentiment in Table 5.3 and found that there were a total of

3,039 teacher feedback that were categorized as negative, 6,310 that were catego-

rized as neutral and 8,131 that were categorized as positive. From this distribution,

it is apparent that within our study the teachers, based on our sentiment calcula-

tions, predominately attempted to provide positive feedback. The teachers chose,

most often, to use words which carried more positive sentiment. What is apparent is

that the sentiment analysis revealed that there is clear variation amongst the teach-

ers sentiment within their feedback. Essentially, that teachers are varying the way

they speak to students, and that for a automatic feedback model to be impactful or

successful, being able to identify sentiment and trends is imperative.
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Table 5.3: Distribution of Calculated Sentiment Across all Teacher Feedback

Sentiment Number of Occurrences

Negative 3,039

Neutral 6,310

Positive 8,131

To take another step further, we dissected the sentiment at the teacher level.

Essentially, we grouped the compound scores of all the feedback provided by each

teacher and looked to see what the distribution of sentiment was from each teacher.

Within Figure 5.1, each point on the plot is that teacher’s calculated compound score

for that individual feedback. For each of the points, they are shaded to show which

compound scores fall above, below or within the discussed thresholds for positive,

negative or neutral sentiment, respectively. What is again clear is that each teacher

greatly varies in their sentiment utilized within their feedback. There appears to

be a wide variation in the level of sentiment being used by teachers. For instance,

Figure 5.1 shows that Teacher 9 has the widest dispersion of positive sentiment.

Additionally, Teacher 9 provided the most positive feedback to a single student’s

answer. Other teachers, such as Teacher 4 and Teacher 11, have a much tighter

dispersion of positive sentiment used, barely providing feedback with a compound

score over 0.25 (it is still considered positive). Inversely, it is clear that Teacher’s

3, 7 and 11 have the widest distribution of negative sentiment used. To clarify, we

can see that Teacher’s 3, 7 and 11 provided some of the most negative sentiment

in feedback to students; providing feedback with compound scores lower than -0.50.

Again, to reiterate, the stronger the sentiment, the closer the compound score will

be to 1 or -1. This is evidence exhibiting that if an automatic feedback model is

to be effective, taking into account the sentiment of the feedback is going to be
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imperative. If a teacher is going to use an automated tool, the feedback needs to

seem appropriate and account for differing levels of sentiment. Not every student

answer should receive the same sentiment, and this is proof teachers echo that

sentiment.

Additionally, above the scatter plot are the density plots for the sentiment used.

Figure 5.1, for instance, shows that in general teachers used positive sentiment more

often than not. There were a few teachers, such as Teacher 4, Teacher 7 and Teacher

11, who used neutral sentiment the most. While for Teacher’s 11 and 7 it is clear that

neutral sentiment was used only slightly more than positive or negative sentiment,

but for Teacher 4, there is a clear disparity between the amount of neutral sentiment

and the negative/positive sentiment. In the end however, it is clear, again, that most

often teacher’s preferred using more positive sentiment in their feedback to students.

Another fascinating observation to Figure 5.1 is that while Teacher 9 had the

widest range of positive compound scores (coming close to the most positive senti-

ment of a compound score of 1), the teacher also used the most positive sentiment

in the feedback in comparison to any other teacher. Inverse of that, negative senti-

ment was clearly the least utilized sentiment amongst all teachers. In fact, not one

teacher used negative sentiment majority of the time.

It should be noted that there are many cases of points within Figure 5.1 that

lie on top of each other. For instance, when examining Teacher 4’s density plot

it is clear that the neutral sentiment was used majority of the time. However, the

range of compound scores is quite narrow. This could be explained a couple of ways,

first, VADER calculated that the language Teacher 4 used was quite similar across

multiple feedback and thus warranted similar scores. The other explanation is that

teachers like Teacher 4 had a common feedback they used and repeated. In the end,

its most likely the smaller dispersion’s are from teachers repeating favorite feedback
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Figure 5.1: Exploratory analysis of sentiment of feedback across all unique teachers
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for common missed student answers. This was evident upon further exploration into

the feedback data we collected.

It is the case there are large variations in the levels of positive and negative

sentiment being used by teachers and that there are large variations in the amount

of each of the sentiment categories being used; however, the question has to be

raised, does the grade the student received impact or influence the level of sentiment

teachers used? Figure 5.2 aims to answer this question by plotting the grades

student’s received versus the compound score of feedback which was provided by

teachers. An initial observation shows that the range of the compound scores (the

intensity of the sentiment) are quite similar across all grades given out. It should be

noted, however, that those who received a grade 0 had a tighter dispersion of positive

sentiment compound scores. Meaning that most of the positive sentiment used for

grade 0 is lower than any other grade’s most positive feedback. In fact, most of

the positive sentiment compound scores falls under 0.50. While this is still a pretty

high compound score, the other grades have more compound sentiment scores above

0.50. Additionally, grade 0 had the lowest compound score for negative sentiment

in teacher feedback.

Aside from the variation in compound score, when analyzing the density plots on

top of Figure 5.2 there is a clear trend with the number of teacher feedback which

carry a negative sentiment. At grade 0, more teachers used negative sentiment in

their feedback than neutral or positive. Then, as the grades increased for students,

the number of feedback which carried a negative sentiment from teachers decreased

almost linearly. As the student’s performed better, and obtained a grade of 0.25,

there was a sharp increase in the amount of feedback in which teachers used more

neutral or positive sentiment. In fact, at grade 0.25, its the only grade where

teachers tended to use more neutral sentiment in their feedback. While neutral
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Figure 5.2: Exploratory analysis of the sentiment of teacher feedback across the
grades provided
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sentiment was still used often, once students earned at least a 0.50 grade teachers

gravitated towards a more positive sentiment. The chasm between positive and

neutral sentiment in feedback continued to widen as the grades increase. With the

grades increasing past 0.50, the use of neutral sentiment leveled off and teachers

shifted to more positive sentiment.

In the end, this exploratory analysis of the sentiment within teacher feedback

proved to be fruitful. Mainly, we were able to identify trends in the amount of each

sentiment used as it pertained to grades. Grades showed evidence of impacting the

type of sentiment teachers used within their feedback to students. Similarly, it was

clear that certain teachers veered away from negative sentiment, while others tended

to stay more neutral or positive. From all this one thing is clear, to properly develop

a tool that diversifies and automatically suggest quality feedback for teachers to use,

variation in the sentiment used should be accounted for. Figure 5.1 and Figure 5.2

assist in visualizing this.

5.5 Predictive Modeling

To be a useful addition to a comment suggesting tool within ITS, a model needs

to developed which can predict what type of sentiment a teacher would use while

providing feedback to a student’s open response mathematics answer. To that end,

this research looks to develop this model using student answers and the compound

sentiment scores calculated using VADER on our collected teacher feedback.

5.5.1 Methodology

As discussed earlier, with recent strides in NLP and deep learning, sentence embed-

dings have grown in popularity and trust amongst researchers. For this model, we
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utilize SBERT [RG19b] to generate a single vector representation of each student

answer within our corpus. From this, each student answer was given a 768 dimen-

sional vector representation that was used as the independent variables within our

models to predict what category of sentiment a student’s response would elicit from

a teacher. We developed these models using 10 fold cross validation.

Data Preparation

Earlier in the paper, we discussed how the sentiment scores were developed for each

teacher’s feedback. Some examples were presented in Table 5.2. However, one more

step needed to be included. Since every student answer would obtain feedback from

all teachers in the subgroup, multiple teachers would generate a different compound

score for the same student answer. It is because of this that all the student answers

were grouped together and the average of the different teachers compound score

were taken. This would then leave a dataset which consisted of a unique student

answer per row and an average teacher compound score. A final step to preparing

this data consisted of taking the newly acquired average compound score for each

unique student answer and categorize the compound score into negative, neutral or

positive sentiment. Just as we had previously discussed and performed. With this,

each row in the data for training consisted of a student answer per row and the

category of sentiment which the average of teachers would respond with.

Models Built

With the dataset in the correct form and vector representation for the student an-

swers, various machine learning algorithms could be attempted. A wide spectrum

of models were tested with varying degrees of flexibility. In the end, two different

machine learning and one deep learning technique were applied to this data. The
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machine learning techniques consisted of the clustering algorithm K-Nearest Neigh-

bors (KNN) and the tree based method Random Forest. While these methods have

been around for years, their increased flexibility and depth allows them to perform

well within this study. A slightly deeper model was attempted as well, a multilayer

perceptron (MLP). The structure of this model is that of a simple feed forward

neural network.

To reiterate, these models will take the SBERT vector representations of the

student answers and predict which of the sentiment categories a feedback message

should contain. With that goal in mind, we developed 3 different types of models,

one model will attempt to predict all 3 categories of sentiment, one will attempt

to predict whether the feedback should use negative sentiment or not, and finally a

model which attempts to predict whether the the type of feedback should contain

more of a positive sentiment. This will provide a strong summary of our ability to

predict the sentiment and develop an algorithm which could be used in supplement

to an automatic feedback suggesting tool within an ITS.

5.5.2 Results

Overall, Table 5.4 shows that we can accurately predict what sentiment a student

answer should receive in its feedback. All of our models, while using SBERT vector

representations, managed to obtain an AUC well above chance. At their worst, our

models still managed to predict which class of sentiment with an AUC of 0.7306.

While all the models performed well, we were best at identifying whether or not

a negative sentiment should be utilized in a teachers feedback given a student’s

answer. When attempting to predict whether or not negative sentiment should

be used, we obtained our highest performance garnering and AUC between 0.78-

0.79. Even though the negative sentiment was easier to predict, being able to
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Table 5.4: Performance predicting sentiment score of teacher feedback given a stu-
dent open response answer in mathematics with 10-fold cross validation

Model Dependent Variable AUC
Random
Forest

Negative, Neutral,
Positive Sentiment Category

0.7473

KNN
Negative, Neutral,

Positive Sentiment Category
0.7504

MLP
Negative, Neutral,

Positive Sentiment Category
0.7306

Random
Forest

Negative Sentiment or Not 0.7798

KNN Negative Sentiment or Not 0.7796
MLP Negative Sentiment or Not 0.7896

Random
Forest

Positive Sentiment or Not 0 .7446

KNN Positive Sentiment or Not 0.7359
MLP Positive Sentiment or Not 0.7381

predict whether positive sentiment should be used or not proved to be slightly

more difficult with its best AUC at 0.7446. It makes sense then that while we do

well predicting negative sentiment for teacher feedback, but perform slightly worse

identifying positive sentiment; when we attempt to predict whether the answer

should elicit positive, neutral or negative sentiment together, the AUC falls right in

the middle with the KNN performing best with an AUC of 0.7504.

5.6 Discussion

With the adoption of more automation within ITS increasing year by year, open

response questions have fallen behind in their support of these automated tools.

Well defined problems benefit most from the automation tools of ITS. To be able

to bridge the gap between the benefits of the automation of well defined questions,

this paper looked to explore teacher sentiment and develop a predictive model which

could help predict the level of sentiment a feedback could require for a student’s
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answer. The ability to accurately predict the level of sentiment is a step in the

direction of understanding what types of feedback should be suggested to teachers

in an automated fashion.

Similarly, the exploratory analysis revealed that teachers do in fact vary in the

level of sentiment and amount of times they use each sentiment. There were those

teachers who used more negative sentiment in their feedback, while other tended

to use more positive sentiment within their feedback to students. Additionally,

this study also showed that grades did in fact show a tend in the way sentiment

was used amongst teachers. Namely, students which received a grade of 0 had

the most negative sentiment within their feedback. As the grades improved, the

negative sentiment subsided, decreasing almost linearly across the rest of the grades.

Inversely, teachers provided feedback with more positive sentiment as the students

performed better.

5.7 Future Work

We wish to continue to train more models in predicting which sentiment a teacher

would use in their feedback to students. Of our models built, we acknowledge that

none of the approaches are conducive to learning any sequential or contextual aspects

of the student answers when training the models. In future work we wish to expand

our predictive modeling to include word embeddings and sequential deep learning

algorithms such as a Long Short Term Memory (LSTM).

We hope to use these predictive models, and the discoveries from the exploratory

sentiment analysis, as supplemental tools for automatically suggesting feedback to

teachers within an ITS. To be able to suggest effective, impactful and useful feed-

back automatically will require us to use these models. This will help to diversify
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the feedback suggested and more accurately be in tuned to what a teacher would

normally want to suggest. If we can use this sentiment analysis as a way to suggest

more diverse and accurate feedback, the more teachers will utilize the tool.
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Chapter 6

NITELITE: Nonsynchronous

Integrated Technology

Environment - Learning from

Interdependent Terminologies and

Explanations

Abstract

Most support for students within online educational technologies (i.e. in-

telligent tutoring systems), such as hints, common wrong answer messages,

or scaffolding problems; have been limited to questions with structured an-

swers. More specifically, questions such as multiple choice or fill in the blank.

With the use of natural language processing, this research aims to provide

support for students working through open response questions in the form

of a tool called NITELITE (Nonsynchronous Integrated Technology Envi-

ronment - Learning from Interdependent Terminologies and Explanations).
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Open response questions require students to elaborate their work and steps

taken. A common practice in a classroom would be to get into groups and

discuss your answer, steps and reasoning. This tool sets out to utilize collab-

oration as a support for students working through open response questions

within intelligent tutoring systems. Collaborations provide students with the

opportunity to interact with their peers, discuss approaches, and share their

process taken. This interaction has shown to promote more critical think-

ing for students as compared to working individually. When presented with

other student’s rationales and approaches, students are required to validate

their work and be confident enough to support their work over others. How-

ever, collaborations are becoming tougher and tougher to support as learning

becomes more and more asynchronous. While there are online collaborative

tools, the process is synchronous; requiring students to be active at the same

time. From this, NITELITE was developed to wed the benefits of collabo-

ration with the continued advancement towards more asynchronous learning.

More specifically, in this research NITELITE is developed, utilizing natu-

ral language processing methods discussed in previous chapters, to provide

an asynchronous collaborative tool to teachers and students. This research

presents how students successfully utilized asynchronous collaboration within

NITELITE. Additionally, this study successfully completed a pilot study of

NITELITE with randomized control trial which provided deeper insights into

the student’s interaction with such a tool.

6.1 Introduction

Recently, there has been a move to more online learning and online educational

technologies are being integrated more and more into every day schooling. From this,

learning has become inherently asynchronous. Students are required to utilize these
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systems to complete homework and move forward in class. While these systems, such

as intelligent tutoring systems (ITS), have a plethora of support for both teachers

and students alike, this dissertation has attempted to address a major pitfall with

the support; most of the support is built for questions with structured answers, such

as multiple choice or fill in the blank. Questions with well defined answers. Up until

this chapter, this dissertation has addressed the major hindrance by utilizing natural

language processing to develop automated scoring and an approach to identifying

similar student answers (for suggesting automated feedback to students working

through open response questions). While those benefit both students and teachers,

they are primarily support for teachers.

Open response questions provide the opportunity for students to clearly identify

their process, the steps taken and justify their work. Teachers can gain a deeper

understanding of the student’s comprehension of the materials on a more personal

level and can tailor their help for that particular student. Similarly, teachers can

clearly see at what point a student has begun to misinterpret or misunderstand a

problem or theory. This is a major advantage open response questions have over

questions with structured answers, especially in an area such as mathematics. More

specifically, there are many different ways to approach a question in mathematics.

In a question with a structured answer, such as multiple choice, a teacher can only

infer what the student did to arrive at the correct/wrong answer based on correlated

assumptions. However, given that there are multiple correct ways to answer most

math questions, its difficult for a teacher to pinpoint what the student misinterpreted

or what step they misunderstood. This is where open response questions thrive.

Again, earlier chapters address developing automated scoring and a method for

suggesting feedback automatically to help teachers diversify their content. However,

online educational technologies look to support both teachers and students, alike.
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So the question becomes, how can support be developed for students with open

response questions within online education technologies in an increasingly online

learning environment?

Online educational technologies, such as intelligent tutoring systems, that sup-

port open response questions do not provide the same support students receive from

questions such as multiple choice or fill in the blank. ITS can simply have a set of

rules in place to return hints or feedback messages given a student’s choice. However,

students progressing through an open response question lack this support. This final

pilot study aims to utilize natural language processing and open response questions

to develop a tool deemed NITELITE (Nonsynchronous Integrated Technology En-

vironment - Learning from Interdependent Terminologies and Explanations). This

tool sets out to support students by utilizing the major aspects of collaboration but

in an asynchronous fashion. Students using NITELITE will be able to see other

student’s answers to the same open response question and can have the option to go

back an edit their answer after. This simulated collaboration will allow the student

to see other student’s perspectives and reasoning, requiring the students to process

their work and justify why their work is either better not as accurate as the other

rationales. To pilot this tool, I ran a randomized controlled trial (RCT) with middle

school students in 7th grade mathematics. This research set out to analyze student

interactions with NITELITE and answer:

1. Did students who utilized NITELITE perform significantly better in the post

test, did learning occur?

2. For those who can edit, was there a reliably higher score in the final submitted

answer?

3. If students are provided the opportunity to edit their work, is there a reliable
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difference in the answer length across the two conditions?

4. Whether or not the asynchronous collaboration’s, the standard NITELITE or

random rank list condition, effect on the difference in answer length (between

final and initial answers) is significantly different from 0.

5. When presented the opportunity, do students edit their answers after asyn-

chronous collaboration? Whether or not, if given the chance to edit, there

is a reliable difference in whether a student edits or not by condition when

controlling for the initial score.

6. If there is any evidence to show that students are more or less likely to rank

their answer in the top half over the bottom half of the rankings.

6.2 Background

6.2.1 Intelligent Tutoring Systems

For years, intelligent tutoring systems have been deployed and utilized by educa-

tors [ABR85] [Nwa90][CKA97] and these have provided teachers and educators with

automatic grading of student answers, immediate feedback to students and auto-

matically generated reports, just to name a few. More specifically, [Ric88] breaks

down 3 criteria a system must meet to be considered an intelligent: the system must

be able to automatically solve, evaluate and infer information from problems within

its domain; it must be able to interpret and evaluate the users understanding of the

material at hand; and lastly, the tutor within these systems must be intelligent in its

way of providing assistance to students for improved student learning. A study from

[Van11] discussed the common positive effects ITS have on student learning; that

these systems could potentially be close to as effective as human tutors. Systems
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such as ASSISTments, McGraw Hill’s ALEKSTM and/or Carnegie Learning’s Cog-

nitive TutorTM meet those definitions of an ITS. A few ITS, such as ASSISTments,

have even begun to accept open education resources (OER) content like EngageNY.

However, as has been discussed in previous chapters of this dissertation, most of the

intelligence is limited to questions and problems with structured answers.

Most of the tools and automation that make online educational technologies

‘intelligent’ are for structured problems with easily defined answers. These consist

of questions that are, for instance, multiple choice or fill in the blank. There are

many advantages to structured answers, such as [WB05], however, a question with

structured answers, such as multiple choice, can inherently mislead teachers. When

students guess right, it can leave the student with a false sense of understanding the

materials and the teacher with a false sense that the student understood the answer.

Studies such as [BR08], do note that this is why intentionally wrong answers are

put into these multiple choice questions, to lower the likelihood of guessing correctly.

However, this can also be dangerous; [RIM05] showed when students are exposed to

the incorrect answers, they can latch on to that incorrect answer and think they’re

right. Creating a false sense of security amongst students.

6.2.2 Open Responses

Work has been done to show that there is a benefit to providing teachers with a va-

riety of problem types; both structured questions and less structured open response

questions [Ku09]. Similarly, [Mar99] and [OBKM13] discussed how questions with

structured (multiple choice) and less structured (open response) answers elicit differ-

ing levels of cognition. [BS06] agrees with this, noting that students generating their

own rationale and answers, while connecting them to economic theory, is imperative

to their learning. Open response questions essentially are a median through which a
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student is able to explain, reason and justify their work or answer. Thus, providing

deeper insight into the students process of thinking. Open response questions, and

the elaboration from students, allows teachers a more personal understanding of

students and their work. More specifically, open response questions allow teachers

to not rely on historically correlated mistakes, but the actually steps written by the

students. Again, this isn’t to say multiple choice or fill in the blank questions do

not have their place. However, certain subjects can utilize multiple approaches to

arrive at a final answer. Case and point, Mathematics (the subject used within this

study and all previous chapter’s studies).

Mathematics has always been, at its core, a subject which benefits from open

responses. Mainly, there are various steps, and combinations of those steps, that

can be taken to solve problems. There are more efficient routes students can take

to arrive at answers, but other routes work as well. Within those steps and routes

taken, a mistake can be made a many different points. Given that students ap-

proach questions in different ways, its difficult for a teacher to infer where the

student specifically went wrong from a multiple choice, or fill in the blank, answer.

Open response questions can provide this insight. However, as discussed previously,

within online learning technologies, support for those question types are limited.

While few support open responses, the few that do, fail to live up to the ’intel-

ligent’ aspect of intelligent systems. Previous chapters in this dissertation helped

to address this by developing automated scoring and feedback to students. Those

chapters have assisted in the development of support for teachers in providing open

response questions and helping teachers diversify the content which they provide

students. This, however, is only addressing support for teachers. As mentioned

earlier, students are supported working through questions with structured answers

in the form of hints, common wrong answer messages, and or scaffolding problems.
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This pilot study looks to develop this support by adopting collaboration into online

learning technologies, such as intelligent tutoring systems.

6.2.3 Collaborative Learning

When students answer open response questions, they are elaborating their steps,

their process of thinking and explaining why their answer is correct. They are

essentially embracing an aspect of collaboration. In education, collaborative learning

is commonly defined as students working together in groups of two or more to learn;

communicating with others, discussing how they would approach or answer the

problem, seeing how others may be interpreting a questions, and seeing whether

or not the way they are thinking is similar to that of the other students. In both

collaboration and individual open responses, students are detailing their steps taken

and explaining their reasoning (which is one of the main mechanisms that drives

collaborative learning) [Dil99].

Some argue the difficulties and challenges of collaborative learning, such as free-

riding (case where some students did most of the work and others did much less) and

opinions of students who are considered ‘low-competence status’ not being valued

[LJW18]. Similarly, studies such as [RAS17] discussed how both worked examples

and collaboration are considered effective in supplementing learning. However, in

their study, they were unable to show that collaborative learning improved compre-

hension over independent learning within more complex problems.

Studies on collaborative learning have been around for years [Gok95] and have

shown the benefits students experience when working in groups. In fact, [Gok95]

showed that students who collaborated out performed those who worked individually

on a critical thinking exam. Its not just that the other perspective can help the

students learn, but it requires them to think critically through the problem and
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decipher which approach and which answer is indeed the best. [LG12] surmised

that, academically, collaborative learning requires students to think more critically

and improves critical thinking skills, engages students more directly in the learning

process, improves classroom results, and can bring to light the student’s problem

solving technique. Another study explored the effect of collaborative learning had on

undergrad engineering students and reported learning gains[TCC+01]. The students

who experienced collaboration reported statistically significant higher learning than

those who didn’t[TCC+01].[ML07] showed that when students collaborated, they

managed to go into greater depth and expand their reasoning and argument within

the selected topic. As [CL14] notes, group work, if it is a problem which requires

the student to think conceptually (not just applying) and the student has the skill

set to perform the task at hand, will elicit learning for students when they talk,

interact and contribute to the discussions with others in the group. Essentially

showing that collaboration enlightened other students to contrasting perspectives

and impacted their learning. It is clear there is support for collaboration in the

classroom. However, in recent years, there has been a move to more online learning

and asynchronous styles of learning.

6.2.4 Asynchronous Collaboration and OER

While collaboration in classrooms has its benefits, recently, there has been a move

more to online learning (even more, recently, due to COVID-19). Online educational

technologies, such as ITS, are becoming more integral to the education of students,

and many schools have begun utilizing online learning in a myriad of new ways.

A result of this is learning has become more asynchronous. Many ITS do a good

job enabling the interactions between instructors and students asynchronously. As

discussed previously, these systems provide support to both students and teachers,
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alike. Teachers are able to get automated student reports, provide automated scoring

to students (for both open response questions and questions with structured answers,

as Chapter 2 presented) and students are able to read the automated feedback from

the systems in the form of immediate automated scoring, hints and common wrong

answer messages. Other works in this dissertation, such as Chapter 2 and 4, have

attempted to help build this support for a more diverse set of questions by utilizing

NLP.

It is the case that collaboration has been researched and used within ITS in

many studies [TRM10], [OBAR14], [OBA+14], [DWRK10], [WRK14], just to name

a few. However, these studies require students to perform tasks live to create the

collaborative aspect of the tool. While this indeed is an effective tool, in today’s

learning, where online learning is ever increasing, its very difficult to set up, schedule

and follow students using a synchronous collaborative tool. Studies, like [OBA+14],

require students to be on the computer at the same time and communicating via

audio as they work through problems. Other systems were developed with people

communicating live via chat while they worked through problems, such as [WRK14]

and their Adaptive Peer Tutoring Assistant. To be able to set this up for collabora-

tion when classes are asynchronous, and most learning is online, is quite a difficult

task. Therefore, an asynchronous collaboration tool would provide students with

many of the benefits of collaboration while mitigating the extra steps to become syn-

chronous. Namely, students on their own time, and whenever it fits their schedule,

can have a collaborative experience.

While collaboration has been shown to be effective, there is an aspect of col-

laboration which has been shown to be a negative. Free riders[LJW18][PBB+12].

In the simplest form, free riders are the students who do not contribute. These

students just sit by and let others do the work, thus getting credit. It can then
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be perceived that the group understood and learned, but its the case only certain

students learned. The free rider just waited until the right answer was agreed on

and used that information without learning. NITELITE attempts to mitigate this

by having students rank rationales and answers which are presented to them (this

is discussed in following sections).

An asynchronous collaborative tool could wed the benefits of face to face col-

laboration and the capabilities of ITS. More specifically, by utilizing open response

questions, student’s will engage in a major mechanism of collaboration by being

presented other student’s rationales and answers to open response questions (will

detail in following sections). One system, myDALITE[CLB+19], has provided an

asynchronous peer instruction. In fact, this research was inspired by that work. I

wish to enable asynchronous collaboration within an ITS that supports open re-

sponse OER content with my tool NITELITE.

OER content has provided teachers with a source of content which is freely avail-

able for use as their teaching sees fit and meets the core standards. As mentioned

earlier, ASSISTments is one of the very few systems who have adopted the freely

available OER content. NITELITE looks to utilize this OER content and since

ASSISTments [HH14] [RFMM16] does not offer a tool which enables asynchronous

collaboration and freely supports OER content, it is utilized as the system which

NITELITE is built upon. This research aims to explore if the benefits of collabo-

ration can be transferred to learning within ITS and in an asynchronous way while

using OER content.

ASSISTments has the foundational support to develop such an asynchronous

collaboration tool. Mainly, this system supports open responses question types;

allowing teachers to give out questions which require students to rationalize their

answer and provide descriptions for why and how they arrived at their answer. As
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mentioned earlier, open response questions can elicit aspects and mechanisms of

collaboration such as explaining your reasoning and others explaining theirs.

An unique aspect to an asynchronous collaboration tool, like NITELITE sets

out to be,is that it can provide the opportunity to identify the how confident a

student is in their work. By examining the way a student performs and behaves

when presented with another student’s rationale, inferences can be made based

on how long the student studies the other answers and whether their rationale

changes for better or worse (in terms of predicted grade, details in following sections).

For instance, maybe a student is confident in their answer, but the answer is a

30% score. So when a student is presented another students rationale (which is

correct) from asynchronous collaboration and they refuse to change their answer,

this could provide greater insight into the student’s capabilities, confidence and

comprehension. This insight into confidence, which has similarly been explored

with multiple choice questions in studies such as [CLBD13], could be very insightful

to a teacher and provide additional information about the students comprehension

of the topic they’re answering. However, with that study, the inferences could

be made only by students labeling their confidence when they selected an answer.

While this is valid, NITELITE and its utilization of open responses allows for this

inference to be made by exploratory analysis while also having the students ranking

the other answers seen (in greater detail in following sections). This automation

of identifying the confidence is done by utilizing natural language processing to

automatically assess the student’s initial open response answer.
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6.2.5 Natural Language Processing for Asynchronous Col-

laboration

Toward developing NITELITE to support asynchronous collaboration, and exploring

whether collaboration impacts students performance within ITS, there are multiple

natural language processing (NLP) approaches which can be utilized for generating

numerical representations of the student’s answers. This ranges from using more

traditional numerical representations of words, such as generating term frequency

inverse document frequency (tf-idf)[R+03] (which has been used in past research

such as [TMD14]), to more advanced deep learning methods such as utilizing word

embeddings such as GloVe[PSM14], word2vec[MCCD13] or BERT[DCLT18] which

stands for Bidirection Encoder Representations from Transformers. While utilizing

deep learning and word embeddings are enticing, bias still needs to be considered

because studies such as [BCZ+16] showed that there are bias built into the pre-

trained versions of these embeddings. While many can develop their own embed-

dings, most datasets wont match the robustness of GloVe being trained on Wikipedia

or word2vec being trained on Google News. Thus, this study utilizes pre-trained

embeddings, more specifically, pre-trained sentence level embeddings.

While word level numerical representations have been common in NLP research,

recent research has explored sentence level embeddings/representations. In the sim-

plest terms, this approach is similar to utilizing deep learning to develop a word

embedding, except instead of generating a vector for each individual word, a vector

space is developed where each point in the vector space is a vector representation of

a sentence. This study utilizes these sentence level embeddings within its architec-

ture. Mainly, SBERT[RG19b] is used to generate student answer level embeddings.

A single embedding, as shown in Chapter 4, can provide an avenue toward compar-
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ing how similar groups of text are; additionally, this relationship can help to generate

accurate prediction power as well[BBE+21]. It should be noted that, as mentioned

above, there is bias and unfairness built into pre-trained word embeddings. How-

ever, Chapter 3, presented that when using SBERT in a predictive manner there

was very low unfairness in the model’s prediction. Given those results, SBERT

was finalized as the main NLP approach utilized within NITELITE. Other sentence

approaches are available and were testing in Chapter 4, such as the the Universal

Sentence Encoder[CYK+18]. More recently, work has been done to develop a single

vector representation of full documents and not just sentence level embeddings. This

approach, referred to as doc2vec [LM14], can generate a single embeddings for an

entire document. It is the case that more verbose documents could benefit from such

an approach, but for this pilot study, mathematics is the content for the questions

and most answers range from a couple words to a couple sentences at most. For this

reason, a sentence level embedding, such as SBERT, was sufficient.

6.3 The Software, NITELITE

6.3.1 NITELITE Overview

Collaboration has been shown to be an effective way to supplement learning for

students. In the most general sense, collaboration will force students to discuss

and reason with why they answered they way they did. Student are then presented

perspectives from other students in the collaboration, and they must work together

to decide what is right. This requires the student to not only be confident in their

response and answer, but be able to support it and trust it when presented with

other answers and rationales. As noted earlier, this is one of the mechanisms that

drives collaborative learning. The collaborative aspect comes with the seeing oth-
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ers explanations and rationales and considering their perspectives to the questions

[Dil99]. While there are some tools developed to attempt this asynchronously, such

as myDALITE [CLB+19], most systems have adopted collaborative tools which re-

quire students to perform tasks synchronously. This research sets out to explore

how the benefits of collaboration, and the language used by students, transfer to

an ITS with OER content asynchronously. To explore this further, this research

generates the asynchronous collaboration tool with open response question within

the ITS ASSISTments, called NITELITE.

The concept of collaboration within online educational technologies has been

attempted before, as mentioned earlier. However, to reiterate, those approaches

require students or teachers to be involved synchronously. This includes requiring

student users to be on the systems as the same time. For NITELITE, this is not a

requirement for the tool to be implemented. The asynchronous aspect to NITELITE

embodies collaboration by presenting the student with various student answers and

rationales to the same problem. By utilizing this central theme of collaboration,

I can artificially generate a collaborative experience for the student. The collabo-

ration is artificial in the sense that everything is asynchronous, not live. Similar

to the research discussed earlier, students who work in groups supplement learn-

ing from talking, interacting and contributing to discussions with others within the

group[CL14]. For NITELITE, since its asynchronous, students won’t talk or dis-

cuss face to face, but NITELITE will present what other students have argued or

reasoned for their answer. The way these are chosen are discussed in subsequent

sections.

Another task which was integrated into NITELITE was asking students to rank

the order in which they feel the answers are of the best quality. This ranking task

was chosen for the potential ability to identify if students see their work as correct
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when in fact they are incorrect. Essentially, this task asks the student: if given

other students perspectives and approaches to a question, do you still fee as though

your answer is better? This task can help to identify if the student is confident, but

incorrect. This finding would provide teachers with deeper insight into the student’s

understanding of the material. Essentially, a teacher can then characterize incorrect

answers into two broad categories: Confident in their process and wrong, fully

incorrect. Each will require different interventions by teachers, but being able to

identify this is powerful for teachers.

Once all the tasks are finished the student is then allowed to either edit their

original answer or submit their original answer. This then completes the tasks for

NITELITE. Students then can progress through the rest of a problem set which

NITELITE is associated with.

6.3.2 NITELITE Design

As lightly discussed previously, there are up to 3 steps within NITELITE. A student

starts with an open response questions (for this study, an OER Open Up question),

as shown in Figure 6.1, and is required to type their answer below in the box

provided (blue arrow in Figure 6.1). This gives the student the chance to elaborate

their understanding of question and what their reasoning is for their answer.

After an answer is entered by the student, a student is then prompted with a

message (as shown in Figure 6.2) which states ‘You are about to see some answers

from other students along with the answer you have just submitted. Please click-

and-drag these answers to order them based on how you believe your teacher would

score them.’. NITELITE prompts the student that they will not only be able to

see theirs and other student’s answers, but they are also asked to order the answers

based on how the teachers would score them. Again, this is with the hopes that
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inferences can be made into the student’s understanding. If the student’s original

answer is wrong and they rank their answer above other correct answers, this could

be evidence that the student is confident in their incorrect work.

Once the student clicks ‘OK’, the student progresses within NITELITE to the

asynchronous aspect of NITELITE. Once again, I present the student with a message

of what the task is at hand in green and shown in Figure 6.3. This was put in place

to make certain students had a clear understanding of what is required. From

Figure 6.3 there is a column which articulates where the ‘Highest Score’, ‘Second

Highest Score’, ‘Second Lowest Score’ and ‘Lowest Score’ should be placed. Student

then could click and drag the answers (by clicking where the blue arrow is pointing)

to the final order they would expect. Once the student is satisfied with their ranking,

they could click the ‘Submit Ranking’ button (green arrow is pointing to the button

in Figure 6.3).

The list, which the student is given, is chosen utilizing multiple NLP approaches

to identify both similar and dissimilar student answers to their own. However, the

first row (‘Highest Score’ row in Figure 6.3) is always populated with the student’s

original answer. The following 3 rows utilize the modern natural language process-

ing. A mentioned previously, and utilized effectively in Chapter 4, SBERT is an

approach which generates a single vector representation of groups of text. Instead

of a single embedding per word, SBERT can generate a single embedding for each

student answer. So once a student submits an answer, NITELITE instantly gen-

erates a single SBERT embedding vector representation for said answer. Once the

embedding is generated, whichever student answer embedding vectors are near the

student’s original answer in the vector space would be considered more similar to

it. This is the foundation of the steps taken to populate the rest of the rows within

NITELITE.
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Since the goal of NITELITE isn’t only to share similar answers to the student’s

(as mentioned previously, being able see other student’s perspectives to the question

will cause the student to justify why their answer is correct or the other student’s

answer is correct), I populate the rows with both similar and dissimilar answers to

the student’s original answer. The second row (‘Second Highest Score in Figure 6.3)

first aims to provide the student with another similar student answer. By generating

the SBERT embedding vector, NITELITE can identify the closest answer (with a

score greater than 0-for quality answer control). NITELITE is then able to calculate

the canberra distance between all the SBERT embedding vectors of student answers

to the same problem. Then whichever previous student’s answer vector has the

smallest canberra distance to the new student’s answer populates row 2 (Second

Highest Score) in Figure 6.3.

While having similar and dissimilar answers is at the core of NITELITE, I de-

cided to have an exemplary row for students. A row which contains another student’s

answer which received 100%. Therefore, there is always an answer which will pro-

mote learning for the student. The choice is simply made by randomly selecting a

previous student’s answer which received a 4/4. This randomly selected exemplary

answer populates the 3rd row (‘Second Lowest Score’ in Figure 6.3).

For final row, ‘Lowest Score’ row in Figure 6.3, NITELITE fills the row with an

answer which was “different” from the original answer with a score greater than the

predicted score. Essentially, there are two steps to populating the final row. First

NITELITE utilizes SBERT, again shown to be accurate at scoring student answers

[BBE+21], as a predictive model to predict a score for the original answer the student

submitted. Then NITELITE utilizes the SBERT embedding of the student’s original

answer to identify a different, opposite of row 1, student answer to the problem. This

is performed by identifying which other student answer embedding vectors are more
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than 1 standard deviation (utilizing canberra distances) away from the submitting

student’s original answer. So NITELITE then randomly selects a student’s answer

which is a score greater than the predicted score and more than 1 standard deviation

away from the submitting student’s original answer.

What should also be noted in Figure 6.3 the ‘Submit Answer’ button is not able

to be clicked. This was set in place to make sure students would understand that

they aren’t submitting their answer, yet. They are just submitting their ranking of

the other answers. Once they click the ‘Submit Ranking’, they are given one last

prompt as shown in Figure 6.4. This final prompt simply gives the students two

options, would they like to ‘Edit Original Answer’ or ‘Submit Original Answer’. If

the student chooses to submit their original answer, the task is over and it moves

on to the next problem. If the student chooses to edit their original answer, they

are sent back to the screen in Figure 6.1. From there, they may edit their answer

and submit their new final answer. Once submitted, the student is finished with

NITELITE.

6.4 NITELITE Randomized Controlled Trial

6.4.1 Randomized Controlled Trial Design

Along with developing NITELITE, this project attempted to run a pilot study. To

accomplish this, I ran a RCT with 4 teachers and their 7th grade math students.

This provided the opportunity to have students interact with NITELITE and apply

it to their own work. Going in, there were a couple hypothesis I was hoping to

explore. Mainly there were 7 questions: 1.) Did students who utilized NITELITE

perform significantly better in the post test; did learning occur? 2.)For those who

can edit, was there a reliably higher score in the final submitted answer? 3.)If
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students are provided the opportunity to edit their work, is there a reliable difference

in the answer length across the two conditions? 4.)Whether or not the asynchronous

collaboration’s, the standard NITELITE or random rank list condition, effect on

the difference in answer length (between final and initial answers) is significantly

different from 0. 5.)When presented the opportunity, do students edit their answers

after asynchronous collaboration? Whether or not, if given the chance to edit, there

is a reliable difference in whether a student edits or not by condition when controlling

for the initial score. 6.)If there is any evidence to show that students are more or

less likely to rank their answer in the top half over the bottom half of the rankings.

To answer these questions, the RCT consisted of 2 7th grade mathematics prob-

lems. The first would be deemed the pre-test and the following question would be

the post-test. The problems selected for this study were chosen from OER content.

More specifically, I tailored the questions to be closely related to work students had

worked with not too long prior. At the time of the study, this consisted of solving

problems about proportional relationships.

The questions chosen for the study needed to be not only OER content, but ques-

tions which the students hadn’t already worked on up to this point. Likewise, it

was important to find a pre-test question which had enough previous students, who

are not in the RCT, that have answered and teachers have graded. It is clear from

the prior section that NITELITE populates itself using historical student answers

to the same problem. After scouring 7th grade OER content similar to the student’s

current work, the final problem selected for the pre-test was one which asked “Con-

sider the problem: A person is running a distance race at a constant rate. What

time will they finish the race? What information would you need to be able to solve

the problem?”. To solve this problem the student would need to understand how to

utilize the speed formula to solve for time (i.e. speed = distance/time).
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Within the pre-test question is where the conditions split. There are 3 separate

conditions a student could be randomly placed into: Standard NITELITE condition,

random ranking list condition, and the control condition. Every student will see the

same initial screen, as shown by Figure 6.1. Every student will see the same OER

constant rate question. However, once they click submit, their paths diverge. The

standard NITELITE condition will progress through the problem as shown in the

previous section from Figure 6.1 - Figure 6.4. The student will be prompted to

rank the other student answers shared with them, then they are able to either

submit or edit their original answer. From there, they advance on to the post-

test question. The random ranking list condition looks identical to the NITELITE

condition. However, instead of using NLP to populate the 3 rows (recall the first is

always going to be the student’s original answer in NITELITE; the random condition

keeps this the same as well) the random rank list condition will populate the 3 rows

with completely random student answers. This can help to justify whether or not the

natural language processing is necessary to improve learning. Similar to NITELITE,

once the student ranks all the answers from best to worst, they can either edit or

submit their original answer. Once completed the student can progress on to the

post test. As for the control condition, the student will progress through the open

response pre-test in a traditional manner without and asynchronous collaborations.

The student will just answer the open response business as usual and progress on

to the post-test.

As for the post-test, since this study set out to see if there were any learning gains

from utilizing NITELITE or a random set of student answers in an asynchronous

fashion, I chose an OER inspired question. While the pre-test required students to

understand the formula speed = distance/time, the post test required students to be

able to now use the speed formula to calculate how long it would take Jessica, Avery
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and Cole to travel to the beach. This is shown in Figure 6.5. Having a post-test

which utilizes the formula from the pre-test, but requires students to apply it, can

help me infer if any learning did occur. For instance, if a student did poorly on the

pre-test, but managed to perform well on the post test (and were in the NITELITE

condition), this could be evidence of learning occurring. This is why the post-test

question was selected for this RCT.

In the end, I was able to recruit 4 teachers who taught middle school mathe-

matics. More specifically, 7th grade mathematics. From this, I was able to get 193

students to participate in the RCT. With 69 residing in the standard condition, 68

in the random condition and 56 in the control condition. Teachers were given a

week to assign the problem set I generated for the study. Teachers were then able

to grade the answers to the pre-test and post-test question from students within

the control condition directly within ASSISTments. However, the teachers were

given a spreadsheet to grade the standard NITELITE condition student answers

and the random rank list condition student answers to the pre-test question. This

was because the teachers could have up to 2 answers per student. If the student

did edit their original answer, the teacher would be given both the original and the

edited answer to score. As for the post-test, the teachers were able to grade the

random rank list and standard NITELITE condition student’s post test answers

within ASSISTments.

6.4.2 Results

As mentioned earlier, in the end I was able to recruit 4 7th grade mathematics

teachers and their students to participate in my NITELITE RCT. In the end, 193

students opened the assignment and were assigned a condition. Figure 6.6 shows

that 69 students were assigned to the “Standard” condition (which represents the
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NITELITE condition), 68 students were assigned to the “Random” condition (men-

tioned earlier as the “Random Ranking List” condition) and 56 were a part of the

Control condition.

What is apparent from Figure 6.6 is that there are a number of students who

drop off and do not complete all the milestones within the RCT. There are 3 to 4

milestones a student is expected to complete within the RCT. Initially, every student

who opens the problem set is then assigned a condition (top level of Figure 6.6).

From there, if the student is assigned the standard or random condition, they will

have 3 more milestones to complete. Mainly, they submit an initial answer, submit

their final answer after completing the ranking task(edited or not) and then submit

a post-test answer. A student who has been assigned the control condition does not

have an initial answer to submit, but they do submit a final answer. They then

continue onto the post-test problem without any asynchronous collaboration. This

is the business as usual case.

From an initial glance, there is quite a drop off in the number of students complet-

ing milestones within this RCT. Naturally, the question arises if there is differential

completion of milestones within the study across different conditions. Essentially, if

there is any differential completion at certain milestones, I will be unable to make

inferences at that level. With there clearly being drop offs at differing milestones

within my study, I ran multiple chi-square tests. Figure 6.6 presents the results of all

the tests. Each of the p-values are reported on on the left side of Figure 6.6. From

this analysis, I can deduce that while there are a number of students not submit-

ting an initial or a final answer, the chi-square tests did not come back significant.

Therefore, there is not differential submissions of initial (p-value = 0.255) or final

answers (p-value = 0.165) across condition. With that being the case, I can make

inferences at the final answer level. However, one chi-square test did come back
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significant: those who completed the milestone of submitting a post-test answer.

Essentially, those who completed the entire RCT/study. From the analysis, it is

clear that with a p-value of 0.046, that I will be unable to make any inferences at

the post-test level. More specifically, there are differential completion of the RCT

across the different conditions. With this being the case, I am unable to compare

post-test score or perform post-test analysis because of potential selection bias. This

rules out analyzing if learning occurred between conditions in the RCT.

While the analysis on the post test is not attainable, inferences can still be

made at the student final answer level (the answer they submit after the ranking

task). First, of the student who are given the option to edit their original responses

(the standard and random condition), is there a reliably better score in the final

answer in a condition. So for those with the opportunity to edit, is there a reliable

difference, by the condition, in their final answer score? A linear regression was run

utilizing the final score of the students final answers as the dependent variable and

their initial score (rows were dropped where initial score was NaN - a chi-square

test proved not significant, so there is not differential scoring across condition) and

assigned condition as the independent variables. Table 6.1 shows that for those who

are given the opportunity to edit their original answers, there is no reliable difference

in the final score, by condition, when controlling for the initial score (p-value of 0.484

for the standard condition variable).

Even though there isn’t a reliable difference in the final score across the condi-

tions, the question remains that if student’s are provided the opportunity to edit

their work, is there a reliable difference in the answer length across the two condi-

tions? Similar to Model 1, in Table 6.1 , a linear regression was developed using the

conditions (standard NITELITE and random) and initial score (once again, drop-

ping any rows where the score was NaN - a chi-square test proved not significant,
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so there is not differential scoring across conditions) as the independent variables.

This time, however, the dependent variable is the difference in the string lengths

between the final answer and the initial answer. In the end, while holding initial

score constant and controlling for the initial score, Table 6.2 shows that there is no

reliable difference in the change in answer length between conditions.

Another way to approach the question of editing is to examine whether or not

the presence of asynchronous collaboration, the standard NITELITE or random

rank list condition, effect the difference in answer length between final and initial

answers reliably different from 0. To accomplish this, the model changes slightly.

By including the control condition, which inherently will have a difference in initial

answer and final answer length of 0, this inference can be made. Therefore, the linear

model will consist of the initial score a student received, conditions being “Standard

or Random” or “Control”. Another linear regression is run with the difference in

the initial answer and final answer length as the dependent variable. Table 6.3

shows that conditions with asynchronous collaborations (standard NITELITE or

random rank list conditions) effect on the length difference between the final answer

and initial answer is not reliably different from 0, while controlling for initial score.

Again, since the control condition is set within the intercept, and the difference is

always 0 for the control, this inference can be made.

As a final analysis with final answers, I set out to identify whether or not, if

given the chance to edit, there is a reliable difference in whether a student edits or

not by condition when controlling for the initial score? Essentially, is a student in

the standard NITELITE condition significantly more likely to edit than students

in the random condition. For this analysis, initial score and the condition the

student is in that can edit (i.e. standard NITELITE or random rank list) will be the

indepedent variables. However, this time a linear regression would not suffice. This
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is because the dependent variable for this analysis is binary, whether they edit or not.

With this being the case, a linear model could work, however it would introduce

heteroskedasticity. Given this, I train a ordinary least squares linear model with

robust standard errors [SA12]. Once again, it is clear that there is not a significant

difference in whether or not a student edits their original answer by condition when

controlling for the initial score. Table 6.4 supports this given that the independent

variable condition standard NITELITE is not statistically significant.

In the end, all models trained to identify whether the conditions are significantly

different from each other in terms of the final answer length different or if they

edited in general where inconclusive. There was no evidence of the conditions being

significantly different. In the end, this is to be expected given that only 9 students

chose to edit their original answer out of the 92 students who submitted a final

answer. It is difficult to deduce anything from such a small sample size utilizing the

editing aspect of NITELITE.

While the student final answers did not show any significant difference between

the conditions, the students still had another task which could provide insights into

the tools effect on them. It was mentioned earlier that one could infer a student’s

confidence in their answer, and work, given how they would rank it in comparison to

the other student answers. Recall, NITELITE always randomly selects an answer to

share from answers which received a perfect grade. This exemplary answer should

remain close to the top. For instance, if a student receives a grade of 1, and still

ranks their answer above the 4, this could be evidence that the student was confident

in their work, but incorrect in the answer. This, of course, is built on the assumption

that the students do change the rankings.

When examining the student’s interaction with the asynchronous collaboration

aspect of NITELITE (and random case), the ranking list in Table 6.5, it is clear that
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most of the students put their answers as the highest score possible in the ranking.

In the end, a total of 69 of the students, across both the standard NITELITE

condition and random condition, put their initial answer as the top one.

Table 6.5: Distribution of original answer final ranking position via condition
Random Standard

Highest Score 35 34
Second Highest Score 11 10
Second Lowest Score 3 1
Lowest Score 1 1

What this suggests is that student’s often didn’t participate in the ranking.

NITELITE has the submit ranking button and the student didn’t have to move

anything to be able to hit the submit ranking button. While it appears that student’s

didn’t utilize the ranking aspect of NITELITE (or the random ranking condition),

another way to check was to examine the distribution of the rankings given their

initial answer’s score. From Table 6.6 it is more apparent that many students did

not participate in the ranking activity. Of those who didn’t get a perfect 4/4 score,

only 13 out of the 54 non perfect grades moved their answer below the top spot. It

should be noted that the slight difference in totals is because of dropping the rows

which didn’t have a score associated with them.

Table 6.6: Distribution of original answer final ranking position via initial answer
score

Initial Answer Score
0 1 2 3 4

Highest Score 9 4 10 18 24
Second Highest Score 1 0 4 4 11
Second Lowest Score 1 0 0 2 1
Lowest Score 0 0 1 0 0

Another question which could be ask is if there was any evidence to show that

students are more or less likely to rank their answer in the top half over the bottom
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half of the rankings. After a quick chi-squared test, this came out to be not signifi-

cant. A final analysis, which could provide more insight into the student’s behavior

with the ranking in the standard NITELITE and random ranking list condition,

utilizes the Spearman rho correlation. This is rank based correlation calculation.

Essentially, this will show whether or not there is a correlation between x and the

rank of y. In this case, I examine whether there is a correlation between the initial

score of a student’s initial/original answer and the rank position of their answer.

This can help illustrate if students are interacting with the rankings properly. If

they are, it would be expected that there would be a mild amount of correlation

between the two variables. In the end, the Spearman rho correlation was not sig-

nificant with a rho value 0.095. The closer to 0 the rho value, the lower amount of

correlation between the variables. In this case, its nearly 0. This helps to identify

that students didn’t interact with the ranking system in the way it was meant to.

6.5 Limitations and Future Work

In the end, most of the analysis came back not significant and that the conditions

were not significantly different from each other in terms of any analysis. This could

be attributed to many factors. First, in terms of ranking, it would be beneficial to

adjust the ranking aspect of NITELITE to shuffle the order of other student answers

being shown. This could help encourage students to move their answers around

when their answer isn’t always on top. Secondly, it was surprising to see how few

students decided to edit their original answers. There was a wide range of scores

which the students obtained, and they were always shown an exemplary answer

along with similar and dissimilar student answers. So when a student received a 0

score on their initial answer, as some did, I’m surprised only a few decided to edit.
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Most students, specially those who know they didn’t know the answer, would want

to attempt to get some points by editing their original answer. Therein lies one

limitation of this work; students treated this study less like an assignment and more

like an extra activity. With this being the case, students went in with a different

mentality than if the study was assigned and presented as an actual assignment.

Students will naturally behave differently for an assignment versus a pilot study.

Another limitation of this work was the number of students who dropped out

and never finished the study. Given that there was differential completion of this

RCT across the different conditions, analysis could not be performed to make any

inferences at the post test level. This meant that any analysis on potential learning

occurring would be inaccurate. What is interesting is that most of the drop out

came in the conditions which provided students the asynchronous collaboration.

However, based on the analysis of the student behavior with the rankings, there

may be evidence that the students didn’t want to take the time to rank the answers.

Thus, fatigue may have set in on the students in the random rank list condition and

the standard NITELITE condition. In the future, I would possibly look to changing

the ranking. Possibly simplifying it, maybe even removing it for the next study.

My goal is to attempt this again in the future but simplify NITELITE and the

asynchronous collaboration. This would help narrow down the cause of the dropout

amongst students. It is the case that, similar to the students not editing, student

may not have had a similar mentality as to a standard assignment.

Even though there were some shortcomings to this pilot study of NITELITE, I

felt this was a successful trial of the tool. Students did successfully utilize aspects of

the tool and it was successfully integrated into a problem set within ASSISTments.

From this successful pilot study, I look to adapt a couple pieces of NITELITE and

run another RCT in the near future. It would be my goal to be even more specific
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in the instructions to the teachers about how to present the tool. To help students

work through the tool as a true assignment and less like a pilot study.

6.6 Conclusion

Overall, the RCT was a successful pilot study for my asynchronous collaboration tool

NITELITE. Students were able to work through their problem set with NITELITE

integrated into ASSISTments. NITELITE successfully utilized modern natural lan-

guage processing presented in previous chapters within this dissertation. More

specifically, NITELITE was able to successfully and efficiently run SBERT, as pre-

sented in Chapter 4, as a prediction model for NITELITE. This is also the model

I tested in Chapter 3 for potential unfairness (and was not able to identify any un-

fairness). Additionally, SBERT was able to efficiently populate 2 out of the 3 rows

of the asynchronous tool. NITELITE was efficient in its presentation and students

progressed through it with minimal issue.

In the end, NITELITE embodies much of the work within this dissertation. Uti-

lizing language to help develop a support system for students working through open

response questions. I feel this is a stepping stone for future work with NITELITE.

Tweaks can be made and future studies can be run to test out different variations

of the milestones within NITELITE. Even with students dropping out, it was clear

from the data that students have similar and differing rationale to solving both the

pre-test and the post-test within this study. This helps to support the diversification

of content teachers can deliver to students. NITELITE embodies that by supporting

students through open response questions and teachers gaining deeper insights into

the student’s true understanding of the material with the ranking system. Language

is a powerful tool for learning. While there will be correlational mistakes made in
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math, what makes mathematics beautiful is the fact that there are multiple per-

spectives to solving a problem. As long as a student follows the proper set of rules,

there isn’t a limitation to how they can approach a problem. This is the beauty of

critical thinking, the beauty of mathematics and the beauty of language in learning.
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