
Passive Direction Finding
A Phase Interferometry Direction Finding System for an Airborne

Platform

A Major Qualifying Project
submitted to the faculty of

Worcester Polytechnic Institute
in partial fulfillment of the requirements for the

Degree of Bachelor Science

Submitted by:

Daniel Guerin

Shane Jackson

Jonathan Kelly

Submitted to:

Project Advisors:

Professor Edward A. Clancy

Professor George T. Heineman

Professor Germano Iannacchione

Project Supervisors:

Lisa Basile, MIT Lincoln Laboratory

Kelly McPhail, MIT Lincoln Laboratory

Christopher Strus, MIT Lincoln Laboratory

October 10, 2012

This work is sponsored by the Department of the Air Force under Air Force Contract #
FA8721-05-C. Opinions, interpretations, conclusions, and recommendations are those of the

authors and not necessarily endorsed by the United States Government.

li17727
Typewritten Text

li17727
Typewritten Text

li17727
Typewritten Text

li17727
Text Box
This work is sponsored by the Department of the Air Force under Air Force Contract #FA8721-10-C-0007. Opinions, interpretations, conclusions, and recommendations are those of the authors and not necessarily endorsed by the United States Government.

li17727
Text Box
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Abstract

This paper describes the development of a phase interferometry direction find-
ing system for an airborne platform developed for MIT Lincoln Laboratory. A
phase interferometer uses the phase difference to determine the Angle of Arrival
(AoA) of a received signal, but is unable to distinguish phase differences of more
than one period, giving rise to phase ambiguities. The team utilized three antennas
to resolve phase ambiguities and was able to determine the azimuthal AoA for a
received electromagnetic signal in the X band to within ±0.1◦ in simulations includ-
ing realistic noise models for a 170◦ field of view. A prototype was implemented
using an FPGA-based board for data acquisition connected via USB to a PC for
analysis, which connected to another PC via a TCP connection for tracking and
display. The hardware was only able to utilize two channels. This limitation re-
sulted in ambiguous solutions in AoA calculations. The team developed a graphical
user interface for the system to display results to a system operator.

2

Acknowledgments

The authors would like to profess their gratitude towards the following people:

Our WPI Advisors:

Professor Ted Clancy, Professor George Heineman and Professor Germano Iannacchione.

Our MIT Lincoln Laboratory Supervisors:

Lisa Basile, Kelly McPhail and Christopher Strus.

As well as Emily Anesta, Sarah Curry, Chris Massa, Dennis Roux and all of the other

MIT Lincoln Laboratory staff that made this project possible.

3

Statement of Authorship

This project has been completed in partial fulfillment of the requirements for the

degree of Bachelors of Science in the fields of Electrical and Computer Engineering,

Computer Science, and Physics.

Daniel Guerin

• Primary Author: Background, Prototype Methods, Prototype Results

• Testing: Testing C algorithm, compare prototype with model, certainty testing in

model

• Added signal pulsing, signal detection to MATLAB model

• Developed high-level flow of MATLAB model

• Wrote drivers to communicate with hardware in C

• Identifying and correcting dissimilarities between model and algorithm

Shane Jackson

• Primary Author: Executive Summary, Background, MATLAB Methods, MATLAB

Results, Discussion

• Testing: MATLAB model

• Developed signal generation and Error Correction in MATLAB

• Identified and resolved errors in the MATLAB model

Jonathan Kelly

• Primary Author: Executive Summary, Introduction, Prototype Methods, Discus-

sion

• Testing: GUI verification

• Added ambiguity removal to MATLAB model

• Primary developer for C algorithm

• Designed and developed GUI

• Setup TCP Communication between algorithm and GUI

4

Executive Summary

The United States Air Force (USAF) is constantly working to understand and address

new technology that could threaten U.S. aircraft. Developing countermeasures to threats

such as new weapons systems, electronic countermeasures, and air surveillance systems

allows the USAF to keep the nation safe. The Tactical Defense Systems Group, Group

108, at MIT Lincoln Laboratory aids the USAF by performing flight, field, and laboratory

testing and by developing and prototyping new systems and instruments. The purpose

of our project was to model and test a passive direction finding algorithm and to create a

prototype for laboratory evaluation and future integration with a larger airborne system.

Radar, short for Radio Detection and Ranging, uses electromagnetic waves to detect

and locate distant objects. By measuring the time between the transmission of a wave and

the return of its reflection, the radar system determines the distance to the target. Passive

DF systems receive and analyze signals from external emitters. By not transmitting,

passive systems allow the user to obtain information about emitters without revealing

themselves. The information can be used to warn the operator, map radar locations,

or direct countermeasures. In order to fulfill the needs of Lincoln Laboratory, our DF

system had the following requirements: ±2.5◦ of accuracy, 90◦ field of view on the azimuth

plane in front of the aircraft (±45◦), 40 dB dynamic range, and total processing time of

under one second. The system processes X band radar pulses (8-12 GHz) on a 100 MHz

intermediate frequency (IF) band. The system monitors the 4 GHz band 100 MHz at a

time. In order to ensure that our system could meet these requirements, our group first

constructed a MATLAB model of the system. This model allowed us to verify and test

our phase interferometry DF implementation before converting it to a C algorithm and

performing tests with live data.

The three main techniques used in passive direction finding (DF) are time difference

of arrival (TDOA), amplitude comparison, and phase interferometry. Each method was

simulated by a previous WPI student group, The Beacon Locator Project, in 2011 (Silva

et al., 2011). All three methods of DF measure differences in the signals received at two or

more separated antennas. The TDOA method measures the difference in arrival time of

one signal at multiple antennas to calculate the Angle of Arrival (AoA) and range of the

emitter. The degree of accuracy of the TDOA method depends on the distance between

the antennas. The system’s accuracy requirements would require antenna spacing on the

order of kilometers using existing technology. The airborne platform that the system

is intended for can support separations of at most 10 to 20 meters making the TDOA

method impractical for our application. The amplitude comparison method uses two

directional antennas pointed in different directions that the ratio of the gains for the

two antennas will be unique for each angle within the field of view. By comparing the

amplitude ratio of the signals received by the two antennas to known gain patterns,

5

the system calculates the AoA. The Beacon Locator Project found that the amplitude

comparison method could not determine the AoA within ±2.5◦ across a ±45◦ field of view

with a 40 dB range, the limits specified by Lincoln Laboratory. Phase interferometry is

the third method for determining AoA and was the method used in this project. This

method, like TDOA, relies on the time delay of the arrival of the signal between two or

more antennas. Instead of measuring the time of arrival, phase interferometry measures

the difference in signal phase between antennas. Unlike the time difference, the phase

difference can be measured accurately over short distances. A 12 GHz signal undergoes

a 2π phase change in less than five centimeters. The ability to accurately measure the

phase difference makes the phase interferometry method more accurate than the TDOA

method on airborne platforms. A two antenna phase interferometer is shown in Figure 1.

Figure 1: An interferometer system. (Left) An emitter distance d1 and d2 from two
antennas separated by a distance s. Here, s is much less than d1 and d2. (Right) The
two antenna system close to the antennas where d1 and d2 are effectively parallel.

The extra distance that the wave has to travel to reach antenna A2, line segment pA2

in Figure 1, is a function of the phase difference (∆φ), as shown in Equation 1:

pA2 = λ(
∆φ

2π
+ I), (1)

where λ is the wavelength of the signal and I can be any integer value greater than or

equal to 0. I is the number of full wavelengths the signal goes through along pA2. When

d1 and d2 are much larger than s, d1 and d2 can be assumed parallel in the vicinity of s

and the points A1, A2, and p form a right triangle. Using these assumptions, the system

calculates the angle of arrival as shown in Equation 2:

sin(AoA) =
λ(∆φ

2π
± I)

s
. (2)

6

The accuracy of the interferometer system increases with antenna separation; however,

increasing antenna separation leads to multiple results for the AoA calculation. The

interferometer only measures phase between −π and π so the phase measurement for

different values of I are indistinguishable. Ambiguities begin occurring when the antenna

separation is more than one half the wavelength of the signal.

The interferometer created in this project consists of three horn antennas placed in

a horizontal line perpendicular to the direction of flight. The configuration is shown in

Figure 2. The antenna spacing between antennas 2 and 3 is larger than that between

Figure 2: Setup of a three antenna interferometer.

antennas 1 and 2. The phase difference is calculated between antennas 1 and 2 and

antennas 1 and 3. The two calculated phase differences are compared to determine an

unambiguous AoA. The final calculation is performed using the phase difference between

antennas 1 and 3 as the larger separation produces a more accurate result. Each of the

antennas connects to a down converter. The down converter reduces the frequency of the

signals from the radio frequency (RF) of 8-12 GHz to the IF of 15-115 MHz. The IF signals

are easier to analyze and can be sampled by the analog to digital converters (ADC). These

hardware components were provided by our Lincoln Laboratory supervisors. The sampled

signals are then sent over a USB connection to our C signal processing algorithm running

on a Windows 7 PC. The algorithm first detects if a signal is present then determines

phase difference, frequency, and angle of arrival. The result of the calculation is sent over

a TCP connection to another PC running the graphical user interface (GUI). The GUI,

written in Java, performs error checking based on the history of angle results and then

displays the results as shown in Figure 3.

The system was tested in both MATLAB and C to ensure that it would meet our

requirements. In the presence of noise the system may not be able to disambiguate the

angle. There are two types of error in our system: error due to noise and ambiguity

error due to incorrectly resolved angles. To reflect the possibility of ambiguity error

the system reports both of the two most likely ambiguous angles and a certainty value

between 0.5 and 1.0 demonstrating how certain the system is of the most likely angle. A

graph showing the AoAs calculated by the MATLAB model across the range of angles

−90◦ to 90◦ with worst case scenario parameters is shown in Figure 4. The worst case

system parameters are: signal to noise ratio of 20 dB, carrier frequency of 12 GHz, and

7

Figure 3: Sample GUI display. The blue and green lines represent different emitters.
The narrow green line shows one result, while the thick blue line shows a range of results
close together. The red Xs show the possible angles for an uncertain result. An uncertain
result is a signal for which the system was unable to confidently resolve the ambiguity.
Each portion of the top display has a color coded description in the table.

emitter distance of 1 km. Under worst case conditions, the first angle reported by the

system is correct 99% of the time. Figure 4 contains 181 samples, two of which, when

the true AoA was 5◦ and 50◦, the system resolved incorrectly and provided the incorrect

angles as the most likely AoA. The certainties corresponding to these cases were 0.63 and

0.64 respectively and the second reported angle was correct, so the GUI had a chance to

resolve both cases.

For all angles within ±85◦, the system met the accuracy requirement. The system

had ambiguity errors and resolved the wrong AoA approximately 1% of the time in worst

case conditions. The errors in ambiguity resolution are infrequent enough to consider the

system successful in meeting the accuracy requirement across the full field of view and

dynamic range.

Analyzing the same signals with the C algorithm and the MATLAB model yields

angles that are different by less than 10−4 degrees in every case and certainties which

differ by less than 10−4 likely due to round off errors. The strong agreement between

the results provided confidence that the C algorithm performed as well as the verified

MATLAB simulation. In addition to the tests with MATLAB data the prototype system

was tested with two signal generators producing IF signals. Only two signal generators

were used as a third ADC was not available for the third input channel. The system

was not able to resolve ambiguities without the third input, but the tests verified that

8

Figure 4: The primary (blue diamonds) and secondary (red stars) reported AoAs plotted
against the known true angle with 1◦ steps in worst case conditions. In every case except
for two, where the true AoAs were 5◦ and 50◦, the most likely of the two angles reported
by the system was correct. The black lines show the boundaries of the required ±2.5◦

accuracy.

the system would meet the accuracy requirement on live data if the angle was resolved

correctly.

There are several extensions to this project that would improve the functionality of

the system. The system should be adjusted by adding the ability to distinguish multiple

emitters in a single pulse. Currently, the system only processes the strongest of the

signals rather than looking for radar signals present at multiple frequencies. To enhance

the speed of the system, the direction finding algorithm should be implemented on a field-

programmable gate array (FPGA) or on an embedded system because communication is

the primary cause of delay in the system. Implementing the algorithm on an FPGA would

likely require changes to operate on fixed point data unlike the current system, which

uses double-precision floating point data. Changing the GUI display to allow for user

configuration of display parameters would make it more useful and interactive. Testing

the third input channel with live data and the entire system with true antenna data would

further validate the performance of the system. With or without these improvements,

the prototype system created by this project is a valuable addition to the larger system

being developed by Group 108.

9

Contents

Abstract 2

Acknowledgments 3

Statement of Authorship 4

Executive Summary 5

1 Introduction 13

2 Background 15

2.1 Radar Overview . 15

2.1.1 Radar Equation . 17

2.2 Radar Receivers . 18

2.2.1 Antennas . 18

2.2.2 Down Converter . 19

2.2.3 Analog to Digital Converters . 20

2.2.4 Signal Detection . 21

2.2.5 Signal Processor . 21

2.3 Passive Direction Finding . 25

2.3.1 Time Difference of Arrival (TDOA) 25

2.3.2 Amplitude Comparison . 27

2.3.3 Phase Interferometry . 28

2.3.4 Resolving Phase Ambiguity . 32

3 MATLAB Methodology 36

3.1 Project Plan . 36

3.2 Signal Generation . 37

3.3 Pulse Generation . 37

3.4 Down Converter . 38

3.5 Quantizer . 39

3.6 DF Algorithm . 39

3.6.1 Signal Detector . 40

3.6.2 Frequency Calculation . 40

3.6.3 Phase Calculation . 40

3.6.4 Ambiguity Removal . 41

4 MATLAB Model Results 44

4.1 Error versus Antenna Separation . 44

4.2 Error in MATLAB Model . 48

10

4.3 Error versus Signal Strength . 50

4.4 Frequency . 53

4.5 Emitter Distance . 54

5 Prototype Methodology 59

5.1 System Design . 59

5.2 DF Algorithm . 61

5.2.1 FPGA Communication . 62

5.2.2 Discrete Fourier Transform . 64

5.2.3 Logging . 66

5.2.4 Parallelization . 67

5.2.5 TCP Communication . 69

5.3 Graphical User Interface (GUI) . 70

5.3.1 Features . 71

5.3.2 GUI Design . 72

5.4 System Testing . 75

6 Prototype System Results 76

6.1 Direct Comparison Between C and MATLAB 76

6.2 GUI Results . 78

6.3 Hardware Tests . 80

6.3.1 Timing Tests . 82

7 Discussion 83

7.1 Analysis of MATLAB . 83

7.1.1 Choosing Antenna Separations . 83

7.1.2 Effects of Different Parameters on AoA Error 84

7.1.3 Error in Resolving Phase Ambiguities 85

7.1.4 MATLAB versus C Results . 86

7.2 Analysis of Prototype System . 86

7.2.1 Latency Analysis . 86

7.2.2 Two Channel Input Mode . 87

7.3 Limitations and Future Work . 88

7.3.1 Antenna Tests . 88

7.3.2 Sweeping Window . 88

7.3.3 Real Time Operation . 89

7.3.4 Additional Antennas . 90

7.3.5 Resolving Ambiguities with two Antennas 90

7.3.6 GUI Improvements . 90

11

8 Conclusion 92

References 94

12

1 Introduction

Since World War II, radar use has become widespread in civilian and military ser-

vice. Used primarily to determine information about distant objects, such as vehicles and

aircraft, a radar system emits electromagnetic waves and analyzes the returning reflec-

tions to determine the location and velocity of the object. Militaries around the world

responded to the development of the radar with a variety of countermeasures. Examples

of countermeasures include disrupting radar by emitting pulses to overwhelm and confuse

the radar and dropping chaff so that the signal hits clutter instead of the plane. These

countermeasures are aided by passive direction finding (DF) systems which determine

the presence and direction of emitting sources (Wiley, 1985).

Although passive direction finding is well known and documented, Lincoln Laboratory

and the United States Air Force require their own direction finding system which will

be integrated into a larger system on an airborne platform. By developing their own

DF system, Lincoln Laboratory can easily expand and alter the system. Purchasing an

existing DF product may reduce development cost; however, it would not be optimized

for the larger system.

The purpose of this project was to create a prototype airborne direction finding sys-

tem that determines the Angle of Arrival (AoA) of incoming signals and displays that

information on a graphical user interface (GUI). For the sake of simplicity, the system is

only concerned with the AoA in the azimuth plane rather than both the horizontal angle

(azimuth) and the angle of elevation, and the effects of aircraft tilt are ignored. Pas-

sive direction finding is performed using interferometry. Interferometry is the practice of

comparing characteristics, such as frequency and phase, of two or more signals in order

to gain information about the waveforms. Passive DF systems utilize interferometry on

the same signal received in multiple locations to determine information about its source.

The resolution of interferometers improves as antenna separation increases; however, the

spatial constraints imposed by an airborne platform require our system to function with

antennas approximately 5 cm by 7.5 cm, placed only a few meters apart. As a result

there are only slight time differences between them. Utilizing these small differences to

provide highly accurate AoAs was the primary challenge of this project.

In 2011, another student team from WPI compared and contrasted three methods of

direction finding: time difference of arrival (TDOA), amplitude comparison, and phase

comparison. Their project, titled the Beacon Locator Project, implemented the amplitude

comparison method, but was not able to fully meet the system requirements (Silva et al.,

2011). These requirements were determining the AoA within ±2.5◦, a ±45◦ field of view

in front of the aircraft, a dynamic range of 40 dB, and to provide at least one update

or calculation per second. The system must operate on signals in the X band frequency

range of 8 to 12 GHz, utilizing an intermediate frequency (IF) with 100 MHz bandwidth.

13

Secondary objectives were expanding the field of view to 180◦ and simultaneously tracking

multiple beacons. Our project implemented a system which used phase interferometry to

fulfill these requirements.

The project produced three deliverables: a MATLAB model of the DF system, a C

algorithm hosted on a PC which communicated with the hardware provided by our Lin-

coln Laboratory supervisors and calculated, logged, and transmitted the AoA based on

data received from the hardware, and a graphical user interface (GUI) that communi-

cated with the C algorithm over an Ethernet connection. The MATLAB model provided

us with an opportunity to easily prototype and finalize our DF algorithm before trans-

lating the algorithm to C. The simulation covered the full DF system from antennas to

processor output. The front-end hardware required by the system to receive a signal and

prepare it for processing by the software was comprised of: antennas, down converters,

analog-to-digital converters (ADCs), and a field-programmable gate array (FPGA) based

digital signal processor. The hardware was provided to the group by our Lincoln Labora-

tory supervisors. The final prototype of the system consisted of the front end hardware

provided by Lincoln Laboratory, a computer running the C algorithm to retrieve and

process the incoming data from the hardware, and another computer running the GUI

and displaying the information.

14

2 Background

In order to meet the requirements for the project, the team researched a number of

topics to obtain background knowledge of radar systems and direction finding techniques.

The following sections contain an overview of radar systems, focused on radar receivers,

direction finding systems and techniques, and a discussion of methods to solve ambiguities

that result from phase comparison direction finding.

2.1 Radar Overview

Radar systems have a myriad of uses, from radar speed detectors and air traffic

control systems to missile tracking and surface mapping. Regardless of the application,

all radar systems share the same general concepts and structure. A radar system is

composed of several basic components: a transmitter, an antenna or antenna array, a

receiver, and a signal processor (Holm and Richards, 2010). The basic functionality of a

radar system is shown in Figure 5.

Figure 5: A basic depiction of a radar system detecting an aircraft. The emitted signal
(large green waves) hits the aircraft and scatters in every direction (smaller blue waves).
Some of the scattered signal returns to the emitter.
Modified from electriciantraining.tpub.com/14190/img/14190 14 1.jpg and
www.srh.noaa.gov/jetstream/doppler/how.htm.

The transmitter emits a structured electromagnetic wave depicted by the large green

wave in Figure 5. The electromagnetic wave is generated by creating an initial signal,

called a baseband signal, with a frequency between 0 Hz and a specified maximum cutoff

frequency. The baseband signal is then modulated with a sine wave. The modulation

process shifts the signal to the intermediate frequency. In general, modulating the signal

in this way doubles its original bandwidth, however single-sideband modulation, which

uses a filter to remove the images of the frequency-shifted signal, can be used to prevent

this effect. Once the signal is at IF, it is modulated once again to bring the signal up to

radio frequency (RF) (Skolnik, 2001). The two step modulation process allows a radar

15

to change its RF, called frequency hopping, without changing the IF used to process

signals. Processing at IF allows radars to use simpler, less expensive hardware in both

the transmitter and receiver.

The wave generated by the transmitter travels through space until it hits a target.

When the wave hits a target, it scatters off the object, sending waves in every direction

(the small blue waves in Figure 5). A small portion of the scattered reflections return

to the radar system via the receiver antenna. A large portion of the signal’s power is

lost in transit and from the reflection scattering, so the receiver’s main function is to

identify and amplify these relatively low energy signals. The first step is to reduce the

frequency of the signal to the IF so that it is easier to process. ADCs can sample the

IF signals for digital processing while RF signals in the X band would require analog

processing. The signal is then sent to a signal processor, either directly to an analog

processor or through an ADC to a digital processor. Regardless of the processing type,

the signal processor analyzes the signal to determine characteristics of the target. While

most radars determine range, some also determine a number of other characteristics such

as angle to target, location of target, and radial velocity.

The techniques used to calculate information gathered by radars depend on the type of

wave sent by the transmitter. Two main types of electromagnetic waves used by radars are

continuous waves (CW) and pulsed waves. Continuous wave systems continuously emit

a sinusoidal wave. When the radar system detects a return signal, the signal is compared

to the original transmitted wave to determine target characteristics. The change in

amplitude, phase, and frequency all give information about the target hit by the wave.

Pulsed radars do not transmit continuously. Instead, these radars transmit a series of

short sinusoidal signals. By only sending pulses, pulsed radar systems require less power

than their CW counterparts and do not have issues of interference between a continuously

emitted signal and returning signal. A sample of a pulsed radar signal is shown in Figure

6. The time spent emitting continuously is the pulse width (PW), and the pulse width

plus the time between pulses is called the pulse repetition interval (PRI). The PW, PRI,

and frequency allow systems to distinguish one radar system from another as opposed

to just the frequency in the case of CW. Using the assumption that the signal travels at

the speed of light, the radar system calculates the range to a target by using the time

delay between the transmission of the pulse and the arrival of the reflected signal. If the

PRI is shorter than the time difference between the return signal and emission time, the

radar will incorrectly determine that the target is in close proximity (Skolnik, 2001). To

avoid the potential ambiguity, the PRI must be greater than the time it takes a pulse

to travel to and return from a target at maximum range. Consequently, determining the

maximum range in relationship to the PRI is essential for radar design.

16

Figure 6: Two radar pulses with the same pulse width of 100 ms and a PRI of 400 ms.
The first pulse arrives at t=0 and the second pulse arrives at t=400 ms.

2.1.1 Radar Equation

The effectiveness and range of a radar system (Rmax) depends on many factors as

shown in the radar range equation:

R4
max =

PtGAeσ

(4π)2kT0BFn
S
N min

(3)

(Holm and Richards, 2010). Equation 3 defines a radar system’s maximum range in terms

of transmitted power (Pt), transmitting antenna gain (G), receiving antenna effective

aperture (Ae), radar cross section of target (σ), minimum signal to noise ratio (S
N

),

Boltzmann’s constant (k), the IEEE standard temperature (T0) in Kelvin, receiver half

power bandwidth (B), and receiver noise figure (Fn). The range equation calculates the

maximum range for which a signal can travel to a target, scatter off of it, and then return

as a detectable signal. If the target is beyond this range, the returned echos will not be

strong enough to register at the receiver. There are more complex versions of the radar

equation that take into account other factors such as pulse data and weather clutter,

but even this simplified view can be of great use when designing a radar system (Holm

and Richards, 2010). The (R4
max) in the radar equation is actually a combination of the

17

transmit and return distances, (R2
transmit) and (R2

return). The passive DF system relies

solely on the transmitted distance of the received wave and does not depend on σ. The

range of a passive DF system is given by:

R2
transmit =

PtGAe

4πkT0BFn
S
N min

, (4)

where Ae, B, and S
N m

in are determined by the DF system.

2.2 Radar Receivers

This project’s direction finding system is a radar receiver. Instead of receiving the

echos of signals that it transmits, the DF system receives and process signals sent by

other radar systems. The most common type of radar receiver is the superheterodyne

receiver. Superheterodyne receivers are composed of five main components: antennas,

down converters, ADCs, a signal detector, and a signal processor. A block diagram of a

superheterodyne receiver is shown in Figure 7.

Figure 7: The setup of a superheterodyne receiver system. The antenna and local os-
cillator feed into the IF mixer. The mixer output is sampled by the ADC. If the signal
detector finds a signal present, it is then passed off to the signal processor (Skolnik, 2001).

2.2.1 Antennas

The purpose of antennas in a DF system is to receive radar signals. Essential charac-

teristics of a receiver antenna include the gain, the antenna area, the effective aperture,

and the field of view. The gain is a measure of how well the antenna amplifies the

power of signals it receives. The effective aperture describes the absorbing section of an

antenna. A larger effective aperture increases the gain, thus increasing received signal

power. Depending on the desired field of view, the system may use directional antennas

18

or omnidirectional antennas. Directional antennas have different gains depending on the

reception angle. The direction of maximum gain is the antenna’s boresight (Holm and

Richards, 2010). Omnidirectional antennas have equal gains in all directions, but if a

smaller view is desired when using omnidirectional antennas, signals outside of the de-

sired range of angles must be physically blocked to prevent noise from other directions

(Skolnik, 2001).

Figure 8: A typical horn antenna.
Source: www.radio-electronics.com/info/antennas/horn antenna/horn antenna.gif.

The horn antenna, shown in Figure 8, is a type of directional antenna commonly used

to detect signals in the X band (8-12 GHz), the desired operating range for our system

(Holm and Richards, 2010). A horn antenna is simply a waveguide which is flared out at

one end like a horn. One advantage of the flare is that it provides a large opening to accept

signals while at the same time blocking out signals from other directions. The cross-

section of the flare can be adjusted as desired. Shrinking the flare increases directivity at

the cost of gain (Bakshi, 2009). Horn antennas come in a wide variety of sizes, many of

which are small enough to place on an aircraft.

2.2.2 Down Converter

High frequency signals, like those found in the X band, have smaller amplitudes

for the same transmitted power and are difficult to sample and analyze for changes in

phase. A down converter, which reduces the frequency of the incoming signal and applies

gain, is used to allow an ADC to sample the signal accurately. To sample the signal

without loss of information, the ADCs must sample at a rate greater than or equal to the

Nyquist rate, which is defined as twice the signal’s bandwidth. Sampling signals directly

in the X band, which has a bandwidth of 4 GHz, would require an 8 GHz sampling rate.

Current technology cannot sample this rapidly, so only subsections of the X band can

be sampled at any given time. In order to monitor the entire X band, a system must

sample and process data from a smaller bandwidth, for example 100 MHz, within X band

and then repeat the process until every section of X band has been examined. Because

19

each window is a different frequency, it becomes convenient to use a down converter

to frequency shift the RF down to a known intermediate frequency. Having a known

IF greatly aids in filter design because only one filter needs to be designed, instead of

designing a separate filter for each section of the RF band that the system will examine.

The down converter reduces the frequency through use of a mixer and a local oscillator.

The local oscillator is configured to produce a sinusoidal signal with a frequency close to

the expected carrier frequency of the signal and at least 7 dB greater than the largest

signal the system intends to analyze (Holm and Richards, 2010). The mixer takes in two

signals in the form of cosine waves: the signal from the antenna, A1cos(ω1t), and a signal

from the local oscillator, A2cos(ω2t). These two signals are then multiplied together and

transformed by combining the trigonometric identities for cos(A + B) and cos(A − B)

yielding:

A1A2cos(ω1t)cos(ω2t) =
A1A2

2
cos((ω1 − ω2)t) + cos((ω1 + ω2)t). (5)

The mixer outputs a signal with two frequency components, one at (ω1 − ω2) and one at

(ω1 + ω2). The component at (ω1 + ω2) is filtered out using a low pass filter leaving only

the IF component at (ω1 − ω2) (Wolff, 1997).

When the original frequency of the signal is unknown, using a local harmonic oscillator

with a constant frequency only allows the system to monitor one subsection of the X band.

Consequently, tunable local oscillators are used to sweep over the bandwidth. A tunable

oscillator for X band begins at 8 GHz and steps up frequency in increments less than or

equal to the IF bandwidth until it reaches 12 GHz. Between each step the system receives

signals for a set period of time. The steps allow the receiver to process signals across

the entirety of X band, but the slow increments give rise to the possibility of missed

signals (Holm and Richards, 2010). If a signal arrives outside of the window the system

is currently tuned for it will be filtered out in the down conversion process. In order to

reconstruct the signal at its original RF, the local oscillator’s frequency must be known

by the rest of the system. To restore a down converted signal to its original form, the

same mixing process is used with a high pass filter in lieu of a low pass filter.

2.2.3 Analog to Digital Converters

While radar systems can be made using only analog processing, most modern radar

systems use digital signal processing to determine information about the received signals.

The ADC samples the analog wave received by the antennas to form a digital signal

that approximates the original signal. The two most important characteristics of an

ADC are the sample rate and the resolution. Higher sample rates allow larger IF bands,

which in turn reduce the probability of missing a signal. When sampling rates become

significantly higher than the Nyquist rate, oversampling occurs. Oversampling results

20

in a better signal to noise ratio (SNR). Oversampling also creates separation between

aliases of the signal which allows filters to have more gradual cutoffs than when sampling

at exactly the Nyquist rates where the alias begins where the signal ends (Candy and

Temes, 1992). The resolution and dynamic range of an ADC increases with the number of

bits. The ADC can only represent a number of values equal to 2b, where b is the number

of bits. If a set resolution is required, the range that can be represented is the required

resolution times the number of possible values. As analog values do not have exact digital

maps, they are rounded or truncated to the nearest match, causing a quantization error.

2.2.4 Signal Detection

In passive DF system, the sampled data from the ADC are passed to the signal

detector. When no signal is detected, the signal detector does not pass the sample on to

the rest of the system. By avoiding sending data devoid of a signal, the system does not

waste computational resources on meaningless data. Ensuring the existence of a signal

becomes significantly more difficult in the presence of noise. The simplest method of

ignoring noise is setting a threshold voltage in the time domain and ignoring all samples

with peak voltages below it. The value for the threshold voltage has to be chosen carefully.

At lower threshold values, the false positive rate goes up as the system accidentally passes

noise through; however, when the threshold is raised, the missed detection rate goes up

because low power signals are mistaken for noise (Skolnik, 2001). Ideally, signal detectors

would simultaneously minimize both false positives and missed detections. One way to

intelligently set the detection threshold of the signal detector is monitoring returns in the

absence of a signal to determine typical noise levels. This typical level can be multiplied

by a predetermined constant in order to ensure a minimum false alarm rate. In order to

maintain an appropriate value for the threshold noise in changing conditions, the system

needs to continuously monitor the noise. This self-adjusting technique is called constant

false alarm rate detection (Skolnik, 2001). Over time, conditions and noise levels change

requiring the continuous monitoring of noise to maintain appropriate threshold values. If

the signal detector mistakes a signal for noise then the noise threshold might become too

large, causing repeated missed signals.

2.2.5 Signal Processor

Once a signal has been received and detected it is passed to the signal processor. The

signal processor analyzes properties of the signal to determine characteristics of the signal,

such as phase, frequency, and amplitude. A wide variety of tools and techniques have

been developed to help extract this information from signals. Two common techniques

in radar processing are in-phase and quadrature analysis and frequency domain analysis

using the Fourier transform.

21

Figure 9: Polar and I-Q coordinates, where M is the magnitude of the wave, t is time, φ
is the phase, I is the real component of the wave, and Q is the imaginary component.

In-phase and quadrature analysis (I-Q analysis) represents a real valued signal as a

combination of real (I) and imaginary (Q) components. Having a signal split into real

and imaginary parts reduces the complexity of determining frequency and phase (Smith,

2007). The general function for a real valued sine wave is given by Equation 6:

x(t) = Asin(2πft+ δ), (6)

where A is the amplitude, f is the frequency (Hz), and δ is the phase shift. In this form,

the total instantaneous phase of the wave, φ(t) = 2πft + δ, depends on δ. In order to

calculate φ and A directly, the function must be altered. Using trigonometric identities

Equation 6 can be rewritten as:

x(t) = Asin(δ)cos(2πft) + Acos(δ)sin(2πft) = A1cos(2πft) + A2sin(2πft), (7)

where A1 = Asin(δ) and A2 = Acos(δ). The two components of the sinusoid are:

the sine (in-phase) component, I = A2sin(2πft), and cosine (quadrature) component,

Q = A1cos(2πft). The I and Q components are a conversion of polar coordinates to the

Cartesian plane as shown in Figure 9. The relationship between I and Q allows for the

calculation of instantaneous phase by taking the arctangent of the I and Q components

as shown in Equation 8. The amplitude is calculated using the Pythagorean Theorem as

22

shown in Equation 9:

φ = tan−1(Q/I) (8)

A2 = I2 +Q2. (9)

Much like I-Q analysis, the Fourier transform represents the real signal as a combina-

tion of real and imaginary parts; however, the Fourier transform also changes the signal

from the time domain to the frequency domain, showing which parts of the signal are

present at each frequency. The Fourier transform is given by the equation:

X(ω) =

∫ ∞
−∞

x(t)e−jωtdt, (10)

where x(t) is the signal in the time domain, X(ω) is the signal in the frequency domain,

t is the time, and ω is the frequency. The Fourier transform uses an integral across the

entire time domain. The integral spans every point in time; however, in a digital system,

data only exist for a finite time range and only at sampling intervals within that range.

Therefore, digital systems use the discrete Fourier transform (DFT) which replaces the

integral over all time with a sum of samples in a specified range. The DFT can be found

by the equation:

X(k) =

N0−1∑
n=0

xne
−jk(2π

N0
)n
, (11)

where xn is the nth sample of the signal in the time domain, X(k) is the kth sample

of the signal in the frequency domain, and N0 is the number of samples taken. The

transformation expresses the waveform as a series of harmonics, each with a specific

amplitude, frequency, and phase. By comparing the magnitude of the different frequency

components, the frequency or frequencies of the signal are determined. When the strength

of a signal is large compared to the noise present, the frequency components of the signal

have a higher magnitude than the frequency components of the noise. The DFT of a

weak 33 Hz signal and a strong 80 Hz signal in the presence of noise is shown is shown

in Figure 10. The high amplitudes at specific frequencies verify the presence of a signal.

The dominant frequency of the signal, once determined, allows the system to calculate

the phase associated with the signal at that frequency. Figure 11 displays the graphs of

amplitude versus frequency and the phase versus frequency.

For practical applications, the DFT can be inconvenient to use because the number of

computations required is O(N2) where N is the number of samples used in the calculation.

The accuracy of the DFT increases with the number of terms used because it becomes

a closer approximation of the regular Fourier transform. Due to the potentially large

number of calculations required for the DFT, many systems use fast Fourier transform

(FFT) algorithms which take advantage of the linearity of the DFT to perform the DFT

23

Figure 10: The received time-domain signal (Left) composed of a 33 Hz and 80Hz sine
wave with Gaussian noise and its Fourier transform in the frequency domain (Right).
This exaggerated case exemplifies the usefulness of the Fourier transform in isolating
noise.

Figure 11: Frequency and phase spectra of a pulsed 50 MHz sine wave with 10 dB SNR.
The phase and the magnitude at the signal’s frequency are circled in red.

on a number of shorter signals and then combine the results. FFT algorithms reduce the

number of computations needed to O(Nlog2N) in cases where N is a power of 2 (Lathi,

2005). These signal processing techniques simplify the process of extracting phase and

frequency information that direction finding systems can use to calculate the AoA of a

signal.

24

2.3 Passive Direction Finding

Passive radar systems do not transmit waves. Instead, they analyze waves sent by

external emitters. The DF system does not have any knowledge of the signal’s properties

at transmission, so comparisons cannot be made between the transmitted and received

signal to determine range or velocity. In spite of these limitations, there are still advan-

tages to using a passive DF system in conjunction with or in lieu of conventional radar

systems. Because passive DF systems do not transmit, they require significantly less

power and do not reveal their location to other receivers. Even without transmitting, DF

systems can aid in target recognition and determine direction to emitters. DF systems

can identify the type of emitter by analyzing the received signal (Skolnik, 2001). DF

systems are designed to determine characteristics of incoming signals in particular, their

AoA. There are three main methods for determining the AoA of an incoming radar signal:

time difference of arrival (TDOA), amplitude comparison, and phase interferometry. All

three of these methods require a minimum of two antennas and yield better results with

more antennas.

2.3.1 Time Difference of Arrival (TDOA)

The TDOA method relies on two or more antennas, positioned with a known ge-

ometry, and the difference in arrival time of the signal at each antenna to calculate the

angle of arrival. In a two antenna system, combining the knowledge of the geometry of

the antennas and the time difference allows the signal processor to calculate a curve of

possible values for the position of the emitter (Wiley, 1985). An emitter and a two an-

tenna TDOA system are shown in Figure 12. The distance formula provides the distance

between two points, in this case the distance between the emitter and antenna 1:

d1 =
√

(x1 − x)2 + (y1 − y)2 + (z1 − z)2, (12)

where x1, y1 and z1 are the coordinates of antenna 1 and x, y, z are the coordinates of

the emitter. Noting that the speed of light, c, is effectively constant in the atmosphere

at 3 ∗ 108 m/s, solving for the time of arrival (t1, ToA) is straightforward:

t1 = d1/c. (13)

The same relationship holds between the ToA at antenna 2, t2, and the location of

the second antenna, d2 =
√

(x2 − x)2 + (y2 − y)2 + (z2 − z)2. In practice, d1, d2, t1, and

t2 are unknown; however, the measured time difference (t2 − t1) allows the system to

calculate the difference in radial distance from the emitter to each antenna, d12 = d1−d2,

25

Figure 12: An example of a TDOA system. Antennas A1 and A2 are distance d1 and d2

away from the emitter. Each antenna sits on one of two concentric circles centered on
the emitter. The radial distance between these circles is given by d12.

using (13). Algebraic manipulation and using Equation 12 to replace d1 and d2 yields:√
(x1 − x)2 + (y1 − y)2 + (z1 − z)2 =

√
(x2 − x)2 + (y2 − y)2 + (z2 − z)2 + d12. (14)

Squaring both sides and performing more manipulation yields:

1 =
(x2

1 − x12x− x2
2 + y2

1 − y12y − y2
2 + z2

1 − z12z − z2
2)

2d12

√
(x2 − x)2 + (y2 − y)2 + (z2 − z)2

. (15)

Squaring equation 15 gives the formula for a hyperboloid (Fang and Martin, 1990). The

location of the emitter lies on some point (x,y,z) on this hyperboloid.

Adding a third antenna to the system allows the generation of another hyperboloid.

The location of the emitter must be a point in both hyperboloids. The intersection of the

two hyperboloids limits the possible values to a 2D curve. Additional antennas continue

to reduce the ambiguity by adding further constraints on possible locations. The TDOA

method of direction finding has the potential to be very accurate and yields location

in addition to direction; however, its heavy reliance on accurate measurements of ToA

from multiple antennas creates problems in small-scale systems. ToA accuracy in the

time measurement determines the accuracy of the AoA calculation. Consequently, to

calculate the AoA within the accuracy required for this project, the antennas need to be

placed a distance on the order of kilometers apart. While the minimum distance may be

feasible for ground-based systems, the Beacon Locator Report found that it is impractical

for airborne systems (Silva et al., 2011).

26

2.3.2 Amplitude Comparison

The amplitude comparison method of determining AoA uses two or more directional

antennas whose boresights are pointed in different directions (Skolnik, 2001). The number

of antennas used depends on the desired field of view and resolution. The boresights

are typically offset from each other such that the gain patterns overlap along the 3 dB

edge (shown in Figure 13) (Wiley, 1985). When a signal arrives, the ratio of power

amplitudes between the two antennas is compared to known antenna gain patterns which

is then used to calculate the AoA. Since the power ratios are compared to known values,

the AoA can only be resolved to one of the pre-stored values. The resolution of this

method is proportional to the amount of memory dedicated to the table of known values;

however, increasing the size of the table simultaneously increases the time required to

search through that table. Noise increases error in the amplitude method more so than in

Figure 13: A two antenna amplitude comparison system. Each blue triangle represents
a horn antenna. The antenna boresights are offset by 90◦.
Source: (Silva et al., 2011).

the other two methods of direction finding. The noise changes the amplitude of the signal,

causing the amplitude ratio to differ from the expected value. The change in amplitude

can cause the device to resolve to a different angle. At the fringes of the detectable range,

the signal to noise ratio is lower than at the boresight. Consequently, the noise has a

larger impact on the error in the power ratio calculations at angles at the extremes of the

field of view. In the Beacon Locator Project report, the amplitude comparison method

was implemented with errors as large as 4◦ for angles near the extremes of their range

27

(±45◦) (Silva et al., 2011).

2.3.3 Phase Interferometry

The third and final method for determining the AoA of an incoming signal is the

phase interferometry method. The setup of a two antenna phase interferometry system

is shown in Figure 14. In Figure 14, d1 is less than d2 so the point p is placed on the

line segment EA2 such that d1 is equal in length to the line segment Ep. The system is

oriented such that an AoA of 0◦ corresponds to a target directly in front of the aircraft.

Like the TDOA method, this method relies on the delay of the signal arriving at two

different antennas; however, this method compares the change in phase between the

two waves received rather than the difference in the time of arrival. An advantage to

comparing phase is that when the distance between antennas is on a similar scale to the

wavelength of the received signals, the phase difference is significant enough to measure

accurately. For the X band, the wavelength of the signals is generally smaller than the

Figure 14: A phase interferometry system. An emitter distance d1 and d2 from two
antennas separated by a distance s. Point p is placed on the line segment EA2 such that
d1 is equal in length to the line segment Ep. Here s is much less than d1 and d2.

antenna separation; therefore a phase interferometry system does not have the same

small-scale accuracy issues present in a TDOA system.

The setup of the system allows the processor to use trigonometry to find the AoA

of the signal. Typically, the distances from the antennas to the emitter, d1 and d2, are

28

orders of magnitude larger than the antenna spacing, s, so that near the antennas the

lines EA1 and EA2 can be considered parallel as shown in Figure 15. When EA1 and

Figure 15: A closer look at the system depicted in Figure 14.

EA2 are parallel the points A1, A2, and p form a right triangle. The extra distance the

wave had to travel to the second antenna, the line segment pA2, can be found using the

phase difference. The length of pA2 is given by:

pA2 = λ(
∆φ

2π
+ I), (16)

where I is a non-negative integer, λ is the wavelength of the received RF signal, and

∆φ is the phase difference in radians. The phase difference, ∆φ, is measured relative to

antenna 1 and is restricted to values between 0 and 2π. The restriction on ∆φ restricts

the first term of Equation 16 to values between 0 and 1, requiring the addition of I to

account for distances greater than λ.

Since the line segments A1p, pA2 and A2A1 form a right triangle and the angle formed

by A1A2p is given by π/2 − AoA and cos(A + B) = cos(A)cos(B) − sin(A)sin(B), the

cosine relationship can be used to calculate the AoA:

cos(π/2− AoA) = sin(AoA) =
λ(∆φ

2π
+ I)

s
, (17)

or in terms of the AoA

AoA = sin−1

(
λ(∆φ

2π
+ I)

s

)
. (18)

When the emitter moves from the left of the interferometer to the right, the calculation

changes slightly. Figure 16 shows the setup for an emitter on the right of inteferometer.

The point p is again placed so that the length of the line segment Ep is equal to d1.

Because d1 is less than d2 Ep extends past antenna A2. The right triangle formed by

A1, A2, and p is once again used to calculate the AoA and Equation 16 is still used to

29

calculate the length of pA2. In this case, however, the value of I will be negative resulting

Figure 16: Figure 14 with the emitter moved to the right side of the interferometer. The
line segment EA2 is artificially extended to point p so that antenna 1 can still be used
as a reference. Emitters to the right of the interferometer result in negative total phase
difference and negative AoAs.

in a negative length for pA2. The negative length reflects the fact the signal arrives at

antenna 2 before antenna 1 and allows antenna 1 to be used as the baseline in both cases.

A negative value for I results in a negative value for the AoA from Equation 18. It is

more intuitive to have negative AoAs for emitters on the left of the system and positive

AoAs for emitters on the right so the final AoA equation used multiplied Equation 18 by

-1 resulting in Equation 19:

AoA = −1 ∗ sin−1

(
λ(∆φ

2π
+ I)

s

)
. (19)

In Equation 19 ∆φ is the measured phase difference between 0 and 2π, s is the antenna

separation, and I is an integer corresponding to the number of 2π phase changes.

The phase interferometry method yields accurate AoA calculations; however, when

antenna separation is greater than λ
2
, the phase difference can be greater than π. Inter-

ferometers can only calculate phase differences between −π and π, allowing for multiple

answers, or ambiguities, when calculating the AoA. Additional techniques to resolve am-

biguities are needed in order to make this technology viable for direction finding.

The AoA calculation is valid so long as d, the distance from the emitter to the midpoint

between the antennas, is much larger than s. To discover the limits of this assumption,

we considered the triangle formed by antenna 1, the midpoint between the antennas, m,

and the position of the emitter. The geometry is shown in Figure 17. The angles of the

30

triangle, α1 and α2, can be written in terms of the AoAs, AoA1 and AoA2:

α1 =
π

2
+ AoA1 (20)

α2 =
π

2
− AoA2. (21)

The law of cosines produces:

d2 = (s/2)2 + d2
1 − sd1cos(α1). (22)

Rearranging Equation 22 to solve for α1 yields:

α1 = cos−1

(
s

4d1

+
d1

s
− d2

sd1

)
. (23)

Again, using the law of cosines to solve for d1 produces:

d1 =
√
d2 + (s/2)2 − dscos(α2). (24)

Combining equations 23 and 24 yields:

α1 = cos−1

(
1√

d2 + (s/2)2 − dscos(α2)

[
s

2
− dcos(α2)

])
. (25)

Figure 17: This figure shows the antenna 1, A1, and the midpoint between the two
antennas, m. The distance from the emitter, not shown, to the first antenna is d1 and
the distance from the emitter to the midpoint is d. The separation between A1 and m is
s/2 and the angle of arrival for each point is shown (AoA1 and AoA2 respectively). The
angles of the triangle formed by the emitter, m, and A2 are α1 and α2.

31

In the limit as d approaches infinity, Equation 25 becomes:

α1 = cos−1

(
1√
d2

[
s

2
− dcos(α2)

])
= cos−1

(
s

2d
− cos(α2)

)
= π − α2, (26)

which is the result of adding Equations 20 and 21 when θ1 and θ2 are equal. From

Equation 25, for realistic ratios of d to s on the order of 1000:1, the difference between

α1 and α2 is on the order of 10−4 degrees.

2.3.4 Resolving Phase Ambiguity

The greatest technical difficulty in implementing the phase interferometry method of

direction finding is resolving ambiguities. Phase interferometers can only measure phase

differences between −π and π. Phase differences outside of this range result in ambiguous

solutions and, without additional information, the true AoA cannot be determined. The

simplest way to remove ambiguity is to place the interferometer’s two antennas less than
λ
2

apart; however, this cannot be used for our application. For a 12 GHz signal, the

maximum X band frequency, half of the wavelength is 1.25 cm. Placing the antennas this

close together would require the antennas to be less than 1.25 cm wide in order to not

physically overlap one another. Using antennas this small would result in a small effective

aperture and poor signal gain. Additionally, when the separation between the antennas

is small, the phase difference becomes more susceptible to noise and the measurement

loses accuracy.

Combining amplitude comparison and phase interferometry techniques provides an-

other method of solving ambiguities with two antennas. The amplitude comparison pro-

vides a rough, but unambiguous angle of arrival, which can be used to determine which

of the several ambiguous angles produced by phase intereferometry is the true AoA.

The amplitude method can be accomplished with directional antennas, or by placing an

asymmetric gain medium placed between two omnidirectional antennas. The scattering

box reduces the amplitude of the received signals by varying amounts dependent upon

the incident angle. Asymmetric boxes allow unique determination of every AoA. The

scattering box method allows for 360◦ field of view (Zhou et al., 2011). Due to the time

constraints of the project we focused on solving the ambiguities with only the phase

interferometry method rather than combining the phase interferometery and amplitude

comparison methods.

The problem of ambiguity can also be mitigated by moving from two antennas to three

antennas. The antennas are placed in a line with differing spacing as shown in Figure 18.

The three antennas are treated as two pairs; the short baseline of antenna 1 and antenna

2 and the long baseline of antennas 1 and 3. Adding the third antenna helps mitigate

some of the issues with placing smaller antennas half of a wavelength apart. The system

32

Figure 18: Setup of a three antenna phase interferometer. Each of the three lengths, s12,
s23 and s13, has a distinct value.

maintains its overall accuracy by measuring the angle of arrival based on antennas 1 and

3, which are far enough apart to be resistant to noise, after ambiguities are removed by

antennas 1 and 2.

In cases where the antennas cannot be placed half a wavelength apart using three

antennas still helps remove ambiguities. The phase difference can now be calculated

between the first and second and first and third antennas giving two sets of ambiguous

results. Comparing these results reduces the ambiguities to only those angles that appear

among the possible angles for both pairs of antennas. This method is further improved

by taking the geometry of the antennas into account. The maximum number of full

phase changes that can occur between a pair of antennas, and therefore the number of

ambiguities, n, is shown in Equation 27:

n =
s

λ
sinθmax, (27)

where s is the distance between the antennas, λ is the minimum wavelength of the signal

and θmax is the maximum angle of arrival for the system (Jacobs and Ralston, 1981). The

true phase difference for a measured phase difference of ∆φ12 is ∆φ12 + i ∗ 2π where i is

an integer in the range of −n ≤ i ≤ n. These equations apply to both pairs of antennas

(the first and second antenna and the first and third antenna). By substituting these

equations into the equation for angle of arrival, equation 18, the following two equations

can be derived:

∆φ′12 + i12 =
s

λ
sinθAoA

∆φ′13 + i13 =
s

λ
sinθAoA.

In these equations ∆φ′12 and ∆φ′13 are ∆φ12 and ∆φ13 normalized by 2π so that they are

in the range of 0 to 1. Combining the two equations yields:

∆φ′13 =
s13

s12

∆φ′12 +
s13

s12

i12 − i13. (28)

33

For any valid value of i12 and i13 Equation 28 yields a line representing a set of possible

phase differences. Collectively these lines cover every theoretically possible combination

of phase differences. In a no noise environment the measured phase difference will always

fall on one of these lines. By finding the line that is closest to the measured phase

difference, the true value for the phase difference can be found (Jacobs and Ralston,

1981). An example of this process is shown in Figure 19. In this plot the blue lines are

Figure 19: Example plot of the phase resolution technique. The blue lines are phase
lines generated by Equation 28, the green star is the location of the normalized measured
phase differences (∆̂φ12, ∆̂φ13), and the red line is the chosen result. The red dotted lines
show the maximum distance from the chosen line that is treated as a certain result.

determined by specific values of i12 and i13, the green dot is the location of the measured

phase difference, and the red line is the closest result. The true phase is determined

by: ∆̂φ2π + I2π, where ∆̂φ is the normalized measured phase difference and I is the

number of full phases as determined in Figure 19. Noise can cause the measured phase

to move away from one of the true phase lines. A range of confidence, shown by the red

dotted lines in Figure 19, is defined to reflect the possibility of noise causing an incorrect

phase resolution. If the measured result is within the confidence range, between the

red dotted lines and the red line, then the system is confident that it has resolved the

phase correctly. Increasing the confidence range raises the possibility that the system will

confidently report the incorrect angle while reducing it raises the possibility of reporting

34

a correct result as uncertain.

In high noise cases the measured phase can bounce between two or more possible true

phases. To help mitigate these cases, a history of calculated angles can be kept to help

determine which angles to use. Adjacent lines of true phase will yield drastically different

results for AoA because moving over one line represents changing the phase difference by

2π radians, so it can be quite clear when noise causes the calculation to choose the wrong

phase line. This risk can be mitigated by choosing the antenna spacing such that there

is the greatest possible distance between true phase lines. There are more ambiguities at

high frequency so testing a variety of antenna spacing with the 12 GHz provides a spacing

that can be used for any frequency in X band. In an ideal, noiseless environment the

measured phase will always appear on one of the true phase lines. When the lines are far

apart, the noise has to corrupt the phase measurement by more before it will resolve to

an incorrect angle. The worst case scenario occurs when two incident true phase lines are

generated by Equation 28. In this case, there will always be two completely ambiguous

results for a certain set of measured phases. If the needed reliability cannot be achieved

through optimal spacing and noise reduction, the field of view can be limited to reduce

the total number of lines.

35

3 MATLAB Methodology

The MATLAB model of the DF system is composed of two distinct components: the

signal generator and the direction finding algorithm. The layout of the model and the

functions performed by these two components are shown in the block diagram in Figure

20.

Figure 20: A block diagram showing the structure and components of the MATLAB
model. The signal generator generates signals and replicates the processing performed by
hardware as signals are received. The DF algorithm analyzes the three signals produced
by the generator and determines the AoA

The signal generator models the hardware of our system, a superheterodyne receiver,

up to and including the ADCs. The generator simulates a pulsed sine wave at RF, down

converts the sine wave to IF, passes the new waveform through a low pass filter, and

then quantizes the signal as if it had passed through the ADCs. After quantization, the

signals are sent to the DF algorithm which performs the steps required to determine the

AoA: detecting signals, determining signal frequency, determining the phase difference,

and removing ambiguities. The algorithm outputs the frequency of the detected signal,

the two most likely AoA values and the likeliness of the two most probable solutions.

Designing the DF algorithm in MATLAB allowed for the use of MATLAB’s high level

functions, such as the FFT function and vector processing, and built in signal processing

tools to rapidly design and test the algorithm. MATLAB’s tools and functions permitted

us to make fundamental changes to the components without addressing the complexities

of memory management and system input and output.

3.1 Project Plan

The model architecture utilized modular design principles in order to further reduce

complexity. The MATLAB model was created using a spiral development method, gaining

components with each iteration. The schedule for the model’s development in shown

in the Gantt chart in Figure 21. Each component in the MATLAB simulation was

designed and tested separately by a member of the group. Components were added to the

simulation individually until the model reached the final and most accurate representation

36

Figure 21: Gantt chart showing the schedule for the MATLAB model. Work began on Au-
gust 15th, 2012 and continued to September 10th, 2012. Each component was developed
by a different individual whose initials are shown in the second column. The components
are grouped into iterations representing significant improvement in the system.

of the physical system. Each logical element is discussed below.

3.2 Signal Generation

The signal generator simulates the generation of pulsed X-band radar signals and

the conversion of these signals from analog to digital. To generate the appropriate signal,

the following parameters must be specified: the AoA at antenna 1 (degrees), the signal

carrier frequency (Hz), the distance between the emitter and midpoint between antennas

1 and 2 (m), the separation between antennas 1, 2, and 3 (m), the signal strength (dBfs),

the number of pulses, the pulse repetition interval (s), and the pulse width (s). The RF

waves are generated with a 50 GHz sampling rate to be as close to continuous as possible

while still allowing enough memory to generate multiple pulses. The simulated RF waves

are down converted to the IF, sampled at 500 MHz, and quantized by 12 bits.

3.3 Pulse Generation

The signal generator creates three sine waves of the form Asin(ωt + φ). Each sine

wave corresponds to the signal received at one of the three antennas. To create a series

of pulses, the three waves are multiplied by a pulse train specified by the PW and PRI.

The start time of the pulse train is randomized to begin at any time during the PRI.

The differences in phase offset, φ, is the parameter used by the DF algorithm to calculate

the AoA. In order to calculate φ, the MATLAB model calculates the distance from the

emitter to each of the antennas. The distances between each of the antennas and the

37

emitter are calculated using the law of cosines as shown in Equation 29.

d2
a = (s)2 − (2ds)cos(α). (29)

In Equation 29, da is the distance to the emitter from the antenna, s is the distance

from the antenna to the midpoint between antenna 1 and 2, d is the distance from that

midpoint to the emitter, and α is the angle formed at the midpoint, 90+AoA for antennas

2 and 3 and 90 − AoA for antenna 1. After the distance is calculated, the phase of the

waves when they reach the antennas is determined using Equation 30:

φ = 2πda(f/c), (30)

where f is the carrier frequency of the signal and c is the speed of light estimated at 3∗108

m/s. The results of this calculation are used for the phase shift in the generated sine

waves.

The amplitude, A, of the sine waves is determined by the signal strength parameter.

The signal strength parameter is in dBfs which is a measure of the signal’s power relative

to the maximum possible value. The maximum value that can be received by a digital

system is determined by the ADCs’ range. The Texas Instruments ADS5400 ADCs used

in our system have 12 bits of resolution so their range is from −211 to 211− 1. The pulse

generator maps these values to -1 and 1 so the amplitude of a signal with 0 dBfs will be

one. Because the maximum value is one, the amplitude of the sine wave at any signal

strength (S) is found by converting the dBfs value to a magnitude using Equation 31:

A = 20log10(S). (31)

The last step in generating the signals is simulating noise. Our model defines a fixed

noise level of -60 dBfs based on the performance defined in the ADS5400 ADC vendor

data sheet. This noise level results in a signal to noise ratio (SNR) from 60 to 20 dB across

the 40 dB range requirement. The simulated noise is white Gaussian noise produced by

MATLAB’s awgn (add white Guassian noise) function. Once the noise is added, the

pulsed signal is passed to the down converter.

3.4 Down Converter

Using the signal’s frequency, the width of the IF band, and the sampling rate, the

down converter frequency shifts the signal to IF. In a physical system, down converting is

performed by tuning a local oscillator (LO) to generate a sine wave at a known frequency,

multiplying the LO signal by the incoming signal to create a signal with two components,

and using a low-pass filter to isolate the lower frequency component. The frequencies

38

of the two components are the sum and difference of the LO and input signal. In an

operational system the local oscillator is shifted in 100 MHz increments across the 4 GHz

band. If the local oscillator is at the wrong frequency when a signal arrives, that signal

will not be detected (Holm and Richards, 2010). The model automatically chooses a

local oscillator frequency that will down convert the signal and then uses a low-pass 20th

order Butterworth filter with a cutoff frequency of 10 GHz to remove the high frequency

component. The Butterworth filter is designed to minimize the effect on the frequency

response of the wave in the passband at the expense of having a gradual cutoff. The

Butterworth filter removes half of the original magnitude of the signal. The resulting IF

signal therefore ranges from -0.5 to 0.5 rather than -1 to 1. The IF signal is then sent to

the quantizer which simulates quantization error of a 12 bit ADC.

3.5 Quantizer

The ADCs are simulated by down-sampling the IF signal from the original “continu-

ous” form with a 50 GHz sampling rate into the 500 MHz sampling rate that we expected

to use in the hardware. To simulate a 500 MHz sampling rate, the simulation takes ev-

ery 100th sample of the waveform and saves that collection of samples as the new wave.

Additionally, ADCs do not store the actual voltage values of samples. Instead, the ADC

converts these values to integers between some maximum and minimum values specified

by the number of bits used by the ADC. For the 12-bit ADCs used in the prototype there

are 212 possible values ranging from -211 through 211-1. On a range of -0.5 to 0.5 volts, the

minimum and maximum amplitude of our simulated IF pulses, the quantization results

in a step size of 0.244 mV. Perfect simulation of an ADC would be complicated, so for

simplification the simulated quantizer rounds the voltages down to the nearest step, so

any result in the digital signal may be off by as much as the quantization step value.

3.6 DF Algorithm

The signals generated by the signal generator are used as inputs to the direction

finding process. The DF algorithm takes one batch of samples, 4096 values, and checks

to see if there is a signal present in all three waveforms. If there is a signal present the

algorithm determines its frequency and phase. It then removes the ambiguities from the

phase calculation and uses the final result to calculate the AoA. The signals passed to the

DF algorithm are at IF, however the AoA calculation requires the full RF of the signal.

In order to calculate the RF, the DF algorithm is also provided with the frequency of the

local oscillator used to down convert the signal. Once the algorithm has processed the

entire waveform, it reports the frequency, the two most likely AoAs, and the certainty

calculated for each sample. Each step of the DF algorithm is detailed below.

39

3.6.1 Signal Detector

The signal detector examines the incoming data and, based on the presence or ab-

sence of a signal, decides whether or not to forward the signal for further processing.

In order to determine if a signal is present each batch of samples is checked for voltage

amplitudes above a threshold value. If at least one sample from each antenna has a value

above the threshold, the detector determines that a signal is present and the batch is

forwarded. Otherwise the batch is discarded and the next batch of samples is taken. The

detector stores the average magnitude of the five most recent samples without a signal

and sets the threshold value to four times the average of these five values. Dynamically

setting the threshold allows the algorithm to adjust to changes in noise.

3.6.2 Frequency Calculation

In order to determine the AoA, the algorithm must first determine the frequency of

the signal. To calculate the frequency, the algorithm takes the discrete Fourier transform

of the signal. The system removes the DC bias of the signal before taking the DFT to

ensure that the zero-frequency component will never be reported as the largest. The

model removes the DC bias by subtracting the average value of the batch of samples

from each individual sample. Removing the DC bias ensures that the zero frequency

component of the received waveform will not affect the results of the DFT while leaving

all other frequency components unaffected. With the DC bias removed, the algorithm

examines the magnitude of the signal in the frequency domain. The location of the largest

magnitude is the dominant IF of the signal. If the batch contains multiple signals, only

the frequency component with the largest magnitude is considered. The intermediate

frequency of the dominant signal is added to the frequency of the local oscillator to

determine the signal’s original RF.

The frequency stage also performs another signal detection check. If the magnitude

of the highest frequency component in the batch is not more than four times the average

magnitude, the batch is rejected. The cutoff value was chosen because simulations showed

that it provided a reliable method of detecting signals while not producing a high false

alarm rate. In the absence of noise, the only frequency present is the signal frequency,

but in a noisy environment there are many other smaller frequency components. If high

noise levels had caused the sample to pass the signal detector the secondary detection

algorithm will remove it. To ensure consistency between the three antennas, data is only

counted as a signal when a signal is detected in all three batches of samples.

3.6.3 Phase Calculation

The algorithm uses the dominant frequency determined by the frequency calculator

to determine the signal of interest. The dominant frequency is the location where the

40

signal is the strongest and, therefore, least susceptible to noise. The angle between

the real and imaginary components of the DFT at this point is equal to the phase of

the signal. With the presence of noise, the dominant frequency calculated for each of

the three antennas will be slightly different. In order to accurately calculate the phase

differences the phases of the three signals have to be calculated at the same point. The

dominant frequency at antenna one is assumed to be the dominant frequency for the

other two antennas to ensure that the same point is used in all three phase calculations.

3.6.4 Ambiguity Removal

The phase difference calculated by the phase calculation component is always be-

tween -π and π. The true phase difference between the antennas, however, is not limited

to this range. The true phase difference between the antennas is ∆φ+ I2π where ∆φ is

the measured phase difference and I is an integer corresponding to the number of full 2π

phase changes. In order to accurately calculate the phase difference the algorithm needs

to determine the appropriate value for I. By calculating the phase differences between

antenna 1 and 2 and antenna 1 and 3, the algorithm is able to find the number of full

phase changes that occur between the antennas. The maximum number of full phase

changes is limited by the wavelength of the signal, the antenna separation, and the field

of view. The maximum number of full phase changes between a pair of antenna, imax is

given by s/λ ∗ sin(θmax) where s is the antenna separation and θmax is the largest angle

in the field of view. Every possible pair of phase differences calculated by the system

should fall on one of the lines given by Equation 32:

∆φ′13 =
s13

s12

∆φ′12 +
s13

s12

i12 − i13, (32)

where ∆φ′12 and ∆φ′13 are the measured phase differences normalized by 2π and i12 and i13

are any two values of I valid between antennas 1 and 2 and antennas 1 and 3 respectively.

Figure 19 of Section 2.3.4 (Resolving Phase Ambiguity) shows the technique for resolving

phase ambiguities in more detail. In the presence of noise the measured result will not lie

directly on one of these lines. The true phase differences can be estimated by determining

the closest line. Since all of the lines are parallel the distance to any line can be found

using Equation 33:

distance = |∆φ′13 − (s13/s12)∆φ12 + i13 − (s13/s12)i13|. (33)

The algorithm reports the values of i12 and i13 that minimize the distance as the most

likely result. It also reports the certainty of that result compared to the second closest

using 1− (min1/(min1 +min2) where min1 is the distance to the closest line and min2

is the distance to the second closest line. The maximum certainty value of 1 is reported

41

when the measured phase values lie directly on one of the phase lines. The minimum

reported certainty value, 0.5, occurs when the distance from the measured phases to both

of the closest lines is equal in which case, the algorithm cannot determine how to resolve

the phase ambiguity. The algorithm then calculates the AoA for these two results using

the AoA equation:

AoA = sin−1

(
λ(∆φ

2π
+ i)

s

)
.

The confidence range chosen for the disambiguation process is 0.25. As long as the

distance from the measured result to the closest phase line is less than a quarter of the

total separation between the two closest lines, corresponding to a certainty value greater

than 0.75, the system is confident. Any results with certainty values less than 0.75 will

be checked against previous results to check the angles reported. The confidence range

of 0.25 caused few false alarms, wrong answers reported as certain, while still allowing

for mostly correct detections at the low end of the dynamic range.

To maximize the chance that the correct ambiguity is chosen, the antenna separation

should be chosen so that the distance between the lines generated with Equation 32

is maximized (Jacobs and Ralston, 1981). The MATLAB model included a function

that calculated the optimal antenna separation for the first and third antennas given

the separation between the first and second antenna and the maximum frequency. The

line spacing function calculates the minimum separation between lines for every value of

s13 between 2s12 and 2s12 + 50 cm with increments of 0.1 mm. The s13 value with the

highest minimum line spacing is the optimal value. The results of running this function

are shown in Figure 22.

The peaks in Figure 22 correspond to values for s13 with high spacing between phase

lines. For s12 = 10 cm and a maximum frequency of 12 GHz the ideal value for s13 is 21

cm. Values for s13 with minimum phase line spacing of zero, such as 30 and 40 cm, are

the worst choice for antenna separation.

42

Figure 22: Plot of separation between antennas 1 and 3 versus the minimum separation
between phase lines. This plot shows the result of the optimal antenna spacing function.
The results shown are for s12 = 10 cm and a maximum frequency of 12 GHz. The highest
peak corresponds to the value for s13 that maximizes the phase line spacing.

43

4 MATLAB Model Results

Before implementing our DF algorithm in C, the algorithm was verified in MATLAB

to ensure that it met all the design requirements. Antenna separation was optimized

for our worst case conditions, and then held constant for other tests. Once the antenna

separation was chosen, the system was tested in worst case conditions over the range of

±90◦ with a step size of 1◦. Once verified, individual parameters were tested to identify

their impact on error and ambiguity resolution. Each test was run under worst case

conditions because validating in the worst case strongly suggests validation for all other

cases. The worst case conditions that the system is required to handle successfully are:

an emitter distance of 1 km, signal to noise ratio of 20 dB, RF of 12 GHz, and pulse

width of 500 ns.

4.1 Error versus Antenna Separation

The antenna separation is the only parameter we have physical control over and, by

extension, have the ability to optimize. As mentioned in the background and method-

ology, the ideal antenna separation maximizes the spacing of phase ambiguity lines and

increases the probability of reporting the correct AoA. The MATLAB model calculates

the optimal separation between antennas 1 and 3 based on the maximum expected carrier

frequency and the separation between antennas 1 and 2. Higher carrier frequencies result

in more ambiguities, so when a 12 GHz waveform can be analyzed with no ambiguities,

so can all lower frequencies. The minimum separation between antennas 1 and 2 is 5

cm because the antennas themselves are 2.5 cm wide. To determine the optimal antenna

spacing between antennas 1 and 2, we tested all antenna 1-2 spacings between 5 cm and

20 cm with a step size of 0.5 cm. The optimal position of antenna 3 was calculated using

our spacing function.

A plot of the average certainty corresponding to the correct AoA versus the separation

between antennas 1 and 2 is shown in Figure 23. The certainty was averaged for 100 runs

at each antenna separation with a true AoA at 45◦. Throughout the MATLAB results,

the certainty plots are of the correct AoA and are separated into three regions, green,

yellow and red. When the certainty is in the green region, or above 0.75, the ambiguity

has been resolved correctly and the system is confident of the answer. In the yellow

region, the certainty is between 0.5 and 0.75 and the system reports the correct angle,

but is not confident that the angle is correct. The red region, or certainty values below

0.5, corresponds to failures in the DF algorithm to accurately determine the correct AoA.

When the certainty of the correct AoA is this low, the correct AoA is the second reported

angle. In other words, the system has resolved the ambiguity incorrectly. A certainty

value of 0 indicates that the correct AoA was not one of the returned angles.

Increasing the antenna separation improves the accuracy of the AoA calculation when

44

Figure 23: The graph of average certainty of the correct AoA (Top) and average error of
the AoA calculation (Bottom) vs. separation between antennas 1 and 2. The separation
between antennas 1 and 3 was optimized for every case. One hundred signals with an
AoA of 45◦ and worst case parameters were used to test each of the different antenna
configurations. The certainty and error were averaged to produce the plots. As the
separation was increased, the average error and the average certainty decreased. The
reduction in certainty increases the frequency of incorrect ambiguity resolution; however,
when resolved correctly, the calculated AoA is more accurate.

the phase is chosen correctly, but also increases the probability of resolving the ambiguity

incorrectly. Both the mean error and the mean certainty decreases with antenna separa-

tion. For the system, the 10 cm and 21 cm separation was chosen to provide a balance

between mean error due to noise and certainty values.

To validate our method of antenna placement, we tested all angles between -45◦ and

45◦ for the calculated optimal distance between antennas 1 and 3 of 21 cm as well as

20 and 22 cm. The certainty plots and error values are shown in Figure 24. The 21 cm

separation provided the correct AoA with a certainty value above 0.75 for the majority

of runs. The 20 and 22 cm separations have more ambiguity errors reflected by average

certainties around 0.5. With the incorrect separations the system looses its ability to

45

Figure 24: The graph of certainty of the correct AoA vs. the true AoA for all angles
between -45 and 45 degreers. Three different antenna (1-3) separations were tested, the
calculated separation (21 cm) and the calculated separation ±1 cm. The tests were run
in worst case conditions. The average error and certainty are also reported for each of
the antenna geometries. At 21 cm the mean error is minimized and the certainty is
maximized as expected.

resolve angles.

To ensure that the system would not stop functioning if the antenna separation was

slightly different than the optimal calculated separation, the effects of changing the sepa-

ration by ±1 mm were tested. Figure 25 shows the certainty and mean error for the three

separations. By comparing Figures 24 and 25, it is clear that the random error induced

by noise has a larger impact on error and certainty than variations in antenna spacing

on the order of 1 mm.

46

Figure 25: The graph of certainty of the correct AoA calculations vs. true AoA for all
angles between -45 and 45 degrees . Three different antenna (1-3) separations were tested,
the calculated separation (21 cm) and the calculated separation ±1 mm.

47

4.2 Error in MATLAB Model

Once the 10 cm and 21 cm antenna separation configuration was selected, we tested

the system across a 180◦ field of view under worst case conditions. Shown in Figure 26,

when the AoA is resolved correctly, the error is within specifications (black, solid lines).

The blue diamonds show the calculated angle with the highest certainty value and the

larger red stars correspond to the second reported AoA, with a certainty below 0.5. At

5◦ and 50◦, the system resolved the ambiguity incorrectly; however, the correct angle

was the second of the two reported angles. Figure 27 shows the primary AoA plotted

against the true AoA with the same data. This test verified that the model met the

system requirements in cases without ambiguity error. The accuracy was within ±2.5◦

for all angles between ±85◦ except for the two angles when the ambiguity was resolved

incorrectly. To gain a better understanding of the model, the effects several parameters

on error and certainty were tested individually.

Figure 26: The graph of calculated AoA versus the true AoA. The primary AoA, the angle
with the highest associated certainty (blue diamonds), was within our requirements (the
solid, black lines) for all but two cases, 5◦ and 50◦. However, this was due to resolving
the ambiguity incorrectly, and, in both cases, the second calculated AoA (large red stars)
was within 10−2 degrees of the true AoA value.

48

Figure 27: The graph of the primary calculated AoA versus the true AoA. The error is
within the requirements of ±2.5◦ (horizontal green line) for angles between -85◦ and 85◦

except for the two cases where the ambiguity was resolved incorrectly (circled in red).

49

4.3 Error versus Signal Strength

The strength of the signal, and by extension the signal to noise ratio, has the largest

effect on error and certainty. Figure 28 shows the certainty for several SNRs: 5 dB, 20 dB,

40 dB and 60 dB. The 20 dB and 60 dB SNRs are the minimum and maximum values of

SNR that our system is required to handle. The discontinuities found in the 5 dB plot in

Figure 28 are due to the system mistaking the signal for noise and consequently ignoring

the data set, thus not performing any AoA calculations. Even when the SNR is at 20

dB, the certainty rarely drops to 0.

Figure 29 shows the error and certainty at 45◦ for a range of SNRs. The certainty

tends to remain in the green region for SNRs above 30 dB. The error appears to decrease

exponentially with the SNR.

50

Figure 28: The graph of certainty in AoA calculations vs. true AoA for all angles between
-45 and 45 degrees. Four SNRs were tested: 5 dB, 20 dB, 40 dB and 60 dB. When the SNR
was set to 5 dB (Top), the signal was not detected in some cases, causing discontinuities
in the graph. For SNRs within our 40 dB range, the system rarely dismissed signals as
noise and rarely resolved the ambiguity incorrectly.

51

Figure 29: The graphs of certainty and error in AoA calculations vs. the SNR for an
AoA of 45◦ between 5 dB and 60 dB with an SNR step size of 1 dB. The error axis
is logarithmic. The certainty rises with SNR and the error decreases in an exponential
manner.

52

4.4 Frequency

Over the X band, carrier frequency has a small but noticeable effect on both certainty

and error. Figure 30 shows the average certainty of the correct AoA and error due to

noise as a function of carrier frequency with 50 tests per frequency value and a step size

of 40 MHz. The average error due to noise and certainty decrease as frequency increases.

At 8 GHz, the mean error and certainty were 0.0765◦ and 0.9203 respectively, while at

12 GHz the mean error and certainty were 0.0558◦ and 0.8839 respectively.

Figure 30: The graph of certainty of the correct AoA calculations vs. the carrier fre-
quency (Top) and error due to noise versus carrier frequency (Bottom). For every carrier
frequency between 8 GHz and 12 GHz, with a step size of 40 MHz, the test was run 50
times. The shown certainty and error is the average of the 50 tests. The noise graph
ignores error due to phase ambiguity error. As the frequency increases, both the mean
error and the mean certainty decrease.

53

4.5 Emitter Distance

The effects of emitter distance on error and certainty were tested in two ways, by

holding the received power constant while allowing the distance to change and by setting

the received power as a function of distance, effectively holding the transmitted power

constant. Although the latter case is more realistic, the former allowed us to isolate the

effects of emitter distance. Figure 31 shows the effects of emitter distance on the certainty

and AoA error. At emitter distances above 20 m changing the emitter distance does not

have a noticeable effect on the certainty or error. As long as the emitter is more than

20 m away, the lines drawn from the antennas to the emitter can be considered parallel

and the assumptions made in the phase calculation are valid. The minimum range the

system must operate at is 1 km, so changes in emitter distance do not have a large effect

on the system.

Figure 31: The graph of certainty in AoA calculations (Top) and error in AoA calculation
(Bottom) vs. emitter distance from 2 to 100 m. The tests were run with worst case
conditions with a true AoA of 45◦.

When isolated, operational emitter distance does not have a large effect on the cer-

tainty or error in the system. A more accurate test of the system, however, has emitter

distance linked to signal strength. Linking these parameters models an emitter with con-

stant transmitted power and varying distance. A variation of the radar range equation

(Equation 4 from Section 2.1.1) gives the received power in decibels as shown in Equation

34:

54

Pr = Pt − 10log10

(
4π

λ2

)
+Gr − 10log10

(
1

4πd2

)
+Gl, (34)

where Pr is the received power, λ is the RF wavelength, d is the distance to the emitter,

Pt is the effective radiated power from the emitter, Gr is the gain of the receiving antenna,

and Gl is the gain of a local noise amplifier. The effective radiated power was simulated at

10 kW with a 30 dB gain from the transmitting antennas to represent reasonable values

for an X band radar system. The gain of the receiver antenna was modeled as 10 dB.

A simulated local noise amplifier was used so that the maximum received power from

an emitter one kilometer from the system radiating a 12 GHz signal would be equal to

the maximum power the ADC can accurately read. With no local amplifier, the received

power was found to be -4 dBm in these conditions, compared to a desired maximum

power of 4 dBm, so an 8 dB amplifier was included.

Figure 32 shows how the power at the ADCs changes with distance for an emitter

with an effective radiated power of 100 dBm and a total gain of about 18 dB on the DF

system.

Given the received signal strengths from Figure 32, simulations were run with various

emitter distances and their corresponding SNRs. Figures 33 and 34 show how the error

increases and certainty decreases with distance. As expected, increasing the emitter

distance produces the same results as reducing the SNR. The large change in certainty

and error from changing the SNR overwhelms the effects of changing the range. The SNR

ratio reached the edge of the system requirements at 100 km. However, even at 500 km,

the error due to noise is well within the ±2.5◦ requirement.

55

Figure 32: The graph showing how received power changes as distance to emitter in-
creases, as determined by Equation 34. At 1 km from the emitter, the system receives
signals at 4 dBm, 0 dBfs. The received power decreases proportionally to the square
of the distance. At 100 km the signal strength at the ADCs is -36 dBm, -40 dBfs, the
minimum signal strength the system is required to process.

56

Figure 33: The graph of certainty in AoA calculations vs. emitter distance for all angles
between -45◦ and 45◦. The effective radiated power of the emitter was held constant at
100 dBm for each plot. The receiver gain was simulated at 10 dB, with an 8 dB local
noise amplifier. The carrier frequency of the signal was 12 GHz with a noise floor of -56
dBm. At 100 km, the SNR reaches the minimum value specified for the system, causing
ambiguities and erroneous ambiguity resolutions to appear more frequently.

57

Figure 34: The graph of certainty of the correct AoA, the error in AoA calculations due to
noise, and the number of times a signal was detected over 100 pulses vs. Emitter Distance
for 50 distances logarithmically spaced between 1 and 500 km. Using an effective radiated
power of 100 dBm and a total gain of the DF system of 18 dB, the limit of the system’s 40
dB dynamic range requirement was reached when the distance was 100 km. At distances
beyond 100 km, the error in AoA calculation due to noise is within specifications, but
the certainty drops significantly and the probability of resolving the phase ambiguity
incorrectly increases.

58

5 Prototype Methodology

5.1 System Design

Based on the results of the MATLAB simulation, a prototype DF system was created.

The setup of the proposed full hardware system is shown in Figure 35. The RF energy is

captured by three horn antennas, placed in a line with separations of 10 cm (between the

first and second antenna) and 21 cm (between the first and third antenna). Directional

horn antennas were chosen in order to increase the directional gain for the desired field

of view. Once received, the signals are down converted to an intermediate frequency

between 15 and 115 MHz and then sampled by 500 MHz ADCs.

The front end hardware, shown in Figure 36, uses Texas Intstruments ADS5400 ADCs

with 12-bit resolution and a 500 mV full scale range. The ADCs are located on a 4DSP

FMC110 daughter card which connects to a Xilinx ML605 development board. The

development board has a Xilinx Virtex-6 LX240T field-programmable gate array (FPGA)

which captures the digital data from the ADCs. Each FMC110 card contains two ADCs,

so two cards are needed to support three antennas. All of the hardware used in this

project was provided by Lincoln Laboratory, so the main focus of the project was the

software systems and the communication between the algorithm and the hardware.

The ML605 boards communicate with the PC running the DF algorithm serially over

a USB connection. The computers used in developing and testing the system were PCs

running Windows 7 64-bit with twelve gigabytes of ram and six cores running at 3.5 GHz.

The DF algorithm reads two batches per antenna from the FPGA, determines the AoA

of the radar signal, and then sends the result to the GUI over TCP. The GUI listens for

connections on network port 64185 and then reads in any results sent to it by the DF

algorithm. The GUI performs error checking to resolve any uncertain results and then

Figure 35: Block diagram showing the setup for the prototype DF system.

59

Figure 36: A picture of the hardware supplied by Lincoln Laboratory. The development
board is shown with the daughter card (red) and FPGA (under the black fan).

displays the information to the operator.

The system was originally designed to use a three antenna interferometer; however, one

of the FMC110 cards was not operational, meaning there were only two ADCs available.

The prototype, therefore, was modified to allow for either two or three channel inputs.

Antennas were not available for testing, so the two channel hardware implementation was

tested using signal generators as shown in Figure 37 and the three channel system was

tested using simulated MATLAB data. The processing steps for the two configurations

are almost identical. The only difference is that the three channel system resolves the

ambiguities while the two channel implementation does not.

Figure 37: A block diagram showing the test setup of the two channel hardware imple-
mentation. The signal generators produce signals at IF. These signals are sampled by
the ADCs and passed to a PC running the DF algorithm over a USB connection.

60

Figure 38: Control flow diagram of the prototype direction finding system.

5.2 DF Algorithm

In order to improve the performance of the prototype DF system, the final DF

algorithm was implemented in C rather than in MATLAB. The flow of control in the

C algorithm is shown in Figure 38. The C code is similar to the MATLAB algorithm

with many of the functions implemented in the same way. The main difference was that

MATLAB provides a number of high level functions that C does not, such as vector

operations, signal processing functions, and simplified memory management. Therefore,

the C algorithm required some additional components in order to perform its calculations

and interface with the other portions of the system. In order to convert the algorithm, the

vector operations were turned into iterative processes and the signal processing functions

were implemented using lower level operations. MATLAB functions with multiple return

values were replicated by specifying meanings for particular return values, such as -1 or

NULL. If there were no unique return values or this method was insufficient, passing a

pointer argument or defining a structure allowed the function to return more than one

variable. The FFT function was implemented in the C algorithm by utilizing an existing

C library named the Fastest Fourier Transform in the West (FFTW).

In the MATLAB simulation all of the inputs and outputs were contained within the

MATLAB environment. Consequently, specifying arguments and recording output was

straightforward. In contrast, the C algorithm does not have immediate access to the

61

input signals and the physical system parameters. In order to access the signals, the

C algorithm requires a component that communicates with the FPGA and parses the

transmission. To store results, the algorithm contains both a logger and a component to

manage the TCP connection with the GUI. The system stores its physical parameters

in a configuration file which the algorithm reads on start up. This file specifies the

antennas’ separations, the local oscillator frequency, the number of antennas used, the

configuration of the logging component, and the host name of the PC running the GUI.

The configuration file allows the algorithm to adapt to a different system setup without

requiring internal modification or recompilation.

The following sections detail the components unique to the C implementation of the

algorithm: the FPGA communication, the FFTW library, and the logger.

5.2.1 FPGA Communication

In the MATLAB model, the signals from the signal simulator were passed as param-

eters to the DF algorithm directly; however, the hardware implementation must commu-

nicate with the FPGA to read the samples. FPGA communication was only implemented

in the two channel system as a third ADC was not available for the three channel sys-

tem. Several methods are available to communicate between a host computer and an

embedded system. USB was chosen in spite of its slow transfer rate compared to other

methods because USB communication was the simplest to implement while still meeting

the timing requirement. This project focused on rapidly developing a prototype with the

assumption that an operational system would use a faster method of communication.

To gather data from the FPGA via USB, the system initializes communications with

the FPGA, reads in the data, and then parses the received data to extract integer outputs.

The first step in initializing the communication is verifying that the communication port

exists and is not in use. When the port is present and available, the algorithm configures

the port for the specific settings used to communicate with the FPGA: 1,228,800 baud,

8 bits per byte, one stop bit, and no parity. The algorithm sets maximum timeouts of 50

ms to prevent missing data while also preventing perpetual stalling if communication is

interrupted. Once the port is set up, communication with the FPGA is initialized. The

algorithm sends a one-line command to the FPGA which instructs the device to take

sample data and calibrate for timing offsets due to perform internal calibration of the

ADC devices. When the FPGA notifies the host machine that the process is complete,

the FPGA, the algorithm, and the host machine are all ready to sample and transfer

data.

The data obtained by the ADCs are captured in the FPGA. The host computer

communicates with the FPGA via a Silicon Labs CP2103 USB to UART Bridge chip

embedded in the development board. The bridge allows the development board to plug

62

directly into a computer’s USB port and send and receive characters through that port one

word at a time. The computer communicates over this line at a speed of 1,228,800 baud,

the fastest possible speed for successful communication. With three 12-bit ADCs, each

working at 500 MHz, we would need a speed of 18,000,000,000 baud to transfer the data

directly into the PC while sampling continuously and not missing any samples. This high

communication rate, which is 104 times larger than the maximum USB communication

rate, is why the system samples and processes in batches rather than continuously.

When the algorithm is ready for more input, it asks the FPGA to sample 8192 data

points from each ADC. The computer sends a one-line command to begin capturing the

data on the FPGA, and another one-line command for the algorithm to read in the data

and store them on the host machine. To ensure that the FPGA is done sampling before

the algorithm tries to read the data, the algorithm polls the output for an indication of

completion. Once the process is complete, the algorithm is able to read in the captured

data. The FPGA sends the sampled data over the USB connection as a set of 8192 12-bit

samples per antenna, for a total of 98,304 bits of data. At a speed of 1,228,800 baud, the

shortest possible amount of time required to read these data is 80 ms. However, the data

are not sent simply as a 98,304-bit long stream, but as a series of formatted characters

with a marked beginning and an end with separations between the samples. With a two

antenna setup, every set of two samples is stored as three 8-bit characters separated by

spaces. In effect, 3 bits of data are sent for every 2 bits of sampled signal, plus the 240

bits of header and 64 bits at the end:

4096 samples

batch

2 batches

transfer ∗ antenna
(2 antennas)

(12 bits

sample

)(3

2

)
+ 240

bits

transfer

+ 64
bits

transfer
= 295216

bits

transfer
. (35)

Serial communication also requires one stop bit for every byte of data transferred, so the

shortest possible time to complete one transfer of a given size is given by:

T =
9B

8S
, (36)

where T is time to transfer data, B is bits to transfer and S is the rate of transfer in bits

per second. Equation 36 yields 270.3 ms as the minimal possible transfer time for two

batches of data. The two batches transferred during this time are processed separately

so two independent AoAs can be calculated for each transfer. The delay due to data

transfer comprises a large portion of the system’s latency, so any further development of

the system should investigate faster methods of communication.

Data must be parsed into meaningful numbers before processing can occur. The data

are sent and received in an “abc def” format with “a” and the top half of “b” representing

63

one sample from antenna 1, and the bottom half of “b” and all of “c” another sample from

antenna 1. The “def” follows the same pattern with antenna 2, with a new line and a

carriage return before the next line of data. An example of this format is shown in Figure

39. The use of a consistent format simplifies the parsing process because the position

of the data is already known so the process of parsing becomes a series of bit masks,

shifting, and adding the separate parts of the samples together. Difficulties arise when

a character is lost during communication because this shifts every subsequent character

from its expected place. By verifying that the fourth character of every line is a space

and declaring non-compliant lines invalid, shifted characters only remove one line of data

instead of disrupting the entire file. The FPGA communication was only implemented

Figure 39: Sample data read in by the algorithm over the USB. The translation from
USB read character to hexadecimal and binary is shown.

for the two channel mode. Adding a third antenna to the system requires the use of

an additional board because there are only two ADCs on each FMC110 card. The host

machine could communicate with this board in parallel with the first, so there would not

be a large increase in the communications delay. To provide a means for three antenna

input without the functioning board, an algorithm component was created to read signals

in from text files. This component reads files of 12-bit integers and stores them as if they

were the results of the parsed output. The MATLAB signal generator was used to write

these files allowing us to use the three antenna signals simulated by the MATLAB model

as inputs to the C system. Unlike a real environment, in which the system runs with no

definitive endpoint, the text files have finite amounts of data which give the algorithm

a fixed termination condition. The playback function provides absolute repeatably for

testing the system.

5.2.2 Discrete Fourier Transform

The C algorithm uses the Fourier transform to determine the phase and frequency

of the incoming signals; however, unlike MATLAB, C does not have a built-in FFT

algorithm. The discrete Fourier transform requires a large number of computations,

O(N2), so choosing an efficient implementation of the DFT is important to ensure that

64

the algorithm runs within the time constraints. MATLAB uses a library called the Fastest

Fourier Transform in the West (FFTW) to compute discrete Fourier transforms. FFTW

is a free C library developed at MIT and licensed under the GNU General Public License

(GPL) (Frigo and Johnson, 2005). In general, software under the GPL is not suitable for

any sensitive applications because using a library licensed under the GPL requires the

entire application to take on the GPL. Fortunately, Lincoln Laboratory is owned by MIT

which grants non-GPL licenses. The FFTW algorithm is already used within Group 108

for other applications.

The FFTW library provides a number of features that make it ideal for this appli-

cation. The most important of these features is processing speed. In a study of over 50

FFT algorithms, it was found that FFTW typically performs faster than most other free

FFT libraries and is often comparable to those adapted for specific platforms, making

FFTW one of the best options for rapid calculations (Frigo and Johnson, 2005). The

FFTW derives its computational speed from its plan system. Before running the DFT,

FFTW generates a plan dependent upon the size of the arrays to be transformed, the

number of terms used, and the specific runtime environment. In order to determine the

plan, the FFTW library runs a number of different DFTs using different algorithms. The

primary FFT algorithm used by FFTW is the Cooley-Tukey algorithm. The core princi-

ple of the Cooley-Tukey algorithm is to split one DFT into n1 transforms, each of size n2.

There is no obvious ideal choice for n2, or for the order in which to decompose, calculate,

and reassemble the separate DFTs. The best solutions to these problems are dependent

on the particular hardware used and on the particular configuration at runtime. There-

fore, FFTW runs Cooley-Tukey DFTs with different parameters and orders to determine

which plan will run the fastest. There is a significant cost associated with this planning

process, as each DFT runs in O(Nlog(N)) computations, but the plan generated can be

used for any number of DFTs (Frigo and Johnson, 2005). The FFTW is meant to plan

once, which can take several seconds, and then run many times on that plan. The sys-

tem always runs DFTs of the same size (4096 samples), so the algorithm only needs to

perform the expensive planning computation once. When the algorithm must compute a

new plan, it uses FFTW’s wisdom feature to save the old plan to avoid performing the

same plan computation multiple times. When a plan is generated, the wisdom feature

automatically saves the data for that plan in the library’s shared memory. If another

plan of the same size is requested later, FFTW uses the plan that was already generated

and saved.

Although speed was the primary reason for selecting the FFTW, the FFTW’s other

features proved advantageous as well. The data input to the FFTW is always comprised

of real numbers read in from the FPGA or from text files. FFTW allows for transforms

on purely real input to save the effort of converting between real and complex formats.

It is usable by any platform that can compile C, so it works on the Windows PCs used

65

for development as well as any other machines which will eventually host the application.

Finally, FFTW provides in depth online documentation and tutorials which made it easy

to integrate into the system (Frigo and Johnson, 2005).

5.2.3 Logging

The logging component of our real time algorithm was very useful for testing and

archiving purposes. It provided the ability to view the output of the system for each

sample and after each stage of the algorithm. Furthermore, the logger will remain useful

after the system is out of testing as it produces a persistent record of the algorithm’s

output. The logged outputs were used in MATLAB and Excel to confirm performance

metrics.

In order to support a variety of uses, the logger was developed to provide a number

of modes and options. The three modes for the system are human readable output,

comma separated values (CSV) output, and raw data output. The human readable

output is intended for manual interpretation and analysis as its primary function is aiding

in debugging. The output in human readable format is comprised of a timestamp followed

by a sentence explaining the data presented and the data itself. An example of the human

readable output is shown in Figure 40. The CSV format can be processed in MATLAB

and Excel, so it includes column headers and is organized in a table format. A sample

of CSV output is shown in Figure 41. The raw data format prints out the byte-by-byte

Figure 40: Sample output from the logger in human readable format.

information obtained by the system. These data could be used by another program to

replicate the exact information and structure produced by the algorithm.

The logger has four options, configurable through a text file, which control the quan-

tity of information output to the log. The first option is simply used to turn logging on

or off. In the cases where the absolute highest speed is preferable to a persistent log, or in

low memory systems, turning the log off may be desirable. The second option is verbose

or short log. The verbose log will print the intermediate calculations for the result. These

intermediate calculations include signal power, mean noise level, signal frequency, phase

differences, resolved true phase, and final angle of arrival output. The abbreviated log

66

Figure 41: Sample output from the logger in comma separated value format.

only prints out the final AoA results that are sent to the GUI. Both of the samples shown

in Figures 40 and 41 are verbose logs. The third option toggles whether or not to record

the signals received from the FPGA. These signals are logged to three separate files, one

for each antenna. If verbose logging is also enabled then the DFT of the signals is logged

as well. By default, logging is set to human readable mode with short output, and signal

logging off.

5.2.4 Parallelization

The prototype system was programmed using linear software constructs. If the

algorithm did not meet the processing time constraints, the algorithm was designed such

that parts of the code could be reworked to run in parallel to decrease the processing time

of the algorithm. The processes that benefit most from running in parallel are the ones

that take the longest time to run, such as input-output operations or heavy computations.

In this system, the largest sources of delay were the input operations with the FPGA, the

communication and output to the GUI, and the computation of the DFT. The GUI runs

on a separate machine and is essentially already in parallel, but both the input operations

and the DFT computation could benefit from parallel processes.

The input communication with the FPGA was the largest single delay in our system,

taking over a third of the time budget. The communication time scales with the amount

of data being transferred and the data rate of the USB connection, so it could not be

reduced dramatically without changing hardware. The time to finish transferring one

data set could not be improved; however, the processing component can be launched on

a separate thread while the algorithm requests the next set of data. This technique does

not reduce the delay between signal arrival and final output because neither the input

portion nor the processing portion will run faster. Launching separate threads, however,

does increase the throughput of the system, or number of results computed per second.

A diagram showing the differences between a computationally linear and multi-threaded

67

system is shown in Figure 42.

Figure 42: Diagrams representing the timing and control flow for linear and multi-
threaded versions of the direction finding algorithm. Each control block represents a
separate thread and movement to the right represents increasing time.

The linear system, shown in the top part of the diagram, waits for each output then

requests the next input. If reading the input took 0.4 seconds and the processing step

took 0.2 seconds, the linear system takes 0.6 seconds to produce output for each sample

and 1.8 seconds for all three outputs. In the multi-threaded system, each output is still

calculated in 0.6 seconds after the input arrives, but the inputs are read earlier. Instead

of the second input being read at 0.6 seconds, after the whole first calculation, it is read

after 0.4 seconds, immediately after the first input step is complete. Reading the input

earlier means that after the first result there is a new output every 0.4 seconds, rather

than every 0.6 seconds. The data are still 0.6 seconds out of date, but there is less

time between refreshes, giving the operator a higher resolution view of the presence and

movement of emitters. In reality the delay will be slightly more than 0.6 seconds because

of the delays associated with creating and managing threads.

Assigning each batch to its own thread can help improve the throughput of our system,

but does not help the delay, or latency, of it. In order to reduce the latency, one of the

components must take less time to run. While the input component is hard to reduce

without hardware changes, using parallel processing can help reduce the time to process

the signal, specifically the time to take the DFT. The components of the processing

algorithm are shown in Figure 43. The algorithm takes in three signals, one from each

Figure 43: DF algorithm components.

68

antenna, and processes them. Parallelization can be used to speed up any processing

step where the computation is independent for each signal. The three steps that meet

these requirements are signal detection, the DFT, and the frequency calculation. These

steps do not need any of the information contained in other signals to run. The other

three steps compare multiple signals and therefore are not candidates for parallelization.

The signal detection step is also not a strong candidate because if only noise is detected

over the duration of a batch then the entire process should stop for all three signals. If

this process is parallelized, the short circuit effect is lost. The frequency calculation can

easily be parallelized, but because the DFT is run using an outside library, it is risky to

assume that it is safe to run it in parallel. If the FFTW library uses shared or static

resources during its DFT computations, then it cannot run in parallel without modifying

the library. Fortunately, the FFTW can be used in parallel as long as separate plans

are used. The FFTW plans are stored in shared memory so that they can be reused,

but the actual calculation of the DFT can be run in parallel. Ideally, parallelizing these

steps on each input would reduce their total runtime to the time it takes to process

one input. The total runtime of the step, however, is the runtime of the slowest of the

three computations. Managing the threads can also cause delays, meaning that the total

runtime will be greater than the time to process one input. While the linear algorithm

does meet the processing speed requirement on the machines used, these parallelization

techniques could still be useful and may be necessary if the algorithm is run on a slower

processor or with a larger sample size.

5.2.5 TCP Communication

In the system being designed by Group 108 the processing algorithm will be run-

ning on a separate machine from the one which the operator physically interacts with.

Therefore, the C algorithm and the GUI were designed to run on separate computers

with Ethernet connections. The system uses TCP to communicate across the Ethernet

connection. TCP stands for Transmission Control Protocol and provides a reliable data

stream between two computers. The other main method for Ethernet communication is

User Datagram Protocol (UDP) which sends a collection of data, called a datagram. UDP

is generally faster than TCP because TCP sends acknowledgement signals every time it

receives a message. UDP, however, makes no assurances of delivery or order while TCP

guarantees delivery in the order of transmission. The connection distance and message

size, 44-120 bytes, are both small meaning that the latency will be low regardless of pro-

tocol used. Reliable communication is a necessity as each message contains information

about an emitter which might only be found once. For these reasons we chose to use a

TCP connection as opposed to UDP.

TCP requires a connection between two programs: the client and the server. The

69

server listens on a specific network port, 64185 in the system, and waits for a client to

connect to it. When the client connects to port 64185, the server chooses another free

port and begins to communicate with the client on that port. In our application the C

algorithm is the client and the GUI is the server. When the GUI is run, it opens and listens

on port 64185 and waits for the algorithm to connect to it. When the algorithm runs,

it connects to the server specified in its configuration file. If the algorithm successfully

connects, it begins to send its results to the GUI. When the algorithm finishes running

or is terminated it disconnects from the GUI which will continue running and wait for

another connection. The GUI uses Java’s built in TCP support through the ServerSocket

class. C doesn’t have any built-in TCP support, so the C algorithm uses the Winsock2

library provided by Windows to manage its connection.

In order for the GUI to interpret the messages from the algorithm they must always

be in the same format. To reduce message size the data are sent in raw byte format,

rather than in text. The byte format is little endian as both the system are run on

Windows machines. The first four bytes of the message contain a two’s complement

integer specifying the number of antennas used (two or three). Depending on the number

of antennas used and the antenna separation, the number of angles calculated changes,

so the next four bytes contain a integer specifying the number of angles calculated.

This value is always two in a three antenna system. The next segment contains all

the calculated angles stored in IEEE double precision floating point format (8 bytes).

These values are followed by the certainty, the signal frequency, and the noise level all

represented as doubles. The Windows operating system does not always send the message

immediately, but using windows-API to change the socket properties, the system was

configured to send results as soon as they were ready. By default, Windows stores small

messages in a buffer until it reaches a certain size and then sends them all at once. The

use of a buffer saves network congestion in systems communicating over large multi-user

connections, but unnecessarily delays communication in this system. To avoid these

delays, the buffer size was set to zero so that the messages would be sent immediately.

Once the GUI receives the messages it unwraps them to access the angle information and

then updates with the corresponding results.

5.3 Graphical User Interface (GUI)

The purpose of the GUI is to accurately represent the incoming information from

the DF algorithm to a human operator while simultaneously providing additional pro-

cessing. The GUI receives data from the C algorithm over TCP then identifies emitters

and attempts to resolve ambiguous results. The GUI then displays both resolved and

ambiguous results.

70

5.3.1 Features

A screenshot of the GUI is shown in Figure 44. The main display is the semicircle

Figure 44: Screenshot of the system’s GUI.

on the top half of the drawing. The blue and green lines represent the direction to two

separate beacons. Beacons are identified by angle proximity; any results within 1◦ of each

other will be grouped as one emitter. The angle of each emitter is based on the weighted

average of the received AoAs of the signals. By weighting the most recent receptions

more heavily, the GUI accurately follows the signal as it moves. The red x’s along the

edge of the semicircle represent a beacon that does not have enough certainty to resolve

the signal to one of the two possible ambiguities. Red x’s are used to visually inform the

operator of the presence of an emitter without cluttering the screen with multiple lines

for uncertain angles. The x’s are also used to display results in two channel mode when

there is no ambiguity resolution at all. A screenshot of the GUI displaying two channel

results is shown in Figure 45. The emitter indication lines and the red x’s are removed

after 10 seconds.

The bottom portion of the GUI provides a more in-depth view of the signals shown

in the main display. The description portion displays the full range of angles for the

signals that have been condensed as well as the frequency of those signals. The frequency

71

cannot be used to differentiate between emitters because emitters can periodically change

frequencies, a technique known as frequency hopping. The full frequency display could

allow the operator to recognize new emitters. Frequencies of compacted signals are shown

as arrows between 8-12 GHz and disappear as the system stops detecting the signals.

The final piece of information to display is the certainty of the AoA determination. An

operator can use the certainty, provided on the far right of the GUI, to weigh the validity

of the information displayed.

Figure 45: Screenshot of the system’s GUI displaying two input channel results.

In order to meet the display requirements, the GUI uses the JavaFX display library

and a model-view-controller design pattern. The JavaFX library is built into the Java

runtime, so it can be used on any computer that is able to run Java applications. JavaFX

is used to draw the display because it provides high level layouts and drawing tools not

available in the other built-in Java display libraries: Swing and AWT.

5.3.2 GUI Design

The GUI was split into three sections: the model which records and organizes data, the

view which displays the information contained in the model, and the controller which adds

to or changes the information stored in the model. These components were organized

into three separate packages: processing, which is the model; display, which is the view;

and communication, which is the controller.

72

The model stores all the information the GUI receives and organizes it for better

display. The AoAs, certainty, frequency, and arrival time of each result are stored in a

SignalData object. These results are organized into SignalGroup objects which contain

a list of results that arrived within ±1◦ of each other and therefore could be from the

same emitter. When a new SignalData is added to the model it is stored based on its

AoA and certainty. The results are placed into one of three categories based on certainty.

Results with ‘high certainty’ values, greater than 0.75, can be used to create an emitter

line. Results with certainty values between 0.6 and 0.75 have ‘low certainty’ and are

displayed as red x’s. Results with certainty values below 0.6 are designated ‘very low’

certainty and can have their primary and secondary AoAs exchanged. Results with high

certainty, greater than 0.75, will be added to an existing SignalGroup if possible, or a new

SignalGroup will be created for it. A high certainty result is added to a SignalGroup

if its primary result is within 1◦ of the range of angles stored in that group. If a result

with low certainty, less than 0.75, is added the model will attempt to resolve the result

to one of the two angles. First, the model will try to add it to an existing group. An

uncertain angle can be added to a group if its primary angle is within 1◦ of the range of

angles stored in that group and adding that result will not bring the average certainty of

the group below 0.75. If the signal is very low certainty, less than 0.6, it may be that the

correct result is the secondary result. In very low certainty cases the model will create

a new result with the primary and secondary angles exchanged and a certainty of one

minus the original certainty. It then attempts to add the new result to the SignalGroup

objects, and if successful, stores the exchanged result rather than the original. If neither

of these techniques can resolve the angle it is added to a list of uncertain results.

After a result is added, the model does some additional processing to clean up the

results. To avoid very large angle ranges on the display, any groups with a range greater

than 10◦ are split in half and any groups whose ranges intersect are merged into a single

group. The model tries to resolve the uncertain angles into SignalGroup objects. A set

of uncertain results are resolved to a group when there are at least four results with a

common angle and at least two of those results contain angles which are separate from

the rest of the set. When a number of results share an angle, 20◦ for example, it is clear

there is an emitter present rather than simply false positives. A common angle by itself

is not enough to determine the AoA. If all the results share the same ambiguities, 20◦

and −35◦ for example, then it is still not clear which angle to choose. If some results

contain a different secondary angle, such as 50◦, but still have the same primary angle,

20◦, the correct result of 20◦ can be chosen.

Results received from the algorithm in two channel mode are processed differently.

Rather than providing only the two most likely answers, as in three channel mode, the

results received in two channel mode report all of the possible ambiguous angles. Two

channel results are stored in AmbigSignalData objects and emitters are identified using

73

the same angle proximity method as three antenna inputs. Only the four most recent

ambiguous emitters are stored and only the most recent result for those emitters are

displayed. In two channel mode there can be up to 12 results, and displaying more than

four emitters would cause the display to become too cluttered. The organized information

in the model is used by the view component to display the information.

The view uses the observer pattern to display the information in the model. Whenever

the model changes, the display must change to match the model. The display compo-

nents determine when to change by watching, or observing, the model. When the model

changes, the display is informed of which parts changed and can update accordingly. The

display components keep a record of what is currently displayed. When an update occurs,

the display compares the stored record with the new data. The three main display com-

ponents are the GUIManager, the DescriptionManager, and the DrawingManager. The

GUIManager handles any data that must be maintained across both parts of the display.

It assigns colors to groups, keeps track of when groups are added or removed, and keeps

track of the uncertainties list. The DescriptionManager renders the detailed description

of each group. When it receives an update it removes and redraws the corresponding

row. The DrawingManager draws the main display image. When new information is

received about a group, the old line for that group is drawn over in white, essentially

erasing it. A new line is then drawn corresponding to the updated information. The

technique of erasing the old line and drawing the new one minimizes the area changed

on each update and reduces screen flicker. The display components use JavaFX to draw

the images. JavaFX schedules its own redraws and therefore must run in its own thread.

Pausing execution by waiting for input in that thread causes an unresponsive display. To

prevent pausing execution in the display thread, the display does not wait for a change

in the model directly, instead checking for changes whenever a refresh is requested by the

controller.

The controller communicates with the algorithm, adds signals to the model, and

requests display updates. The controller starts by setting up a TCP connection in a new

thread separate from the display thread. Because it does not run in the display thread,

the controller can wait the potentially long time required to accept a connection or receive

inputs. Whenever it does receive an input the controller adds the result to the model and

then schedules an update to run on the display thread. When the TCP connection drops,

the thread restarts and waits for another connection. In addition to the communication

thread, the controller runs a separate thread that refreshes the display every second. It

removes all results older than 10 seconds from the model and then schedules a display

refresh. The model-view-controller setup allows the GUI to organize and display the

necessary results.

74

5.4 System Testing

Like the MATLAB model, the prototype system was tested to ensure that it met

the system requirements. All of the frequency, field of view, and dynamic range tests run

in MATLAB were run with the C algorithm to ensure that the C implementation also

met the necessary requirements. In addition to testing the DF system, tests were also

run using the connection to the FPGA and on the GUI. Several tests were run using two

signal generators connected to the development boards. By specifying a phase offset in the

signal generators, we were able to identify any biases present in the hardware and ensure

that the parser would successfully reconstruct the signal. Finally, the GUI was tested

for both its error checking and display capability. The error checking components were

tested using JUnit. The display components were tested by running on both simulated

data manually input to the GUI and data sent over TCP from the DF algorithm. These

tests ensured that the prototype system functioned as intended.

75

6 Prototype System Results

There were three main types of tests run on the C-based prototype system: tests

which compared results from the C and MATLAB algorithms, tests to ensure that the

GUI would accurately accept and display information from the algorithm, and tests to

ensure the prototype system could use real data from signal generators to calculate the

AoA. The GUI and C algorithm were verified independently before testing the combined

system with hardware because of the diverse functions each component performed and

consequential risk of error. Testing with hardware verified that the system functions

properly.

6.1 Direct Comparison Between C and MATLAB

When the MATLAB model and the C algorithm provide similar results, it provides

confidence that the signal processing algorithm of the prototype system is working as

expected. In order to test how closely the C algorithm aligned with the MATLAB model,

we created a set of simulated signals under worst case conditions using MATLAB. The

worst case conditions are: a RF of 12 GHz, an emitter distance of 1 km, a PW duration

of 500 ns, and a PRI of 10 µs. To get the same waveform into both the MATLAB model

and the C algorithm, we stored the data points resulting from sampling the simulated IF

signal at each antenna in separate data files. With a known local oscillator frequency of

11.95 GHz for a wave with a carrier frequency of 12 GHz, both the MATLAB model and

the C algorithm are able to read the data in from external files and then proceed as if

the data were real. The two sets of results from this process were compared to see how

closely the calculated AoAs match. The differences in calculated angle of arrival, shown

in Figure 46, and in certainty, shown in Figure 47, were on the order of 10−5 degrees.

The plots show that the C algorithm is in agreement with the MATLAB model.

76

Figure 46: The differences in calculated AoA in the MATLAB and C algorithms for
identical simulated signals. Differences of this magnitude show strong agreement between
the MATLAB and C algorithm.

Figure 47: The differences in certainty reported the MATLAB and C algorithms for
identical simulated signals. Differences of this magnitude show strong agreement between
the MATLAB and C algorithm.

77

6.2 GUI Results

The GUI was tested to make sure it responded properly to various inputs and pa-

rameters. The GUI had two portions to test: the error checking portion and the graphical

display portion. A Java testing framework, called JUnit, was used to insert simulated

signals and automatically verify the output against expected results. The JUnit tests

insured that the GUI correctly combined signals into display groups, stored separate un-

certain signals, added uncertain signals to existing groups, exchanged the angle certainty

in very low certainty cases, discarded old results from all locations, resolved multiple un-

certain angles within the same angle range, merged groups with intersecting angle ranges,

split groups with large angle ranges, and stored and discarded ambiguous results from a

two antenna solution.

The GUI’s error correction portion reduces the number of ambiguities displayed incor-

rectly. The GUI was fed the results of the C algorithm for data generated in MATLAB.

Data was generated for each angle across the ±45◦ field of view with worst case system

parameters. At each angle 10 pulses were generated so there were around 10 results per

angle. In this test the GUI was able to resolve all of the results where the certainty of

the correct angle was above 0.4. Less than 0.5% of all results were displayed incorrectly.

Figure 48: Display resulting from inputting mixed certainty results from -11◦ to -15◦, a
single certain result at 40◦, and an uncertain result of either -45◦ or 80◦.

After the computational functionality was ensured, the display was tested to determine

if it would display results correctly. The result of inputting mixed certainty results from

-11◦ to -15◦, a single certain result at 40◦, and an uncertain result of either -45◦ or 80◦ is

shown in Figure 48. In the figure, the blue wedge is relatively wide because it shows the

78

entire range of -11◦ to -15◦ degrees where multiple signals have been detected. The narrow

green wedge only represents a single result. Each different color on the GUI corresponds

to a different emitter.

Figure 49 shows the result of inputting all of the same angles and then removing the

certain 40◦ result. Removing the 40◦ result emulates the behavior of an angle that has

not been updated in the previous ten seconds. The display performs as expected. The

emitter at 40◦ is removed and the other emitters remain.

Figure 49: Display resulting from inputting mixed certainty results from -11◦ to -15◦, a
single certain result at 40◦, and an uncertain result of either -45◦ or 80◦. The 40◦ result
has been removed because more than 10 seconds have passed since receiving a signal from
that location.

In the majority of cases, the GUI will function properly. There are, however, a few

remaining defects in the GUI that can cause the display to render incorrectly. The two

main defects found were the GUI not drawing emitter lines correctly and the description

pane overflowing the display. When there are many updates and refreshes over a short

period of time the GUI will occasionally draw the emitter lines incorrectly. The GUI adds

small fragments on the left, right, or top of the intended wedge. When the emitter line is

erased, those unexpected fragments are not removed and can pollute the display. More

testing would be required to determine the exact cause of these drawing errors as they

occur sporadically. These errors could be mitigated, however, by changing the erasing

technique to remove the bounding rectangle for the emitter line rather than drawing over

the wedge directly. This technique would remove a much larger portion of the display, so it

would require additional tracking to ensure that all data is redrawn correctly. The defect

in the description pane arises when a large number of emitters are detected. The GUI will

79

only display descriptions for up to four ambiguous emitters and for five uncertain results.

It does not specify a limit, however, on the number of unambiguous emitters displayed. If

enough emitters appear, the description pane will extend past the bottom of the screen.

The defect could be fixed by specifying a maximum number of unambiguous emitters to

display or by adding a scroll pane.

6.3 Hardware Tests

All tests run on the model, as well as the test to compare how closely the C algorithm

followed the model, were created using simulated waveforms generated in MATLAB. Due

to a defective ADC, three analog signal sources could not be tested. For hardware testing,

therefore, we used two signal generators which represented antennas and down converters.

With only two input channels, the algorithm calculated a number of possible AoAs but

had no method to disambiguate them. Table 50 shows the average results from taking

100 samples on each of three signals whose true AoAs were -45◦, 0◦, and 45◦. In each

case, one of the angles was within 0.05◦ of the true angle, but 10-11 false angles were also

reported which the two antenna system could not eliminate.

Figure 50: Average of 100 measurements at the three indicated angles. Distinct values
within each column provide all ambiguous angles. The highlighted angles are the results
which most closely matched the true angles. A third input from a signal generator, which
was unavailable for our tests, would determine which angle is the correct solution.

A sample of the GUI displaying two channel inputs is shown in Figure 51. With two

input channels, the system does not disambiguate the results so all possible results are

displayed. The sample contains results from two separate emitters so each set of possible

results is shown in a different color.

80

Figure 51: Display resulting from inputting ambiguous results from two input channels.
All possible results for AoA are displayed.

81

6.3.1 Timing Tests

To be within specifications, the system must have the ability to capture, process,

and display at least one batch of 4096 samples per second. The largest delays in the

system are communication with the FPGA via a USB connection, and communication

with the GUI over TCP. The minimum possible FPGA communication time, determined

in Section 5.2.1 (FPGA Communication), was 270.3 ms. While running the physical

system, communication times were observed ranging from 296 to 375 ms. Each data

transfer from the FPGA transmits 8192 samples, two 4096 sample batches, per antenna.

Once the data are transferred to the processing PC, all of the computations, from

parsing the data to calculating angles, for both batches takes place in under one mil-

lisecond. Communication with the GUI took 190 ms per batch of samples. Two batches

are read in simultaneously so the second batch transferred has higher latency as it is

sent to the GUI only after the first batch is finished transferring. The maximum latency

of the system, therefore, is the sum of communication time with the FPGA, processing

time, and two times the communication time with the GUI. These delays add up to a

worst-case latency of 756 ms. Although the first batch reaches the GUI in less than 756

ms the second of the two batches is 756 ms out of date by the time it reaches the GUI.

The throughput, results calculated per second, of the system is given by:

2 batches

756 ms
= 2.65 batches per second. (37)

The measured latency is within the required latency of one second, but could be im-

proved upon if the method communication is changed. One way to improve the through-

put would be to communicate with the GUI and the FPGA simultaneously. Each time

data is transferred from the FPGA, the two sets of solutions would be transmitted to the

GUI for the previously processed data. The 380 ms delay associated with transferring

both results to the GUI, is largest component in the latency, so all FPGA communication

could take place during this time. Pipelining the communications would allow new results

to reach the GUI every 190 ms, for a throughput of 5.26 batches per second.

82

7 Discussion

The purpose of this project was to develop a passive direction finding system that is

capable of identifying the direction to a pulsed emitter to within ±2.5◦ across a 90◦ field

of view, with a 40 dB dynamic range, a latency less than one second, and a minimum

distance to an emitter of one kilometer. The MATLAB model was tested to ensure that

the direction finding algorithm met these requirements. The prototype system was tested

to ensure its agreement with the MATLAB model and that it met the one second latency

requirement and to verify its operation on live data. The tests in Section 4.2 (MATLAB

Results) demonstrate that an incorrect AoA calculation can come from either error in

angle around the correct value or the selection of an incorrect ambiguity.

7.1 Analysis of MATLAB

The MATLAB model was used to determine how error in the AoA calculation was

effected by various input parameters. The parameters tested in the MATLAB model

were: antenna separation, AoA, signal strength, signal carrier frequency, and emitter

distance. Differences between the MATLAB calculated AoA and true AoA were due to

two sources, error due to simulated noise and resolving the phase ambiguity incorrectly.

The simulated noise comes from adding -60 dBfs white Gaussian noise to the signals

directly and from simulating the ADCs which produces quantization error. The value for

the white Gaussian noise was chosen based on the performance defined in the ADS5400

ADC vendor data sheet. The quantization error of the system results from rounding the

values of the signal to the ADC’s bit values. The quantization error is always less than

or equal to the maximum ADC step size, 2.44 * 10−4 V, and has an average value of half

the maximum. The error from noise creates an error in phase calculation which induces

mistakes when resolving the phase ambiguities. Selecting the wrong ambiguity creates a

very large error in AoA. The magnitude of the error due to selecting the wrong phase is

dependent on the antenna separation and the carrier frequency of the wave, but errors of

10◦ to 20◦ are typical for frequencies in the X band and our antenna setup. The likeliness

of a phase ambiguity error occurring is dependent on the error in phase calculation and

on the physical setup of the system. As the distances between antennas increase, so does

the number of possible phase differences, causing the probability of selecting an incorrect

phase to increase.

7.1.1 Choosing Antenna Separations

Increasing the antenna separation reduced the error due to noise in the AoA cal-

culation and decreased the certainty. Larger antenna separations result in larger phase

differences that are more resistant to changes due to noise but are more susceptible to

83

errors in selecting the incorrect ambiguous phase. In worst case conditions, the error due

to noise was 0.1◦ higher when the separation between antennas 1 and 2 was 5 cm than

when the separation was 20 cm. The certainty dropped by approximately 0.15 over the

same range.

After analyzing the results of testing the antenna separations between 5 cm, the

minimum possible separation, and 20 cm, we decided that the spacing of 10 cm between

antenna 1 and 2 would provide the best balance between average certainty and average

error due to noise. The optimal antenna spacing corresponding to the 10 cm separation

between antennas 1 and 2 was 21 cm. With the 10 cm separation, in worst case conditions,

the ambiguity was resolved incorrectly in only 1% of the cases, which was an acceptable

failure rate.

Non-optimal separations between antennas 1 and 3 cause dramatic reductions in cer-

tainty and, consequently, more phase ambiguity errors. Separations that are even 1 cm

off the optimal spacing result in average certainties of the correct AoA of approximately

0.5. The system, therefore, will generally be uncertain of each calculation. Changes in

separation on the order of 1 mm, however, did not have a drastic effect. The change

in average certainty and error due to the separation difference was less than the typical

variation between runs. Placement errors of this magnitude would therefore not cause

system failure.

7.1.2 Effects of Different Parameters on AoA Error

The tests in Section 4 (MATLAB Results) determine the effects of AoA, signal

strength, carrier frequency and emitter distance on errror in calculating the AoA. The true

AoA and the signal strength had the greatest effect on the error of the AoA calculations.

The error of the system tended to increase as the AoA moved away from 0◦. For our

minimum SNR, 20 dB, the difference in average error between the edges of the range

(-45◦ and 45◦) and 0◦ was 0.02◦ and the maximum error between ±45◦ was 0.415◦, well

below our ±2.5◦ accuracy requirement. The peak error at ±90◦ was 5.961◦, and the

difference in mean error between ±90◦ and 0 was approximately 1◦. The peak errors at

±90◦ were above our 2.5◦ requirement, however, all values between ±85◦ fell within the

requirements. As expected, when the signal strength was reduced, the SNR decreased

and the error increased. The mean error at -40 dBfs and 45◦ was 0.17◦ while it remained

0.001◦ at 0 dBfs.

Changing the carrier frequency of the received signals had a small but noticeable effect

on both the accuracy and the certainty of the system. As the RF increased, the ratio of

distance between antennas to the signal’s wavelength also increased, creating the same

effects as keeping frequency constant while moving the antennas farther apart. Higher

frequencies led to decreasing both certainty and error due to noise. The difference in

84

average error due to noise between the two frequency extremes the system operates on,

8 GHz and 12 GHz, was 0.021◦ under worst case conditions. Under the same conditions,

the average certainty was 0.019 higher at 8 GHz than at 12 GHz.

When the received signal strength was held constant, changes in emitter distance did

not have a large effect on the mean error of the system for ranges above one kilometer.

The error at one kilometer, the minimum expected range, was 0.0069◦, while the error

at 100 kilometers was 0.0073◦. The error does increase at emitter distances of less than

100 meters as the assumption that the AoA is the same at each antenna no longer holds

true. When testing with worst case conditions, the mean error due to noise was 0.097◦

while the maximum measured error due to noise was 1.03◦, well below the ±2.5◦ accuracy

requirement.

In order to determine the effects of parameter changes on the AoA error the emitter

distance and signal strength were changed separately. In reality, the emitter distance and

signal strength are linked. Emitters that are far away result in low signal strength at the

antennas. This setup was tested in Section 4.5 (Emitter Distance). For an emitter with

100 dBm effective radiated power, the system was able to identify the angle within ±2.5◦

for all emitter distances from 1 km to 100 km. Decreasing signal strength increases AoA

error so the error in the AoA calculation increased as the emitter moved farther away.

7.1.3 Error in Resolving Phase Ambiguities

Resolving the phase ambiguity incorrectly creates a larger error in the AoA calcu-

lation than noise does. When the algorithm resolves to the wrong ambiguous angle, the

AoA error can be more than 10◦. The chance of resolving to the correct angle is affected

by the error in the phase calculation and the spacing between the two phase lines nearest

to that calculation. The certainty of the results reflects the chance of resolving to the

wrong angle. The certainty is defined as the distance of the measured phase result from

the closest true phase line over the total separation between the two closest phase lines.

A certainty of 0.5 is the lowest that is reported by the system and a certainty of 1.0 is

the highest. A certainty value of 0.5 indicates that the system cannot determine which of

the two reported solutions is more likely to be the correct angle. In the results sections,

the certainty corresponding to the true AoA, ranging from 0 to 1, was shown. The error

in the phase calculation is caused by noise and is therefore determined primarily by the

SNR. The average certainty at -40 dBfs was 0.87 compared to 0.99 at 0 dBfs. The sepa-

ration between the phase lines used to resolve the angles also factors into the certainty.

Large separation between lines improves the certainty, but the line separation is not uni-

form (Jacobs and Ralston, 1981). The measured phase differences from both antennas

determine which phase lines are used. AoA and carrier frequency partially determine the

phase difference and therefore have sporadic effects on the certainty. With worst case

85

input parameters, the average certainty was 0.87, meaning that on average the system

was certain of the correct answer.

Between ±85◦, the errors due to noise is ±2.5◦, however, the noise can corrupt the

phase measurements enough for the system to resolve the phase ambiguity incorrectly.

The minimum separation between two phase lines in the proposed system is 0.27 radi-

ans, requiring a measured phase error of at least 0.135 radians to resolve the ambiguity

incorrectly. The average line separation is 0.48 radians and the maximum is 2.7 radians.

When every angle between ±45◦ with a 1◦ step size was tested 100 times under worst case

conditions, 98 out of 9100 angles were resolved incorrectly. Therefore, under worst case

conditions, the system selects the incorrect ambiguous angle approximately 1% of the

time. There were only 16 times, 0.18%, where both of the reported angles were incorrect.

The algorithm meets the project requirements in all but a few worst cases. In these cases

the algorithm computes the AoA with data from only a small fraction of a signal pulse.

7.1.4 MATLAB versus C Results

When the algorithm was converted from MATLAB to C, identical signals were used

as inputs in both the MATLAB and C tests to ensure that the C algorithm agreed with

the model and still met the requirements. The results produced by the C implementation

were within 10−4 degrees of the results from the MATLAB system for angle and 10−4 for

certainty in all cases. Therefore, the C algorithm met the accuracy requirements to the

same degree as the MATLAB implementation.

7.2 Analysis of Prototype System

Once we found that the MATLAB and C algorithm were in agreement, we tested the

prototype system to ensure it met our requirements. The total latency between the signal

arriving and the GUI reporting an AoA was inspected and the full prototype system was

tested with MATLAB created data.

7.2.1 Latency Analysis

The C algorithm had an additional requirement of a total processing time less than

one second. The two channel system took a maximum of 375 ms to read in two batches

of samples over the USB and the entire algorithm took less than one millisecond to run

on both batches. Windows takes roughly 190 ms to send the packet to the GUI for each

batch, giving a maximum total run time of 756 ms. The run time of the algorithm from

data read to display, therefore, is less than the required one second.

The DF system transfers 8192 samples of data per antenna from the FPGA on every

data transfer, but only uses 4096 samples per antenna to compute the AoA. The data

are processed in this manner in order to provide two independent sets of results every

86

time data is imported from the FPGA. There are three scenarios in which this is useful.

In cases where the same signal is present in both batches, the two results allows the GUI

to better resolve ambiguities cases where the certainty for one set of results was low.

A second set of results for the same emitter will likely clarify which angle of arrival is

correct. In cases where the signal is only present in one of the two batches, processing

time is saved because the algorithm will only process the data in the batch where a signal

was present. The algorithm is also able to use the batch with no data in order to update

its recent noise history. Batches with only noise occur more frequently with smaller batch

sizes, so the noise history, and by extension the signal detector, are more accurate when

smaller batch sizes are used. Finally, there can be cases where two distinct signals are

found in the two batches. If two signals both received in one long batch, the system

only identifies the stronger of the two signals. Utilizing two smaller batches decreases the

likelihood that multiple emitters will be received as part of the same batch, having the

effect of increasing the likelihood of identifying each emitter individually. Decreasing the

batch size further would increase all of these effects, but would add more latency to the

system, as each set of results takes 190 ms to transmit to the GUI.

The FFTW algorithm utilized in the prototype system is most effective when the

number of samples is a power of two, so the next smallest sample size the system could

effectively use would be 2048 samples. In this case, the maximum latency of a batch would

be the sum of the communication delay between the FPGA and the C algorithm of 375

ms, the one millisecond for computations, and four times the 190 ms communication time

to transfer results to the GUI for a total delay of approximately 1.2 seconds. This delay

would exceed the one second maximum latency requirement.

7.2.2 Two Channel Input Mode

Using two signal generators to simulate antennas and down converters, the system

was implemented and tested with two input channels. The three input channel system

was tested with data from the MATLAB model. The error due to noise when using

two signal generators to simulate antennas with 10 cm separation was 0.01◦ at -9 dBfs

while MATLAB tests under similar conditions with simulated signals gave errors between

0.003◦ and 0.005◦. The difference in error between simulated signals and physical signals

from the signal generator is due to the precision of the signal generators, the phase delay

from sending signals from the signal generators to the development board, and imperfect

ADCs. The two input channel system does not resolve the phase ambiguities, so the two

channel mode always produces multiple ambiguous solutions. With the two simulated

antennas separated by 10 cm receiving 12 MHz signals, the system produced between 5

and 6 ambiguous answers on each batch. The test results show that the prototype system

meets the system requirements to the same degree as the MATLAB model. As in the

87

MATLAB model, it has an error of 0.097◦ due to noise and resolves to the wrong angle

approximately 1.08% of the time in the worst case conditions. The addition of the GUI’s

error checking system reduced the frequency of displaying the incorrect ambiguity. With

a test of 10 pulses for each angle from −45◦ to 45◦ with 1◦ increments and worst case

inputs, the GUI reported the correct angle more than 99% of the time. The incorrect

result was displayed only when the algorithm reported the incorrect result as certain or

when both angles reported were incorrect. In the results section these values are displayed

as less than 0.25 certainty and constitute less than half of the ambiguous results.

7.3 Limitations and Future Work

Although the prototype performs within the requirements, there are several steps

required to bring our system to an operational solution. The prototype must be tested

with actual antennas and radar signals. While the simulations and tests suggest that our

system should function properly if antennas were used to replace the signal generators,

there is always the risk of complications when adding true data to a system. Before the

system can be implemented on an aircraft, the system must also be updated to both take

into account the effects of a sweeping local oscillator window and run in real time. In

addition to testing the system with three antennas, experimenting with interferometers

using four or more antennas or a two antenna solution which can resolve ambiguities

could improve the system.

7.3.1 Antenna Tests

As part of the project our group initially planned on testing the DF system with true

data from antennas. Due to hardware malfunctions the DF system was only tested with

signal generators simulating the antennas and down converters that would be used in an

operation system. A true data test using these components and radar waves produced by

an emitter would help verify that the system works as intended. Having a radar system

at the ranges expected by the physical system, greater than one kilometer, would be

impractical for a verification test. The hardware test planned for the system involved

using a moveable emitter. The emitter and DF system would be placed at least 20 meters

apart, perhaps in a parking lot. As shown in Section 4.5, the system does not experience

significant errors until the distance drops below 20 meters. The test could still be run in

a smaller setting such as a lab, but the system would ability to resolve ambiguities would

deteriorate.

7.3.2 Sweeping Window

The system does not take into account the effects of sweeping the tunable local

oscillator. In the operational system, the local oscillator would need to sweep across the

88

RF range in 100 MHz increments. Given the 0.3775 s processing time in the prototype

system, it would take a minimum of 30.2 s to sweep across the entire 4 GHz bandwidth,

capturing two batches of data with 16.38 µs of recording time, per 100 MHz band. The

pulse width of emitted signals can vary from 500 ns to 1 ms, so recording for 16.38 µs

does not guarantee that a pulse will be seen even when an emitter is present in the

bandwidth which the system is monitoring. In addition, any signals that arrive outside

the monitored window will be missed. The effect of the local oscillator sweep can be

mitigated by increasing the IF bandwidth. A larger bandwidth means that the local

oscillator takes larger steps across the IF band. The maximum width of the IF band is

half of the ADCs’ sampling frequency. The ADCs used in our system would allow an IF

bandwidth of up to 250 MHz. If that IF bandwidth was used the oscillator would sweep

the entire bandwidth in a minimum of 16 steps. If the system again took two batches

of samples in each window it would take 12.08 seconds to sweep the 4 GHz bandwidth.

Using a 250 MHz bandwidth would mean that the signals’ IF can be at exactly the

Nyquist rate. Sampling at exactly the Nyquist rate could lead to aliasing problems with

signals at the edges of the range. The system missing signals due to the local oscillator

sweep was not taken into account for this study.

7.3.3 Real Time Operation

Ideally, the DF system would run on inputs in real time, meaning that the algorithm

should be able to process data as fast as it samples data. In order to remove the large

communication delays, the entire algorithm should be implemented on an FPGA or an

embedded system. The system is currently implemented with double precision floating

point in both C and MATLAB. The algorithm would likely have to be converted to fixed

point computations in order to be implemented on an FPGA or embedded processor.

With fixed point calculation, values used in calculation can only be represented to a fixed

number of decimal points, making the phase calculation less accurate. The FFTW library

runs with double precision floating point, so a fixed point FFT algorithm would have to

be used. By allowing the hardware to perform the calculations, the communication delay

would no longer be a major factor and the computational speed would increase to the

point where the system could potentially run in real time.

The timing results for the C algorithm were calculated using only one computer and

using the built-in C timing functions. On different machines the latency could be different.

The timing functions in C are limited to a resolution of one millisecond, so we were unable

to determine an actual value for processing time other than the fact that it completed in

under 1 ms. Although 1 ms is a short computation time when compared to the longer

communication delays, 1 ms of processing time is very long compared to the 8.19 µs

taken to sample the data. Measuring a more precise value for processing time would

89

be beneficial in determining whether or not the C algorithm could be used for real time

processing.

7.3.4 Additional Antennas

The system was designed to work with either two or three antennas. More could be

theoretically be used in the system. Adding more antenna could increase the accuracy of

the system as once the ambiguity is removed any pair of antennas could be used to make

the final calculation. The farther apart the antennas used to make the final measurement

are, the less of an effect noise has on the calculation. If a fourth antenna was added at

a larger separation it would provide a more accurate phase measurement for the final

calculation. In addition to increasing the accuracy of the system, adding additional

antennas can also allow the system to measure the angle of elevation. By placing another

three antenna interferometer offset in elevation angle from the original interferometer the

system could determine the elevation angle as well as the azimuth angle (Jacobs and

Ralston, 1981).

7.3.5 Resolving Ambiguities with two Antennas

The two channel input mode implemented in the system did not remove ambiguities

from the phase calculations. A system that combines the amplitude comparison and

phase interferometery methods could remove the ambiguities with only two antennas.

The phase interferometry method produces a number of highly accurate but ambiguous

results. The amplitude comparison method is used to calculate a rough value for the AoA

and then that angle is used to choose which of the ambiguities is correct. The amplitude

comparison method implemented in the Beacon Locator Project used two antennas placed

10 cm apart and had a peak error of 4◦ at the edge of the 90◦ field of view and less than

2.5◦ in the center of the range. The ambiguities between antenna 1 and 2, separated

by 10 cm, were always more than 10◦ apart. As long as the accuracy of the of the

amplitude comparison method is less than half of the separation between ambiguities the

system would be able to choose the correct result. The error of the amplitude method

could increase if the field of view was expanded to the range of ±85◦ leading to a chance

of not resolving the ambiguities correctly. Implementing a system that combines phase

interferometry and amplitude comparison could reduce the chance of ambiguity errors.

7.3.6 GUI Improvements

There are a number of improvements that could be made to the GUI to fix defects

and increase functionality. Two of the defects found in the system were leftover line

fragments and overflowing the description pane. The line fragments are caused by the

GUI’s redraw technique. The GUI attempts to erase only a small area so that the display

90

will have as little flicker as possible. Expanding the area that is erased would make

drawing errors less likely, but also increase the display flicker and require more complex

redraw techniques to ensure that extra information is not erased. Determining a balance

between the two techniques would improve the GUI. Overflowing the description pane

can be easily solved by setting a maximum number of emitters to be described. Currently,

no limit is imposed on the number of resolved emitters displayed.

The tracking algorithm used by the GUI could be improved to reduce the chance of

displaying incorrect ambiguities. At the moment, the GUI will create a new emitter line

for any result that has certainty greater than 0.75. The algorithm occasionally reports the

incorrect angle with a high certainty value. In these cases, the GUI will always display

the ambiguity incorrectly. If the system is likely to see an emitter more than once, the

tracking algorithm could be changed to require multiple certain results to identify an

emitter, requiring multiple ambiguity errors before an incorrect result is displayed.

The GUI could also be improved to add user interaction. Currently, the GUI is a

read only system; the information is displayed without any user interaction. Adding

the ability to configure system parameters, such as maximum angle range, certainty

cutoffs, maximum emitters displayed, and minimum results required to identify an emitter

would allow the user to customize the display. If the system received many low power

signals, increasing the minimum results required to display an emitter would reduce the

probability of displaying an incorrect angle. Adding the ability to manually resolve an

ambiguous angle by clicking on it and the ability to clear the screen at any time would add

more interaction and operator control. Another improvement to the GUI’s functionality

would be a separate input representing the plane’s heading. With the current GUI setup,

if the plane turns the results will remain displayed at the same angle for 10 s until they

are removed. If the GUI knew the heading of the plane when it received its input, it

could adjust the results as the plane turns. An emitter found at 45◦, when the plane is

flying straight, could then be moved to -45◦ after a 90◦ turn to the right.

91

8 Conclusion

The purpose of this project was to develop and implement a phase interferometry

direction finding system for an airborne platform. Tests with simulated data show that

the system successfully meets or exceeds all requirements of the project:

1. Accuracy: The system was required to calculate angle of arrival to within ±2.5◦.

Under worst scenario operating conditions, the average error due to noise for the

system is less than 0.1◦ and the maximum error due to noise was 0.415◦. Phase

ambiguities cause much larger error around 1% of the time under worst case con-

ditions.

2. Airborne platform: The entire system requires 21 cm of antenna spacing, making

the system a small enough size to be easily implemented on an aircraft.

3. Field of view: The system was required to determine AoA for a 90◦ field of view

in front of the aircraft, ranging from -45◦ to 45◦. Our system exceeds the field of

view requirement and operates within specifications from -85◦ to 85◦ in front of the

plane.

4. Latency: The system was required to compute the AoA for a set of data at least

once per second. The maximum latency of the physical hardware system was 756

ms.

5. Frequency Range: The system is intended for operation in the X band range. Tests

were conducted on frequencies across the full spectrum of X band, from 8 GHz

to 12 GHz, and correct AoA results were calculated across the band. The system

simulated a tunable local oscillator in order to down-convert the X band signals

into a 100 MHz band from 15 to 115 MHz.

6. Dynamic Range: The system was required to process signals over a 40 dB dynamic

range. System tests were evaluated at -40 dBfs to ensure the system met this

requirement. In these conditions the system determined the correct AoA approxi-

mately 99% of the time. At higher powers the system was correct more often.

Although we were not able to test the system with three live input channels or with

true antenna data, we successfully developed a C algorithm which can run on the final

hardware setup with few modifications. The only change that will be required in the C

algorithm for three channel operation is communication with a second FPGA in order

to access data from the third antenna. We were able to process data from two signal

generators using the two channel version of our system and accurately determine the

correct angle of arrival, albeit the angle was one of a number of ambiguities which could

92

not be resolved in our system using only two input channels. The C algorithm was able

to process simulated data for three antennas and determine the correct AoA to a high

degree of precision. The results from the C algorithm matched the results of the MATLAB

model closely, within 10−4 degrees when given the same signals. The thoroughly tested

MATLAB model provided strong evidence that when the third live data channel is added

to the system, the system will produce accurate results.

Additionally, the system was able to successfully communicate the outputs to a GUI

which actively displayed the angle of arrival results to the user. The GUI also displayed

the frequency and certainty of each angle measurement to the user in order to provide

more detailed and valuable information. In cases where an emitter is identified but,

the algorithm was unable to confidently determine the location, the GUI displayed the

information differently so that the operator was notified of the emitter’s presence but not

misled into believing a false AoA. When the uncertain detection could be resolved into a

more certain angle due to additional measurements, the ambiguities were removed from

the GUI and the correct angle appeared on the screen.

There are some improvements that we would suggest for the system. Moving the

processing algorithm to the FPGA or an embedded processor would remove the commu-

nication delays and make the system operate much faster. The system created uses three

antennas to resolve the phase, but there are methods for resolving ambiguities with only

two antennas. These methods should be compared with the one currently implemented

to see which one best removes the ambiguities. Additionally, introducing user controls

and an enhanced tracking algorithm to the GUI would reduce the probability of false

ambiguity selection. With these changes, and further testing with real antennas, the

prototype created in this project could be converted into an operational system.

93

References

Bakshi, K.A., B. A. B. U. (2009). Antennas and Wave Propagation, pages 6–1 – 6–3.

Technical Publications.

Candy, J. C. and Temes, G. C. (1992). Oversampling Delta-Sigma Data Converters:

Theory, Design, and Simulation, volume 1, chapter Oversampling Methods for A/D

and D/A Conversion, pages 1–29.

Fang, B. T.Zurek, R. W. and Martin, L. J. (1990). Simple solutions for hyperbolic and

related position fixes. 26(5):748–753.

Frigo, M. and Johnson, S. G. (2005). The design and implementation of FFTW3. Proceed-

ings of the IEEE, 93(2):216–231. Special issue on “Program Generation, Optimization,

and Platform Adaptation”.

Holm, W. and Richards, M. (2010). Principles of Modern Radar, pages 737, 741. SciTech

Publishing.

Jacobs, E. and Ralston, E. (1981). Ambiguity resolution in interferometry. Aerospace

and Electronic Systems, IEEE Transactions on, AES-17(6):766 –780.

Lathi, B. P. (2005). Linear Systems and Signals. Oxford University Press.

Silva, E., O’Connor, S., and Massa, C. (2011). The Beacon Locator Project: A Passive

Direction Finding System for Locating Pulsed Emitter Signals, pages 25, 115.

Skolnik, M. I. (2001). Introduction to Radar Systems, pages 266, 540, 710. The McGraw-

Hill Companies, third edition.

Smith, J. O. (2007). Mathematics of the Discrete Fourier Transform (DFT), pages 35–37.

W3K Publishing.

Wiley, R. G. (1985). Electronic Intelligence: The Interception of Radar Signals. Artech

House.

Wolff, C. (1997). Radar tutorial. www.radartutorial.eu/09.receivers/ rx05.en.html.

Zhou, R., Zhang, H., and Xin, H. (2011). Improved two-antenna direction finding inspired

by human ears. IEEE Transactions on Antennas and Propagation, 59(7):2691–2697.

94

	Abstract
	Acknowledgments
	Statement of Authorship
	Executive Summary
	Introduction
	Background
	Radar Overview
	Radar Equation

	Radar Receivers
	Antennas
	Down Converter
	Analog to Digital Converters
	Signal Detection
	Signal Processor

	Passive Direction Finding
	Time Difference of Arrival (TDOA)
	Amplitude Comparison
	Phase Interferometry
	Resolving Phase Ambiguity

	MATLAB Methodology
	Project Plan
	Signal Generation
	Pulse Generation
	Down Converter
	Quantizer
	DF Algorithm
	Signal Detector
	Frequency Calculation
	Phase Calculation
	Ambiguity Removal

	MATLAB Model Results
	Error versus Antenna Separation
	Error in MATLAB Model
	Error versus Signal Strength
	Frequency
	Emitter Distance

	Prototype Methodology
	System Design
	DF Algorithm
	FPGA Communication
	Discrete Fourier Transform
	Logging
	Parallelization
	TCP Communication

	Graphical User Interface (GUI)
	Features
	GUI Design

	System Testing

	Prototype System Results
	Direct Comparison Between C and MATLAB
	GUI Results
	Hardware Tests
	Timing Tests

	Discussion
	Analysis of MATLAB
	Choosing Antenna Separations
	Effects of Different Parameters on AoA Error
	Error in Resolving Phase Ambiguities
	MATLAB versus C Results

	Analysis of Prototype System
	Latency Analysis
	Two Channel Input Mode

	Limitations and Future Work
	Antenna Tests
	Sweeping Window
	Real Time Operation
	Additional Antennas
	Resolving Ambiguities with two Antennas
	GUI Improvements

	Conclusion
	References

