
1

Project Number: IQP-JB7 FLIPPING THE CLASSROOM IN CS1101

Improving Intro to Programming with Educational Technology

An Interactive Qualifying Project
submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science
by

Patrick L. Boudreau

Daniel I. Gendin

Jeremy V. Macaluso

Ryan J. Melville

Long Nguyen Duc Hoang

Xiaosong Wen

Alexander W. Witt

Approved:

 Professor Joseph E. Beck, IQP Project Advisor

2

Abstract:

The objective of this project was to design a variety of supplemental materials for use in
introductory computer science courses at the undergraduate level. The supplemental content that
was produced was based primarily on recorded and annotated lecture content retrieved from
Gregor Kiczales’s online course titled, Introduction to Systematic Program Design. From the
fundamental programming concepts covered therein, the research produced here attempts to
describe how variations in the presentation of such content influences the manner in which
students are collectively able to learn and interact with abstract concepts taught in the classroom.
Note, however, that this research is not intended to be a comprehensive study of all available
technologies or methods of approach with respect to instilling good design practices and
analytical techniques. Instead, the primary intent of this research is as an exploration of two
different approaches that were continually adjusted in order to address both student preference
and learning style. Additionally, the research was conducted under a set of assumptions that were
both inherent to the two classes that were observed and to the previous experiences of the
individual investigators involved in the study. Consequently, this research will effectively serve
as a reference for other studies that either attempt to create better supplemental materials for
introductory courses in programming or examine collective student response to certain methods
for learning.

3

Contents	
Abstract: .. 2	

Introduction ... 6	

Preliminary Findings: .. 6	

First Iterations of Content ... 15	

Final Format of a Problem Set .. 21	

Results from Students Working with the Content .. 24	

Where to Go Next ... 30	

Extensions of our Project for the Near Future (Version 1.1) .. 30	

Technological Extentions (Version 2.0) ... 32	

Conclusion .. 37	

Acknowledgements: .. 40	

Appendix: .. 41	

Data from the survey that was not directly mentioned: .. 41	

Proper Assignment Format: .. 44	

Example Problems .. 46	

4

Table	 of	 Figures	

Figure	 1:	 Review	 Session	 1:	 Death	 Star	 Problem	 ...	 12	

Figure	 2:	 Students'	 attitudes	 towards	 the	 flipped	 model	 ..	 14	

Figure	 3:	 Problem	 With	 Embedded	 Video	 ...	 17	

Figure	 4:Student	 Responses	 on	 partitioning	 ...	 19	

Figure	 5:	 Example	 of	 an	 overly	 complex	 problem	 statement	 ..	 20	

Figure	 6:First	 in	 a	 chain	 of	 simple	 related	 problems.	 ..	 21	

Figure	 7:Student	 responses	 on	 helpfulness	 of	 problem	 sets	 ...	 26	

Figure	 8:Student	 Opinions	 on	 the	 "Flipped	 Model"	 ..	 26	

Figure	 9:Student	 Opinion	 on	 Most	 Helpful	 Question	 Type	 ..	 28	

Figure	 10:Assistments	 Home	 page	 ...	 32	

Figure	 11:Example	 Alternative	 Resource	 ..	 35	

Figure	 12:Example	 Editing	 Environment	 ...	 36	

Figure	 13:	 Students'	 Prior	 Programing	 Background	 ...	 41	

Figure	 14:	 Students'	 English	 Proficiency	 ...	 41	

Figure	 15:	 Students'	 Gender	 Distribution	 ...	 41	

Figure	 16:	 Students'	 Majors	 ...	 42	

Figure	 17:	 Playback	 Speed	 Statistics	 ...	 42	

Figure	 18:	 Pause	 and	 Rewind	 Statistics	 ...	 42	

Figure	 19:	 Device	 Statistics	 ...	 42	

Figure	 20:	 Study	 Location	 Data	 ...	 43	

Figure	 21:	 Study	 group	 Size	 Data	 ..	 43	

Figure	 22:	 Thoughts	 on	 Racket	 ...	 43	

Figure	 23:Quiz	 Related	 Statistics	 ..	 44	

Figure	 24:	 Opinions	 on	 Class	 Time	 ..	 44	

Figure	 25:	 Students’	 Opinion	 on	 Flipped	 Courses	 ..	 44	

5

Figure	 26:	 First	 Question	 Of	 Non	 Partitioned	 Video	 ..	 46	

Figure	 27:	 Complex	 Fill	 In	 the	 blank	 Problem	 Example	 ...	 47	

Figure	 28:	 Assistments	 Advanced	 Editor	 ...	 47	

6

Introduction	

 It used to be that taking a class meant sitting in a lecture hall, listening to a professor give

a lecture and then going home reviewing the notes taken in class. Taking a class with a specific

professor used to mean being enrolled as a student at the university where the professor is

employed. This is not always the case anymore. The ubiquity of the internet has made it possible

for a student to study a subject from the comforts of their bedroom. This model of learning is

called a MOOC (Massive Open Online Course). All a student has to do is go to a video

streaming website, like YouTube, and he or she can listen to lectures from leading professors in

any industry from almost any university, no matter the students’ geographical location, financial

situation, or scores on standardized tests. While simply watching lectures on YouTube is a

common act, successfully locating content that both adequately deconstructs the considerations

for program design and involves students to a point where they are capable of utilizing the

analytical skills that are discussed is a rather arduous process. Typically the video content

available on the web explicitly concerns itself with determining the solution to specific problems

without providing a student with “the bigger picture” which is often necessary for understanding

of a topic. Even if a student is able to find a video that provides a good overview of a general

topic the student is likely to still have problems with long term retention. A student simply

watching videos in bed is unlikely to have a good grasp of the material because the student is

missing a method to test his or her comprehension, and the student is also missing a way to

practice the material he or she has learned. Just like it is impossible to learn to swim without

getting in the water, it is impossible to learn to program without writing code.

To deal with the problems mentioned, alternative forms of presentation for lectures on

program design, such as Khan Academy or Coursera, already exist. These MOOCs attempt to

7

solve the problem of comprehension by providing the student with supplemental material at the

end of the lecture. This material allows the student to test his or her comprehension and practice

the basic concepts presented in the lectures. However, the manner in which the content is

presented does not lend itself well to long-term retention either. The main problem that these

comprehension questions exhibit is a lack of balance, some of the questions are too easy, and can

be answered through simple logical reasoning by someone who never even watched the related

lecture, other questions are so complex that even a student who is experienced with the material

being presented would have trouble, thus causing the student who is just learning the material to

be completely lost. Very few modern MOOCs have questions that are well balanced in difficulty,

and are thus accessible to a beginner without being so simplistic as to encourage not paying close

attention to the lectures. Thus we decided to set out to create such problem sets. The software we

used to create problem sets is called Assistments; it was developed at WPI in partnership with

Carnegie Mellon with the specific purpose of developing supplemental materials online, for

courses.

The IQP Team was tasked with creating content to assist with the understanding of video

lectures in CS1101 (Introduction to Computer Science). This course is unique from most of the

other computer science courses offered at WPI in that it is taken by a large number of students

who are not majoring in computer science. Content for these students differs from all other

content for computer science courses in that there is no assumed background knowledge and the

emphasis is placed on broad concepts rather than specific technicalities. Also, because CS1101 is

often a large lecture, usually around 120 students are registered for it; the average student does

not receive much individual attention with regard to determining his or her specific issues and

trouble spots. Our approach to presenting material had to fit the unique nature of CS1101.

8

How best to teach program design is not a simple question. Designing a good program is

a difficult process because the idea of what a good program looks like is very abstract. The most

effective approaches to teaching design analysis and creation appears to be structured in a

manner that serves to show the student how fundamental units of code (otherwise known as

primitives) can be used to manipulate data. After understanding how those primitives

individually manipulate data, the notion of constructing a pattern of primitives whereby data may

be manipulated for a particular end result is reinforced.

Another widely utilized technique for teaching design concepts and analysis follows from

first enabling students to understand primitives and then permitting them to investigate the

intended behavior to which a particular design must adhere. By explicitly outlining the expected

behavior of a pattern by use of a comprehensive suite of test cases, students are able to

understand the conditions that a program must address through the course of its operation.

Advance knowledge of these conditions fosters an environment in which students can construct

potential implementations in a piece-wise manner and readily observe whether or not the code

that they have currently developed accords to the constraints imposed by the individual test

cases. The merits of this method are that it enforces verification through testing, teaches the

practice of reverse engineering, and outlines potential areas of concern for detecting errors in

program logic. Additionally, the method enables students to initially perceive the program that

they are designing as a “black-box” (i.e. an abstract machine that reveals nothing about its inner

workings other than its behavior when it acts upon input). Consequently, students come to

understand the process of design as the location of a solution that is capable of mapping a set of

input to a corresponding set of output within a design space, rather than the location of a single,

absolute solution.

9

Additional techniques that appear to enhance the retention of design concepts and

analysis among students appear to be the use of templates and the use of visual imagery.

Templates are useful because they provide a means by which functionality can be understood

incrementally. By being introduced to a small number of templates that describe the

manipulation of basic data types, students can come to understand how those templates may be

modified for other applications. Similarly, templates are useful in that they can be used to

reaffirm the direct correspondence between test cases and the manner in which a particular

program is designed. For instance, if a test case is produced in order to account for a condition

where a particular article of data is null, then the test for that condition must be present in the

code that appears in the template. Yet another benefit of learning design through templates is that

the relationships between program data can be explicitly considered and understood. For

instance, when students design code that uses more sophisticated algorithms such as mutual

recursion, the notion that there are two data types that communicate with each other is made

clear.

Aside from templates, providing visual imagery is another technique that is used to teach

program design to students. Visual imagery is effective in that it can serve to associate written

code with a mental picture that describes the operation of that code. Furthermore, making that

imagery dynamic enhances the association between the code and the mental picture that students

form because the code that is being viewed is dynamic when it is being used. By being

acquainted with code segments in a visual way, students can come to more clearly understand

how to traverse different types of data, how to determine what kind of conditions must be

considered when processing a particular type of data, and how to detect and resolve errors in

program logic such as infinite loops prior to running a program. Overall, visual imagery helps

10

students to conceptually trace and analyze the logic of the program that they are attempting to

produce. Another manner in which visual imagery assists students in learning the abstract

nuances of program design is that it provides a means by which students can begin to break

down the description of a program into individual steps where a particular type of processing

occurs. This type of deconstruction ultimately benefits the student by enabling him or her to both

immediately describes his or her code to others and translates it into the final result.

While these techniques individually enable students to acquire valuable insight into the

fundamental building blocks of program design, the manner in which they are used in the

classroom and the manner in which students utilize them ultimately determine how effective they

are in practice. For instance, when exposing students to the exercise of designing programs from

expected behavior, it often helps to explicitly show students how to produce test cases and how

to map those test cases to the program that they serve to validate. It also is beneficial to indicate

how test cases can be effectively used to isolate errors in program logic. In this way students not

only understand how to develop programs but also how to debug them when they are incorrectly

composed. Similarly, when using templates to assist students in understanding program design, it

is beneficial to describe how each template works and how it can be used generically to produce

a program. Providing analytical problems in which students must extend the templates that they

have been exposed to is also a beneficial practice. With respect to visual imagery, it often tends

to be applied effectively as a means of describing the operation of programs, the traversal of data

types, the differences among data types, and the communication between data in different types

of algorithms.

Aside from the way in which the techniques are applied in the classroom, the manner in

which students come to use them is also another factor that greatly influences their effectiveness.

11

For instance, in some classroom environments, students will work collaboratively in order to

solve problems that are more analytical. This approach tends to work well with these types of

problems because students can compare ideas and navigate the design space together while

collaboratively overcoming obstacles. In other classroom environments, the individual approach

is taken and students learn to address the same obstacles on their own. Ultimately, factors such as

the rigor of the material, the format of the material, the competence of students when they are

grouped, and the number of students assigned to a group influence the degree to which a student

is able to retain and participate in learning the content presented in an introductory course on

program design.

This project in particular is targeted toward understanding how supplemental lecture

content is received by students when the factors of collaboration, group size, material format,

material presentation, and material difficulty are altered. The two types of presentation that we

developed included review sessions and the tutoring software Assistments. During the review

sessions we adjusted and observed the factors of collaboration and group size. Additionally, we

altered the format of our material both during the review sessions that took place as well as the

tutoring problem sets that were assigned. Afterward, we were able to draw conclusions on the

basis of the feedback that we received from the students who were involved, and we gained

insight on how to proceed in developing supplemental material for future classes.

Preliminary	 Findings:	

Before settling on our final project idea we first tried several other methodologies using

the Assistments software and having to do with the integrating online learning and the material

of CS 1101. Several different approaches were tried, these ranged from in-classroom activities to

12

review sessions to simply providing extra practice. While each of these approaches had their

merits, we believe that none of them warranted full implementation.

Our first approach was to focus on the in-class environment and have the students work

through intricate design problems in groups. In order to test our methodology we held meetings

with the students in the evening. At the first meeting we attempted to give a single problem for

the students to work through. The problem is provided below in Figure 1

Figure 1: Review Session 1: Death Star Problem

While this problem covers many important topics, which the students should be

comfortable with, we encountered several issues when we gave it to students. Because only 3

students showed up to the meeting we only had one group of students working on the problem,

also, even though they were encouraged to work together, the students were reluctant to do so.

This reluctance was likely due to the fact that the students were not familiar with each other, and

because there were so few of them present everyone was too embarrassed to say that they were

having trouble. Thus every student attempted to solve the problem individually, and the scope

13

and size of the problem did not lend itself to an individual solution in the amount of time the

students were given. From our experience with that first meeting with the students we realized

that we were not ready to implement anything during class. Thus we turned our attention to

running effective review sessions.

In the meetings with students that followed, we gave the students several smaller

conceptual problems rather than one large design problem. Some examples included a recursive

algorithm for finding the factorial of a number, a function calculating the Fibonacci numbers,

and writing a function that used Euclid’s algorithm to determine the greatest common factor of

two positive integers. While the students seemed to do better with these problems than they did

with our question, problems still arose. The main such problem was that there was a noticeable

disconnect between what the students were learning and what we were asking. Because our own

academic schedules prevented from regularly attending the lectures and we were not always sure

what had and had been covered in the videos, thus the questions we asked caused much

confusion among the students.

One of the issues we had was that the terminology we used caused confusion among the

students. For example, one of our questions asked the students to write a function that traversed a

tree. However, the students were unfamiliar with the term traverse, and thus had difficulty with

the question. This problem spoke to the wider issue of our questions being largely disconnected

from the material being covered in the class as well as any shifts in the content being covered.

Another issue was that we assumed the topics being covered were identical to those that we

covered in CS1101, this assumption was of course false as the class in question was being taught

by a new professor using a new format, thus we sometimes ended up asking questions on

material that students never covered, for example, because accumulators were such a large part

14

of our introduction to programing, we assumed they were covered and asked a question on them,

however, the students had never seen accumulators and thus were unable to solve the problem.

This issue also stemmed from our disconnect from what the students were working on.

Realizing that our help sessions were not very effective and not very helpful to the

majority of students, we decided to shift from preparing help sessions to creating general review

content, to allow students to receive extra practice on topics that they were having trouble with,

the software used to develop these review exercises was a web-based service called Assistments,

which was developed at WPI for the specific purpose of creating online content to help students

practice. Our decision to move away from focusing on help sessions is supported by the results

of a survey we ran among the students of CS 1101 at the end of C-term of 2014. In the survey,

out of the hundred students polled, only 18 said that they would have liked to attend review

sessions in the evening. The full results for this survey question are presented in the figure

below.

Figure 2: Students' attitudes towards the flipped model

 The fact that less than a quarter of the students who were polled would have like review

sessions confirms our belief that continuing to focus on review sessions would have been an

ineffective use of our project.

15

While making review materials was the most effective of our initial methods (especially

when compared to the ineffectiveness of our attempts to study group work), it was not without its

flaws. We still had the problem of assuming that the materials were being presented in the same

way that they were presented to us, when we took CS1101 previously. While this issue caused

less trouble than it did during our initial help sessions it was still problematic. For example, one

of our questions asked the student to write a function operating in a binary tree, however, the

students had only seen arbitrary-arity trees and were unfamiliar with the idea of a binary tree.

While the students were still able to do the question because the concepts from arbitrary-arity

trees can be extended to binary trees, the inconsistency between our materials and the materials

presented in the lecture caused noticeable confusion among students. Another problem we

encountered was that entire topics were too large to effectively cover in a single set of questions.

As a result, our questions were often too broad or too specific to provide the students with an

effective review of the topic.

After exploring these methods, we decided that the most effective way to assist the

students in understanding all the material would be to have review exercises for each individual

lecture/ video, thus eliminating both the issue of topics being too large to cover in a single

problem set, as well as the issue of disconnectedness form the lectures. Thus as a result our final

method was a combination of the class by class approach from our early trials with the idea of

individually completed review exercises, which was tested in our later trials.

First	 Iterations	 of	 Content	

We tried several different versions of ASSISTments problem sets in A term and the first

half of B term before we agreed on a standard format in the last half of B term.

16

In A term, we created problem sets which were not associated with a specific video but

rather, every problem set had a topic, such as: General Recursion, Mutual Recursion, or the List

template. There was no standard format for those problem sets, so they suffered from lack of

focus and lack of relevance to what the students were doing in class. While the problem sets we

developed in A-term were useful tools for gauging how students react to different kinds of

problems and a good way to test what the Assistments environment was capable of, it was clear

that the format of problem sets used in A term was suitable for review sessions, but was not

suitable for long term implementation of supplementary material for the CS 1101 class.

In the beginning of B-term, it became clear that the main issue of the problem sets

developed in A-term was a lack of focus. In order to fix this problem, we decided that there

should be a problem set associated with every video lecture. This change made an immediate

impact on the relevance and focus of our problem sets, however, problems still occurred. We

initially simply included a link to the relevant video in the first question and having the students

open the video in a different window and view the video in a separate window before returning

to Assistments to complete the problem set. However, we quickly realized that this is not a good

idea; the very act of switching between several windows made it much easier for a student to get

distracted and open a non-related window. In order to decrease the possibility of the students

getting distracted we decided to embed the relevant video directly into the problem set. A

problem with an embedded video is presented in the figure below.

17

Figure 3: Problem With Embedded Video

After deciding that every problem set should contain an easily accessible version of the

relevant video, we were faced with the question of whether some problem sets should be based

on several related videos. While initially it seemed promising to group related videos into a

single problem set, we decided against it. The main reason for not combining multiple videos

into a single problem set was that it decreased the flexibility of a professor using our content.

With, every problem set having a single video, a professor using the content we developed has

complete control over what videos to assign and what order to assign them in, however if a

problem set is based on several related videos, then the professor using our content would have

18

to assign those videos together on the same day rather than just having to assign them in a

particular order. Thus the problem sets would dictate the scheduling of the course and we

believed that it was best to leave the scheduling of the course up to the professor, and just have

the problem sets as a resource to reinforce the concepts presented in a specific video. Another

reason we decided that every video should have its own problem set was feedback from the

students, who did not like several videos in a single problem set because it forced them to devote

a single large chunk of their time to the assignment rather than providing them the flexibility of

viewing the assignment in two smaller chunks.

Another issue we encountered had to do with the complexity of some of our problem sets.

In several problem sets we tried to go in to depth in a topic that the video covered quickly or

teach an idea that the video ignored. While this initially seemed like a good idea, it caused those

problem sets to become very long and complicated. It soon became clear that the text in a

problem was not an optimal way to teach a concept. We thus decided that a problem set should

only provide practice and review for the topics in a specific video. If in the future it is believed

that an important topic was skipped, a separate video should be made for that topic and a

problem set can be made to go along with that video. However, it was definitively decided that a

problem set should not include topics not mentioned in the video it accompanies.

The last issue we encountered was the issue of partitioning a video. There were two

different opinions on how to approach video partitioning. One way, was to pause the video every

5 or so minutes (this time could vary depending on the pacing of the video) and ask a few

questions after every section before proceeding to the next section of the video. The other

approach to partitioning the video was to ask all the questions at the end. Have the students

watch the entire video, and then proceed to answer all the questions. While both approaches

19

seemed to have their merits, with partitioned videos keeping the students attention by

interspersing long videos with small tasks that forced the students to review what they had just

seen, and not partitioned videos allowing students to understand the full context of the topic

being presented before asking questions about it, thus decreasing the possibility that a student

will be confused by the questions due to lack of familiarity with the topic. Overall though, we

decided to partition most of the videos, this was partly due to the fact that we were wanted to

make sure that students would not lose focus during longer videos and partly because students

who prefer un-partitioned videos can easily turn off the partitioning and watch the video all the

way through before proceeding to answer all the questions. In order to test whether our intuition

was correct we polled 100 students who had completed CS1101, their responses are presented in

the figure below.

Figure 4:Student Responses on partitioning

The general consensus among the students seemed to match our own, thus most of the

problem sets were based on partitioned videos. While most of our problem sets are based on

partitioned videos, not all of them are. Videos that were too short or did not have natural breaks

in their flow were not partitioned.

The last issue we faced in our initial iterations of content was how complex a problem

should be. With some of the videos covering complex and fairly involved concepts, there was a

natural tendency to create longer more complicated problems. However, we quickly realized that

20

this tendency was not a positive one. We realized that if it takes one of us longer than a few

minutes to understand a problem, a student seeing the concept for the first time is unlikely to

understand the problem at all. An example of one such problem is presented in the figure below.

Figure 5: Example of an overly complex problem statement

 Many such problems were eventually fixed by splitting them into chains of smaller

problems. This method of splitting one large problem into several smaller ones both made the

problems easier to grasp as well as providing the instructor with data about what particular step

of the solution the students struggle with the most. An example of the first in a chain of small

related problems is presented in figure 6.

21

Figure 6:First in a chain of simple related problems.

 The above problem is the first in a chain of 4 related problems which incrementally break

down the question into simpler and simpler forms. Thus all of the questions that we deemed too

complicated were either removed entirely or made into a series of several questions.

After having all the issues mentioned above, we were finally ready to agree on a standard format

of a “good” problem set.

Final	 Format	 of	 a	 Problem	 Set	

 After having tested several failed models, the project group agreed on a final format that

all problem sets had to follow.

 Content for problem sets was developed in Microsoft Word or a similar medium to avoid

spelling and grammar mistakes; as such mistakes made our content look unprofessional and

could lead to unnecessary confusion among students.

 Each question had to be of a reasonably short length in order to avoid confusion and

increase the questions accessibility. The general rule of thumb we followed was that a question

should be short enough so that a member of the IQP team would be willing to check it. Further

22

information on the problems of having questions that are too long and complicated is presented

in the section on “First Iterations of Content.”

Because Assistments did not have a built in way to skip a question or give up, in order to

allow students to proceed past a problem they did not know how to do, the final hint on every

problem had to contain the answer. For problems with multiple possible correct answers only

one was displayed as correct in order to minimize confusion among students.

In order to make sure the students were watching the videos rather than just attempting to

skip to the questions, the first question on a non-partitioned video was always “Did you watch

the entire video?” with “Yes” as a correct answer and “No” as an incorrect answer. The same

was not done for partitioned videos, because we felt it would be too tedious to have three or four

questions asking whether a section of the video was watched.

Every problem set ended with the question “On a scale of 1 to 10 how well did you

understand the material presented in the video?” This question existed both in order to allow

students to leave feedback on a particular problem set, allowing us to see what problem sets need

improvement, as well as providing the instructor with a simple way to gauge the classes comfort

with a specific topic.

Initially, the problem building environment we were using brought the user to a new page

for every problem, thus no problem could use information from a previous problem, because the

student did not have access to that information. Also, in order to allow the student to refer back

to the video, it had to be included in every question. In this case for a video that was partitioned

in to sections, text was provided before every problem to let the student know whether the

question referred to a part of the video they had already seen, or whether the question referred to

23

a new section of the video. The first question in a section was preceded by one of two possible

standard texts. The first question on the first section of any video was proceeded by “please

watch the first segment of this video before answering these questions,” while the first questions

of all the following parts of the video were proceeded by “Before answering this question, please

watch the next segment of the video.” All intermediate questions in a partitioned video were

preceded by “This question is from the Nth segment, which you just watched.” Where the N was

replaced by the number of the section of the video in the partition

However, we later discovered a more advanced editor which allowed us to create

questions in which the student to view all previous questions by simply scrolling up in the page.

In problems using this format, the video only every section of the video only appears once, it

only appears in the first question pertaining to the section. If the student wishes to refer back to

the video all he or she has to do is to scroll up to the question in which the video appeared. Using

this format a student does not need to read the text proceeding a problem to determine whether

the problem refers to a new section, rather, he or she can easily see that a problem is based on a

new section of the video because that section appears in the question, and nowhere else. While

we believe that the format created by the more advanced editor is better in terms of both

readability and professionalism, we did not convert the problems created in the less advanced

editor to the more advanced format as we did not believe it to be a good use of our time, thus

there are still several problem sets which are in the old format.

With fill in the blank problems we created simple questions which only had one or two

correct answers. This is because the fill in the blank option in Assistments only checks if the

answer the student provides is fully identical to the correct answer in all attributes including

spacing and capitalization. Thus we had to be careful and make sure that our fill in the blank

24

questions had very few correct answers. If a fill in the blank question was too complex it was

either turned into a multiple choice question or split into several smaller questions.

In order to be user friendly, we limited our problem sets to no more than ten questions,

not including questions like “Did you watch the entire video?” or “On a scale of 1 to 10 how

well did you understand the material presented in the video?” We did this because we believe

that too many questions would be discouraging to students and would thus make them put less

effort into trying to figure out the correct answer.

All problem sets had to be peer reviewed by a member of the IQP team who was not

involved in writing them before they could be considered complete. This was done in order to

minimize errors as well as make sure that the problem set was reasonable. The checker of any

problem set had to make sure that all the problems were doable by a student with no prior

experience, thus the problems were meant to be simple for a student who was comfortable with

the material of the course. The checker also had to make sure that problem set did not contain

errors of either a grammatical or technical nature. Finally the checker had to validate that all the

questions were based on material from the relevant video as opposed to material that is purely

review and material from outside sources.

Having put these standards in place for all of our problem sets, we were able to create

professional looking, problem sets of a higher quality that we would have otherwise created.

Results	 from	 Students	 Working	 with	 the	 Content	

 After we had agreed on a standard format for the problem sets, we were ready to test the

problem sets by giving them to students and gauging their responses. While many attributes of

25

the students’ performance interested us, what we wanted to know most about the problem sets

was, whether the problem sets were beneficial and necessary, what the students found most

helpful in the problem sets, what the students wanted fixed in the problem sets, and what

attributes the students wanted to be added to the problem sets.

 We had two main sources to gather data from. One, source was the comments that

students left on the questions. Even though we did not assign many problem sets, around 10, we

received around 294 comments and thus had plenty of data on what the students thought of

particular problem sets. Our second source of data was a survey conducted at the end of C-Term

in the CS 1101 class that had tried some of our problem sets. 100 students responded to the

survey, thus we yet again had a large sample size. It should be noted, that because not all the

students responded to the survey, our results were subject to non-response bias and likely

exhibits under-coverage of students who were not passionate about the course, or students who

were doing very well in the course and did not need the bonus points being offered for

completion of the survey. However, because the rate of non-response was fairly small, less than

twenty present, we considered the bias that arose from it to be negligible.

 The result from working with the students that we most cared about was whether the

problem sets were necessary and helpful to the students understanding of the material. The

results from the general survey held at the end of the CS 1101 class are presented in the

following figure.

26

Figure 7:Student responses on helpfulness of problem sets

 From the results of the survey, it can be seen that the majority of the students found that

even the twelve or so test problem sets they were exposed to, helped their understanding of the

course (Due to timing constraints we were unable to run all our problem sets on the students).

Very few students felt hindered by the problem sets. Those that did were primarily hindered by

inconsistencies in formats well as the errors that occurred in some of our problems. The majority

of those errors have since been fixed thus it is our expectation that in the next group of students

who use our content fewer, if any, students will feel that their understanding of the material was

hindered by the problem sets. Interesting results also arose from asking the students their attitude

on the “flipped model” of learning. Those results can be found in the figure that follows.

Figure 8:Student Opinions on the "Flipped Model"

 Of the 100 students surveyed, 63 felt that they would have benefited from exercises to

work with after watching the video, while 46 felt that they would have benefited from

27

comprehension questions on the material. These results show that many of the students felt that

extra practice problems associated with each video would be beneficial. From the comments that

the students left, it can be seen that that many students cared about doing well on the problems

sets, and took them very seriously. We believe this, because the students, in general, seemed to

prefer hard conceptual problems to simple comprehension questions. On several questions that

used multiple choice to fill in the blanks in a partially completed program, several students

complained about how the multiple choice made the question too simple and less rewarding.

However, on a similarly worded question, where, rather than multiple choice, students had to use

a word bank to complete the problem, several students praised the problem for its difficulty,

saying that, in spite of its difficult nature, the problem was rewarding to complete. The fact that

students seemed to prefer harder, more conceptual problems, seems to indicate that the students

took the problem sets seriously and strove to do well on them. Both the comments on problems

and the responses to the survey seem to indicate that the inclusion of problem sets into the course

is beneficial to the students’ comprehension of the material.

 Having confirmed that the students found our problem sets to be beneficial, we became

interested in what aspects of our problem sets the students found most beneficial. As mentioned

previously, most students found simple exercises in generating code or using new language

constructs to be the most helpful. We followed this advice and added simple coding exercises to

assignments where the felt fitting. However, a good number of students also enjoyed having

comprehension questions and our assignments also have a good amount of comprehension

videos to allow the student to actively watch videos that are more theoretical. In the survey, we

asked the students what format of question they found most helpful. The results obtained from

the students are presented in the figure that follows.

28

Figure 9:Student Opinion on Most Helpful Question Type

 The majority of students seemed to prefer multiple choice questions above all other types.

While this result was mildly surprising as our intuition told us that multiple choice questions

were the simplest and least interesting question, upon analyzing the students’ responses we

believe that we understand why the students prefer multiple choice questions to all others.

Multiple choice as a format is the most straight-forward out of all the formats, thus multiple

choice questions led to the least amount of confusion among students and were thus the most

helpful in terms of practicing the material. We yet again heeded the wishes of the students, as

most of our questions are multiple choice. We incorporated much of the students’ feedback about

what was effective in our early assignments into our later problem sets.

 Next, we wanted to know what the students thought had to be fixed in our problem sets.

Both in the survey and in the comments on specific questions, many students complained about

mistakes in spelling and grammar, pointing out that such mistakes made the problem harder to

read and understand. As mentioned previously, in order to accommodate that criticism as well as

make our problems of a more professional quality, before any problem set could be considered

complete, it had to be checked by a person who did not write it.

29

From the figure above showing what question type the students found most helpful as

well as from student comments, it can be inferred that students deeply disliked questions of the

“check all that apply” format. While we initially believed the format to be extremely useful as it

allows us to write fairly difficult and involved questions, we understand why students had

problems with the format. Since the assistments system does not tell the students which of their

responses were right and which of their responses were wrong, it was likely frustrating for

students to understand the question but miss one small detail and be marked completely wrong.

We took the students views into account when creating our content, thus “check all that apply”

questions are far less prevalent in our later content than they were in our early content. However,

this does not mean that we have no “check all that apply” questions as we still believe that there

are certain topics that are best covered by that format. In analyzing students’ feedback we

incorporated both positive and negative feedback into developing our final product.

The last area we were interested in was what the students wanted added to the problem

sets which we had not done. Many of the students wanted more practice in code generation. We

figured out a way to allow the students to practice code generation, by having them fill in key

features in a partially complete problem. Many students also wanted the problems to be longer

and more intricate to allow deeper understanding of the material. We tried our best to create a

mix of shorter and longer questions in order for our assignments to be beneficial to students of

different levels. Overall though, there were very few features and formats that the students felt

were missing from our problem sets.

Overall, the student responses reaffirmed the beneficial nature of our work as well as

providing us with feedback on what aspects of our problem sets were most beneficial, and what

aspects required improvement.

30

Where	 to	 Go	 Next	

Extensions	 of	 our	 Project	 for	 the	 Near	 Future	 (Version	 1.1)	

 While we are proud to say that we accomplished much with our project and believe it to

be in fairly good shape, there are several issues and areas of interest that, due to logistical issues

and time constraints, we were not able to fully explore. Thus we would like to leave some advice

as to some potential areas of research that future participants in this project can explore.

 The first, and most important, of these areas is student feedback. We were very fortunate

in the amount of feedback the students gave, considering the fairly limited amount of content we

exposed them to. We received nearly 300 comments on our problems as well as the fact that 100

students completed our survey, which provided us with a fairly large amount of feedback on

several different aspects of the course. However, it would have been beneficial if some of the

contact we had with students was face to face and not just through comments and surveys. It

would have been, for example, interesting to have the students come in for a review session in

the evening and have them simply complete an assistments problem set from that night, as we

observed. This simple experiment would likely provide us with very valuable feedback as it

would allow us to gauge the students’ reaction to an actual problem set. It would also be useful

in testing some of the assumptions we developed over the course of this project about the optimal

formatting of content as well as what kind of questions work best. These meetings would also be

beneficial as they would allow us to see how the students approach our content. These review

sessions would also allow us to meet with the students face to face and discuss with them what

they think of the assistments problem sets ant the flipped model as a whole. While much of the

feedback we would get would likely be similar to the feedback provided in the survey, it is also

31

likely that the students would have relevant thoughts that we did not think to cover with our

survey questions. Overall, we believe that face to face meetings with the students using the

content could provide future groups working on this project with some interesting and

informative feedback.

Another action we would have like to perform but were unable to, due to time constraints

was a scientifically rigorous study to measure how helpful the content was. While the majority of

students claimed that they found the problem sets helped their understanding, we had no concrete

data about the level to which having the problem sets increased the students’ grasp on the

content. What we would propose is to perform a study in which half the class completes the

video with the problem set, and the other half of the class only watches the video and does not

complete the problem set. We would then use the next day’s quiz scores to compare the results

from the students who had access to the problem set, to the results of the students who did not.

These results would provide us with data on both whether our content benefits immediate

understanding, based on how the students do on the new material part of the quiz, as well as

whether our material affects retention, based on the review part of the quiz. In order to avoid any

ethical issues we would perform what is sometimes known as a cross-over study, meaning that

we would perform the experiment twice and switch the roles of the groups for the second trial.

Meaning that people who previously only watched the video would now complete the problem

set and vice versa. While time constraints and scheduling issues prevented us from performing

this study, we believe that the performance of such an experiment would be greatly beneficial to

any students who will work to expand off our results in the future.

A mix of rigorous experimentation and more face to face contact with the students is how

we envision the future of this project.

32

Technological	 Extensions	 (Version	 2.0)	

I. Current technologies
a. Assistments

	
Figure 10:Assistments Home page	

A system created by faculty and students at Worcester Polytechnic Institute

dedicated to improve E-learning. It has various question types and statistical tools

that provide immediate feedback to the teachers. From that data, the teacher can

evaluate the performance of his or her class.

b. Type of questions

There are 5 types of question:

-‐ Algebra question: The system grades the student’s answer in form of numbers

or mathematical expression.

-‐ Fill in: The system grades the student’s response character by character.

-‐ Open response: The system saves the student’s responses that need manually

grading from the teacher.

-‐ Multiple choices: The system grades on the choice the students made in the

question.

33

-‐ Check all that apply: The system grades on the choices the students made in

the question.

-‐ Rank: The system strictly grades on the order of the answers students chose.

c. Statistical data

Assistments provides detailed information about students’ performance and class

progress. Teachers can easily view how the students performed on a specific

assignment. Because every student’s action is logged into the database, the

teacher can lookup useful data such as the amount of time it took the student to

answer that question. Furthermore, the data can be used to evaluate the

performance of the whole class so changes can be made in the syllabus to

maximize learning efficiency.

d. Format of the current CS 1101 assignments

Because of the nature of this project – Flipping the CS 1101 classroom, heavy use

of videos and web-based response is used in conjunction with feedbacks from

students.

In every assignment, each student is assigned one or more videos that he or she

needs to watch. Because we want the students to focus on specific parts of the

video, we decided to set a start and stop point in it.

After the student had watched the video, the student will be asked if the he or she

has completed watching the video carefully. If the students answered “No”, the

system will advise the student to watch it again. Otherwise, the students can

proceed to the main questions of the Problem Sets.

II. Future technologies

34

The research group has been working on Assistments since A-term 2013 to C-term

2014 and found several changes could significantly improve Assistments system:

1. Machine-graded response

Because CS 1101 is the course that involves programming, there might be infinite

number of ways to solve a single problem. Therefore, grading strictly character-

by-character is not an efficient way to test the student’s programming skill.

We believe that implementing a new grading method - Java-based computer

grading – would expand the realm of possibility for students to be freely creative

on the answers they provide.

The teacher will have to code a simple Java application that receives the answers

input of the students, parse, evaluate and return the correctness of the student’s

response to Assistments. In detail, we could assign a jar file to a specific problem

and make it the main grader for the problem.

Another implementation is the installment of separate compilers of a specific

language such as Racket, Java and C. In software engineering, the test-driven

development approach makes it feasible for the teacher to test the student’s

program using Unit tester (for example, JUnit based in Java.)

This is a very innovative and revolutionary method to actually teach Computer

Science – especially in the introduction class like CS 1101. It is undisputable that

the best way to learn how to code is to code. Students should be given a chance to

submit a code that can be evaluated directly and see immediate result. This

method is widely used in large programming contest such as the USACO,

International Olympiad in Informatics, and ACM contests.

A lively example of this implementation is the Polish webpage http://spoj.pl/

35

	
Figure 11:Example Alternative Resource	

This page provides many Computer Science problem sets and automatically

grades the student’s code by compiling the program, running it and comparing the

output it provided.

This method will also solve the hassle of grading because it is computerized.

Human grader can make mistake while reading and compiling the code. With a

standardized machine-testing, Assistments should be able to resolve the problem

and saves the teacher’s time.

Therefore, we think that implementing this feature and using it in WPI Computer

Science courses is the first thing to do.

36

2. Enhanced question editors

It is very wonderful that we can create questions on a WYSIWYG (What you see

is what you get) editor in Assistments. It provides core functionalities that make

us able to create basic HTML-based question. However, we have found out that

the question editor is very hard to use and inflexible.

We could hardly paste the content from Microsoft Office Word 2010 to the web

editor because the text format and layout are broken.

Because we are talking about an introduction to Computer Science class, code-

highlighter is a great feature to have. According to the students’ feedback, they

have a hard time reading the code because the in DrRacket, the codes are

highlighted with colors so they can easily understand the overall structure of the

code.

For advanced users, we might want to add the HTML code editing functions so

we can easily design the layout of the question text as we want.

An example of an advanced text editor can be improved to be like this:

	
Figure 12:Example Editing Environment

37

	 	

3. GUI redesign

During the research, we have also found out that the interface of assignment

builder very difficult to use. We had a hard time navigating the problem sets and

accessing statistical data linked to a specific assignment.

Moreover, there are some errors caused by Assistments server when the teacher

submitted an assignment. The server then returned a XML-styled error message

although the question and answer choices are legitimate.

Conclusion:

 We began this project with two main goals on which to base our work. The first goal was

to develop a curriculum for the CS1101 class (Introduction to Program Design) based on the

online lectures of professor Gregor Kiczales. These materials had to act as supplements to the

lectures in order to help increase the retention of information by students trough focusing their

attention on the vital points of each video and asking questions on those concepts. Our second

goal was to explore the “split model” in general, to look at its advantages and disadvantages and

to see what improvements should be made to the “MOOCs” (Massive Open Online Courses) that

are currently being offered. Overall, both of these goals were accomplished and suggestions for

future iterations of this project were made.

 Upon beginning the project it was important to us to gauge the student’s reaction to

certain types of material and the flipped model in general. Thus we began by holding optional

review sessions in the evenings for students to attend and try out some of our materials. While

the majority of the materials presented at these review sessions were not used, these review

38

sessions provided us with invaluable information regarding the types of materials we should

present and how we should present them. Mainly we realized that every piece of material should

be tied to a specific lecture and that the questions we ask need to be specific, pf a reasonable

difficulty, and only based on the terms and concepts mentioned in the lecture.

 Having tested some of our ideas on the students we were ready to decide on a final

format for an assignment. These criteria can be found in a previous section of the paper, or in our

appendix, but the basic idea of all the criteria is that every question in an assignment must be of

reasonable difficulty and length as well as a good review of the specific concepts covered in the

video. The standards warned about not trying to include concepts not covered in the video, as

this was something we found to be ineffective and distracting from the main purpose of the

assignments. We also set standards for how we wanted the questions to be interspersed in the

video, as we found a problem with many MOOCs to be the fact that the questions were all

clumped together, and we found that the MOOCs that were most effective were the ones where

the questions were interspaced throughout the video.

 After we agreed on a set of standards for the development of problem sets, we created an

individual problem set to accompany each individual video. We initially considered the idea of

grouping several videos into a single problem set, while this idea initially seemed logical, we

quickly realized that it decreased the flexibility of both the instructor and the students and,

because flexibility is one of the most important attributes of a MOOC, we abandoned the idea

and made individual problem sets for each video. While the problem sets ranged in style, the

questions which we found most effective were questions where students actually had to generate

code. This was accomplished through providing the students with a template and having them fill

in blanks with short lines of code. This method also taught the students good programing

39

etiquette as it forced them to produce programs that are well formatted and follow the design

recipes. The students responded well to these kinds of questions and often stated that they liked

them the best even though these questions were substantially harder than simple, conceptual

multiple choice questions. Thus we successfully created a curriculum based on the provided

videos and completed our first goal.

 Our second goal was to gather data as to whether our materials were relevant and useful.

We based the format of our materials greatly on Khan Academy which is one of the most

popular sources of MOOCs; we liked how Khan Academy mixed conceptual and practical

questions. However, where we thought that Khan Academy was lacking was that their videos

were entirely separate from their problem sets, where as we wanted to create a system in which

the problem sets were strongly dependent on the videos.

 When we asked students what they thought about the supplemental materials that we

provided them, an overwhelming majority said they found them helpful and liked having

materials that allowed them to practice the concepts they saw in the videos. Thus we believe that

the responses we received from the students validate our work and show that the materials we

provided made a positive impact on the students. If we had more time and resources we would

have like to perform a scientifically rigorous test to see how much of an effect our materials had.

However, this is something we leave to future iterations of this project. Overall though, we

successfully created a set of supplementary materials and used student responses to verify the

usefulness of our materials. We also looked at other similar studies for inspiration. Thus, we

completed both of our initial objectives.

40

Acknowledgements:	

 Our group would like to thank Professor Joseph E. Beck of the Worcester Polytechnic

Institute computer science department for providing the initial direction for this project and

access to all of the resources that we required. His helpful guidance and suggestions were

genuinely important and without them, the outcome of this project would certainly not have been

the same.

Additionally, our group would like to extend our gratitude to the WPI CS 1102 class with

whom we worked from August 29, 2013 to October 17, 2013. Their participation in classroom

surveys and in the review sessions that our group operated were very informative and provided a

valuable information-base upon which we developed the preliminary versions of the problem

sets that we later distributed.

Finally, our group would like to thank the WPI CS 1101 class with whom we worked

from January 16, 2014 to March 7, 2014. Their participation in classroom surveys and their

completion of our problem sets through the ASSISTments platform enabled us to acquire

valuable insight with respect to problem design, student preference, student learning style, and

the overall effectiveness of certain approaches to teaching introductory-level program design.

41

Appendix:	

Data	 from	 the	 survey	 that	 was	 not	 directly	 mentioned:	

Figure 13: Students' Prior Programing Background

Figure 14: Students' English Proficiency

Figure 15: Students' Gender Distribution

42

Figure 16: Students' Majors

Figure 17: Playback Speed Statistics

Figure 18: Pause and Rewind Statistics

Figure 19: Device Statistics

43

Figure 20: Study Location Data

Figure 21: Study group Size Data

Figure 22: Thoughts on Racket

44

Figure 23:Quiz Related Statistics

Figure 24: Opinions on Class Time

Figure 25: Students’ Opinion on Flipped Courses

Proper	 Assignment	 Format:	

Checklist for each Assignment Section:

45

1. Write content in Word (or equivalent). Grammar/spelling will make me very unhappy
2. Each question is reasonably short enough that we (the IQP team) would be willing to

write/answer/check.
3. When video is over 8 minutes long, segment into chunks
4. All problems, not in test mode, have a hint available that provides the correct answer

a. it is good to have intermediate hints that reteach, or give one of the answers or
exclude some answers

5. Stick to content in the video. for example:
 . stuff you think is obvious but is not in the video
a. review material

6. Video appears on every question
7. Do not have questions refer back to prior questions (students cannot see it)
8. Checker: if you’re stuck, it’s probably too hard

 . be careful with factual question, those might be hard if you don’t remember the video
a. does the question seem answerable from the content?
b. if you’re going “huh?” that’s dangerous

How to begin a non-segmented video

1. Say “please watch the entire video before answering these questions”
2. Question #1: Did you watch the entire video? “True” is the correct answer

a. immediately tell student to watch the entire video

How to begin a segmented video

1. Say “please watch the first segment of this video before answering these questions”
2. For a question that continues from the same segment, say “this question is from the Nth

segment, which you just watched”
3. For a question that advances to a new segment say “Before answering this question,

please watch the next segment of the video”

How to conclude a video

1. Ask students to rate their understanding on a scale of 1 to 10
2. have this item in test mode

Test mode: just accepts input, but does not give feedback
 Takes first answer and goes on

46

Example	 Problems	

Figure 26: First Question Of Non Partitioned Video

47

Figure 27: Complex Fill In the blank Problem Example

Figure 28: Assistments Advanced Editor

