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Abstract 
The primary goal for this project was to create an autonomous remote data transmission 
system for environmental researchers collecting data in remote locations. The system will 
be used in Kotzebue, AK to monitor environmental conditions. To design this system an 
interface between the Iridium Satellite Network and Campbell CR1000 datalogger was 
implemented and analyzed. The solution includes a fully functional prototype which is 
able to provide near real-time access to collected data. 



 ix

Executive Summary 
The Center for GeoSpace Studies at SRI conducts research relating to the upper 
atmosphere and space environment. This research often entails experiments using 
incoherent scatter radar, satellite communications and optical instrumentation. The 
Center is also one of the entities that make up VECO Polar Resources (VPR), the 
National Science Foundation's Arctic logistics contractor. VPR supports research stations 
in Alaska, Canada, Greenland, Iceland, Norway, Russia, and the Arctic Ocean. 
Throughout these regions over 100 grants and 500 scientists are supported year-round for 
a total of 55 different field locations. SRI’s role in VPR is to provide communications 
services for VPR’s field research projects, including the deployment of data collection 
and field communications systems. 

SRI and VPR have received increasing requests from scientists for real-time access to 
data from their research stations in remote locations. These are often small stations 
collecting data from a few sensors and storing samples into a datalogger. In the past, the 
data was retrieved only when the scientist visited the site, which could be as infrequent as 
once a year. Several scientists explained that their system was working great while they 
were there, but upon their return a year later they found that it failed shortly after leaving. 
With real-time access to the data, they not only have constant monitoring capabilities, but 
they can also determine if the system is functioning properly.1 

This report provides design documentation as well as user and maintenance manuals for 
future use and upkeep of the system. The major specifications for this project are: the 
system must be able to sustain itself year round without maintenance in -40°C with ice 
and snow; the system must collect and send meteorological data at least once per week 
over the Iridium satellite network, and the system communications costs must be under 
$2400 per year.  The project is divided into two systems which will communicate with 
one another, a “remote end” and a “local end”. The remote end, located in Kotzebue 
Alaska, will collect data periodically and send it to the local end, at SRI in Menlo Park 
CA. The local end will receive the data, format it, and send it to the data transport 
network, which will update a webpage displaying meteorological conditions at the remote 
site. 

The remote end can be broken down into three systems, data collection, communication, 
and power. The data collection system consists of a multitude of sensors attached to a 
Campbell Scientific Institute (CSI) datalogger through CSI multiplexers. The datalogger 
was programmed to collect data from the array of sensors and transmit it at user 
adjustable intervals. The datalogger will also send a system health update with each data 
transmission. The communications system includes an L-Band (390MHz-1.55GHz) 
Iridium modem and transmitting antenna. The power system is comprised of three major 
components: a photovoltaic panel, a charge controller, and two 100Ah gel cell batteries. 
The solar panel converts the available sunlight into power which is stored in the battery 
via the charge controller, increasing the efficiency of the charging system. This testing 
station will collect soil moisture and soil temperature readings, and transmit the data over 
satellite communications to be received by the local end. The local end will include 
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another L-Band Iridium modem and a dedicated PC running a program to receive and 
format the transmitted data. The local end program which was created using the Python 
programming language will send updates to the Data Transport Network which will load 
the most current data onto the website. 

The datalogger and the Iridium modem were both specified by and provided by SRI. The 
datalogger was chosen for its high level interface to the processing and data controls. The 
Iridium modem was chosen for its versatility of communications modes including 
standard dial up and short burst data as well as its ability to communicate in Polar 
Regions. After thorough testing and the completion of the project, the system was 
shipped to Kozebue, Alaska where it was deployed. A user manual and a maintenance 
manual were also provided to the researcher leading the project. The system successfully 
demonstrated the functionality of this design through extensive testing. The 
communications system has been thoroughly tested, also the ability to adjust the 
transmission period has been implemented, and the data has been displayed on a website 
for easy access.  This report documents background information related to the project, 
major design decisions, tests performed, and recommendations for future work. 
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1 Introduction 
The National Science Foundation (NSF) was created in 1950 by Congress to promote the 
progress of science and national prosperity.   Today, NSF is continuing to keep the 
United States at the leading edge of discoveries from astronomy to geology to zoology.  
With an annual budget of $5.5 million, NSF is responsible for 20% of federally supported 
research at America’s colleges and universities.   
 
Research in the Polar Regions of the Earth is of particular importance in these times of 
climate change and global warming.  In order to support scientists in the Polar Regions 
NSF contracts VECO Polar Resources (VPR) for all Arctic Logistics.  VPR supports 500 
scientists working in 55 different field locations around the Poles.  The GeoSpace Center 
at SRI International supplies field communications services to VPR-funded projects.  The 
WPI team worked at SRI to provide communications support to Dr. Patrick Sullivan’s 
study of the constraints on the physiology and growth of trees at the latitude tree line.  
 
As communications technology pushes forward, so does the demand for immediate 
access to data from sensors in remote locations around the world.  The resources 
expended to send a researcher to one of these remote locations to manually retrieve data 
is both uneconomical and impractical given today’s ability to communicate 
autonomously.  Real-time data coming from these remote systems would allow 
researchers to monitor operating status, and keep up to date records, while saving time 
and money.  
 
The primary goal of this Major Qualifying Project was to design a general system that 
can provide real-time access to scientific instruments located in remote regions of the 
world.  To implement the system the WPI team provided a comprehensive interface 
between a Campbell Scientific Datalogger and an Iridium Satellite Transceiver.   
 
Additionally, the team employed the Data Transfer Network, created by SRI, to make this 
information available to researchers. To interface with the Data Transport Network, the 
team used Python programs to process and distribute the data transmitted across the 
Iridium Network. 
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2 Background 
This section provides background information on all relevant aspects of the project:  data 
collection, data transmission, system power, and weather conditions 

2.1 Scientific Background 
In order to gain a greater appreciation for the impact this project will have on SRI, VECO 
Polar Resources (VPR), and the scientific community at large, several topics must be 
understood.  In the following section the significance of polar research and real time data 
transmission will be explained.  Furthermore, a short overview of previous arctic remote 
sensing deployments will be discussed.  This section concludes by outlining theories 
behind this project and how they will improve future remote sensing missions. 

2.1.2 Why Transmit Data in Real Time? 
SRI has received increasing requests from researchers for near real-time access to data 
from their instruments in remote locations.  These are often small stations collecting data 
from a few sensors and storing samples into a datalogger. In the past, the data was 
retrieved only when the scientist visited the site, which could be as infrequent as once a 
year.  Several scientists have explained that their system was working great while they 
were there, but upon their return a year later they found that it failed shortly after they 
left. With real-time access to the data, they not only have constant monitoring 
capabilities, but can also determine if the system is functioning properly. 

2.1.3 Why Deploy Arctic Sensing Systems? 
Scientists and researchers are placing increasing importance on understanding 
environmental effects of changes in temperature, moisture and other shifting climate 
conditions.  This project will be used specifically to support a research station which will 
gather information about soil moisture and temperature and the effect of the growth and 
regression of the latitudinal tree line over time.  Dr. Patrick Sullivan is a researcher 
supported by a NSF grant and being assisted by VPR.  Dr. Sullivan has hypothesized that 
the careful study of changes in soil moistures, temperature, and tree line over time, can 
lead to conclusions about the widespread effects of global warming.   
 
Evidence implies that temperature has significant control over the latitudinal tree line 
position.  Traditionally it has been viewed that rising temperatures are associated with 
increases in growth of tree line trees, and the invasion of forests into tundra land.  
However, numerous recent studies have observed negative growth trends in the late 20th 
century among arctic and alpine tree lines studied.  The most significant tree line 
regressions have been noted in particularly dry areas.  Clearly, there are changes 
occurring in the earth’s climate, studying areas affected by these changes can provide 
insight into the broader implications of phenomena such as global warming.    
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2.1.4 Existing Systems for Real Time Data Transmission 
As previously stated, recent years have seen an increase in researchers need for real-time 
status reports from their remote systems.  As a result several organizations have begun 
using satellite network technology to transmit status reports, instrument data, and even 
digital images.  This section will briefly overview a few such deployments. 
 
One notable deployment took place in September of 2005.  Since April of 2002 The 
National Oceanic & Atmospheric Administration in conjunction with the Pacific Marine 
Environmental Laboratory (NOAA/PMEL) has been deploying web cams to view the 
North Pole in the summer warmth and daylight.  They are set up from April to October 
and redeployed each spring.  The images from the cameras track North Pole snow cover, 
weather conditions, as well as the status of PMELS North Pole instrumentation.  This 
includes meteorological and ice sensors seen in Figure 1.  Among the sensors are 
downward looking sounders, ice thickness poles, and camera images, which are relayed 
via the Iridium satellite system.  While the WPI team’s system did not employ a webcam 
it did implement the Iridium satellite network to transmit data in real time.  Being able to 
review previous applications of Iridium’s technology was useful in the design of this 
project.  
 
 

 
Figure 1:  NOAA/PMEL Webcam shot2 

 
 

Another similar project is called the Summit Station.   It is located at the peak of the 
Greenland Ice Cap, and like the WPI/Sullivan project, Summit is also sponsored by the 
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NSF through VECO Polar Resources.  Summit Station is home to the Greenland 
Environmental Observatory, also known as GEOSummit, which provides real time 
monitoring of climate conditions.   This station is positioned on 3200m of ice which is 
almost 400km from the nearest point of land.    GEOSummit supports a diversity of 
scientific research, including year-round measurements of air-snow interactions that 
provide crucial knowledge for interpreting data from deep ice cores drilled both at 
GEOSummit and elsewhere. 
 

 
Figure 2: GEOSummit webpage (www.geosummit.org) 

 
Figure 2, shows a screen shot of the website relating data from GEOSummit in real time.   
The table in the upper left corner presents current conditions at the Summit station.  In 
the center of the page there are graphs continually updated displaying outside 
temperature, wind speed, and wind direction.  Another interesting feature is the live 
webcam view which is shown on the left of the page.  For Paddy Sullivan’s research 
project the WPI team will create a website similar to this one, continually updating the 
page with meteorological data from Paddy’s remote station in Alaska. 

 

2.1.5 A New Approach to Remote Data Transmission 
As seen above, VECO Polar Resources has had a fair amount of experience with remote 
data transmission systems.  However, the Sullivan project will be their first experience 
interfacing a Campbell Scientific datalogger with an Iridium modem for remote 
transmission purposes.  While the collection of soil temperature and moisture data will be 
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of great interest to the scientific community, this project will have broader implications as 
well.  It will serve as a prototype system for future VPR deployments of CSI dataloggers 
using the Iridium network to transmit data in real time. 
 

2.2 Alaskan Weather 
The implementation of the data logging system will be in Kotzebue, Alaska for treeline 
research. Kotzebue is located on the northwest coast of Alaska, just above the Arctic 
Circle (67° 28’N, 162° 14’W). 

�

Figure 3: Location of Kotzebue3  
 

Harsh weather conditions can be expected in Kotzebue.  The maximum recorded 
temperature is 85°F in June of 1991 and the minimum recorded temperature is -52°F in 
February, 1968.  The average and extreme daily temperatures can be seen in Figure 4.   
 

 
Figure 4: Average and Extreme Temperatures for Kotzebue, AK4 

 
 
Due to the high latitude, the daylight hours in Kotzebue vary greatly from summer to 
winter.  On the winter solstice, December 21, the sun is only up for about 1.5 hours, 
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rising at 1:01PM and setting at 2:41PM.  During the summer solstice Kotzebue 
experiences 24 hours of sunlight.  In fact, the sun rises on June 12 and sets July 2, 
providing a month of uninterrupted daylight.5  
 
Kotzebue receives 8.98in of precipitation annually on average, significantly less than 
most areas in the United States.  Most of this precipitation comes from July to October, as 
seen in Figure 5. 
 

 
Figure 5: Average Monthly Precipitation in Kotzebue, AK 

 
When harnessing energy from the sun it is also important to take cloudiness into account.  
A cloudy day can greatly impact the output of a solar panel.  Figure 6 shows the monthly 
averages for clear, partly cloudy and cloudy days in Kotzebue. 
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Figure 6: Cloudiness in Kotzebue, AK6 
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Solar energy also depends upon the strength of the sun.  Solar insolation is the amount of 
incoming solar radiation that reaches the planet, measured in Watts per m2.  Figure 7 
shows the average insolation values throughout the year measured at the top of the 
atmosphere for the latitude and longitude of Kotzebue.   
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Figure 7:  Insolation in Kotzebue, AK7 

 
The insolation values drop extremely low in the low angle sun of the winter but peak 
close to 500 W/m2 in the summer, roughly half of what is received at the equator. 
 
Another important weather condition for energy generation is wind speed.  Figure 8 
shows average wind speeds to be around 11mph with gusts ranging from 30mph to 
48mph.  In the winter the prevailing wind direction is from the East, while in the summer 
the wind mostly comes from the West. 

 
Figure 8: Wind Speeds in Kotzebue, AK 
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2.3 Collecting Data 
SRI has considerable experience in remote sensing applications.  Through prior efforts 
they have concluded that using a single datalogger, with multiple inputs as well as 
integrated memory and processor, is the most efficient way to implement data collection.   
Given this knowledge, researchers at SRI have elected to employ a Campbell Scientific 
Institute (CSI) datalogger to collect environmental information.  
 

 
Figure 9: Standard components of a CSI Datalogger8   

 
CSI dataloggers have been used in a variety of applications including meteorology, 
agriculture, air quality, soil moisture, HVAC systems, water resources, and geological 
research.  These dataloggers are used all over the world to provide accurate and reliable 
measurement and to control system performance.  CSI has intended these systems to 
execute one-time data collection, as well as ongoing data monitoring.  Additionally, some 
CSI dataloggers can be programmed to respond to input conditions by executing 
operations such as actuating a motor or toggling a switch. 
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Figure 10: CR1000 Datalogger9 
 

This project will be designed specifically for the Campbell Scientific CR1000 
Datalogger, but the desire for a generalized solution will be kept in mind as well.  All CSI 
Dataloggers accept input from multiple peripheral devices.  These sensors may indicate 
things such as temperature, wind speed, moisture, and a host of other environmental 
indicators. Many of the other CSI dataloggers have similar functionality, with variations 
simply being in the size, number of inputs, or layout. 
 

 
Figure 11: A CR1000 used in a weather station 10 

 
 

2.3.2 System Description 
The Wiring Panel uses screw terminals to connect input sensors and controlled devices to 
the output.  On the CR1000 there are 8 differential analog inputs, 16 single ended analog 
inputs, 8 digital I/O ports, as well as 5 and 12 volt terminals.  Additionally there is a 9 pin 
RS232 port for serial communications.  A 9-pin CS I/O port is also included for 
connection of other peripherals, such as the CS keypad.  The “measurement and control” 
system can sample input sensor voltages at a maximum rate of 100Hz.  The CR1000 
implements both battery backed SRAM and non-volatile flash memory to store data and 
programs.  Standard memory on the CR1000 is 2MB SRAM with expansions available.   
The CR1000 uses the CR OS 8 operating system which was designed by CSI specifically 
for data acquisition.  This operating system can be used to run the datalogger’s complete 
set of process, arithmetic, and program management instructions used to operate the 
system. 
 

2.3.3 Peripherals 
To add even more flexibility to this device, CSI multiplexers and synchronous devices for 
measurement (SDM) can be implemented to expand measurement and control 
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capabilities.  Multiplexers increase the number of sensors that can be read by the CR1000 
and its predecessors.  The two main sensors that will be implemented by Dr. Sullivan are 
the CS615 soil moisture sensor, and the CS107 thermocouple.  SDMs are peripherals that 
expand digital I/O ports and analog output ports. CSI uses NEMA 4X enclosures to 
protect the datalogger even in extreme weather conditions. 
 

2.3.4 Software 
CSI has developed proprietary software for use with its entire line of dataloggers.  This 
software package supports programming the device, communicating with a PC, and 
displaying data on the software’s graphical interface.  There are several software 
packages available.  SCWin Program Builder allows the user to create programs using 
only sensor measurement and data output.  PC200W Starter Software allows the user to 
transfer and retrieve data from the CR1000.  LoggerNet 2.X is CSI’s comprehensive 
software package (there are several other software packages that can be used to increase 
the capabilities of the LoggerNet 2.X software.  Real-Time Data Monitor(RTDM) 
displays real-time or stored data in a multitude of graphical formats.  
 

2.3.5 Short Cut (SCWin) 
Short Cut for Windows is a software package that is designed to make datalogger 
programming easy.  Short Cut implements a four step process to create simple programs 
with a user friendly graphical interface.  This package is compatible with a wide array of 
sensors.  Furthermore, it permits the use of multiplexers with the datalogger to expand the 
I/O ports and gather more data.  Since the goal of this project is to interface the 
datalogger with the Iridium network, the data collection program will be created by 
another VPR partner who will implement the final system.  However, Short Cut will still 
be an integral component of the remote sensing system. 
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Figure 12: Screen shot of SCWin11 
 

2.3.6 CRBasic 
The SCWin software allows users to create programs into .CR1 files written with 
CRBasic with simple drop down menus as described above. The CR1000 uses this 
programming language which is similar structured language to Basic. Using this 
relatively high level language, a programmer can easily create programs with the 
CRBasic’s special instruction set to periodically measure and store data into tables. 
Additionally CRBasic offers many hardware interface commands to integrate external 
devices. Using the RS232 serial commands with CRBasic to program the CR1000 was 
required to integrate with an Iridium transceiver.  
 

2.4 Sending Data 
SRI funds projects in many remote locations around the globe.  Communication in some 
of these areas is often difficult.  This can make transferring data to and from these remote 
locations quite a challenge. The Iridium Satellite Network paired with SRI’s Data 
Transport Network will allow information to be sent to researchers from anywhere on 
earth. 
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2.4.2 Iridium Satellite Data Network 
The Iridium Satellite Network uses three main components in its operation: the satellites, 
an Iridium Subscriber Unit (ISU), and Iridium Gateways.   There are sixty-six low earth 
orbiting (LEO) satellites. It is the only satellite network whose coverage spans the entire 
globe including Polar Regions, oceans and airways.  At any time, there is at least one 
satellite covering every region of the globe.  The Iridium Data Network transmits data to 
and from areas where no other form of communication is available.   
 

 
Figure 13:  Iridium Satellites cover the Earth 

 
The satellite network consists of 66 operating satellites as well as 14 orbiting spares.  The 
satellites are arranged into 6 polar orbiting planes with 11 satellites in each plane.  The 
orbiting altitude is 485 miles at 16,832 miles per hour. This configuration ensures that 
any part of the earth is covered by at least one satellite at all times. 
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Figure 14: Iridium coverage12 

 
Figure 14, shows the Iridium Networks coverage.  The darkest areas indicate the best 
coverage.  The Iridium Network is ideal for systems in the Polar Regions because of the 
concentration of satellite coverage in this area. 
 
The second component of the Iridium Network is the ISU which places and receives 
calls.  When a call is placed from one ISU to another, the call is directly routed by 
passing the call from one satellite to another until it has reached a satellite above the 
intended receiver. For a call to a remote local area network (LAN) or to establish 
connection through the public switched telephone network (PSTN), the Iridium Gateway 
must be used to establish connectivity.13   
 
The third component of the Iridium Network is the Iridium Gateways.   There are 
currently two commercial Iridium Gateways, one in Arizona and the other in Fucino, 
Italy.  Each user is registered to one of these Gateways.  The Gateway is responsible for 
keeping information about its users.  It also routes calls from an ISU to the PSTN or other 
land based networks.14  

2.4.3 Data Transport Network  
The Data Transport Network (DTN) was developed by SRI as a way to manage the 
collection of data from an instrument and deliver the information to interested parties.  It 
was made in response to the inconsistent transfer properties from unreliable, limited 
bandwidth network connections.  The Iridium network fits this description, with calls 
often being dropped in handshakes between satellites and a maximum bandwidth of only 
2400 bps.  Figure 15 shows the workings of the DTN as it applies to this system. Data 
files being collected on the local end of the Iridium connection are saved to a networked 
file system.  The data is stored here until a posting program notices the new data file and 
posts it to a central newsgroup.  The information can then be accessed by anyone by 
logging onto the newsgroup where it was posted. 
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Figure 15: Message Queue at Local Iridium Connection15 

 
The DTN provides for a convenient system to distribute the data that was transmitted 
from the datalogger.  From the central newsgroup server where the raw data files are 
posted a Python-based programming architecture can archive, plot, and monitor the data 
as seen in Figure 16.  The Python Programming language will be described in the next 
section.  Typically, a processing program will have one component which watches the 
server for new data from the remote site.  That program can trigger a program which 
archives the raw data and plots the processed data to a website for review by researchers.  
The system can also be implemented to monitor the health of the overall system.  When 
problems are reported the program can send an e-mail alert to the administrator.  
 

 
Figure 16: Publishing and Subscribing to Data from Central Newsgroup Server16 

 

2.4.4 Python Programming Language 
To configure the Data Transport Network, Python will be used to manipulate data. 
Python is a high-level, interpreted, interactive object oriented programming language that 
is used in many applications and by many companies including Google, Yahoo, and 
Industrial Light & Magic. Python operates using automatic memory management and 
dynamic data typing. Similar languages to Python that use dynamic data typing include 
Scheme, Lisp, Perl, PHP, and Ruby. The portability of Python is convenient as it can be 
implemented using most operating systems including Windows, Unix, Linux and Mac. 
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Python is also free and available for download from their website www.python.org. The 
python website provides free tutorials and helpful links for programmers. 
 
The language is intended to be fun to use, as reflected in the name origin (after “Monty 
Python’s Flying Circus”), and the humor implemented in most of Python’s online 
tutorials. One of Python’s biggest goals is to make their programming language easy to 
use, understand, and implement. By providing Python with built in modules, and 
extensibility, it can be used for a variety of applications and can be embedded into other 
programming languages such as C. 
 

2.5 Power System 
To keep the overall system functioning, a constant power source will be needed to 
provide the energy needed to collect, compute, and transmit data.  The power system will 
need to be self-sustaining and independent from any power grid.  This requires energy 
storage and energy renewal.  VECO Polar Resources has assigned the task of designing 
the power system to Tracy Dahl, an engineer from Colorado.  The WPI team therefore 
must collaborate with Tracy to make sure the power system is adequate for the project.  A 
good understanding of the power system components is necessary for the team. 
 

2.5.2 Battery 
The main source of energy for the system will be two 100 Ah batteries lead acid batteries. 
In all batteries a chemical reaction inside the battery produces a voltage across the output 
terminals.  
 
An important battery property to be considered is storage capacity, or the amount of 
energy a battery can hold.  Batteries are rated to a certain voltage and Ampere hours. 
Ampere hours (Ah) is the amount of current supplied at the battery’s voltage, multiplied 
by the hours it is being supplied.  So, a battery that supplies 5A for 10 hours will have a 
rating of 50 Ah.  To find the Ah rating needed for this system the amount of input current 
needed to power the system needs to be known as well as the longest amount of time the 
battery may go without being recharged.  It should be designed to not drop lower than 
30% of its capacity to increase the lifespan of the battery.  The temperature the battery is 
operating at greatly affects the capacity of a battery.  A chart showing the relationship 
between temperature and capacitance can be seen in Figure 17.  As temperature decreases 
so does the capacity.  The Ah rating of a battery is given for 80° F.  When the battery is 
operated at 40° F the actual Ah of the battery is 75% of the rating and at 0° F the actual 
Ah is at 50% of its rating.  
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Figure 17:  Temperature Effect on Battery Capacitance17 

 
The SRI sponsored MQP team from 2005, Communications Network for a GPS 
Atmospheric Imaging System, performed a great deal of research and experimentation on 
batteries in Arctic climates.  Their work showed two specialized deep cycle lead-acid 
batteries to be most applicable, the Gel Cell battery and the Absorbed Glass Mat (AGM) 
battery.  The gel cell battery uses a thickening gel, usually fumed silica, to immobilize the 
electrolyte making the battery able to perform even if the walls are cracked or damaged.  
Also, the battery functions under any orientation, unlike flooded lead-acid batteries which 
need to be sitting flat on the ground.  AGM batteries work much the same way, except 
they use fiberglass to hold the electrolyte in place instead of gel. When testing the gel cell 
versus the AGM battery the previous year’s team found that the AGM battery’s recharge 
characteristics are much more favorable than the gel cell.  The AGM is able to recharge 
over a greater range of voltages resulting in 96% minimum recharge efficiency, while 
ideally the gel cell recharges at 90% efficiency.  Secondly, the AGM is rated for twice the 
amount of lifetime discharges to 30% of capacity than the gel cell.18  These results proved 
the AGM battery to be superior to the gel cell for the specifications of their system. 
 

2.5.3 Power Generation 
In order for the power system to be self-sustaining, some sort of power generation is 
needed.  The power generated recharges the battery and should be designed to keep the 
battery charged above 30% of its capacity.  Also, there needs to be a charge controller 
between the power generation component and the battery to properly charge the battery. 
 
Perhaps the simplest and least expensive form of renewable energy for Polar Regions is 
through photovoltaic cells (PV cells).  These cells convert sunlight into DC power.  The 
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advantage of using solar power is that it requires no moving parts to produce energy.  A 
solar array simply lies on the ground or is mounted on a pole.  Also, the efficiency of a 
solar panel actually goes up in cold temperatures.   Generally, the efficiency of PV cells 
increase 0.5% for every decrease of 1°C.19  Other aspects of the climate reduce the 
effectiveness of the solar power, however.  The effectiveness of a solar cell is optimized 
in full sun hours, or times of the day when the sun’s intensity is equal to 1000 watts per 
square meter.   Most of the time full sun hours are about a quarter of the total sunlight 
hours in a day.20   In Kotzebue, AK total sunlight hours in a day can get as low as 1.5 
hours. This means there is virtually no sunlight close to the winter solstice.  
 
Another obstacle in solar power generation is cloud cover.  Figure 6 in Section 2.2 shows 
that Kotzebue experiences more cloudy days than sunny days.  As a rule of thumb the 
output of a solar panel during cloudiness is only 20% of the output in full sun.  
Precipitation can severely limit the output of a solar panel as well.  Snow can accumulate 
on top of the solar panels during the winter months, greatly decreasing the efficiency of 
the panel.  Without any human interaction with the system, snow and other debris can 
stay on the panels for long periods of time, inhibiting any power generation.   
 
By taking into account the amount of solar insolation, sunlight hours and cloudiness, the 
estimated output of a 20W Solar Panel in Kotzebue, AK for each day of the year can be 
seen in Figure 18.  This estimation does not take into account any obstruction blocking 
the sun from the PV panel such as ice or snow. 
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Figure 18:  Estimated Solar Power Output 
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2.5.4 Charge Controller 
A charge controller controls the voltage or current delivered to the battery to prevent 
damage from overcharging and other irregular charging.  The best method to charge a 
lead-acid battery is in three stages.  In the first stage a constant current is applied to the 
battery charging it to a certain threshold.  The second stage applies a constant voltage to 
saturate the battery.  Then in stage three a float voltage is applied to account for internal 
resistance losses in the battery.21 (See Figure 19)  
 

 
Figure 19: Three Stages of Charging L-A Battery 

 
The simplest charge controllers only work in one or two stages.  These charge controllers 
are basically a switch which provides charging power to the battery until it reaches a 
certain voltage.  More modern charge controllers work with pulse width modulation 
(PWM).  These charge controllers constantly monitor the voltage of a battery and change 
the duty cycle of the recharge voltage and current to most appropriately charge the 
battery.  This helps to maximize the amount of power delivered to the battery in the 
shortest time without compromising the life of the battery.   
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3 Specifications  
The system must provide autonomous and robust communications support for a 
Campbell Scientific CR1000 Datalogger using the Iridium Satellite Network.  The system 
must meet the transfer needs of Dr. Patrick Sullivan for deployment in Kotzebue, Alaska.  
The system specifications can be broken into three main categories: communication, 
power and physical specifications. 
 

3.1 Communication Specifications 
The communication specifications include the amount of money that can be spent to send 
the data, the amount of data to be sent and the type of data to be sent.  The system must 
meet the following communication specifications: 
 

• Communication budget of $2400 per year 
• Minimum of one transmission per week 
• Each transmission must include: 

o Battery Voltage 
o Enclosure Temperature 
o At least one sample of data from each sensor 

• Allow bi-directional communication 
 
As the specifications state, the system must send at a minimum one transmission a week 
that includes the battery voltage, enclosure temperature, and at least one sample of the 
sensor readings.  The datalogger will collect a set of sensor readings every hour so one 
sample signifies one of these data sets.   Ideally, the system will transmit the battery 
voltage, enclosure temperature, and the full set of collected data every day, but must 
transmit at a minimum of once per week. Bi-directional communications will allow the 
local end to provide the system with confirmation that all the data was received. In 
addition, it would be desirable for the local end system to have the ability to change the 
transmission period should energy resources become scarce. 
 

3.2 Power Specifications 
The overall system must be powered perennially without maintenance.  The main power 
source is two 100 Ah, 12 V gelled electrolyte batteries (Deka Model 8G31). Whenever 
sunlight is present a 20W photovoltaic panel with a Morningstar Sunguard charge 
regulator will charge the batteries.  The two power specifications the system must meet 
are: 
 

• Never allow the battery charge to fall below 30% 
• Operate for a complete year without power failure 

 
It is desirable to run the datalogger on one of the 12 V batteries and the communications 
system on the other.  By isolating the power to the datalogger and the communication 
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system, the datalogger will still have power and be able to collect data if the 
communication system power fails, for this design refer to Section 5.2. 
 

3.3 Physical Specifications 
The system is to be deployed in Kotzebue, Alaska where the lowest recorded temperature 
is -46°C in February, 1968.  The physical specifications that must be met are: 
 

• The system must operate at -40°C 
• The system must be able to withstand the harsh artic meteorological conditions 

 
As for the enclosure; the electrical system, including batteries, will be placed in a 
plywood box with 4” of insulation to provide a relatively stable environment.  The 
electrical components will be mounted on a panel and secured to the top of the box.  This 
box will open from the top, keeping the small components out of harms way when the 
two batteries are moved in and out of the box. The PV panel will be mounted vertically, 
to shed ice and snow, on a poll 2.5 meters high.  Figure 20 shows how the system will be 
set up. 

 
Figure 20: Physical setup of the System  
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4 Design Choices 
The following sections outline the major design decisions for the overall system.  These 
choices included the quantity and frequency of data transmission, using short burst data 
vs. dial up communications, processing capabilities, and data transfer methods. All 
decisions were made based on several factors, each critical to the success of the project.  
 

4.1 Quantity of Data & Frequency of Data Transmission 
For the final deployment it was important to choose how often data should be sent from 
the remote end to the local user.  The specifications state that the data must be sent at a 
minimum of one sample per week but ideally the system would send the complete set of 
data daily.  
 

  Cost Energy Convenience Total 
Weight 0.2 0.2 0.6 1 
Once per Week (One Sample) 100 100 10 46 
Once per Day (One Sample) 14 14 70 47.6 
Once per Day (Complete Data Set) 9 11 100 64 

Table 1: Comparing the Amount/Frequency of Data to Send 
 
Table 1 shows a value analysis chart of the each of the three choices.  The weights were 
chosen due to its importance to the project.  On this scale, zero represents no importance 
with ascending importance until one.  Each decision is given a value from zero to one-
hundred for cost, power and convenience.  This number was chosen by how well each 
choice meets the ideal situation with zero being the worst case and 100 being the best 
case.  The reasoning behind the selection of these numbers will be discussed in the 
pertinent sections below.  After weighing the options it was decided that a daily 
transmission of the complete set of data was the best option. 
 
One specification of the system is that the communication cost cannot exceed $2400 per 
year.  There will be approximately 100 sensors in the field.  The data from these sensors 
are each four bytes.  Each sensor will take one reading every hour or 400 bytes per hour.  
Therefore, one sample is one reading from each of the 100 sensors in the field combined 
with some metrological data such as temperature and also some system health checks 
such as battery voltage.  This makes one sample approximately 500 bytes.  A full day’s 
set of data would have twenty-four samples, one for each hour of the day, and would be 
approximately 12KB.  
 

Cost for Transmission (per year) 
Once per Week(One Sample)  $78.52  
Once per Day(One Sample) $551.15  
Once per Day(Complete Data Set) $876.00 

Table 2: Cost per year 
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The cost to send one sample of data is $1.51.  As Table 2 shows, the daily transmission 
cost at this rate is $551.15 per year and the weekly transmission at this rate is $78.52 per 
year.  The cost to send a complete day’s set of data is $2.40 per day, or $876.00 per year.  
Even though sending one sample of the data per week is cheaper than the other two 
methods, it is important to notice that all three choices would be well within the yearly 
budget.  To choose a weighting from zero to one-hundred for the cost parameter, Table 2 
was used.  To do this, one-hundred was chosen for sending one sample per week because 
it was the most cost efficient.  Then, dividing one sample per day by one sample per 
week showed a factor of seven.  Dividing one-hundred by seven gave a rating of 
fourteen.  The same was done with sending a full day’s data everyday and the result was 
nine. 
 
The system must run all year without draining its battery source.  Therefore the energy 
used by the system must be minimal.  The energy is calculated by the length of time the 
transceiver is on and the amount of time the datalogger is collecting and sending data.  
Sending the complete set of data will keep the devices on the longest, with once a day 
next and once a week consuming the least amount of power. The energy consumption of 
the three choices can be seen in Table 3. 
 
  

Energy used for Transmission (Wh) 
Once per Week(One Sample)  13.00 
Once per Day(One Sample) 91.24 
Once per Day(Complete Data Set) 113.91 

Table 3: Energy consumed per year 
 

Table 3 shows the energy in Watt hours (Wh) that each method consumes per year.  The 
communication system will be powered by a 12V, 110 Ah battery which when fully 
charged will provide 1320 Wh per year.  The battery should only be drained to 
approximately 30% of its original charge capacity, which leaves 924 Wh.  In addition, the 
battery self-discharges 2% per month when not used.  At worst case, there would be 
twelve months that it is not used which leaves 725 Wh to run the system for a year.  As 
with the price budget, all three methods stay within the energy specifications.  Table 3 
was used to determine the weightings for the energy parameter.  As before with the cost 
weightings, a 100 was given to the best option.  Then, dividing one sample per day by 
one sample per week showed a factor of seven.  Dividing one-hundred by seven gave a 
rating of fourteen.  The same was done with sending a full day’s data everyday and the 
result was eleven. 
 
The last category considered among the three choices was the convenience for the 
scientist.  At a minimum the system must send one data sample once per week.  Ideally, 
the system would send the full set of data each day.  If all the data is sent daily, the 
scientist can begin to analyze it and would not have to wait a year to retrieve the data 
from the datalogger.  Since sending the full set of data daily is within the power and cost 
constraints, it was decided that this was the best option for the scientist.  
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4.2 Short Burst Data vs. Dial Up 
After deciding the quantity of data to be transferred and the frequency it will be sent, an 
Iridium communications service was chosen.  There are two ways to send data over the 
Iridium network, short burst data (SBD) and data dial-up calls.   
 

4.2.2.1 Short Burst Data Service 
SBD is designed to send and receive shorter data messages at a more cost efficient rate 
than dial-up.  When using SBD the user does not need to establish a connection with 
another modem, eliminating the dialing and connection time.   A basic overview of how 
the SBD connection can be seen in Figure 21. 
 

 
Figure 21: Basic architecture of the Iridium SBD 

 
The mobile application loads the data message into the transceiver and then instructs the 
transceiver to send the SBD message to the Iridium Gateway.  The Iridium Gateway SBD 
equipment receives the message and sends an acknowledgement back to the mobile 
application.  An email message is then created with the SBD data message as an 
attachment to that email.  The email is then sent to the destination email server hosted by 
the Value Added Reseller for processing of the data message. 
 
The architecture of SBD lends itself to integrate well with the Data Transport Network.  
Data messages sent from the system will arrive in an email message as an attachment, 
which can then be easily routed, into the Transport Network.  A data dial-up solution 
requires a program to collect the data being streamed across the network.   
 
The problem with SBD is that the messages being sent are projected to be much larger 
than SBD is designed to handle.  The length of these SBD messages can range from 0 to 
1960 bytes of data.  The message to send is expected to be 12 KB, requiring multiple 
SBD messages for transfer.   
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When sending multiple SBD messages, the costs of communications skyrocket.  SBD 
charges per byte sent it costs $0.10 for the first 30 bytes and $0.003 for each additional 
byte.22  A full 1960-byte message would therefore cost $5.89.  Figure 22 compares the 
costs of sending larger SBD messages with the costs of using dial-up airtime minutes. 
 

 
Figure 22:  Costs of SBD v. Dial-up 

 
Although SBD offers a simple solution to transferring data, the costs associated with it 
allowed us to quickly discount it as a viable communications option.  From here attention 
was to dial-up service. 
 

4.2.2.2 Dial-Up Service 
There are two main forms of Iridium dial-up service, Iridium Subscriber Unit (ISU) to the 
Public Service Telephone Network (PSTN) and ISU-to-ISU.  The ISU-to-PSTN provides 
connectivity from the onsite modem to an offsite computer, LAN or Internet Service 
Provider (ISP).  A basic overview of the dial-up data method can be seen in Figure 23. 
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Figure 23: ISU-to-PSTN overview23 

 
A call request from a mobile ISU is routed over the satellite network to an Iridium 
Gateway for user authentication and call set-up.  The switch then makes the connection to 
the number dialed into the ISU.  The analog modem in the gateway and the analog 
modem in the host application then synchronize and then the end-to-end connection is 
established.  Overall set-up time for an ISU-to-PSTN is estimated to be 40 seconds. 
 
The second data service is ISU-to-ISU, which provides a connection between two Iridium 
units.  A basic overview of this method can be seen in Figure 24. 
 

 
Figure 24: ISU-to-ISU overview 

 
ISU 1 dials the ISU 2.  The call is set-up and connected to inter-working equipment at the 
gateway.  A ring alert and call set-up is then issued to ISU 2 by the gateway.  ISU 2 can 
then answer the call and data can be sent.  Once the connection is established, the 
intermediate connection with the Gateway is dropped the data is transferred directly from 
one ISU to the other through the satellite network.  Total set-up time is estimated to be 25 
seconds, 15 seconds shorter than ISU-to-PSTN. 
 
Both of these methods have a data rate of 2400 bits per second and cost $1.20 per airtime 
minute.  ISU-to-ISU requires two transceivers and ISU-to-PTSN only one.  However, 
SRI has the resources for the system to have two transceivers and therefore this along 
with the shorter set-up time has led to the choice to use ISU-to-ISU. 
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4.3 Processing 
One of the fundamental challenges of this project was to create an interface between a 
Campbell Scientific Datalogger and an Iridium transceiver.  A major design decision that 
was faced with was deciding whether to use an external microcontroller to interface 
between the two devices, or to perform all processing using the datalogger’s internal 
CPU.  The internal processor on the CR1000 is a 16 bit Hitachi H8S 2322.  Ideally, the 
system would not use an external controller both to limit power consumption, and to 
make a more simple system. 
 
Energy consumption was one of the highest priorities because the power budget for this 
project will be limited particularly in winter months. While an external microcontroller 
would draw additional energy, it would not be significant enough to make this decision 
solely on energy consumption. 
 
By not designing an overly complex system, potential sources of error can be limited and 
the system can be made easier to implement.  Using an external microcontroller would 
increase external circuitry and create a dual processor system, which for this application 
seems to be excessive.  Using an external processor would potentially mean more issues 
for the end user to deal with, and possibly absorb time which could have been spent 
performing tests to ensure system robustness.    
 
The ability to make future alterations to this system was also a considerable factor.  
While this project does have a specific end user in mind, it is worth while to design the 
system such that it can easily be adapted to achieve other goals.  This is where using an 
external processor would be desirable.  An external processor would allow more 
complete access to its low level controls.  The Hitachi processor on the CR1000 can only 
be controlled through CRBASIC, which is converted to machine code, so it is a less 
versatile solution. 
 
The cost of using an intermediate processor had to be considered, but since small 
processing units can be purchased for less than ten dollars and the total hardware budget 
is on the order of thousands of dollars, cost was not a major deciding factor. 
 
 

  
Energy 
Consumption Complexity Flexibility Cost Total 

Weight 0.35 0.3 0.25 0.1 1.0 
External Microprocessor 90 60 100 90 83.5 
CR1000 internal processor 100 100 70 100 92.5 

Table 4: External Microcontroller vs. CR1000 Internal Microcontroller 
 
Table 4 clearly shows that for this application, the CR1000 internal processor without a 
third party microcontroller is the best choice.  After working with the CR1000 to test its 
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capabilities, this decision was reaffirmed, and the team proceeded without a third party 
controller to interface the datalogger with the Iridium transceiver. 

4.4 Data Transfer 
To transfer data from the datalogger to the local user it was important to choose a method 
of initiating a connection. The options were to use either a mobile originated approach 
where the remote system dials to the local user and data is pushed across the network, or 
a mobile terminated system where the local user initiates the call and pulls the data. 
 

  Computation Complexity Energy Design Flexibility Total 
Weight .2 .2 .3 .3 1 
Mobile Originated 80 80 90 100 89
Mobile Terminated 100 90 40 75 72.5 

Table 5: Data Transfer Mobile Originated vs. Mobile Terminated Weighted Chart 
 
Table 5 shows a value analysis of the pros and cons of each approach. The system was 
designed under the mobile originated approach. Mobile Originated implies that the 
system initiates a dial-up connection from the remote end. The local host accepts 
communications and manages the data being pushed from the remote end. 
 
The computation required with each approach is significant to the design decision. Using 
a mobile terminated approach with Campbell Scientific’s LoggerNet software would 
require no remote computation to send data. The LoggerNet software would simply 
initiate a connection, pull and manage data from the CR1000.  This is a very simple 
design strategy, and would also in turn lower the complexity of the final system. 
 
Timing complexity was another important factor in the decision. Establishing a 
connection between remote and local ends would require an Iridium transceiver to be 
awake and active at an expected interval for a mobile terminated approach. This approach 
could be potentially disrupted from a system clock drift. The CR1000 clock is rated to 
within +/- 5 min per year. To compensate for this clock drift longer Iridium active 
windows could be implemented, however this increased complexity is undesirable. 
 
The energy consumption could be greater using the mobile terminated approach. As 
mentioned earlier, the increased timing complexity would require an increased duty cycle 
for the Iridium transceiver of at least 10 more active minutes. This increased duty cycle is 
unwanted and would increase the energy consumption of the system. According to the 
testing and results section, the average current draw of the Iridium transceiver during a 
transmission session is about 245mA lasting approximately 2 minutes. Multiplying these 
values together gives an energy consumption value of approximately 8.1mAH. During an 
idle period, the average current draw is 60mA. Adding an idle period of 10 minutes to 
compensate for a clock drift would add an energy consumption value of approximately 
10mAH, this would more than double the energy consumption of the Iridium transceiver.  
 
Design flexibility was another deciding factor in choosing a transfer method. In the future 
more dataloggers could be implemented easily with a mobile originated approach. Using 



 28 

a mobile terminated approach would require the LoggerNet software which is designed to 
access a single datalogger. Although this approach offers a simple solution as described 
earlier, this would give the solution little flexibility. 
 
For the reasons mentioned above, the decision was to use a mobile originated approach. 
Although mobile termination offered a simple solution, the mobile originated benefits 
were too important to ignore as shown in Table 5. 
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5 Design Documentation 
Figure 25 shows a top level block diagram of the full system.  The following sections 
outline the design of each subsystem, and address how each component is linked together 
to form a fully functional remote data transmission system.   
 

 
Figure 25: Subsystems 

 

5.1 Power System  
VECO Polar Resources gave the responsibility of designing and assembling the power 
system for the datalogging project to Tracy Dahl.  The preliminary design agreed on by 
the WPI team and Tracy Dahl is described in this section.  The block diagram can be seen 
in Figure 26. 
 

 
Figure 26:  Power System Block Diagram 
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5.1.2 Battery 
The battery chosen for the system is the Deka 8G31 100Ah Battery.  The battery is a gel 
cell, sealed lead acid (SLA) battery, which means it can be mounted in any position and 
still be operational.   The gel cell properties also provide recovery from deep freezes of 
below -40deg C that interrupt the chemical reaction inside the battery.  Once the 
temperature rises the battery will be able to hold charge again, unlike ordinary SLA 
batteries, which could be damaged by the freeze. 
 
Two batteries are used in the system, one battery provides power to the datalogger while 
the other powers the communications support.  The redundancy insures that any 
communications power malfunction does not sacrifice the information on the datalogger.  
Each battery provides 100Ah which will be more than sufficient for both the datalogger 
and the communications for an entire year of operation without recharging.  Estimating 
from data sheets the overall energy consumption of the entire system is less than 20Ah 
for a year of operation.  Further tests on the battery capacity confirming this estimation 
will be shown in Section 6.4.4. 
 

5.1.3 Solar Panel 
The India PV20 20 Watt Solar Model will provide renewable energy to the system.  The 
panel is monocrystalline and carries a 10-year warranty.  The panel will be mounted on a 
10-foot pole at a vertical angle so that the panel faces the horizon.  The vertical alignment 
is designed to optimize the panel performance for the winter months when the stays low 
to the horizon throughout the day in Alaska.  This is desirable since the stronger summer 
sun provides more than enough power to keep the batteries fully charged. 
 

5.1.4 Charge Controller 
The Morningstar SunGuard will be used to control the charging of the two batteries.  The 
SunGuard provides a simple and economical charge control, while having proven field 
reliability—VECO has used them in previous projects with success.  The efficient PWM 
charging of the SunGuard can provide up to 4.5A to the battery while monitoring the 
ambient temperature to adjust the charging cutoff voltage for the battery to avoid 
overcharging in the cold.  Due to this temperature monitoring the charge controller is to 
be mounted inside the box with the batteries. 
 
In order to charge both of the batteries two charge controllers are used. Diodes are 
inserted in between the PV panel and each one of the charge controllers.  The design can 
be seen below in Figure 27.  Using this diode isolation configuration the datalogger and 
communications system can run on separate batteries.  The 6A2 6A 200V diode was 
selected for the job for its high current rating and voltage rating as well as low forward 
voltage drop. 
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Figure 27:  Charging Two Batteries with Single PV 

 

5.2 Switching Circuit 
The design of a switching circuit to turn the Iridium modem on and off was critical to the 
system’s functionality.  A relatively simple circuit was implemented to perform this task.  
One of the digital control I/O ports from the datalogger was used to activate and de-
activate the circuit and a 12V battery was used for power.  The following sections detail 
the selection of parts and reasoning behind the design decisions. 
 

5.2.2 High level Design 
The CR1000 datalogger manual provided a section describing a sample switching circuit 
which is shown in Figure 28.  This figure shows a simple circuit often used for switching 
external power to a device without the use of a relay, which typically would draw more 
power than using a transistor.  
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Figure 28: CSI sample switching circuit24 

 
For the purpose of powering on the Iridium modem, a similar circuit could be 
implemented.   

 
 
 
Figure 29 shows the schematic of the circuit used for this project.   
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Figure 29:  Switching Circuit Schematic 

 
As seen in Figure 29, the only difference between the Iridium switching circuit used for 
this project and the sample circuit provided in Campbell’s documentation is the power 
supply voltage and the transistor connected directly to the Iridium’s power input.  The 
power supply used for this circuit was a 12V 110Ahr gel cell battery.   
 

5.2.3 Circuit Operation 
The functionality of this circuit is simple, it is either off, or on and supplying current to 
the Iridium modem.  When the datalogger’s control port is off, the BJT will not let 
current flow from the 12V battery.  Thus, the voltage between R1 and R2 will be 
approximately equal to 12V.  When the voltage at this node is 12V, the MOSFET will 
also be off (VGS=0V) and not providing current to the Iridium modem.  As soon as the 
datalogger’s control port is set high (5V), the BJT will turn on allowing current to flow 
through from the VCC.  This will drop the voltage between R1 and R2 to approximately 
2V, which means VGS will be greater than the MOSFET’s threshold voltage of 4V and 
current will flow. 
 

5.2.4 Part Selection 
The 2N2907 BJT from CSI’s sample circuit needed to be replaced with a transistor that 
could handle a larger current through it.  For this purpose an IRF9520 P-Channel 
MOSFET was chosen with a drain source current of 6.8A.  This power FET was chosen 
for its current rating, its VGS of between 2V and 4V, and its low static on resistance 
(RDS=0.60�).  The 2N2222A NPN BJT was not changed for this circuit.  It was designed 
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for high speed switching applications with collector current under 500mA which will not 
be exceeded in this circuit 
 
The resistors chosen for this circuit needed to be relatively high valued to limit the 
current draw.  The ratio of R1 to R2 was also significant.  The 10k� and 2k� resistive 
divider was used to provide 12 volts to the gate of the IRF9520 MOSFET when the 
2N2222A is turned off and low voltage (about 2V) to the MOSFET gate when the circuit 
is turned on.  After analyzing the operation of the circuit, it was concluded that the 
resistor values used in CSI’s sample would work for this application. 
 

5.2.5 Control Port 
For the remote system to operate autonomously, the Iridium transceiver would need to be 
powered on periodically as controlled by the datalogger.  Each of the datalogger’s eight 
digital I/O ports can be configured as an output port and set to either high (5V) or low 
(0V) using the portset instruction.  These digital output ports are often used to control 
switching circuits but not to provide significant power because the port itself has limited 
drive capabilities (2.0mA at 3.5V).  To implement a control port the datalogger program 
uses two commands Portconfig(Mask, Function) and Portset(Port, State).  The Portconfig 
instruction is used to configure a control port as either output or input, Mask specifies 
which port to configure (&B1 = port 1), and Function configures the port as either input 
or output (1=output).  The Portset instruction activates a port either logic high or low, 
Port denotes which port to effect, and State indicates logic high or low (True = logic high 
(5V), False = logic low (0V)). 
 

5.2.6 Assembly 
After testing this circuit with the full system, the circuit was soldered onto a piece of 
proto board and placed in the circuit box shown in Figure 30.  The box has a sheet of 
insulting material on the bottom, and ground wires are tied to the standoffs to create a 
chassis ground.  The circuit box was then screwed onto the mounting panel which would 
be later cemented into the final insulated storage box for deployment. 
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Figure 30:  Assembled Circuit Box 

 

5.3 CR1000 Code 
Coding the CR1000 was done in CRBasic and required a “divide and conquer” approach. 
To complete the final system it was important to start from a top level view and then 
divide the large system into smaller subsystems. The following sections document the 
CR1000 code starting from the top level approach and working down into each sub level 
of the program. The full CRBasic code can be read in Appendix A. 
 

5.3.2 Top Level System 
Figure 31 shows a top level flowchart of the solution. The first step in the CRBasic code 
initializes variables to be used in various subroutines. These variables could be counters 
or anything which affects a decision in the program. 
 
The program then continues taking readings and storing these readings into a data table at 
a predefined interval. The researcher will provide the necessary code for recording data. 
To test the system, readings of the power supply voltage and the panel temperature were 
taken to provide real data. 
 
Marking the time is an important block in the program because this is used to decide 
when it is time to transmit data. Unfortunately, the time reading functions of CRBasic are 
somewhat limited to simply reading the present time. However, by using the following 
algorithm it was possible to calculate the time in seconds since the beginning of 2006: 
 

[ ]
[ ]
[ ] SecondsMinutesHour

YearofDay
YearSinceSeconds

++
+−

+−=

]60*[60*60*
60*60*24*)1__(

60*60*24*366*)2006(2006__
  (1) 
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Using equation 1, a calculation was made of the time difference from the last 
transmission session to the present time. The last transmission session is initialized to the 
present time, so if this is the first check, then the difference will be 0. However, if there is 
a calculated difference in the last sent time to the present time that is greater than the 
transmission period, the program executes the transmit data function of the system. This 
function is explained in more detail in the next section. 

���������	
�
��
��


���
�����

����
��	���


����
	���
����


�����

����
���
�����	�


�
��

���������
���


�
�����	��
�	


��� 
���
�
��


��	�
��
�����	�


�
��

�
��


�
�����	��
!
�"


���
��#

���	��
�
����

$��

%�

 
Figure 31: System Flowchart – Top Level 

 

5.3.3 Transmit Data 
Figure 32 shows a flowchart of the transmit data subroutine. This larger subroutine is 
basically a collection of smaller subroutines which will be explained in more detail in 
later sections. 
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The first step in transmitting data is to turn on the transceiver. As explained in section 
5.2, this is accomplished by turning on a 5V control port. After turning on the 5V control 
port, there is a delay of 20 seconds to allow the transceiver to power on. 
 
The program then continues on by establishing a dial-up connection. After a connection 
is established the program then starts streaming data out of the RS232 port. Immediately 
following the transmission of the end data tag, the program executes the period 
adjustment subroutine. The period adjustment subroutine allows the user on the local end 
to bi-directionally communicate with the datalogger and gives allowance to remotely 
change the transmission frequency should there be a need for it, as well as give the 
datalogger confirmation that the data was successfully transmitted. If the user does not 
change the frequency or gives an invalid frequency then the program will continue as 
previously operated. The transmit data subroutine is then ended by the execution of the 
datalogger’s hang-up routine 
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Figure 32: Transmit Data Flowchart 

 

5.3.4 Establish Connection 
Establishing a connection with the Iridium transceiver requires the use of an RS232 
connection and bi-directional communication. The transceiver can be operated through 
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the use of AT commands which can be executed by sending and receiving strings over 
the serial port. The following section explains the subroutine used to establish 
communication with the Iridium transceiver. 
 
The first step in establishing a connection is to initialize the AT command strings for 
establishing a connection and to open the RS232 port. Following initialization, the 
subroutine enters a connection retry loop. Inside of the connection retry loop the program 
sends the ATDT command to establish a connection. If the connection attempt fails then 
the program delays and retries establishing a connection with a limit of three attempts. 
When the transceiver has successfully established a connection or exhausted the 
connection attempts, the subroutine is exited. Figure 33 shows this process. 
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Figure 33: Establish Connection Flowchart 

 

5.3.5 Data Out 
As described in the Transmit Data subroutine, after establishing a connection the next 
step is to send the appropriate data. To do this the sub system as shown in Figure 34 was 
used.  
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The first step in sending the records in a data table is to initialize local variables. These 
variables will be used in the data transmission loop. The next step is to send the header 
with header information containing an id number, and appropriate column headings. 
Header begin and end tags are also used to be interpreted by the local end. This 
transmission is accomplished with a simple “SerialOut” command.  
 
The subroutine then enters a loop to send out a variable number of data points. To 
calculate exactly how many data points to send the timestamp associated with each row 
in the data table was used. The loop then iterates through each record in the stack and 
continues sending until the last sent time stamp is greater then the current iteration. The 
time stamp of the last sent record is then tagged to be used upon the next execution of the 
send data subroutine. An end data tag is also transmitted and finally the subroutine exits 
and enters the period change routine.  
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Figure 34: Data Out Flowchart 
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5.3.6 Accept New Transmit Period 
Immediately following the completion of the send data routine a subroutine which 
accepts a new transmission period from the local user is executed. This is essential 
because it allows the user to change the transmission frequency and gives confirmation 
that all the data was sent successfully. This is particularly useful if energy availability is 
low. 
 
The subroutine starts by executing a SerialIn instruction which waits for the termination 
characters “PEND”, or a time out period of three minutes. If a string “PEND” is received, 
the program checks the received characters to find a PSTR tag. The PSTR tag signifies 
the beginning of a new transmission period, and the PEND signifies the end of this 
information. Any characters between these two tags will be the new period adjustment 
information. 
 
The transmission period information is then placed into a 32-bit integer container. This 
binary data is a 4 byte integer to represent the number of seconds upon next transmission. 
If a valid number is received then the transmission period is changed to this value. A 
valid value is defined as divisible by one hour and less than once every 2 weeks. If a 
number is received that is outside of this range then the program will reject this change 
and the previous transmission period is continued being used. Following these 
instructions, the subroutine then exits back to the call origin. Figure 35 shows a flowchart 
of this sub system. 
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Figure 35: New Transmit Period Flowchart 
 

5.4 Data Management Code 
The data management code is located at SRI.  It is responsible for receiving the data and 
then posting to a website for the scientist to view.  There are two main components in the 
data management code.  The first is the Python program used to receive the incoming 
data from the satellite network, organize it, and post it to the Data Transport Network. 
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The second component is the Python program that takes the data from the Data Transport 
Network and archives it and provides graphs. 
 

 
Figure 36: Basic Overview of the End System Code 

 
Figure 36 shows a basic overview of the entire end system code.  The codes used to 
receive and sort the data from the Iridium Satellite Network and post it to the Data 
Transport Network are the Python codes Receive and Datalogger.  Store and 
plotGenerator take the data that was posted to the Data Transport Network and create a 
database as well as graphs of the data. 
 

5.4.2 Receiving the Data 
Two python codes were written to receive the data coming across the Iridium Satellite 
Network, Receive and Datalogger.  The full text of these codes can be seen in Appendix 
B.  Receive is an infinite loop that calls Datalogger.  Datalogger receives and sorts the 
incoming data and returns it to Receive.  Receive then posts this data to the Data 
Transport Network. 
 

5.4.2.1 Receive 
Receive calls Datalogger, Section 5.4.2.2 which will collect and organize the data.  It 
then sends this information to the Data Transport Network where other Python programs 
will take that information and produce a database and graphs of the data.   Figure 37 
shows the overview of the Receive program.  As shown, the program is an infinite loop.  
So, the program will call Datalogger to read and return the data, post the data to the Data 
Transport Network and then start again and wait for the next set of data to be sent across 
the Iridium Satellite Network.   
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Figure 37: Overview of Receive 

 

5.4.2.2 Datalogger 
Datalogger waits for incoming data, stores the data, sorts it, and returns it to Receive.  A 
basic overview of Datalogger can be seen in Figure 38. 

����
 �&

�����
��	��
�	�


��
������
�	�


����
� �
����

����'(���
	�&

���
�'
�


������
	�


�)����


	
�&

�	
�
��
���


����
	��

�������
	��&

*���
	�
����

�����	�
����

 
Figure 38: Overview of Datalogger 

 
Figure 38 shows a basic diagram of how the data is received by the python program.  
First, the logging is set up which will help to debug code and display any warnings or 
errors.  Next, the program initializes the settings used throughout the code.  To obtain the 
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data, ‘getReadings’ is called which will retrieve the data and return it to Receive to be 
posted to the Data Transport Network. 

Log and Initialize 
The first steps of this program are to set up the logging and to do the initialization.  The 
logging has provided the ability to set a severity of the logging statements that were in the 
code, they ranged from “debug” to “error”.  The logging could also be set so that only 
messages of a certain level of severity or higher could be seen.  While debugging the 
program, it was important to see all of the messages that appeared.  However, once the 
program was working correctly, only those messages that signaled an error needed to be 
viewed. 
 
Next, all of the settings needed to be initialized.  To initialize the program the modem 
was set to auto answer after just one ring with the command “ats0=1”.  Here the serial 
port and the baud rate were set.  The period in which the data will be sent was initialized 
along with a buffer to store data. 
 
After Logging and Initializing, the program is ready to be run.  Receive will call 
‘getReadings’ which retrieves the data and formats it for integration with the Data 
Transport Network. 

Retrieve and Format the Data 
The data that is received from the remote site is a continuous string of data that needs to 
be formatted so it can be easily read and interpreted.  The function ‘getReadings’ calls the 
function ‘receive’ which handles this data.  The function ‘receive’ calls the functions 
needed to retrieve and sort through all the data and return this data back to ‘getReadings’.  
Figure 39 shows a basic overview of the ‘receive’ function. 
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Figure 39: Overview of the ‘receive’ function 

 
First, a function ‘readUntil’ is called twice.  The first time it looks for the “CONNECT” 
string and the second time it looks for the baud rate.  The next function called is 
‘receiveHeader’.  This is a simple function that calls ‘readUntil’ and records all the data 
up until a specified end header tag.  The header is then returned to ‘receive’.  Figure 40 
shows the architecture of the ‘readUntil’ function. 
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Figure 40: Overview of the ‘isNoCarrier’ function 

 
The program waits for an input character to be received and when it receives the 
character it adds it to a buffer that will contain the data.  Next it calls a small program, 
‘isNoCarrier’ which checks the buffer to see if a “NO CARRIER” was read.  A “NO 
CARRIER” signifies the call is over, it has either been hung up or the connection was 
dropped.  If a “NO CARRIER” is found, the function immediately returns “None”.  If it 
is not found it proceeds through the function.  Next, the program checks if the character is 
equal to the Mth element in “x” where M is a counter that starts at zero and increments if 
it finds the first character of the string it is looking for and x is the string that is being 
searched for.  If it has found the character, the index M will be increased to look for the 
next character; if not, it will set M back to zero and look for the string x again.  Once M 



 50 

becomes equal to the number of characters in x, the string has been successfully read into 
the modem and it returns the data buffer. 
 
Once the call is connected, ‘retrieveData’ is called.  This function reads and formats the 
data in and returns it to ‘receive’.  A basic overview of the function can be seen in Figure 
41. 
 

 
Figure 41: Overview of the ‘retrieveData’ function 

 

The program first calls the ‘readUntil’ function until it gets an end data tag.  Each new 
row of the data is separated by a parsing tag so the data is split at each of these values and 
stored as separate elements in an array. 
 
The last step in sorting is ‘parseAsciiReading’.  Each data reading contains a timestamp 
followed by data values, so the first step in ‘parseAsciiReading’ is to separate the 
timestamp from the values and save them accordingly.  Each value is then casted from a 
string to a floating point number and appended together as an array of values.  The 
timestamp and array of values are then returned as the final data to be posted to the data 
transport network. 
 

5.4.3 Preparing Data for Viewing 
The second task of the local end is to take the data that is stored in the Data Transport 
Network and put it into a user friendly format.  This is done in two ways, putting the data 
into a database and into graphs.  The python program Store puts the data into a database 
and plotGenerator graphs some of the data.  Both of these codes can be seen in Appendix 
B. 
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5.4.3.1 Store 
The Store program obtains data from the Data Transport Network and puts these values 
into a table that will be posted onto a website so the scientist can access the data.  A basic 
overview of the Store program can be seen in Figure 42. 
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Figure 42: Overview of Store 

 
Store begins with the function ‘process’ which obtains the subject and payload from the 
Data Transport Network.  Payload here is referring to all the data, including the header 
and the values.  These are both passed into the function ‘storeReadings’.  An overview of 
this function can be seen in Figure 43. 
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Figure 43: Overview of ‘storeReadings’ 

 
First, ‘storeReadings’ calls ‘parseSubject’ which goes through the subject and returns the 
version and the transmit timestamp.  The transmit timestamp is the time at which the data 
was pulled from the Data Transport Network.   
 
Next, ‘storeReadings’ calls ‘splitPayload’.  The function ‘splitPayload’ breaks the 
payload back into a header and data and returns those values to ‘storeReadings’. 
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Once the header is separated from the data, it also has to be parsed with the function 
‘parseHeader’.  This function separates the header into its components: the remote 
Iridium phone number that is sending the data and the column names for the values 
stored in the database.  Both the phone number and the column names are returned to 
‘storeReadings’. 
 
The final parsing is of the data.  All the values that were returned to ‘storeReadings’ in 
the previous three functions are the parameters that are passed into the function 
‘parseData’.  Here the parameters that were passed into the function are combined with 
the collected data into a variable named reading.  This complete reading is then returned 
and sent into the function ‘store’ to be added to the database. 
 
The function ‘store’ is the last step in creating the database.  First it opens a new 
connection to the database and then attaches the reading that was obtained from 
‘parseData’ onto the database.  Store then calls PlotGenerator which will produce the 
graphs of the data. 
 

5.4.3.2 plotGenerator 
The first step in generating graphs of the collected data is to use the function 
‘getReadings’ to obtain the data from the database.  This function will get the data from 
when the data collection began until the present.  Figure 44 shows a basic overview of the 
plotGenerator program. 
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Figure 44: Overview of plotGenerator 

 
Next, the variables measurements, units, and ranges are declared as tuples.  A tuple is 
very similar to an array except instead of being associated with a position the elements 
have a unique key that are not dependent on location.  The three declarations can be seen 
below: 
 
measurements = { 0: ‘PTemp’, 1: ‘Batt_volt;, 2: ‘Batt_Volt_IR’, 3: ‘PV_Voltage’, 4: ‘ETemp’ } 
units =  { 0: ‘Celsius’, 1: ‘Volts’, 2: ‘Volts’, 3: ‘Volts’, 4: ‘Celsius’ } 
ranges =  { 0: None, 1: (0:15), 2: (0,15), 3: (0,30), 4: None } 
 
The variable measurements is what the sensor is reading. PTemp is the panel temperature 
of the datalogger.  Batt_volt is the voltage of the datalogger battery.  Batt_Volt_IR is the 
Communications systems battery voltage.  PV_Voltage is the voltage of the solar panel.  
ETemp is the temperature inside the enclosure.  The numbers before the values in 
measurements are their individual keys.  Units and ranges use these keys to associate a 
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proper unit and range with each measurement.  If the range is “None”, the plotter will 
automatically choose a range based on the data points.  For the voltages, the range was 
selected so that the 0V reference point would always be visible.  Therefore, the first 
number in the range represents the lower boundary and the second number the upper. 
 
Each key corresponds to a column of the data table.  The program uses the key to go 
through all five sensor readings.  For each key, the functions ‘getLine’ and ‘plotLine’ are 
called.   The function ‘getLine’ uses that key’s measurement, unit, range and data 
readings.  A new series is created for the x and y axis.  The series includes a 
measurement, unit, range, and data.  When the new series, x and y, are created, the 
measurement and unit for x are both set to ‘time’, the range is set to None, and the data 
variable is initialized as an empty array.  The y axis is next initialized with its 
measurement being set to the measurement value matching its key in the variable 
declaration shown above.  The unit and range are set the same way.  Its data variable is 
also initialized as an empty array. 
 
Once those variables have been set, the data must be set.  For each data point, an x 
coordinate and y coordinate are drawn from the database and then appended onto the 
empty data array described above.  This obtains each x and y coordinate and returns these 
values to be graphed. 
 
The function ‘plotLine’ graphs the data that is returned from the previously mentioned 
function ‘getLine’.  The first step of this function is setting the figure size.  This was set 
to be 8” wide and 2.25” tall.  The title is set to be the measurements value for the 
specified key and y axis label as the units variable.  The data array is now used to plot the 
lines onto the graph.    The y axis limits are set as they were declared in the declaration 
for the variable ranges.  The x axis limits are set from the first data point to the current 
data point.  The last step is to write out the figure for the website to use. 
  

5.4.4 Website 
A website to display the scientist’s data was developed.  This website contains the 
database and graphs as described above.  The website address is 
http://polar.sri.com/datalogger/.  The side bar can be used to navigate the website.  This 
can be seen in Figure 45. 
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Figure 45: Website Sidebar 

 
The two main pages on this site are the Health page and Query page.  The health page 
contains the graphs of the datalogger’s panel temperature, datalogger’s battery voltage, 
communications system’s battery voltage, solar panel voltage, and the temperature in the 
enclosure.  The health page can be seen in Figure 46. 
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Figure 46: Website’s System Health Check 

 
Figure 46 shows data that was collected hourly from February 24, 2006 until February 
27, 2006.  Store will check the Data Transport Network for new values; these values will 
be added to the website. If there are no new values, it will check again.  The last recorded 
data transmission can be seen just below the “HEALTH” heading. 
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The graph is useful for the scientist as a quick confirmation that the system is still 
functioning properly.  However, the complete database is available on the website also.  
This can be found by clicking on Query on the sidebar.  The screen in Figure 47 will 
appear.  The date range can be selected so only the data of interest is displayed.  There 
are two options on how the data is displayed.  It can either be saved as a comma 
separated value (.csv) file or viewed on the current web browser.  This method is 
suggested for viewing a large amount of data.   
 

 
Figure 47: Website’s Query page 

 
Viewing the data through a web browser can be seen in Figure 48. 
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Figure 48: Website’s Database View 

 
This view is meant for viewing a smaller amount of data.  Figure 48 shows the data from 
9:00 AM to 9:22 AM on February 27, 2006.  This view shows the same values as the 
graphs except it shows the exact numerical value for each minute.  The database is useful 
for the scientist to begin analyzing the data. 
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6 Testing and Results 
This section documents the testing and results for the project system. The purpose, set-up 
steps, and results are described in each test sub section. Test sections include the CR1000 
code, Iridium network, Python code, and the full system. 
  

6.1 CR1000 Code Tests 
To develop the CR1000 code it was important to understand how to perform each 
function required of the end solution. The following sections document code that was 
used to test the CR1000 functions related to:  bi-directional serial communications, data 
collection/transmission, and control port switching. 
 

6.1.2 Hello World 
Purpose:  The Hello World Program was the first test in programming the datalogger. 
Using the serial I/O instructions, the goal was to create a program which could send the 
string “Hello World” out a serial port. 
 
Setup:  Power on CR1000 and load program with PC200W software. Connect datalogger 
over an RS232 serial cable to a computer running hyper-terminal.  
 
Solution: 
  
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 

‘Hello_World.CR1 
'Hello World Program 
'SRI WPI Team January 9, 2006 
 
'Declare Variable 
Public HelloWorld AS STRING *11 
 
'Main Program 
BeginProg 
 HelloWorld = "Hello World"                                  ‘Initialize Hello World 
While 1                                                                                ‘Infinite While Loop 
 SerialOpen(comRS232, 9600, 0, 0, 2000)              ‘Open Serial Port 
 SerialOut(comRS232, HelloWorld, "", 0, 500)       ‘Output String 
Wend 
EndProg 

Figure 49: Hello World Program 
 
The Hello World program defines a string in line 5 called “HelloWorld” which has a 
maximum length of 11 characters. In lines 8-9 the main program begins by initializing 
the Hello World string. The program then enters an infinite while loop in lines 10-13 
which opens the RS232 port and continuously streams out the HelloWorld String. 
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Testing: To test the “Hello World” program, the datalogger was directly connected to a 
PC running hyper-terminal. Upon completion, the program was able to continuously 
stream “Hello World” to hyper-terminal as shown below: 

 

 
Figure 50: Hyper-Terminal “Hello World” 

 
Conclusion: By sending out a “hello world” string over an RS232 com port, one of the 
most important functions in the end design has been demonstrated. Although this 
application is trivial, the ability of the CR1000 datalogger to interface with an Iridium 
transceiver required serial communication with strings. 
 

6.1.3 Serial In 
Purpose:  The goal of this program was to experiment with reading data through the 
datalogger’s serial port and then performing additional processing based on what was 
read. 
 
Setup:  Power on the CR1000.  Connect the serial port from a PC to the datalogger’s 
RS232 port. Open a hyper-terminal session on the PC.  Run the program entitled 
Confirmation, after the start prompt is displayed type ‘confirmation’ in the hyper-
terminal window, immediately after this “Confirmation_Received” should be seen in the 
hyper-terminal window. 
 
 
Solution:   
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01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

Public localconf AS String*100 
Public confirm AS String*100 
 
 
Sub Confirmation 
            Localconf = “confirmation”  
   
 'Open the RS232 port, flush the input buffer and read in  
 Serialopen (comrs232,9600,string,100,100) 
            Serialout(comrs232,"Enter Confirmation",100,5,5000) 
 
 Serialflush(comrs232) 
 serialin(localconf,comrs232, 2000, ,100) 
 
 ‘compare ‘confirm’ with ‘localconf’ if equal result is 0 
 if strcomp(confirm,localconf)=0 then 
  serialout(comrs232,"Confirmation_Recieved",100,5,5000) 
 
 else 
  serialout(comrs232,"TRY_AGAIN",100,5,5000) 
 Endif 
 Endsub 
 
BeginProg 
  Scan (1,sec,1,1) 
 Call confirmation 
  Next Scan 
EndProg 

Figure 51: Timing control ports program 
 
This confirmation program defines 2 strings, “localconf” and “confirm”.  The program 
calls a subroutine to read in data through the RS232 port and store that data in the string, 
“localconf”.  The program then compares that string to the string “confirm”.  If the two 
strings are equal, then the program will output "Confirmation_Recieved”, otherwise it 
will output “Try_Again”. 
 
The command Serialopen (ComPort, BaudRate, Format, TXDelay, BufferSize) on line 09 
is used to open a serial port for communications.  The ComPort parameter specifies 
which communications port to use (RS232, CS I/O, or Digital I/O).  The Baud Rate is the 
speed of transmission and Format is the data type that will be transmitted through the 
port.  TXDelay is used to introduce a delay and BufferSize limits the packet size that can 
be transmitted. 
 
The command Serialflush (ComPort) on line 12 is used to clear the communication ports 
input buffer. 
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The command SerialIn (Dest,ComPort, TimeOut, TerminationChar, MaxNumChars) on 
line 13, is used to read data into a destination array (Dest), through a specified 
communications port (ComPort).  This read is terminated if the TimeOut parameter is 
exceeded, if the terminating character (TerminationChar) is received, or if the maximum 
number of characters is exceeded (MaxNumChars). 
 
Testing:  To test the “Confirmation” program, the datalogger was directly connected to a 
PC running hyper-terminal. The user would receive a start prompt saying “Enter 
confirmation”  The user would then have 20 seconds to type into the terminal.  If the 
confirmation string was typed, then the program would output “Confirmation_Received” 
otherwise the output would be, “Try_Again”. 
 
Conclusions:  This program accomplished another key feature of the final program.  The 
end solution required bi-directional communications with the datalogger which this 
example program accomplished.  

 

6.1.4 Data Collection 
Purpose:  The test program used the internal sensors of the CR1000 to collect and store 
data into a data table every minute. This was created using the ShortCut software. 
 
Setup: Power on CR1000 and load program with PC200W software. 
 
Solution: 
 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

‘Data_Collection.CR1 
'CR1000 
'Created by SCWIN (2.5) 
'Declare Variables and Units 
Public Batt_Volt 
Public PTemp_C 
Public Batt_Vo_2 
 
Units Batt_Volt=Volts 
Units PTemp_C=Deg C 
Units Batt_Vo_2=Volts 
'Define Data Tables 
 
DataTable(Table1,True,-1) 
 DataInterval(0,1,Min,10) 
 Average(1,PTemp_C(),FP2,False) 
 Average(1,Batt_Vo_2(),FP2,False) 
EndTable 
 
'Main Program 
BeginProg 
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22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

 Scan(5,Sec,1,48) 
  ‘Default Datalogger Battery Voltage measurement Batt_Volt: 
    Battery(Batt_Volt) 
    'Wiring Panel Temperature measurement PTemp_C: 
  PanelTemp(PTemp_C,_60Hz) 
  'Datalogger Battery Voltage measurement Batt_Vo_2: 
  Battery(Batt_Vo_2) 
  'Call Data Tables and Store Data 
  CallTable(Table1) 
 NextScan 
EndProg 

Figure 52: Data Collection Program 
 
The first step in creating a data collection program was to declare any public variables 
which hold sensor readings to be sent to a data table; this is accomplished in lines 5-7.  
The units for these sensor readings are defined in lines 9-12. In lines 14-18, the data table 
declaration for Table1 defines which readings to store, how often to do this, and what 
data type to use. Inside of the main program is a scan instruction which tells the program 
to execute each instruction under scan until line 31, or “NextScan”. The NextScan 
instruction then tells the program to sleep for a period of time until which the program 
will loop back to the scan instruction. Lines 24 – 28 are instructions which call the 
sensors to store values to the variables. These values are then transferred to the data table 
in line 30. 
 
Testing: To test the functionality of the data collection program, the CR1000 was 
powered on and allowed to run for 5 minutes. The CR1000 keypad was then used to view 
the contents of table1 to verify that reasonable data was being tabulated. 
 
Conclusion:  Although minor, this program was at least is similar to how the data was 
stored and collected in the final design. This program also allowed a method of collecting 
data which proved to be useful in testing programs which require data to be transferred 
from the datalogger.  
 

6.1.5 Send Data 
Purpose: Following the successful implementation of a data collection program, the next 
step was to take the data stored internally on the CR1000 and output this data through a 
serial-port. This furthered the understanding of the CR1000 data retrieval functions. 
 
Set Up:  Power on CR1000, load program with PC200W software, and connect 
datalogger RS232 to Computer running hyper-terminal. 
 
Solution: 
 
01 
02 

‘Send Data Out Program 
‘Send_Data.CR1  
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03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

‘January 13, 2006 
 
Public Batt_Vo_2 
Public Counter 
 
Units Batt_Vo_2=Volts 
 
'Define Data Tables 
DataTable(Table1,True,-1) 
 DataInterval(0,60,sec,0) 
 Average(1,Batt_Vo_2(),IEEE4,False) 
EndTable 
 
BeginProg 
 Counter = 0   ‘Initialize Counter  
 Scan(5,Sec,1,0)   'Scan Every 5 Seconds 
  
  Counter = Counter + 1 
 
  'Datalogger Battery Voltage measurement Batt_Vo_2: 
  Battery(Batt_Vo_2()) 
   
  'Call Data Tables and Store Data 
  CallTable(Table1) 
   
  If Counter = 12  
   SerialOpen(comRS232, 9600, 0, 0, 2000)    ‘Open RS232 
 
   'SerialOutBlock to Send Data Point in Binary 
   SerialOutBlock(comRS232, Table1.Batt_Vo_2_Avg(1,1), 4) 
    
   Counter = 0 
  EndIf 
 NextScan 
EndProg 

Figure 53: Send Out Data Program 
The send data program builds off of the previous workings of collect data program. This 
program collects the battery voltage into table1 every minute, and then sends this data 
point.  In line 17 a counter is initialized and incremented with every scan in line 20. 
When the counter hits 12, this means that it is time to send the data point. The data point 
is sent with the SerialOutBlock command which sends the data point as a binary float 
representation. 
 
Testing: To test the functionality of the data sending program hyper-terminal was used to 
view the data stream from the CR1000. After a minute the following characters were 
shown on hyper-terminal: 
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Figure 54: Hyper-Terminal CR1000 Data Point 

The data in Figure 54 shows four characters which represent a 4 byte float. Hyper-
terminal interprets everything as ASCII, so a binary to ASCII conversion process was 
necessary. Quickly converting ASCII to binary, and then binary to IEEE float shows that 
this number is 10.1438 Volts which approximately matches the voltage shown by the 
power supply. 
 
Conclusion:  Through the send data program it was successful in demonstrating how to 
use the serial port of the datalogger to send collected data. This function simulated the 
end goal which was to ultimately collect and periodically send data over the Iridium 
satellite network. 
 

6.1.6 Control Port Time 
Purpose:  This program, entitled “Realtimesub”, utilizes the Realtime() instruction to 
access the datalogger’s real time clock, as opposed to a counter used in previous 
programs.  Additionally the datalogger’s control ports are activated to simulate power 
cycling the Iridium transceiver.    
 
Setup:  Power on CR1000, load “Realtimesub” with PC200W Software.  Monitor the 
datalogger’s control port 1 using a multi meter. 
 
Solution: 
 
01 ‘Declare array 
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02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Public rTime(9) 
Alias rTime(1)=Year 
Alias rTime(2)=Month 
Alias rTime(3)=Day 
Alias rTime(4)=Hour 
Alias rTime(5)=Minute 
Alias rTime(6)=Second 
Alias rTime(7)=uSecond 
Alias rTime(8)=WeekDay 
Alias rTime(9)=Day_of_Year 
 
Sub Transmittime(timeunits,time) 
  Scan (1,sec,0,0) 
 RealTime(rTime()) 
  if rtime(timeunits) > time then 
  Portsconfig(&B1,1) 'configure d I/O port 1 as output 
  Portset(1,FALSE) 'Set port 1 to high 
 Else 
  Portset(1,TRUE) 'Set port 1 to low 
 EndIf 
  Next Scan 
Exit Sub 
EndSub 
 
‘Main program 
BeginProg 
  Scan (1,sec,1,1) 
 Call Transmittime(6,30) 
  Next Scan 
EndProg 

Figure 55: Timing control ports program 
 
The second row of this program defines an array with 9 parameters called rTime(9).  
Lines 2-11 setup aliases corresponding to each of the 9 parameters in rTime.  The main 
program passes two values to the sub routine “Realtimesub”.  The first value passed, 
“timeunits” signifies one of rTime’s parameters, and the second value passed “time” is an 
integer which will be compared to one of rTime’s parameters specified by “timeunits”.  
The subroutine receives the 2 parameters then proceeds to access the real time clock on 
line 15, which updates the array rTime every second.  Lines 16-21 implement an “if” 
statement which turns on control port 1 if the value in one of rTime’s parameters, 
specified by “timeunits”, is equal to “time”.   
 
The command Portconfig(Mask, Function) on line 17 is used to configure control port 1 
as an output port.  Mask specifies which port to configure (&B1 = port 1), and Function 
configures the port as either input or output (1=output). 
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The command Portset(Port, State) on lines 18 and 20 activates a port either logic high or 
low.  Port denotes which port to effect, and State indicates logic high or low (False = 
logic high (5V), True = logic low (0V)) 
 
Testing: To test the program, a digital multi meter was connected to control port 1.  The 
program was executed and the real time clock was watched.  During the second half of a 
minute (between :30 and:00) the port went high, otherwise it was low. 
 
Conclusion: While this program is simple, it does accomplish two functions that are 
critical to the project, running off the real time clock, and using control ports to power on 
the transceiver.  The previous programs ran off of a counter that simply incremented with 
each scan command, running off the real time clock provided a more versatile solution. 
 

6.1.7 Iridium Hello World 
Purpose: This program established a connection through the Iridium satellite network to 
a computer running hyper-terminal, the string “Hello World” was streamed. The purpose 
was to demonstrate communication from the CR1000 datalogger to the Iridium 
transceiver. 
 
Set Up:  Power on CR1000, load program with PC200W software, connect datalogger 
RS232 to Iridium transceiver using a Null Modem Cable. Set up a computer to another 
Iridium Transceiver and run using hyper-terminal. 
 
Solution:  
 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

'Iridium_Hello_World.CR1 
Public HelloWorld AS STRING *11 
 
'Main Program 
BeginProg 
 HelloWorld = "Hello World"                                 ‘Initialize Hello World 
 
 'Initialize AT Command to Connect Dialup 
 Dim AT_COMMAND AS STRING *40 
 AT_COMMAND = "ATDT 00881693151117" + Chr(13) + Chr(10) 
  
 'Open RS232 Port and set baud rate to 9600. Buffer Size is 2000 bytes 
 SerialOpen(ComRS232, 9600, 0, 0, 2000) 
  
 'Send Out the AT Command to Dialup 
 SerialOut(ComRS232, AT_COMMAND, "", 0, 100) 
  
 'Flush the Buffer 
 SerialFlush(ComRS232) 
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21 
22 
23 
24 
25 
26 
27 

 'Wait Two Minutes for "CONNECT" string to verify connection 
 SerialIn (InString, ComRS232,12000,"CONNECT",100)  
  
 While 1                                                              ‘Infinite While Loop 
  SerialOut(comRS232,  “Hello World!”, "", 0, 500)      ‘Output String 
 Wend 
EndProg 

Figure 56: Iridium Hello World Program 
  
To communicate with the Iridium transceiver the datalogger must send out AT 
Commands. To establish a dial-up connection to another Iridium transceiver the AT 
command “ATDT [number]” is used and initialized in line 10 of Figure 56. After opening 
the RS232 port, this command is output to the transceiver in line 16. Lines 19 to 22 flush 
the input buffer and wait for the string “CONNECT” to verify a connection. If this string 
is not received the SerialIn command will timeout after two minutes. Directly following 
the connection, the hello world program is executed and infinitely streams “Hello 
World!” in lines 24-26. 
 
Testing: To test the Iridium hello world program, the datalogger was connected to an 
active Iridium transceiver which established a connection with a computer also linked to 
an Iridium transceiver. The computer also had an active window of hyper-terminal to 
view the data being streamed. After receiving the “CONNECT 9600” string on the local 
computer, hyper-terminal showed a similar output as shown in Figure 50. 
 
Conclusion:  Using the hello world program through the Iridium transceiver was a major 
milestone for the team. This program demonstrated the datalogger’s capabilities in 
interfacing with an Iridium transceiver. Making a direct connection between two Iridium 
transceivers effectively built a wireless RS232 cable which was the method of streaming 
real data. 
 

6.2 Python Code Tests 
This section of the testing results briefly document the methods and results from testing 
the python code which is used on the backend system. 
 

6.2.2 Computer to Computer 
Purpose:  Before introducing the datalogger and Iridium transceiver into the testing. The 
Datalogger.py code, see Appendix B, was tested to make sure the code worked as it was 
intended to.  
 
Set Up:   Two computers were connected with a null modem cable.  One computer ran 
the python program and the other had HyperTerminal open. 
 
Testing:  The computer with HyperTerminal simulated different situations that the 
datalogger would produce.  First, a successful transmission was simulated by entering 
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values into HyperTerminal.  A successful transmission consists of: “CONNECT 
<BAUDRATE>”, a start header tag “?@#$”, some header text, an end header tag 
“$#@?”, data readings and the end data tag “~%;^”.  Next, a variety of unsuccessful 
transmissions were simulated.  An unsuccessful transmission means that the end data tag 
was not received and a “NO CARRIER” appeared meaning the connection had been lost.  
The unsuccessful transmissions were simulated by typing “NO CARRIER” into 
HyperTerminal at different stages of the transmission.  For example, halfway through the 
data reading a “NO CARRIER” would be typed. 
 
Conclusion:  This test proved that the Python code worked as expected.  When a 
successful transmission was simulated, a file containing the header and data was 
produced.  When an unsuccessful transmission was simulated, the program quit and no 
file was created. 
 

6.3 Full System Tests 
This section of the testing results documents the results from testing the final prototype 
system. System reliability and characteristics are stressed in this section and documented 
through various procedures described below. 
 

6.3.2 Reliability & Frequency 
Purpose:  After each successful transmission, the back end program sends the remote 
end a new transmission period in intervals of five minutes with a starting period of five 
minutes.  The benefit of sending the transmit period is that if the communication system 
is draining too much of the battery, the local user can set a new frequency to send less 
often and therefore save power.  The second factor this tested was the reliability of the 
system.  This system ran overnight so it was possible to see how often a successful 
transmission was received.  The purpose of this test was to verify that sending the period 
worked properly and to observe the reliability of the system. 
  
Set Up:  This test required the full system to be set up.  On the remote end, the 
datalogger was powered by one battery and the Iridium transceiver by a different battery.  
The switching circuit was setup to turn the Iridium on and off as indicated by the 
datalogger.  On the local end, the data was received by the python program, put into the 
Data Transport Network and then made into a database.  
 
Testing: The datalogger took sensor readings every second and stored those values until 
they needed to be sent.  The period to send the data was originally set to approximately 
two and a half minutes.  After the first transmission, the local side sent a new period to 
the remote end, starting with five minutes and then incrementing after each successful 
transmission.  After the datalogger sent the data it waited for three minutes to receive the 
new period.  To test the frequency and reliability, the test was run for twenty-three hours 
and a log file was kept of all the data to review in the morning. 
 
Conclusion:  A table of the data collected and calculated can be seen in Table 6 
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Record 
# period 

connect 
time 

hang up 
time 

total 
time 

# 
bytes 
sent 

1  13:09:47 13:10:11 0:00:24 1954 
2 0:05:01 13:14:48 13:15:08 0:00:20 840 
3 0:10:04 13:24:52 13:25:16 0:00:24 1944 
4 0:15:07 13:39:59 13:40:28 0:00:29 2923 
5 0:20:23 14:00:22 14:00:53 0:00:31 0 
6 0:02:02 14:02:24 14:02:56 0:00:32 3986 
6 0:24:33 14:24:55 14:25:31 0:00:36 4481 
7 0:31:05 14:56:00 14:56:44 0:00:44 6001 
8 0:34:01 15:30:01 15:30:49 0:00:48 6868 
9 0:35:21 16:05:22 16:06:08 0:00:46 6464 

10 0:43:45 16:49:07 16:50:01 0:00:54 0 
10 0:02:32 16:51:39 16:52:42 0:01:03 9170 
11 0:48:23 17:40:02 17:41:08 0:01:06 9806 
12 0:54:59 18:35:01 18:36:10 0:01:09 11284 
13 1:00:01 19:35:02 19:36:15 0:01:13 12327 
14 1:04:58 20:40:00 20:41:21 0:01:21 13311 
15 1:10:02 21:50:02 21:51:29 0:01:27 14459 
16 1:15:10 23:05:12 23:06:42 0:01:30 15523 
17 1:20:12 0:25:24 0:27:00 0:01:36 16496 
18 1:24:57 1:50:21 1:52:03 0:01:42 17420 
19 1:29:49 3:20:10 3:21:58 0:01:48 18568 
20 1:35:05 4:55:15 4:57:10 0:01:55 19573 
21 1:40:06 6:35:21 6:37:19 0:01:58 20631 
22 1:44:46 8:20:07 8:22:09 0:02:02 21647 
23 1:50:12 10:10:19 10:12:29 0:02:10 22783 

Table 6: Overnight Frequency & Reliability Test 
 
The first column contains the record number which shows that 24 records were sent.  In 
this column record 6 and 10 appear twice.  This is because they did not successfully send 
on the first trial.  It took a retry before these two records were sent.  The next column is 
where the period information can be seen.  All of the periods were successfully 
transferred and updated except at record 8, the period should have increased from 35 to 
40 minutes.  However, this did not happen because either the period was not received or a 
byte got distorted during transmission leading to an invalid period value.  The positive 
side to this is that the datalogger realized this problem and kept the period at the same 
value it previously had.  In addition, all of the records were sent successfully from the 
remote end to the local end with only 2 records not sending on the first try.  The period 
was successfully sent 22 out of 23 times and when it was not sent successfully the 
datalogger handled the situation by maintaining the current period. 
 

6.3.3 NO CARRIER 
Purpose:  If the remote side Iridium tries to establish a connection with the local end 
Iridium transceiver and receives a “NO CARRIER”, it will try to reconnect three times.  
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If all three of those reconnection tries are unsuccessful the datalogger will take the data it 
was trying to send and add it to the next data transmission.  The purpose of this test was 
to make sure this feature was working properly. 
  
Set Up:  This test was run with the complete system set up.  The remote end was 
connected with the switching circuit being controlled by the datalogger and calling the 
Iridium transceiver.  The remote end was set up waiting for incoming data from the 
remote end.  To start this experiment, the remote side’s antenna was unplugged to ensure 
a “NO CARRIER” for the first data transmission attempts. 
   
Testing: To test this system, the datalogger collected data every 20 seconds for a 10 
minute period. After 10 minutes, the remote side attempted to send 30 records across the 
Iridium Network.  Since the antenna was unplugged, the data was not able to transmit 
successfully.  The program then collected data every 20 seconds for 10 more minutes.  
While the datalogger was collecting data the antenna was reconnected.  After the ten 
minutes, the remote side attempted to send the data again.  
 
Conclusion: This system collected 30 records for the first 10 minutes and was unable to 
send it due to the fact that the antenna was not connected to the Iridium transceiver.  The 
datalogger then collected more records for the next 10 minutes this time the antenna was 
connected and the data was transmitted successfully.  On the local end, it was confirmed 
that all 60 samples were sent.  This proved that when the first transmission was 
unsuccessful, the data was attached to the next record and sent along with the next 
transmission. 
 

6.3.4 Data Transfer Rate 
Purpose:  The power and cost analysis was originally calculated using the data rate on 
the Iridium Specification sheet of 2400bps.  However, to accurately calculate the power 
and cost, a test was run to see how long it took to send a known amount of data across the 
Iridium Network.  This test was run by sending approximately 12 kilobytes of data for 
every transfer.  This is the amount of data that the scientist will be sending so having the 
connection time is useful for having a complete time including any connection or hang up 
times. 
  
Set Up:   For this experiment, the complete system was used including the complete 
remote and local ends.   
 
Testing: The test was run over the weekend from Friday, February 17 at 7:52PM until 
Tuesday, February 21 at 7:06AM.  The local end collected all the data and stored it into a 
log file to be reviewed and analyzed after full completion of the test. 
 
Conclusion: The data that was collected during that test can be seen in Table 7. 
 

Begin 
Connect 

Begin data 
transfer End Call 

Total 
Time 

Transfer 
Time 

# bytes 
sent Bps 

19:52:27 19:52:37 19:53:46 0:01:19 0:01:09 12762 184.96 
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20:52:09 20:52:19 20:53:19 0:01:10 0:01:00 12116 201.93 
21:52:12 21:52:22 21:53:25 0:01:13 0:01:03 12291 195.10 
22:52:45 22:52:55 22:53:53 0:01:08 0:00:58 12288 211.86 
23:52:56 23:53:04 23:54:03 0:01:07 0:00:59 12298 208.44 
0:53:22 0:53:32 0:54:30 0:01:08 0:00:58 12362 213.14 
1:53:28 1:53:38 1:54:36 0:01:08 0:00:58 12302 212.10 
2:54:01 2:54:09 2:55:09 0:01:08 0:01:00 12399 206.65 
3:54:08 3:54:17 3:55:21 0:01:13 0:01:04 12312 192.38 
4:54:48 4:55:00 4:55:59 0:01:11 0:00:59 12391 210.02 
5:54:49 5:54:59 5:56:03 0:01:14 0:01:04 12302 192.22 
7:55:37 7:55:46 7:56:54 0:01:17 0:01:08 11609 170.72 
8:55:56 8:56:05 8:57:06 0:01:10 0:01:01 12273 201.20 

11:56:57 11:58:49 11:59:55 0:02:58 0:01:06 12012 182.00 
12:57:09 12:57:18 12:58:16 0:01:07 0:00:58 11901 205.19 
13:57:46 13:57:55 13:58:53 0:01:07 0:00:58 12198 210.31 
22:45:49 22:45:59 22:46:51 0:01:02 0:00:52 11015 211.83 
23:45:47 23:45:57 23:46:58 0:01:11 0:01:01 12293 201.52 
0:46:13 0:46:25 0:47:26 0:01:13 0:01:01 12297 201.59 
1:46:29 1:46:38 1:47:38 0:01:09 0:01:00 12258 204.30 
2:46:56 2:47:06 2:48:05 0:01:09 0:00:59 11671 197.81 
3:47:08 3:47:18 3:48:16 0:01:08 0:00:58 12221 210.71 
5:47:48 5:47:57 5:48:55 0:01:07 0:00:58 11353 195.74 
6:48:18 6:48:28 6:49:24 0:01:06 0:00:56 11709 209.09 
7:48:38 7:48:47 7:49:46 0:01:08 0:00:59 12159 206.08 
8:50:34 8:50:42 8:51:42 0:01:08 0:01:00 12250 204.17 
9:49:06 9:49:16 9:50:18 0:01:12 0:01:02 12028 194.00 

10:50:48 10:50:57 10:51:59 0:01:11 0:01:02 12397 199.95 
11:49:51 11:50:01 11:51:01 0:01:10 0:01:00 12105 201.75 
12:50:10 12:50:20 12:51:20 0:01:10 0:01:00 12326 205.43 
13:50:30 13:50:41 13:51:39 0:01:09 0:00:58 12140 209.31 
14:50:50 14:50:59 14:52:01 0:01:11 0:01:02 12378 199.65 
15:51:11 15:51:21 15:52:23 0:01:12 0:01:02 12368 199.48 
16:52:34 16:52:44 16:53:42 0:01:08 0:00:58 12288 211.86 
17:51:46 17:51:56 17:52:54 0:01:08 0:00:58 12150 209.48 
19:52:25 19:52:35 19:53:31 0:01:06 0:00:56 11682 208.61 
20:52:54 20:53:03 20:54:07 0:01:13 0:01:04 12355 193.05 
21:53:08 21:53:18 21:54:16 0:01:08 0:00:58 11590 199.83 
22:53:34 22:53:44 22:54:45 0:01:11 0:01:01 12381 202.97 
23:53:55 23:54:04 23:55:05 0:01:10 0:01:01 12377 202.90 
0:54:05 0:54:15 0:55:14 0:01:09 0:00:59 12268 207.93 
1:54:25 1:54:35 1:55:35 0:01:10 0:01:00 12279 204.65 
2:54:48 2:54:58 2:56:00 0:01:12 0:01:02 12338 199.00 
3:55:12 3:55:22 3:56:23 0:01:11 0:01:01 12366 202.72 
5:55:52 5:56:01 5:57:03 0:01:11 0:01:02 12298 198.35 
6:56:10 6:56:21 6:57:21 0:01:11 0:01:00 12339 205.65 
7:56:26 7:56:35 7:57:35 0:01:09 0:01:00 12281 204.68 
8:56:50 8:57:00 8:58:11 0:01:21 0:01:11 11922 167.92 
9:57:05 9:57:15 9:58:18 0:01:13 0:01:03 12251 194.46 

11:57:57 11:58:06 11:59:03 0:01:06 0:00:57 11577 203.11 
12:58:07 12:58:17 12:59:17 0:01:10 0:01:00 12299 204.98 
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15:00:30 15:00:40 15:01:36 0:01:06 0:00:56 11657 208.16 
15:59:12 15:59:21 16:00:19 0:01:07 0:00:58 11985 206.64 
16:59:26 16:59:35 17:00:52 0:01:26 0:01:17 12377 160.74 
17:59:53 18:00:02 18:01:02 0:01:09 0:01:00 12306 205.10 
20:00:27 20:00:37 20:01:34 0:01:07 0:00:57 11643 204.26 
21:00:45 21:00:55 21:01:54 0:01:09 0:00:59 12350 209.32 
22:01:06 22:01:15 22:02:15 0:01:09 0:01:00 12355 205.92 
0:01:47 0:01:57 0:02:54 0:01:07 0:00:57 11624 203.93 
1:02:15 1:02:25 1:03:33 0:01:18 0:01:08 12347 181.57 
2:02:43 2:02:52 2:03:53 0:01:10 0:01:01 12289 201.46 
3:02:46 3:02:56 3:03:55 0:01:09 0:00:59 12342 209.19 
4:03:06 4:03:16 4:04:16 0:01:10 0:01:00 12344 205.73 
5:03:29 5:03:39 5:04:37 0:01:08 0:00:58 12210 210.52 
6:03:45 6:03:54 6:04:54 0:01:09 0:01:00 12393 206.55 
7:06:10 7:06:20 7:07:18 0:01:08 0:00:58 12402 213.83 

Average Connection Time:  0:01:12 0:01:00 12158.32 201.01 
Table 7: Weekend data rate test 

 
This table shows an average data transmission rate of 201.01 Bps, the Iridium 
specification sheet shows 300 Bps.  Now when calculating power and cost estimates for 
the amount of data that is going to be sent, a more accurate number can be calculated.  
Also, to send 12 kilobytes of data across the Iridium Network there was an average total 
time of 1 minute and 12 seconds.  This was also useful in estimating how long a call 
would take and therefore how much the call would end up costing.  Iridium rounds the 
minutes used up, so a 1+ minute call would be charged for 2 minutes, or $2.40 per call. 
 

6.3.5 Full System Reliability 
Purpose: The purpose of conducting the final system weekend test (February 24 – 27, 
2006) was to prove that the system could function and transmit data reliably. An analysis 
of the number of successful data points received as compared to the number of points 
recorded gave an impression on the overall reliability of the data transmission system. 
 
Set Up: The entire system required assembly for this test to be successful. On the remote 
end, the datalogger was connected to the Iridium transceiver through a null modem cable. 
The PV panel, enclosure temperature sensor, and Iridium battery were all connected to 
the datalogger’s A/D ports to record health status, and the internal panel temperature and 
battery voltage sensors were programmed to record at each storage interval. Separate 
batteries were used to run the datalogger and the Iridium transceiver. The switching 
circuit to toggle power with the Iridium transceiver was used with the appropriate 
CRBasic code to turn this port on and off. 
 
Testing: The test program was set to store health system data once per minute and 
transmit the data once per hour. Each transmission session included sixty data points. If 
the Iridium transceiver was unable to establish a connection with the remote system, the 
system was programmed to append this data to be transmitted on the next transmission 
period. 
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Conclusions:  The results from this test were very positive. Out of the 3960 data rows 
collected over this weekend test, 3720 of these table rows were successfully collected. 
This implies that 4 hours worth of data out of 66 total hours of data were unsuccessfully 
transferred. Looking at the log file shows that 4 transfer calls were dropped correlating to 
the 4 hours worth of data which was unsuccessfully transferred. Looking at the overall 
reliability percentage for this test shows that 93% of the data was successfully 
transferred. 
 

6.4 Energy Testing 
To ensure that the system can operate throughout an entire year without depleting the 
batteries, energy consumption testing was performed.  Since the datalogger and the 
communications run off separate batteries, energy consumption was measured separately.  
Upon completion of these measurements, it was possible to estimate the state of charge 
for each battery throughout a year. 
 

6.4.2 Communications Energy Consumption 
In order to determine the energy consumption of the power system the MultiTec 330 
Digital Multi-meter with RS232 connection was used logging the current drawn from the 
Iridium battery every 500ms.  The multi-meter began logging the current when the 
datalogger switches on the transceiver before a transmission took place.  The meter 
logged the current throughout the dialing and data call until the call was over and the 
Iridium was switched off.  The current was logged for when the transceiver connects on 
the first attempt, second attempt and third attempt.  The data size of the transmission is 
approximately equal to that in which the system expects to send once per day. 
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Figure 57: Current Profile (Connect First Attempt) 
 
Figure 57 illustrates the current drawn by the Iridium when it is able to connect on the 
first dialing attempt.  The most current is drawn during actual data transmission, but 
spikes are also seen when the Iridium is starting up and when commands are sent to the 
transceiver.  The average current drawn during actual data transmission is around 
325mA.  The average current drawn during the entire time the Iridium is switched on is 
245mA.   
 
The following plots illustrate the current draw when the Iridium transceiver is not able to 
connect on the first attempt. 
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Figure 58:  Current Profile (Connect Second Attempt) 

 
Figure 58 shows when the transceiver is unable to connect on the first try.  During this 
test transmission, the log file on the local program shows that there was a brief 
connection but the call was quickly dropped.  The modem then waited two minutes and 
then attempted to call again and was able to connect and transfer the data successfully.   
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Connect on Third Attempt

0

50

100

150

200

250

300

350

400

0 14 28 42 56 69 83 97 11
1

12
5

13
9

15
3

16
7

18
1

19
4

20
8

22
2

23
6

25
0

26
4

27
9

29
3

Time (sec)

Cu
rr

en
t (

m
A)

 
Figure 59:  Current Profile (Connect Third Attempt) 

 
Testing showed that unsuccessful transmissions have a variety of different profiles.  The 
first dialing attempt in Figure 59 shows the profile of dialing when no satellite signal 
could be found.  Unplugging the antenna simulated the loss of signal.  The second 
attempt was able to connect briefly, but the call was dropped, then on the third attempt a 
successful transmission was made.  This current profile illustrates one of the worst-case 
scenarios as far as erngy consumption is concerned.  The average current drain is about 
156 mA for 304 seconds.  These figures are used to estimate the overall energy 
consumption of the Iridium. 
 

6.4.3 Datalogger Energy Consumption 
The power consumption of the CR1000 Datalogger was determined using the same 
MultiTec 330 Digital Multi-meter to measuring the current drawn from the datalogger 
battery during operation.  There are two modes of operation for which the current was 
measured, the measurement mode and transmitting mode.   
 
Measurement mode is the time when the datalogger takes measurements of sensors.  For 
this project the datalogger measures once every hour and is in sleep mode the rest of the 
time.  To test the current drawn during measurements a test program was written to read 
80 sensors every minute.  The results are shown in Figure 60. 
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Datalogger Current Drawn During Measurements
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Figure 60:  Current Drawn when taking Measurements 

 
The average quiescent current between measurements is around 0.53mA while the 
current during measurements spikes to about 22mA, but for only about 2 seconds. 
 
The other mode the datalogger operates in is transmitting mode.  During transmissions 
the datalogger must stream the data collected to the RS232 port requiring extra current.  
To simulate the amount of data that will typically be sent by the system data was logged 
once per second to expedite the process.  The results are shown in Figure 61. 
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Current Drawn By Datalogger during Transmissions
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Figure 61 - Transmission Mode Current Profile 

The average current during transmissions is 28.9mA.  The spikes before the transmission 
should be disregarded since this is when the datalogger is measuring sensors once per 
second and will not apply to the final system, only for the test.  
 

6.4.4 Battery State of Charge Expectation 
To prove that the system is able to operate on the two 100Ah batteries with solar charging 
the amount of energy consumed by the system as well as the amount of energy harnessed 
by the solar array must be computed.  Table 8 shows the estimated energy consumption 
from the communications and Datalogger.  According to the estimates, the entire system 
will only consume about 10Ah for an entire year—a very low power system.   
 

  Drain (A) Duration/Day (hr) Energy/day (Ah) Energy/year (Ah) 
Iridium 0.156253 0.0844 0.0132 4.8161

          
Quiescent 0.0005 24 0.0120 4.3800
Measurements 0.022 0.0133 0.0003 0.1071
Transmitting 0.0289 0.0844 0.0024 0.8908
    Datalogger Total: 0.0147 5.3778
  System Total: 0.0279 10.1939

Table 8:  Energy Consumption of System 
 

Transmission 
Period 
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Using two 100 Ah batteries with this low power system seems to be excessive, but in the 
extreme cold the lead acid batteries lose much of their capacity, getting as low as 40% 
during the coldest months in Kotzebue.    In order to determine the battery capacity of the 
Deka 8G31 at any point during the year the low temperature for each day is used as a 
temperature reference.  The results are seen in Figure 62.  The capacity dips into the low 
40% range throughout the winter months.  The figure shows the worst-case scenario since 
the temperature reference used is the low for each day.  The actual batteries will be in an 
insulated enclosure. 
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Figure 62: Effect of temperature on Battery Capacity in Kotzebue, AK 

 
Extensive solar array testing has not been performed around Kotzebue, AK where the 
system will be deployed.  In order to accurately predict how a solar array will perform the 
solar insolation, cloudiness and daylight hours must be taken into account.  Figure 63 
takes into account these variables to provide an estimated energy output of the 20W PV 
panel. 
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Energy Output of Solar Panel by Day
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Figure 63:  Expected Energy Output for Each day of the Year 

 
According to the estimates the solar panel should provide much more than enough extra 
energy in the summer months, while having no output in the winter.  This means the only 
time the batteries should start to become drained is in the winter.  
 
Integrating the capacity of the battery, charging from the solar panel, and current drain 
from the components a graph of the state of charge of the battery was determined.  Figure 
64 and Figure 65 show the energy available in each battery throughout the year.  Both 
graphs look similar since the batteries are in the same weather conditions, being charged 
by the same solar panel.  Also, both systems draw close to the same amount of current 
each day. 
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Estimated Energy Available in Iridium Battery
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Figure 64:  Iridium Battery State of Charge 
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Figure 65:  Datalogger Battery State of Charge 

 
These graphs show that the system can operate independently throughout the entire year. 
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7 Recommendations for Future Work 
The following section describes some potential extensions to the data transmission 
system. While some may have greater impact than others, researchers have shown 
interest in all of these possibilities. 
 

7.1 Universal Datalogger Communications 
One useful extension to this project would accommodate data transmission from any 
Campbell Scientific Inc (CSI) datalogger. While creating an interface for any CSI 
datalogger model would certainly require external processing, it would also make this 
project useful for deployments other than the Sullivan project. Two of the more common 
CSI dataloggers are the CR10X and the CR23X.  Since these models are older than the 
CR1000, there are more of these deployed throughout the world.  Backward compatibility 
is a desirable feature for a communications system.  Creating this feature would make the 
project far more marketable.  

To accomplish this, the programmer could create several routines within the 
microcontroller to accommodate the various existing dataloggers. This way, if a 
researcher desired to transmit data from a CR1000, the datalogger would be connected to 
a microcontroller, the user would then set a switch (either physical or in software) to 
execute a routine for CR1000 data transmissions.  

Building off this extension even further could lead to a third party microcontroller 
accommodating data transmission from non-datalogger sources capable of RS232 
communications. Some data sources might have the resources to format the data, while 
others may not, but the ability to interface a wide variety of devices with an Iridium 
modem could prove to be advantageous. Two examples of possible data sources are a 
GPS receiver and a webcam, real time access to both of these are desirable to researchers. 

 

7.2 Dial up and SBD communications  
The system created for this project uses the Iridium Network's dial up mode of operation 
to transmit data. A potentially useful extension to this project is the ability to transmit 
using either dial up or short burst data. If for some reason the remote system needed to go 
into an extremely low power mode, and only transmit a message indicating that the 
system is functioning this could be accomplished while minimizing the communications 
budget by using short burst data. As explained earlier, for shorter messages, SBD is more 
economical than a dial up connection. To activate this feature, the local end could send a 
tag at the end of a transmission indicating the remote system will go into this extremely 
low power mode and only transmit alive messages using SBD. 

A similar extension to this project is to make the system in both SBD and dial up modes 
and be configured to either prior to deployment. The mode selected would be based 
primarily off the volume of traffic expected. For the Sullivan project, dial up was found 
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to be the most cost efficient means of transfer, but if the system were used for future 
deployments transmitting less data, SBD capabilities might be preferable. 

 

7.3 Mobile Terminated Calling 
Another desirable feature that was discussed during the course of this project but never 
included in the final design is the ability to perform a mobile terminated call to modify 
program settings on the remote end. The local end does send a tag at the end of each 
transmission indicating the period of transmission but expanding on this could add some 
very powerful options. For example, the ability to use Loggernet to either modify the 
datalogger’s code or to load a completely different program on the datalogger from the 
local end could introduce some interesting prospects, such as switching from ASCII to 
binary communications or disabling/enabling particular sensors.  Additionally, if 
problems occurred somewhere in the system, being able to find and fix them over the 
satellite link could save the cost of a researcher returning to the site. 
 

7.4 Camera for Datalogger 
This deployment could certainly further benefit from having a digital image of the site 
transmitted periodically with the collected data. VECO Polar Resources has deployed 
webcams for other research stations. They have even used the Iridium satellite network to 
transmit the images, so implementing a camera is a possibility in the future. However, 
adding a webcam to the system may or may not require an external microcontroller to 
perform buffering or protocol adjustments between the camera and the satellite modem. 
 

7.5 ISU-to-PSTN Communications 
In the early stages of the design choices, a solution using ISU to ISU communications 
was chosen. As described in the design choices section, some of the most important 
reasons for using ISU to ISU were the simplicity and modem training advantages. Since 
SRI International had the resources to provide an additional transceiver without the added 
cost, it made the most sense to take advantage of these benefits for Dr. Sullivan’s project. 
However, the solution of ISU to ISU might not be the most cost efficient solution to 
future projects. If an additional Iridium transceiver is required, it might make more sense 
to use ISU to PSTN communications because of the fact that the communications price is 
the same without the added transceiver. 
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8 Conclusion 
After successfully implementing a remote data transmission system; the preliminary 
goals and specifications set forth for this project were met. Testing has shown that the 
reliability of a system which transmits all data points daily will easily meet the minimum 
requirement of at least one data reading per week. This was of course, the primary goal as 
defined by Patty Sullivan. 
 
Testing of the final solution also shows that the system is well within the power budget 
described in the specifications section of this report. Although trivial, using a design 
which toggles power to the Iridium transceiver was an important milestone to meet this 
goal. The Iridium transceiver consumes the most energy in the system even when idle, 
and therefore it was desirable to create a solution which disconnects power to it. 
 
In addition to meeting the minimum requirements set forth by Patty, accomplishments 
were made in providing more end user control. The final solution allows the end user to 
control the data transmission period of the remote system. Allowing this communication 
gives insurance that if the daily transmission period unexpectedly drains energy 
resources, the user can reset this period. 
 
Providing the researcher with a user web interface allows the data to be viewed and 
analyzed in real time. Important data such as battery voltages, system temperatures, and 
photovoltaic panel readings will give vital information on the system status. This 
information can provide clues for potential causes of problems should the system fail. 
 
Designing this remote data transmission system in only seven weeks proved to be a 
challenge; however lessons were learned in handling such a task. One of the most 
important lessons learned through the completion of this MQP is the importance of 
thoroughly testing the final solution. Even when things appear to be completed, 
unexpected results can occur if one does not take the time to meticulously test and 
professionally document a prototype. 
 
Another lesson gained from this experience is the importance of breaking a large system 
into smaller subsystems. When developing a large scale system such as this, it is much 
easier to accomplish if it is approached one small step at a time. This also proved to be 
true in debugging. It is far simpler to solve an issue when the problem is isolated to a 
smaller component of a much larger system, then to search through an overwhelmingly 
large and complicated structure. The lessons learned from this experience will no doubt 
be applied throughout the professional careers of this project team. 
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Appendix A – CR1000 Code 
The following appendix gives the full version of the CR1000 code written in CRBasic 
developed by the WPI team. This code will be edited by Dr. Patrick Sullivan, and used in 
the final deployment of the data acquisition system. 
 
'Remote_Data_Transmission_System.cr1 
'WPI Team 2-24-06 
'Eric Hall 
'Peter Kaineg 
'Amanda Quigley 
'Eric Young 
 
'Declare Variables and Units 
'Default data type = Float 
 
' System consts 
Public MAX_CONNECT_TRIES 
Public REMOTE_IR_PHONE_NUMBER AS STRING *40 
 
' System vars 
Public InString AS STRING *100 
Public last_time_sent 
Public Xmit_period 
Public ts_of_last_sent_record  
Public time_since_sent  
 
' Health/Status data 
Public Batt_Volt 
Public Batt_Volt_IR 
Public PV_Voltage 
Public ETemp_C 
Public PTemp_C 
 
' Paddy's data 
 
Units Batt_Volt=Volts 
Units PTemp_C=Deg C 
Units PV_Voltage=Volts 
Units Batt_Volt_IR=Volts 
Units ETemp_C=Deg C 
 
 
'Define Data Tables 
DataTable(Table1,True,-1) 
 DataInterval(0,1,min,0) 
 Sample(1,PTemp_C,IEEE4) 
 Sample(1,Batt_Volt,IEEE4) 
 Sample(1,Batt_Volt_IR,IEEE4) 
 Sample(1,PV_Voltage,IEEE4) 
 Sample(1,ETemp_C,IEEE4) 
    'Paddy's columns to follow 
EndTable 
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Sub Mark_Time( temp_var ) 
    Dim rTime(9) 
    Dim temp_var  
 
 Alias rTime(1)=Year 
 Alias rTime(2)=Month 
 Alias rTime(3)=Day 
 Alias rTime(4)=Hour 
 Alias rTime(5)=Minute 
 Alias rTime(6)=Second 
 Alias rTime(7)=uSecond 
 Alias rTime(8)=WeekDay 
 Alias rTime(9)=Day_of_Year 
 
 'Read The System Clock  
 RealTime(rTime()) 
 
 'The number 366 is used to acount for the number of days in a 
leap year, if it is not a leap year, the 366th day will be skipped 
 temp_var = ((Year - 2006) * 366*24*60*60) + ((Day_of_Year - 1) * 
24 * 60 * 60) + Hour * 60 * 60 + Minute * 60 + Second 
 
Exit Sub 
End Sub 
 
 
Sub Read_Sensors 
  'Default Datalogger Battery Voltage measurement Batt_Volt: 
  Battery(Batt_Volt()) 
   
  'Wiring Panel Temperature measurement PTemp_C: 
  PanelTemp(PTemp_C(),_60Hz) 
   
  'Voltage measurement of IR battery: 
  VoltDiff(Batt_Volt_IR,1,mV2500,2,True,0,_60Hz,0.01,0.0) 
  
  'Voltage measurement of PV panel: 
  VoltDiff(PV_Voltage,1,mV2500,3,True,0,_60Hz,0.01,0.0) 
 
  'temp measurement of Enclosure: 
  Therm107(ETemp_C,1,1,1,0,_60Hz,1.0,0.0) 
 
                'Paddy's data to follow 
 
Exit Sub 
End Sub 
 
'Connect_Dial_Up SubRoutine sends AT Commands to the Iridium 
Transceiver to connect via dial-up mode 
Sub Connect_Dial_Up( tmp_connect_success ) 
    DIM tmp_connect_success  
    DIM try_reconnect  
 
    tmp_connect_success = 1 
  
 'Initialize counter 
 Dim D  
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 'Initialize AT Command to Connect DialUp 
 Dim AT_COMMAND AS STRING *40 
 AT_COMMAND = "ATDT " + REMOTE_IR_PHONE_NUMBER + Chr(13) + Chr(10) 
  
 For try_reconnect = 1 to MAX_CONNECT_TRIES step 1 
 
  'Flush the Buffer 
  SerialFlush(ComRS232) 
 
  'Send Out the AT Command to DialUp 
  SerialOut(ComRS232, AT_COMMAND, "", 0, 100) 
 
  'Wait for "CONNECT" string to verify connection (TIME OUT 
UNITS IN CENTI SECONDS) 
  SerialIn (InString, ComRS232, 6000,"CONNECT",100)  
 
  For D=1 to 90 step 1 
   if mid(instring,D,7)= "CONNECT" Then 
    Exit Sub 
   EndIf 
  Next D      
 Next try_reconnect 
 
        if try_reconnect > MAX_CONNECT_TRIES Then 
            tmp_connect_success = 0 
        endif 
 
 Exit Sub 
End Sub 
 
 
Sub ReceiveNewPeriod 
  
    Dim new_period  
 
 'initialize index 
 Dim index1, index2 
 
 index1 = 0 
 index2 = 0 
 
 'initialize counter 
 Dim J 
 
 Dim buffer_size 
 buffer_size = 100 
 Dim end_str AS STRING *4 
 Dim start_str AS STRING *4 
 
 start_str = "PSTR" 
 end_str = "PEND" 
  
 'Initialize New_Period 
 New_Period = 0 
 
 'Wait for PEND String to Verify that the wait PERIOD for next 
transmission will occur 
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 SerialIn(InString, ComRs232, 18000, end_str, 100) 
   
 'Check for $end_str string 
 For J = 1 TO 90 Step 1 
  If mid(InString, J, len( end_str ) ) = end_str Then 
   index2 = J 
  EndIf 
  If mid(InString, J, len( end_str ) ) = start_str  Then 
   index1 = J 
  EndIf 
 Next J 
 
 If (index2 - index1 - 4) > 0 Then 
  New_Period = mid(Instring, index1+4, index2 - index1 - 4) 
 EndIf 
 
 'If The Time Between Transfers is greater than 2 weeks or less 
than 1 hour, change to 1 transmission per day 
 If New_PERIOD mod (60*60) = 0 and New_PERIOD >= (60*60) and 
New_PERIOD < (14*24*60*60) Then 
  Xmit_period = New_PERIOD 
  EndIf 
Exit Sub 
End Sub 
 
  
'SendData SubRoutine Sends Data for a specified number of records 
Sub SendData 
  
        Dim MyPhoneNumber AS STRING *40 
        Dim ASCII_Record AS STRING *1000 
 
 Dim k 
   Dim MAX_REC 
 
        MyPhoneNumber = "00881693151117" 
 MAX_REC = 250 'Assuming 24 records per day for 7 days 
 
 'Send The Header With Column Names 
 SerialOut(ComRS232, "?@#$", "", 0, 500 ) 
        SerialOut(ComRS232, MyPhoneNumber, "", 0, 500) 
        SerialOut(ComRS232, CHR(13) + CHR(10), "", 0, 500) 
 
 ' Health/Status columns 
        SerialOut( ComRS232, 
"PTemp_C,Batt_Volt,Batt_Volt_IR,PV_Voltage,ETemp_C", "", 0, 500) 
 
 ' Paddy to add his columns here... 
        SerialOut( ComRS232, "Paddy0,Paddy1,PaddyN", "", 0, 500 ) 
 
 
 'Send The Header With End Tag 
 SerialOut(ComRS232, "$#@?", "", 0, 500)  
 
 k = 1 
 Do While ts_of_last_sent_record < Table1.Timestamp(1,k) and k < 
MAX_REC 
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  GetRecord(ASCII_Record, Table1, k) 
  SerialOut(ComRS232, ASCII_Record, "", 0, 1000) 
  k = k + 1 
 loop 
  
 'End of Data Tag 
 SerialOut(ComRS232, "~%;^", "", 0, 500)  
  
 ts_of_last_sent_record = Table1.timestamp(1,1) 
Exit Sub 
End Sub 
 
 
'HangUp Sub Routine tells the transceiver to disconnect and close the 
serial port 
Sub Hangup 
         
 'Initialize AT Command Strings 
 Dim AT_COMMANDP AS STRING *40 
        Dim AT_COMMANDhu AS STRING *40 
 
 AT_COMMANDP = "+++" 
        AT_COMMANDhu = "ATH" +chr(13) +chr(10) 
         
 'SendOut the AT Command to exit data mode        
        SerialOut(ComRS232, AT_COMMANDP, "", 0, 100) 
 
 'Flush the Buffer 
 SerialFlush(ComRS232)  
 
 'Wait for the "OK" confirmation, maximum of 10 seconds 
        SerialIn (InString, ComRS232,1000,"OK",100) 
 
 'Send Out AT command to hang-up 
        SerialOut(ComRS232, AT_COMMANDhu, "", 0, 100) 
  
 'Flush the Buffer 
 SerialFlush(ComRS232) 
  
 'Wait for the "OK" confirmation, TimeOut after 10 seconds 
        SerialIn (InString, ComRS232,1000,"OK",100) 
         
Exit Sub 
End Sub 
 
Sub Transmit_Data 
 
    Dim connect_success  
     
 'Configure and turn On Transceiver From Control Port 2 
 PortsConfig( &B10, 1 ) 
 PortSet( 2, True )  
  
 'Open RS232 Port and set baud rate to 2400. Buffer Size is 2000 
bytes 
 SerialOpen(ComRS232, 2400, 0, 0, 2000) 
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 'Delay to let Iridium boot up 
 Delay(1,20,sec) 
 
 SerialFlush(ComRS232)  
 
 Call Connect_Dial_Up( connect_success ) 
 Call Mark_Time ( last_time_sent ) 
  
 If connect_success = 1 Then 
  Call SendData  
  Call ReceiveNewPeriod 
  Call Hangup 
 EndIf 
 
 'Set port 2 to low to turn off transceiver 
 PortSet(2, False) 
 
 'Close the Serial Port 
 SerialClose(ComRS232) 
Exit Sub 
End Sub 
 
 
BeginProg 
  
   MAX_CONNECT_TRIES = 3 
   REMOTE_IR_PHONE_NUMBER = "00881693151118" 
   Xmit_period = 60 '* 60 * 24   'seconds 
  
   Dim now  
 
 call Mark_Time (last_time_sent) 
 
 'Xmit_period= 1 transmission every day 
 
 ts_of_last_sent_record = 0 
 
 'Scan Every n Seconds 
 'Scan(30,min,1,0) 
 Scan(1, sec, 1, 0)  
 
  'Read all sensors 
  Call Read_Sensors 
   
  'Call Data Tables and Store Data 
  CallTable(Table1) 
 
  Call Mark_Time (now) 
 
  'Calculate the Change in Time from when the last 
transmission occured 
  time_Since_sent = now - last_time_sent 
   
  'If it is Time to Transmit, then call Transmit_Data 
  If time_since_sent > Xmit_period Then  
   Call Transmit_Data 
  EndIf 
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 NextScan 
EndProg 
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Appendix B – Data Managment Code 
The following codes were run on the local computer and used to receive, organize and 
make a database and graphs of the data. 

Reading 
An object of type reading has a transmit timestamp, version, timestamp, phone number 
and column names and is used in the four codes that were discussed in Section 5.4. 
 
#!/usr/bin/env python 
 
import datetime 
import struct                        
import logging 
import sys 
import StringIO 
import os 
import string 
import pg 
 
import sri.ayoung.DatetimeUtils 
 
def fromString( str ): 
"""This function separated the timestamp from the data, 
   then converts the data from a string to a float. 
""" 
 
    __FUNCTION__ = sys._getframe().f_code.co_name 
    try: 
        ts_str, numbers = string.split( str, ',', 1 ) 
    except ValueError, e: 
        logging.error( "%s: unable to split \"%s\"", 
                       __FUNCTION__, str ) 
        return None 
 
    reading = Reading() 
    reading.timestamp = sri.ayoung.DatetimeUtils.parse_iso8601(ts_str) 
 
    value_strs = string.split( numbers, ',' ) 
    for value_str in value_strs: 
        try: 
            value = float( value_str ) 
            reading.values.append( value ) 
        except ValueError, e: 
            logging.error( "%s: unable to convert \"%s\" to float", 
                           __FUNCTION__, value_str ) 
            return None 
             
 
    logging.debug( "%s: parsed ts = %s, %d values", 
                   __FUNCTION__, 
                   reading.timestamp, 
                   len( reading.values ) ) 
    return reading 
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class Reading: 
 
    def __init__( self ): 
        self.phone_number = None 
        self.transmit_timestamp = None 
        self.timestamp = None 
        self.column_names = None 
        self.values = [] 
 
 
    def toString( self ): 
    """This function creates a string with the timestamp and values 
         

  """ 
 
        __FUNCTION__ = sys._getframe().f_code.co_name 
         
        buf = StringIO.StringIO() 
        buf.write( "%s," % self.timestamp ) 
 
        a_list = [] 
        for value in self.values: 
            str = "%g" % value 
            a_list.append( str ) 
        str = string.join( a_list, ',' ) 
        buf.write( str ) 
 
        return buf.getvalue() 
 
    """The next six definitions set or get the transmit timestamp, phone number or  
  column names 
 
    """ 
 
    def setTransmitTimestamp( self, timestamp ): 
        self.transmit_timestamp = timestamp 
    def getTransmitTimestamp( self ): return self.transmit_timestamp 
    def setPhoneNumber( self, phone_number ):  

  self.phone_number = phone_number 
    def getPhoneNumber( self ): return self.phone_number 
    def setColumnNames( self, column_names ):  

  self.column_names = column_names 
    def getColumnNames( self ): return self.column_names 
 
     
class ReadingTable: 
     
    def __init__( self, connection ): 
        self.connection = connection 
 
    def get( self, id=None, where=None ): 
        if id != None: 
            return self.getOne( id=id ) 
        elif where != None: 
            return self.getWhere( where ) 
        else: 
            return self.getWhere() 
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    def getOne( self, id=None ): 
 
        where = "id = %d" % id 
        readings = self.getWhere( where ) 
        if readings and len( readings ) == 1: 
            return readings[ 0 ] 
        else: 
            return None 
        
 
    def getWhere( self, where=None ): 
        __FUNCTION__ = sys._getframe().f_code.co_name 
 
        sqlStmt = "SELECT id,meter_id,settz('UTC',timestamp),legs,w_hrs, 

max_demand FROM readings " 
         
        if where: 
            sqlStmt += "WHERE %s" % where 
 
        try: 
            ro = self.connection.query( sqlStmt ) 
        except pg.ProgrammingError, e: 
            logging.error( e ) 
            raise 
 
        if ro == None: 

      logging.warning( "%s: sql = \"%s\" returned no result  
   object", __name__, sqlStmt  ) 

            return None; 
        else: 
            results = ro.getresult() 
            log_msg = "%s: sql = \"%s\" -> %d rows" % \ 
                      ( __FUNCTION__, sqlStmt, len( results ) ) 
 
            readings = [] 
            for result in results: 
                reading = Reading() 
                reading.phone_number = result[ 0 ] 

          reading.transmit_timestamp = 
sri.ayoung.DatetimeUtils.parseIso8601Datetime( result[ 1 ] ) 

reading.timestamp = 
sri.ayoung.DatetimeUtils.parseIso8601Datetime( result[ 2 ] ) 

                reading.values = None   # TODO 
                readings.append( reading ) 
                 
            if len( readings ) > 0: 
                logging.debug( log_msg ) 
                return readings 
            else: 
                logging.info( log_msg ) 
                return None 
 
 
    def insert( self, reading=None ): 
 
        __FUNCTION__ = sys._getframe().f_code.co_name 
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        logging.debug( "%s: reading = %s", __FUNCTION__, reading ) 
 
        if reading == None: 
            logging.warning( "%s: reading is None", __FUNCTION__ ) 
            return 
             
        a_list = [] 
        for value in reading.values: 
            # NOTE: It seems no whitespace is permitted in postgres 7.3 
            # Version 8.0 does allow whitespace 
 
            value_str = "%g" % (value) 
            a_list.append( value_str ) 
        values = "{%s}" % string.join( a_list, ',' ) 
 
        param_clause = "phone_number, transmit_timestamp, timestamp,  
      values" 
        values_clause = "'%s', '%s', '%s', '%s'" % \ 
                        ( reading.phone_number, 
                          reading.transmit_timestamp, 
                          reading.timestamp, 
                          values ) 
 
        try: 
            sqlStmt = "INSERT INTO readings ( %s ) VALUES ( %s )" % \ 
                      ( param_clause, values_clause ) 
            logging.debug( "%s: sqlStmt = \"%s\"", __FUNCTION__,  
    sqlStmt ) 
            ro = self.connection.query( sqlStmt ) 
        except pg.ProgrammingError, e: 
            logging.error( "%s: %s", __FUNCTION__, e ) 
            raise 
         
        return 
 
if __name__ == '__main__': 
     
    reading = Reading() 
    reading.phone_number = 'phone_number' 
    reading.timestamp = datetime.datetime.now() 
    reading.values = [ 1, 2, 3, 4 ] 
    print reading.toString() 

Datalogger 
#!/usr/bin/env python 
 
import serial                        
import time 
import datetime 
from time import gmtime, strftime 
import struct                        
import logging 
import sys 
import StringIO 
import os 
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import string 
 
import sri.ayoung.DatetimeUtils 
 
import Reading 
 
 
# PERIOD is tranmitted back to the datalogger to set the rate 
# at which data is sent. 
# SETTING THIS VALUE TOO LOW MAY CAUSE EXCESSIVE BATTERY DRAIN 
  
PERIOD = 60 * 60     # seconds 
 
 
 
CRLF = '\r\n' 
 
BEGIN_HEADER = '?@#$'                              
END_HEADER = '$#@?'                          
END_FILE = '~%;^'                            
CONNECT = 'CONNECT'                          
NOCARRIER = 'NO CARRIER' 
ASCII_READING_SEP = CRLF 
BINARY_READING_SEP = "pppp" 
THANKYOU = 'THANKYOU' 
BAUDRATE = '2400' 
OK = 'OK' 
 
 
def setupLogging(): 
    #logging_format = '%(asctime)s %(name)s %(filename)s %(levelname)s  
   %(message)s' 
    logging_format = '%(asctime)s %(message)s' 
    formatter = logging.Formatter( logging_format ) 
  
    log_file = logging.FileHandler( "Datalogger.log", 'w' ) 
    log_file.setFormatter( formatter ) 
    log_file.setLevel( logging.DEBUG ) 
  
    console = logging.StreamHandler( sys.stdout ) 
    console.setFormatter( formatter ) 
    console.setLevel( logging.DEBUG ) 
 
    rootLogger = logging.getLogger( '' ) 
    rootLogger.setLevel( logging.DEBUG ) 
    rootLogger.addHandler( console ) 
    rootLogger.addHandler( log_file ) 
 
 
class Datalogger: 
 
    def __init__( self, serial_port = 0 ): 
 
        self.serial_port = serial_port 
 

# An Iridium manual suggests a 19,200 baud rate between    
# computer and Ir modem.  However the modem-modem link is at  
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# best 2400 baud. When cpu-modem baud rate is set above 2400  
# the modem must buffer. 

        self.baud_rate = BAUDRATE 
        self.period = PERIOD 
         
        self.counter = 1 
        self.read_buffer = StringIO.StringIO() 
        self.ser = None 
 
 
    def __del__(self): 
        if self.ser and self.ser.isOpen(): self.ser.close() 
 
 
    def run(self): 
        __FUNCTION__ = sys._getframe().f_code.co_name 
 
        logging.debug( "%s: entering", __FUNCTION__ ) 
 
        while True: 
            logging.debug( "%s: waiting for a set of readings", __FUNCTION__ ) 
            readings = self.getReadings() 
            if readings != None and len( readings ) > 0: 
                self.output( readings ) 
            #break     # makes it a one-shot 
 
 
    def getReadings( self ): 
        __FUNCTION__ = sys._getframe().f_code.co_name 
        logging.debug( "%s: entering", __FUNCTION__ ) 
 
        try: 
            self.ser = serial.Serial( self.serial_port, self.baud_rate ) 
        except serial.serialutil.SerialException, e: 
            logging.error( "%s: exception opening serial port", __FUNCTION__ ) 
            logging.error( "%s: %s", __FUNCTION__, e ) 
            return None 
             
        if self.ser == None or not self.ser.isOpen(): 
            logging.error( "%s: serial None or not open", __FUNCTION__ ) 
            return None 
             
        self.setupModem( self.ser ) 
         
        logging.debug( "%s: waiting for a set of readings", __FUNCTION__ ) 
        readings = self.receive( self.ser ) 
 
        logging.debug( "%s: closing ser", __FUNCTION__ ) 
        self.ser.close() 
 
        logging.debug( "%s: exiting", __FUNCTION__ ) 
        return readings 
     
         
 
    def simulate( self ): 
        readings = [] 
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        for i in range( 10 ): 
            reading = Reading.Reading() 
            reading.phone_number = "800-555-1212" 
            reading.timestamp = datetime.datetime.now() 
            reading.values = [ 1, 2, 3, 4 ] 
            readings.append( reading ) 
 
        return readings 
 
 
    def setupModem( self, ser ): 
        __FUNCTION__ = sys._getframe().f_code.co_name 
        logging.debug( "%s: ser = %s", __FUNCTION__, ser ) 
        cmd = "ats0=1%s" % CRLF 
 
        time.sleep( 0.5 ) 
        logging.debug( "%s: sending %s", __FUNCTION__, repr( cmd ) ) 
        ser.write( cmd ) 
         
        #self.readUntil( ser, cmd ) 
        #self.readUntil( ser, "%sOK%s" % (CRLF, CRLF ) ) 
        time.sleep( 0.5 ) 
 
 
         
    def receive( self, ser ): 
        __FUNCTION__ = sys._getframe().f_code.co_name 
 
        logging.debug( "%s: enter", __FUNCTION__ ) 
 
        if self.readUntil( ser, CONNECT ) == None: return None 
 
        if self.readUntil( ser, "%s%s" % (BAUDRATE, CRLF)) == None: 
            return None 
         
        (phone_number, col_names) = self.receiveHeader( ser ) 
        if phone_number == None: return None 
         
        readings = self.retreiveData( ser, phone_number, col_names ) 
        if readings == None: return None 
 
        # Update the period 
        logging.debug( "%s: period = %d", __FUNCTION__, self.period ) 
        cmd = "PSTR%dPEND" % self.period 
        logging.debug( "%s: writing \"%s\"", __FUNCTION__, cmd ) 
        ser.write( cmd ) 
        time.sleep(5)   # delay before hang up 
        ##### 
        """ 
        Increment period for testing 
        """ 
        self.period += (5 * 60)           # seconds 
        ##### 
         
        # Close connection 
        logging.debug( "%s: entering command mode (+++)", __FUNCTION__ ) 
        ser.write( "+++" ) 
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        if self.readUntil( ser, OK ) == None: return None 
         
        logging.debug( "%s: issuing hangup (ath)", __FUNCTION__ ) 
        ser.write( "ath\r\n" ) 
 
        self.readUntil( ser, OK )     # ignore None return 
 
        logging.debug( "%s: exit", __FUNCTION__ ) 
 
        return readings 
 
 
    def receiveHeader( self, ser ): 

  """This function reads in the header. 
 
        """ 
 
        __FUNCTION__ = sys._getframe().f_code.co_name 
 
        logging.debug( "%s: entering", __FUNCTION__ ) 
        if self.readUntil( ser, BEGIN_HEADER ) == None: return (None,None) 
        header_str = self.readUntil( ser, END_HEADER ) 
        if header_str == None: return (None,None) 
 
        ( phone_number, col_names_str ) = string.split( header_str, ',', 1 ) 
        col_names = string.split( col_names_str, ',' ) 
         
        logging.debug( "%s: exiting", __FUNCTION__ ) 
        return (phone_number, col_names) 
     
 
 
    def retreiveData( self, ser, phone_number, col_names ): 
        """Read in the data from the serial port until the end of file 
        marker, parse it, and return a list of readings. 
 
        """ 
        __FUNCTION__ = sys._getframe().f_code.co_name 
        logging.debug( "%s: entering", __FUNCTION__ ) 
 
        # Read from the serial port 
        data = self.readUntil( ser, END_FILE ) 
        if data == None: return None 
 
        reading_elements = string.split( data, ASCII_READING_SEP )[ : -1 ] 
        logging.debug( "%s: %d reading_elements", 
                       __FUNCTION__, len( reading_elements ) ) 
 
        readings = [] 
        i = 0 
        for reading_element in reading_elements: 
            i += 1 
            reading = self.parseAsciiReading( reading_element ) 
            reading.setPhoneNumber( phone_number ) 
            reading.setColumnNames( col_names ) 
            if reading == None: 
                logging.warning( "%s: None reading on %d of %d element", 
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                                 __FUNCTION__, i, len( reading_elements ) ) 
            else: 
                # The readings are stored in a stack on the datalogger 
                # and are transmitted in reverse-time order.  We want 
                # to post them in time order. 
                readings.insert( 0, reading ) 
 
        logging.debug( "exit receiveData: read %d elements" % i ) 
        return readings 
     
 
    def parseAsciiReading( self, reading_element ): 
        """Parse an ASCII line of data and return a reading. 
 
        """ 
        __FUNCTION__ = sys._getframe().f_code.co_name 
         
        logging.debug( "%s: parsing %d bytes", 
                       __FUNCTION__, len( reading_element ) ) 
 
        if len( reading_element ) == 0: 
            logging.warning( "%s: zero length reading_element", __FUNCTION__ ) 
            return None 
 
        (ts_str, data_str) = string.split( reading_element, ',', 1 ) 
         
        ts_str = string.strip( ts_str, '"' ) # remove quotes 
        timestamp = sri.ayoung.DatetimeUtils.parse_iso8601( ts_str ) 
 
        numbers = [] 
        numbers_str = string.split( data_str, ',' ) 
        for number_str in numbers_str: 
            try: 
                number = float( number_str ) 
            except ValueError, e: 
                logging.error( "%s: \"%s\" is not a float", 
                               __FUNCTION__, number_str ) 
                return None 
                 
            numbers.append( number ) 
             
        reading = Reading.Reading() 
        reading.timestamp = timestamp 
        reading.values = numbers 
         
        logging.debug( "%s: timestamp = %s, nNumbers = %d", 
                       __FUNCTION__, reading.timestamp, 
                       len( reading.values ) ) 
 
        return reading 
 
         
    def parseBinaryReading( self, reading_element, header ): 
        """This function parses binary input from the datalogger. 
 
        DEPRECATED. 
        """ 



 102 

        __FUNCTION__ = sys._getframe().f_code.co_name 
         
        logging.debug( "%s: parsing %d bytes", 
                       __FUNCTION__, len( reading_element ) ) 
 
        if len( reading_element ) == 0: 
            logging.warning( "%s: zero length reading_element", __FUNCTION__ ) 
            return None 
 
        if len( reading_element ) < 19:     
            logging.warning( "%s: length not even that of a ts, %s", 
                             __FUNCTION__, repr(data) ) 
            return None 
         
        reading = Reading.Reading() 
 
        reading.header = header 
        reading.phone_number = "800-555-1212" # TODO 
        iso8601_str = reading_element[ 0 : 19 ] 
        ts = sri.ayoung.DatetimeUtils.parse_iso8601( iso8601_str ) 
        reading.timestamp = ts 
 
        data = reading_element[ 19 : ] 
         
        # The data is IEEE4, thus we better have mults of 4 bytes!! 
        SIZEOF_FLOAT = 4 
        if len(data) % SIZEOF_FLOAT != 0: 
            logging.debug( "%s: data length %d not mod %d, %s", 
                           __FUNCTION__, len(data), SIZEOF_FLOAT, repr(data) ) 
            #reading.values = 'Distorted Data' 
            return None #readings 
 
        numbers = [] 
        nValues = len(data) / SIZEOF_FLOAT 
        for i in range( nValues ): 
            value = data[ i * SIZEOF_FLOAT : i * SIZEOF_FLOAT + SIZEOF_FLOAT ] 
             
            number = struct.unpack( '!f', value ) 
            numbers.append( number ) 
             
        logging.debug( "%s: ts = %s, nNumbers = %d", 
                       __FUNCTION__, reading.ts, len( numbers ) ) 
 
        reading.values = numbers 
        return reading 
 
         
    def readUntil( self, ser, x, maximum = 0 ): 
    """This function reads characters until it reads the string x 
        """ 
 
        __FUNCTION__ = sys._getframe().f_code.co_name 
 
         
        logging.debug( "%s: waiting for %s, maximum = %d", 
                       __FUNCTION__, repr(x), maximum ) 
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        message_buffer = StringIO.StringIO() 
         
        i = 0 
        while True: 
            value = ser.read() 
            message_buffer.write( value ) 
            text = message_buffer.getvalue() 
            if len( text ) > 25: 
                xx = text[-24:] 
            else: 
                xx = text        
            logging.debug( "%s: recv: (%d) %s", 
                           __FUNCTION__, 
                           len( text ), repr( xx ) ) 
             
            if self.isNoCarrier( value ): return None 
             
            if value == x[ i ]: 
                logging.debug( "%s: received %s of %s", 
                               __FUNCTION__, repr(x[ 0 : i+1 ]), repr(x) ) 
                i += 1 
            else: 
                i = 0 
                 
            if i >= len( x ): 
                logging.debug( "%s: received %s completely", 
                               __FUNCTION__, repr( x ) ) 
                break 
             
            if maximum > 0 and len( text ) > maximum: 
                logging.debug( "%s: received maximum chars", __FUNCTION__ ) 
 
        message = message_buffer.getvalue() 
        return message[ 0 : -len( x ) ] 
 
 
    def isNoCarrier( self, value ): 

  """This function checks for a “NO CARRIER”. 
 
        """ 
 
        __FUNCTION__ = sys._getframe().f_code.co_name 
 
        self.read_buffer.write( value ) 
        result = self.read_buffer.getvalue().find( NOCARRIER ) 
        if result >= 0: 
            logging.debug( "%s found!" % NOCARRIER ) 
     self.read_buffer = StringIO.StringIO() 
            return True 
        else: 
            return False 
 
         
    def output( self, readings ): 

  """This function write the formatted data to a file. 
  (used during testing) 
        """ 
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        __FUNCTION__ = sys._getframe().f_code.co_name 
         
        filename = "%.3d.txt" % self.counter 
 
        logging.debug( "%s: opening %s for writing", 
                       __FUNCTION__, filename ) 
        myfile = open( filename, 'w' ) 
        myfile.write( "HEADER\n" ) 
        myfile.write( "%s" % readings[0].header ) 
        myfile.write('\n') 
        myfile.write( "DATA\n" ) 
        for reading in readings: 
            # what do do if it gets a corrupt piece of data 
            if reading == None: 
                myfile.write( "Distorted Data" ) 
            else: 
                myfile.write( "TS=%s, " % reading.ts ) 
                myfile.write( "VALUES= " ) 
                for value in reading.values: 
                    myfile.write( "%e, " % value ) 
            myfile.write( '\n' ) 
 
        myfile.close() 
        self.counter += 1 
 
 
if __name__ == '__main__': 
 
    setupLogging() 
    logging.debug( "%s: starting", __name__ ) 
     
    datalogger = Datalogger( serial_port = 0 ) 
    # readings = datalogger.getReadings() 
    readings = datalogger.run() 
    if readings: 
        logging.debug( "%s: got %d readings", __name__, len( readings ) ) 
    else: 
        logging.debug( "%s: None readings", __name__ ) 
     
    sys.exit( 0 ) 
 

Receive 
#!/usr/bin/env python 
 
import logging  
import sys 
import string 
import datetime 
import StringIO 
import pg 
 
from Transport import ProcessClient 
from Transport import NewsPostMixin 
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import Reading 
import Datalogger 
 
# Initial 
MESSAGE_FORMAT_VERSION = "0.1" 
 
""" 
This version receives the list of readings from Datalogger in a 
reverse order.  The initial version received them in reverse-time 
order (decending.)  Now Datalogger's getReadings() returns them in 
forward-time order (assending.) 
""" 
MESSAGE_FORMAT_VERSION = "0.2" 
 
 
def setupLogging(): 
 
    logging_format = '%(asctime)s %(name)s %(filename)s %(levelname)s 
%(message)s' 
    formatter = logging.Formatter( logging_format ) 
  
    log_file = logging.FileHandler( "Receive.log", 'w' ) 
    log_file.setFormatter( formatter ) 
    log_file.setLevel( logging.DEBUG ) 
  
    console = logging.StreamHandler( sys.stdout ) 
    console.setFormatter( formatter ) 
    console.setLevel( logging.DEBUG ) 
 
    rootLogger = logging.getLogger( '' ) 
    rootLogger.setLevel( logging.DEBUG ) 
    rootLogger.addHandler( console ) 
    rootLogger.addHandler( log_file ) 
 
 
class Receive( ProcessClient, NewsPostMixin ): 
 
    def __init__( self, argv ): 
        ProcessClient.__init__( self, argv ) 
        NewsPostMixin.__init__( self ) 
 
    def run( self ): 
        __FUNCTION__ = sys._getframe().f_code.co_name 
        logging.debug( "%s: entering", __FUNCTION__ ) 
 
        datalogger = Datalogger.Datalogger() 
 
        while True: 
            logging.debug( "%s: top-of-while", __FUNCTION__ ) 
            # readings = datalogger.simulate() 
            readings = datalogger.getReadings() 
             
     if readings == None or len( readings ) == 0: 
                logging.error("%s: no readings to post", __FUNCTION__) 
            else: 
                buf = StringIO.StringIO() 
                buf.write( "[HEADER]\n" ) 
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                buf.write( "%s\n" % readings[0].getPhoneNumber() ) 
                buf.write( "timestamp," ) 
 
                col_names = string.join( readings[0].getColumnNames(), ',' ) 
                buf.write( "%s\n" % col_names ) 
                 
                buf.write( "[DATA]\n" ) 
  for reading in readings: 
                    buf.write( "%s\n" % reading.toString() ) 
 
                timestamp = datetime.datetime.now() 
                subject = "version=\"%s\",timestamp=\"%s\"" % \ 
                          ( MESSAGE_FORMAT_VERSION, 
                            timestamp ) 
                logging.debug( "%s: posting message subject = \"%s\"", 
                               __FUNCTION__, subject ) 
                self.newsPoster.setSubject( subject ) 
                self.newsPoster.postText( buf.getvalue() ) 
     # break                       # one shot 
        logging.debug( "%s: exiting", __FUNCTION__ ) 
 
  
if __name__ == '__main__': 
     
    setupLogging() 
 
    logging.debug( "%s: starting", __name__ ) 
    Receive( sys.argv ).run() 
    sys.exit( 0 ) 
 

Store 
#!/usr/bin/env python 
 
import logging  
import sys 
import StringIO 
import string 
import datetime 
import pg 
import re 
 
import sri.ayoung.DatetimeUtils 
 
from Transport import ProcessClient 
from Transport import NewsPollMixin 
 
import Reading 
import Datalogger 
 
dbname = "datalogger" 
user = "transport" 
     
 
class Store( ProcessClient, NewsPollMixin ): 
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    def __init__( self, argv ): 
        ProcessClient.__init__( self, argv ) 
        NewsPollMixin.__init__( self, callback=self.process ) 
 
 
    def process( self, message ): 
        __FUNCTION__ = sys._getframe().f_code.co_name 
        logging.debug( "%s: entering", __FUNCTION__ ) 
 
        subject = message.get( 'Subject' ) 
        payload = message.get_payload() 
        logging.info( "%s: message subject: %s", 
                       __FUNCTION__, subject ) 
 
 
        self.storeReadings( subject, payload ) 
 
         
   to = datetime.datetime.now() 
   fm = sri.ayoung.DatetimeUtils.parse_iso8601( “2006-02-24 18:00:00” ) 
   date_range = sri.ayoung.DatetimeUtils.DateRange( fm, to ) 
 

  png_dir = “/var/www/polar/polar/static/images/datalogger” 
  plot_generator = sri.Datalogger.PlotGenerator.PlotGenerator() 
  plot_generator.generate( date_range, png_dir ) 
 
  logging.debug( "%s: exiting", __FUNCTION__ ) 

  
 
    def storeReadings( self, subject, payload ): 
        __FUNCTION__ = sys._getframe().f_code.co_name 
        logging.debug( "%s: entering", __FUNCTION__ ) 
 
        ( message_format_version, 
         transmit_timestamp ) = self.parseSubject( subject ) 
 
        if message_format_version != "0.1" and \ 
               message_format_version != "0.2": 

            logging.error( "%s: unknown message_format_version:  
      \"%s\"", 

                           __FUNCTION__, message_format_version ) 
            return 
                     
        header, data = self.splitPayload( payload ) 
        if header == None: 
            logging.error( "%s: header is None", __FUNCTION__ ) 
            return 
 
        phone_number, column_names = self.parseHeader( header ) 
        readings = self.parseData( message_format_version, 
                                   data, 
                                   phone_number, 
                                   transmit_timestamp, 
                                   column_names ) 
        self.store( readings ) 
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    def parseSubject( self, subject ): 

  """This function parses the subject into a transmit timestamp & version. 
 
        """ 
 
        __FUNCTION__ = sys._getframe().f_code.co_name 
        logging.debug( "%s: entering", __FUNCTION__ ) 
 
        pattern = "version=\"([a-z0-9.-]+)\"" 
        mo = re.search( pattern, subject ) 
        if mo: 
            version = mo.group( 1 ) 
        else: 
            logging.warning( "%s: using NA for version", __FUNCTION__ ) 
            version = "NA" 
 
 
        pattern = "timestamp=\"(%s)\"" % \ 
                  sri.ayoung.DatetimeUtils.iso8601_pattern 
        mo = re.search( pattern, subject ) 
        if mo: 
            ts = mo.group( 1 ) 
            transmit_timestamp = sri.ayoung.DatetimeUtils.parse_iso8601( ts ) 
        else: 
            logging.warning( "%s: using now for timestamp", __FUNCTION__ ) 
            transmit_timestamp = datetime.datetime.now() 
         
        logging.debug( "%s: version = \"%s\" transmit_timestamp = \"%s\"", 
                       __FUNCTION__, version, transmit_timestamp ) 
        return ( version, transmit_timestamp ) 
 
 
 
    def splitPayload( self, payload ): 

   """This function parses the payload into a header & data. 
 
         """ 
 
        __FUNCTION__ = sys._getframe().f_code.co_name 
        logging.debug( "%s: entering", __FUNCTION__ ) 
 
        sections = {} 
        lines = string.split( payload, '\n' ) 
        logging.debug( "%s: %d lines in payload", __FUNCTION__, len( lines ) ) 
        section_name = None 
        line_number = 0 
        for line in lines: 
            line_number += 1 
            #logging.debug( "%s: line %d/%d is %d long", 
            #               __FUNCTION__, line_number, len(lines), len( line )) 
            mo = re.match( "^[[](.+)[]]", line ) 
            if mo: 
                section_name = mo.group( 1 ) 
                logging.debug( "%s: now reading section \"%s\"", 
                               __FUNCTION__, section_name ) 
                if not sections.has_key( section_name ): 
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                    logging.debug( "%s: new section", __FUNCTION__ ) 
                    sections[ section_name ] = [] 
            else: 
                if section_name: 
                    sections[ section_name ].append( line ) 
 
 
        if sections.has_key( 'HEADER' ) and sections.has_key( 'DATA' ):  
            header = sections['HEADER'] 
            data = sections['DATA'] 
            logging.debug( "%s: exiting, header: %d lines, data: %d lines", 
                           __FUNCTION__, len( header ), len( data ) ) 
            return header, data 
        else: 
            logging.warning( "%s: exiting, header: None, data: None", 
                           __FUNCTION__ ) 
            return None, None 
 
         
    def parseHeader( self, lines ): 

  """This function parses the header into a phone number & column names. 
 
        """ 
 
        __FUNCTION__ = sys._getframe().f_code.co_name 
 
        logging.debug( "%s: %d lines in header", __FUNCTION__, len( lines ) ) 
        line_number = 0 
        for line in lines: 
            line_number += 1 
            logging.debug( "%s: line %d/%d is %d long", 
                           __FUNCTION__, line_number, len(lines), len( line ) ) 
            if line_number == 1: 
                phone_number = line 
                logging.debug( "%s: phone_number: \"%s\"", 
                               __FUNCTION__, phone_number ) 
            elif line_number == 2: 
                column_names = string.split( line, ',' ) 
                logging.debug( "%s: column_names: %s", 
                               __FUNCTION__, repr( column_names ) ) 
            else: 
                logging.warning( "%s: line %d/%d is unexpected: \"%s\"", 
                                 __FUNCTION__, line_number, len(lines), line ) 
                 
        return phone_number, column_names 
                 
             
    def parseData( self, 
                   message_format_version, 
                   lines, 
                   phone_number, 
                   transmit_timestamp, 
                   column_names ): 
        __FUNCTION__ = sys._getframe().f_code.co_name 
 
        readings = [] 
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        logging.debug( "%s: %d lines in data", __FUNCTION__, len( lines ) ) 
        line_number = 0 
        for line in lines: 
            line_number += 1 
            logging.debug( "%s: line %d/%d is %d long", 
                           __FUNCTION__, line_number, len(lines), len( line ) ) 
             
            reading = Reading.fromString( line ) 
            if not reading: 
                logging.error( "%s: can't parse \"%s\"", __FUNCTION__, line ) 
            else: 
                reading.setTransmitTimestamp( transmit_timestamp ) 
                reading.setPhoneNumber( phone_number ) 
                reading.setColumnNames( column_names ) 
                if message_format_version == "0.1": 
                    readings.insert( 0, reading ) 
                elif message_format_version == "0.2": 
                    readings.append( reading ) 
                else: 
                    logging.error( "%s: message_format_version?: \"%s\"", 
                                   __FUNCTION__, message_format_version ) 
                     
        logging.debug( "%s: exiting, %d readings", 
                       __FUNCTION__, len( readings ) ) 
        return readings 
 
 
    def store( self, readings ): 

  """This function stores the values into a reading table. 
 
        """ 
 
        __FUNCTION__ = sys._getframe().f_code.co_name 
 
        # Open a connection to the DB 
        try: 
            logging.debug( "%s: entering, connecting to %s @ %s", 
                          __FUNCTION__, dbname, user ) 
            connection = pg.connect( dbname=dbname, user=user ) 
        except pg.InternalError, inst: 
            logging.error( "%s: db connection failed: %s", __name__, inst ) 
            return 
 
        reading_table = Reading.ReadingTable( connection ) 
 
        for reading in readings: 
            try: 
                reading_table.insert( reading ) 
            except pg.ProgrammingError, e: 
                if re.search( "_timestamp_key", str( e ) ): 
                    logging.warning( "%s: duplicate reading", __FUNCTION__ ) 
                else: 
                    raise 
 
        logging.debug( "%s: exiting, closing connection to %s @ %s", 
                       __FUNCTION__, dbname, user ) 
        connection.close() 
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        return 
     
             
def setupLogging(): 
 
    logging_format = '%(asctime)s %(name)s %(filename)s %(levelname)s %(message)s' 
    formatter = logging.Formatter( logging_format ) 
  
    log_file = logging.FileHandler( "Store.log", 'w' ) 
    log_file.setFormatter( formatter ) 
    log_file.setLevel( logging.DEBUG ) 
  
    console = logging.StreamHandler( sys.stdout ) 
    console.setFormatter( formatter ) 
    console.setLevel( logging.DEBUG ) 
 
    rootLogger = logging.getLogger( '' ) 
    rootLogger.setLevel( logging.DEBUG ) 
    rootLogger.addHandler( console ) 
    rootLogger.addHandler( log_file ) 
 
if __name__ == '__main__': 
     
    setupLogging() 
 
    logging.debug( "%s: starting", __name__ ) 
    Store( sys.argv ).run() 
    sys.exit( 0 ) 
         
 

plotGenerator 
#!/usr/bin/env python 
 
import StringIO 
import logging 
import datetime 
import tempfile 
import time 
import sys 
import os 
import os.path 
import pg 
 
from stat import * 
 
import sri.Datalogger.Reading 
import Database 
 
dbname = “datalogger” 
user = “apache” 
passwd = “apache” 
 
def is_writable_dir(p): 
    “”” 
  p is a string pointing to a putative writable dir – return True p 
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  is such a string, else False 
  From /usr/lib/python2.4/site-packages/matplotlib/__init__.py 
  “”” 
 try: p + ‘’ # test is string like 
 except TypeError: return False 
 try: 
      t = tempfile.TemporaryFile(dir=p) 
           t.write(‘1’) 
           t.close() 
 except OSError: return False 
  else: return True 
 
# Here is some weird voodoo! 
# http://www.scipy.org/wikis/topical_software/UsingMatPlotLibInACGIScript 
# matplotlib wants to run in a writable directory, which, when run through 
# apache may be /root: unwritable by apache 
 
home = ‘HOME’ 
home_dir = os.environ[ HOME ] 
if not is_writable_dir( home_dir ): 
 home_dir = ‘/tmp’ 
 os.environ[ HOME ] 
 
import matplotlib 
 
# Here is some weird voodoo! 
# http://www.scipy.org/wikis/topical_software/UsingMatPlotLibInACGIScript 
# importing pylab w/o calling matplotlib.use( ‘Agg’ ) will have the import 
# try to open the display, which, when run through apache, which will fail  
# matplotlib.use( ‘Agg’ ) 
 
import pylab 
 
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas 
 
import Mlab 
 
class Series: 
 def __init__( self, measurement=None, units=None ): 
  self.measurement = measurement 
  self.units = units 
  self.range = None 
  self.data = [] 
 def append( self, datum ): self.data.append( datum ) 
 
 def getMeasurements( self ): return self.measurement 

def getUnits( self ): return self.units 
 
def setRange( self, range ): 
 self.range = range 
 
def getRange( self ): return self.range 
 
def getData( self ): return self.data 

 
class Line: 
 def __init__( self, x=None, y=None ): 
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  self.x = x 
  self.y = y 
 def getX( self ): return self.x 
 def getY( se;f ): return self.y 
 
class PlotGenerator: 
  
 def __init__( self, connection=None ): 
  __FUNCTION__ = sys._getframe().f_code.co_name 
  logging.debug( “%s: connection = %s”, __FUNCTION__, connection ) 
   
 
  if connection: 
   self.connection = connection 
   self.local_connection = False 
  else: 
   self.connection = self.connect() 
   self.local_connection = True 
 def __del__( self ): 
  if self.local_connection: 
   self.connection.close() 
  
 def connection( self ): 
  __FUNCTION__ = sys._getframe().f_code.co_name 
   
  try: 
   logging.info( “%s:connecting to %s @ %s”, 
        __FUNCTION__, dbname, user ) 
   connection = pg.connect( dbname=dbanme, user=user ) 
  except pg.InternalError, inst: 
   logging.error( “%s: db connection failed: %s”, __FUNCTION__, inst )
   connection = None 
 
  return connection 
 
 def generate( self, date_range, pnd_dir = “/var/tmp” ): 
  __FUNCTION__ = sys._getframe().f_code.co_name 
   

logging.info( “%s: %s, png_dir=%s”, 
           __FUNCTION__, date_range, png_dir ) 
   
  readings = self.getReadings( date_range ) 
  if readings == None: 
   logging.warning( “%s:no data available”, __FUNCTION__ ) 
   return None 
 
  measurements = { 0: ‘PTemp’, 1: ‘Batt_volt;, 2: ‘Batt_Volt_IR’, 3: 
‘PV_Voltage’, 4: ‘ETemp’ } 

units =  { 0: ‘Celsius’, 1: ‘Volts’, 2: ‘Volts’, 3: ‘Volts’, 4: ‘Celsius’ 
} 

ranges =  { 0: None, 1: (0:15), 2: (0,15), 3: (0,30), 4: None } 
 
colum_numbers = [ 0, 1, 2, 3, 4 ] 
for column_number in column_numbers: 
 
 measurement = measurement[ column_number ] 
 unit = units[ column_number ] 
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 png_filename = “%s.png” % (measurement)  
png_path = os.path.join( png_dir, png_filename ) 

    
   line = self.getLine( readings, 
         measurmenr, 
                               unit, 
         range, 
         column_number ) 
  
   self.plotLine( date_range, line, png_path ) 
 
def getReadings( self, dr ): 
    “””Returns a list of readings within the date range 
    “”” 
 __FUNCTION__ = sys._getframe().f_code.co_name 
  
 # Here is the structure of the series 
 xs = Series( ‘time’, ’time’ ) 
 ys = Series( measurement, units ) 
 ys.setRange( range ) 
 
 for reading in readings: 
  x = matplotlib.pylab.date2num( reading.getTimestamp() ) 
  y = reading.getValues()[ column_number ] 
 
  xs.append( x ) 
  ys.append( y ) 
  

l = Line( xs, ys) 
 return l 
 
def plotline( self, date_range, line, png_path ): 
 
 __FUNCTION__ = sys._getframe().f_code.co_name 
 logging.debug( “%s: %s, png_path=%s”, 
       __FUNCTION__, date_range, png_path ) 
 
 figure = matplotlib.pylab.Figure( figsize=(8,2.25) ) 
 
 # Canvas for figure 
 canvas = FigureCanvas( figure ) 
 
 # Add a plot 
 axes = figure.add_subplot(111)  # row 1, col1, subplot 1 
 
 # Raise subplot up a little 
 figure.subplots_adjust( bottome=0.2 ) 
 
 # Title 
 title = axes.set_title(line.getY().getMeasurement()) 
 
 # YLabel 
 ylabel = axes.set_ylabel( line.getY().getUnits() ) 
 

# Grid 
 axes.grid( True ) 
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 l,b,w,h = awex.get_position() 
 axes.set_position( [l – ¼.0, b, w + ((1-w)/2.0), h – ((1-h)/4.0)] ) 
 
 # Plot the lines 
 l1, = axes.plot_date( line.getX().getData(), 
        line.getY().getData(), 
        fmt=’-‘) 
 
 # Set the colors 
 # l1.set_color( Color.brown ) 
 
 # X limits 
 # l =Mlab.min( series[‘x’] ) 
 # u =Mlab.max( series[‘x’] )  
 l = matplotlib.pylab.date2num( date_range.fm ) 
 u = matpltlib.pylab.date2num( date_range.to ) 
 
 axes.set_xlim( [l, u ] ) 
 
 # Y limits 
 # Do this following all plots so ylim is autoscaled to be used 
 # l,u = axes.get_ylim() 
 if line.getY().getRange() 
  range = line.getY().getRange() 
  axes.set_ylim( range ) 
 
 date_formatter = matplotlib.pylab.dates.DateFormatter( ‘%m/%d\n%H:%M’ ) 
 axes.xaxis.set_major_formatter( date_formatter ) 
 
 # Write out the png 
 canvas.print_figure( png_path, dpi = 80 ) #dpi=150 is default 
 
def setupLogging(): 
 
 logging.format=’%(asctime)s %(name)s %(filename)s %(levelnames)s 
%(message)s’ 
 formatter = logging.Formatter( logging_format ) 
 
 log_file = logging.FileHandler( 
“/var/tmp/sri.Datalogger.Plotgenerator.log”, ‘w’) 
 log_file.setFormatter( formatter ) 
 log_file.setLevel( logging.DEBUG ) 
 
 console = logging.StreamHandle() 
 console.setFormatter( formatter ) 

console.setLevel( logging.DEBUG ) 
 
rootLogger = logging.getLogger(‘’) 
rootLogger.setLevel( logging.DEBUG ) 
 
rootLogger.addHandler( console ) 
rootLogger.addHandler( log_file ) 
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System Requirements 
These programs were written with Python 2.4.2.  A downloadable version and overview 
of this version can be found at http://www.python.org/2.4.2/ .   
 
Also, to utilize the serial commands pyserial is needed to properly run these programs.  
Pyserial 2.2 can be downloaded through http://pyserial.sourceforge.net/ .  This site also 
contains information about Pyserial and its functions.  
 
Lastly, if this is being run on a windows PC, win32 is required.  This can be downloaded 
with pyserial also at http://pyserial.sourceforge.net/ .  For this download the file named 
pyserial-2.2.win32.exe . 
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Appendix C – User’s Manual 
This manual is intended to aid the researcher using this system in properly setting up the 
data collection station.  Additionally it documents the programming tools used to create 
the interface between a Campbell Scientific datalogger and an Iridium modem. 

Physical Setup 

The following sections will cover recommended steps to ensure proper set up of the 
physical system on site in Kotzebue Alaska.  Figure 66 is a physical diagram of the 
research station. 

 

 

Insulated enclosure 
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Figure 66: Full sensing station 

 

 

Datalogger Connections 

The datalogger will be mounted on the tower, in its own Campbell Scientific secure 
enclosure. Figure 67 shows the datalogger mounted in the enclosure with space at the 
bottom for a multiplexer.  

 

 
Figure 67: Datalogger enclosure 

Several wires will need to be fed from the datalogger’s enclosure to the insulated box.  
This is necessary to power the datalogger, to communicate with the satellite modem, and 
to collect data from the insulated enclosure.  Figure 68 shows all of these connections on 
the proper terminals 
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Figure 68:  Datalogger with all connections necessary for communications 

The connections made from the datalogger’s enclosure to the insulated box, are explained 
in detail below: 

�Power and Ground wires are connected to the datalogger’s power terminals from the 
datalogger’s 12V battery in the insulated box. These two lines are the Brown (power) and 
paired White (ground) lines in the eight conductor cable. 

� One control line is run from the datalogger’s digital I/O port #2 (C2) to the circuit box 
and is used to activate the switching circuitry inside the insulated box. This line is Blue 
wire in the eight conductor cable. 

� Two wires running from the datalogger’s differential measurement terminal #2 (which 
is connected through a CSI voltage divider) are used to sense the Iridium modem’s 
battery voltage.  Be sure to connect the positive battery terminal to the high or ‘H’ 
terminal on the datalogger’s differential measurement panel. These two lines are the 
Green (+) and paired White (-) wires in the eight conductor cable. 
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� Two wires are used to sense the PV voltage, they also run from the datalogger’s 
differential measurement terminal #3 (which is connected through a CSI voltage divider) 
to the terminal strip shown in Figure 70. These two are the Orange (+) and paired White(-
) wires in the seven conductor cable. 

�A null modem cable is linked between the datalogger and Iridium transceiver’s RS232 
port inside the insulated box. 

� A thermocouple (T107) is used to measure the temperature inside the insulated box.  
Four wires must be connected to the datalogger to operate this temperature sensor.  The 
red wire should be attached to the SE 1 terminal, the black wire to the EX1 terminal, and 
the Purple and Clear wires to a ground terminal. 

CSI Voltage Divider 

Two CSI VDIV10:1 voltage dividers are used in this system. The datalogger can only 
measure voltages up to 5 volts, so to measure the PV panel voltage (which could reach up 
to 25V) and the Iridium battery voltage (12V) the 10 to 1 voltage dividers shown in 
Figure 69 are used. Figure 69 shows how the voltage dividers are inserted into the 
datalogger’s terminals.  The resistor values are 90k� and 10k�, to form a 10 to one 
voltage divider. 

 

 
Figure 69: VDIV10:1 (voltage divider for reading greater than 5V) 

 

Mounting Panel Connections 

Several hardware components of this system are mounted on a sheet of plywood and 
cemented onto the top lid of the insulated enclosure. Items attached to the mounting panel 
include the Iridium modem, the battery charge controller, the switching circuit and diode 
box, a fuse block, and several junction terminals. The mounting panel is affixed to the 
inside of the top lid. Figure 70 shows the mounting panel with all connections made. 
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Figure 70: Mounting panel connections 

Make sure all connections on the mounting panel are secure: 

� Gently pull on Iridium DC to DC converter to verify it is fastened securely to the 
modem as shown. 

� Ensure that the circuit box connectors are secure. 

� Assure that all terminal connections are screwed down tightly. 

� Insure that circuit box lid is screwed down tightly. 

� Make sure RS232 cable from the Iridium modem is screwed securely to the DB9 RS232 
cable coming from the datalogger box. 

 

Iridium Modem DC to DC converter Junction Terminals 

Charge Controller Circuit Box Fuse Block 
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Figure 71:Mounting Panel Schematic 

PV panel and Antenna 

The PV panel should be mounted vertically at the top of a 2.5 meter pole facing south. 
(Refer to Figure 66).  The voltage leads from the panel will be fed into the insulated 
enclosure.  The antenna should be mounted at 1.5 meters up the pole and the cable should 
be fed into the insulated enclosure and connected to the Iridium modem. 

Batteries 

At the heart of the power system are two 12V 100Ah gel cell batteries which are housed 
at the base of the tower in an insulated box.  
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Figure 72: Deka 8G31 12V 100Ah gel cell battery25 

CR1000 Code User Manual 
 
1. Devlopment Tools 
This section will document the tools used to develop the final code to be deployed in the 
field. Please refer to the help file(s) included with the following development tools for 
further assistance. 
 

1.1.1. CRBasic Editor 
The final CR1000 code was compiled and debugged using the CRBasic editor which is 
available through Campbell Scientific’s Loggernet package. The software can be 
purchased through the Campbell download link page as provided in the links and 
resources section of this manual. 
 

1.1.2. PC200W 
PC200W is a free software package used to upload programs or change the system clock 
of the CR1000. This software was used to upload new versions of the code but can also 
be used to directly retrieve collected data. See the links and resources section for 
download information. 
 
2. Customizing Code 
This section will explain the code alterations which will need to be made before 
deploying the final system. Additionally, this section will also explain some features in 
the code which can be changed if desired. 
 

2.1.  Header Information 
It is necessary for the header information to be edited inside of the CRBasic code. The 
header is transmitted before the data and provides the backend system with column 
information for each data reading. Figure 73 shows the code to transmit the header 
information. 
 
01 
02 
03 
04 
01 
02 
03 
04 

'CR1000 
'Created by Short Cut (2.5) 
 
'Declare Variables and Units 
 'Send The Header With Column Names 
 SerialOut(ComRS232, "?@#$", "", 0, 500 ) 
SerialOut(ComRS232, MyPhoneNumber, "", 0, 500) 
SerialOut(ComRS232, CHR(13) + CHR(10), "", 0, 500) 
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05 
06 
07 
08 
09 
10 
11 
12 
13 
14 

 
 ' Health/Status columns 
 SerialOut( ComRS232,   
"PTemp_C,Batt_Volt,Batt_Volt_IR,PV_Voltage,ETemp_C", "", 0, 500) 
 
 ' Paddy to add his columns here... 
 SerialOut( ComRS232, "Paddy0,Paddy1,PaddyN", "", 0, 500 ) 
 
 'Send The Header With End Tag 
 SerialOut(ComRS232, "$#@?", "", 0, 500)  

Figure 73: Header Information 
To customize the code so that the header columns contain the correct information, simply 
edit the SerialOut command shown in line 11. The second parameter is where this 
information will go. Replace “Paddy0,Paddy1,PaddyN” with the corresponding variable 
or sensor description names. These must match with the order of the columns formatted 
by the datalogger. The columns will go in the same order as declared in the DataTable 
instruction which will be described in the following sections. 
  

2.2.  Sensor Readings 
When editing the final code, it is necessary to change parameters in reading sensors and 
storing data. The following describes steps to customize these settings inside of the final 
CR1000 code. 
 

2.2.1. Scan / Data Storage Interval 
Changing the scan or sensor reading intervals requires editing two numbers in the 
CRBasic code. The “BeginProg” structure of the CRBasic code shown in Appendix A 
shows an instruction called “scan”. The scan instruction is used to control the looping 
inside of this function. The instruction also controls how often the sensors are being read.  
There are 4 parameters which are explained in the Campbell’s CR1000 user manual, or 
using the help menu in the CRBasic editor. The first parameter of the scan instruction 
controls how often the scan occurs and the second parameter is used to control the scan 
units. Editing these parameters will change the scan rate inside of the main program. 
 
It is important to make the distinction between taking, and storing a sensor reading. The 
interval for reading a sensor is controlled with the scan function, however; storing a 
sensor reading is accomplished by editing the data table declaration. Line 12 in Figure 74 
shows a DataInterval instruction. Parameters 2 and 3 of this instruction can be edited to 
change the storage rate from sensor readings. Similar to the scan instruction shown in 
Figure 74, parameter 2 controls the storage rate, while parameter 3 is used to control the 
units corresponding to the storage rate. Figure 74 also shows an example of a program 
which scans and stores at different intervals. Notice that on line 13 the data is recorded 
every sixty minutes, but in line 20 it shows that the sensors are scanned every five 
seconds.  
 
01 
02 

'CR1000 
'Created by Short Cut (2.5) 
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03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

 
'Declare Variables and Units 
Public Batt_Volt 
Public PTemp_C 
 
Units Batt_Volt=Volts 
Units PTemp_C=Deg C 
 
'Define Data Tables 
DataTable(Table1,True,-1) 
 DataInterval(0,60,Min,10) 
 Sample(1,Batt_Volt,FP2) 
 Sample(1,PTemp_C,FP2) 
EndTable 
 
'Main Program 
BeginProg 
 Scan(5,Sec,1,0) 
  'Default Datalogger Battery Voltage measurement Batt_Volt: 
  Battery(Batt_Volt) 
  'Wiring Panel Temperature measurement PTemp_C: 
  PanelTemp(PTemp_C,_60Hz) 
  'Call Data Tables and Store Data 
  CallTable(Table1) 
 NextScan 
EndProg 

Figure 74: Scan/Store Intervals Example 
2.2.2. Adding Sensors 

Inside of the developed CR1000 code is a subroutine which is built to hold the sensor 
readings. This subroutine can be seen in Figure 75. 
 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 

Sub Read_Sensors 
 
  'Default Datalogger Battery Voltage measurement Batt_Volt: 
  Battery(Batt_Volt()) 
   
  'Wiring Panel Temperature measurement PTemp_C: 
  PanelTemp(PTemp_C(),_60Hz) 
   
  'Generic Single-Ended Voltage measurements SEVolt: 
  VoltDiff(Batt_Volt_IR,1,mV2500,2,True,0,_60Hz,0.01,0.0) 
  
  'Generic Differential Voltage measurements PV_Voltag: 
  VoltDiff(PV_Voltage,1,mV2500,3,True,0,_60Hz,0.01,0.0) 
 
  '107 Temperature Probe measurement T107_C: 
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16 
17 
18 
19 

  Therm107(T107_C,1,1,1,0,_60Hz,1.0,0.0) 
 
Exit Sub 
End Sub 

Figure 75: Read_Sensors Subroutine 
Editing this section of the code is trivial. Simply add or remove any measurement 
instruction calls into this section. Please refer to Campbell’s CR1000 user manual for 
specific details on measurement instructions.  
 
In addition to editing the subroutine, the data table declaration of the code will also need 
to be edited.  Figure 76 shows the data table declaration which was used in testing the 
data transmission code.  
 
01 
02 
03 
04 
05 
06 
07 
08 
09 

'Define Data Tables 
DataTable(Table1,True,-1) 
 DataInterval(0,1,sec,0) 
 Average(1,PTemp_C(),IEEE4,False) 
 Average(1,Batt_Vo_2(),IEEE4,False) 
 Sample(1,Batt_Volt_IR,IEEE4) 
 Sample(1,Charge_Current,IEEE4) 
 Sample(1,PV_Voltage,IEEE4) 
EndTable 

Figure 76: Data Table Declaration 
To ensure data storage, simply add any processing instructions into the data table 
structure. The variables in this data table structure correspond to the sensor readings as 
shown in Figure 75. This example uses only one data table, however it might be desirable 
in some cases to add more tables. Please see the CR1000 user manual for further 
customizable options. 
 

2.3. Data Transmission Interval 
The data transmission interval is the period between transfers. This period is initialized at 
the beginning of the “BeginProg” structure shown in Appendix A – CR1000 Code. The 
units are given as time in seconds. Changing the period can also be done locally as 
described in the design documentation section. Keep in mind that changing the period 
will also change the amount of records to be sent upon the next transmission. To change 
the transmission period, it will be necessary to edit the python code running the local end 
to send whatever the desired transmission period. This period must be divisible by one 
hour, and a maximum of one transmission per two weeks. 
 
3. Links and Resources 
Title Links (2-22-06) Description 
CR1000 Overview http://www.campbellsci.com/documents/

manuals/cr1000-ov.pdf 
The CR1000 Overview 
gives a brief 
description of the basic 
functions of the 
CR1000 datalogger. 
Physical Specifications 
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are given. 
PC200W ftp://ftp.campbellsci.com/pub/outgoing/f

iles/pc200w_3.1.exe 
Campbell’s PC200W 
software to directly 
communicate with the 
CR1000 datalogger. 
See the included help 
files for more 
information. 

Campbell 
Downloads 

http://www.campbellsci.com/downloads Campbell’s website for 
OS upgrades, software 
downloads/updates, 
and various 
datalogging resources 
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