
Nova - Using Temporal Scaling for

Latency Compensation in a

Cloud-based Game

Written by Michael Bosik, Alex Hunt, Nina Taurich

A Major Qualifying Project report
Submitted to the faculty of

Worcester Polytechnic Institute
In partial fulfillment of the requirements for the

Degree of Bachelor of Science in Computer Science and the
Degree of Bachelor of Science in

Interactive Media and Game Development

Advised by Mark Claypool

Abstract
Cloud Gaming (CG) is gaining momentum as an alternative way to host and play

games. However, cloud-based games are susceptible to latency because all player

input must be sent to the cloud server, where all game logic is computed. In this project,

we created a rhythm game hosted on Google Stadia that compensated for increases in

latency by increasing the time window in which the player could complete actions. We

evaluated our latency compensation technique by running a study where 27 users

played through multiple rounds of our game with latency compensation on and off, and

with random added latency. Analysis of the data from these users shows that our

compensation method improves users’ overall Quality of Experience and player

performance compared to playing with latency compensation off.

Acknowledgements
This paper would not have been possible without the help of Mark Claypool, to whom

we are extremely thankful. His knowledge, enthusiasm and industry experience

provided key insights into the game development process and latency compensation

techniques, as well as the structure of this paper.

Additionally, we would like to thank our sister project “Catalyst” and Xiaokun Xu for their

help in research alongside ours. Finally, we would like to thank the team at Google

Stadia for their support towards this project.

Table of Contents
Abstract 2

Acknowledgements 3

1. Introduction 6

2. Background 8
2.1 Summary 8
2.2 Cloud Gaming Explained 8

2.2.1 Cloud Gaming vs. Conventional Online Gaming 8
2.2.2 Google Stadia 10

2.3 Latency in games 10
2.4 Latency Compensation 11
2.5 Rhythm Games 13
2.6 Summary 13

3. Nova 14
3.1 Summary 14
3.2 Development 14

3.2.1 Platform 14
3.2.2 Summary of Sprints 15

3.3 Latency Compensation 15
3.4 Features 20

3.4.1 Song Selection 20
3.4.2 Procedural Generation spawning & clustering 22
3.4.3 Health 24
3.4.4 Score & Combos 25
3.4.5. Art assets 25

4. Evaluation 26
4.1 Methods 26

4.1.1 Summary 26
4.1.2 Setup 26

4.1.2.1 Hardware specifications 26
4.1.2.2 Lab setup 27

4.1.3 Pilot Study 28
4.1.4 User Study 28

4.1.4.1 Trial Waves 28
4.1.4.2 Clumsy 29
4.1.4.3 Survey 32

4.1.4.4 Data Collection 33
4.2. Results 33

4.2.1 Demographics 33
4.2.2 Window Length 35
4.2.3 Accuracy 36

4.2.3.1 Statistical Significance 37
4.2.4 Reaction Time 40
4.2.5 Quality of Experience 42

4.2.5.1 Statistical Significance 43
4.2.6 Survey Responses 47
4.2.7 Limitations 49
4.2.8 Summary 49

5. Conclusion 49

6. Future Work 50

References 52

List of Figures and Tables 54

Appendices 76
Appendix A: Survey Questions 76

1. Introduction
For over 50 years, the video game industry has been growing, taking on a large

role in modern entertainment [1]. From the first Atari games, to the current Nintendo

Switch, video games have become one of the world’s biggest mediums of

entertainment. According to Gaming Scan statistics, the revenue in video game sales

this past decade was around 86.6 billion U.S. dollars [2], increasing at an exponential

rate. As the demand for better quality in games increases, the technology used to play

games has advanced to meet it.

Today, a new platform known as Cloud Gaming (CG) is gaining momentum as

the way to host and play games. CG is a service in which games run on a cloud server,

and data is transmitted to the client in the form of a rendered video stream [3]. This

method of gameplay is beneficial to the user in that a client no longer has to own

high-end graphics cards to render game graphics and compute physics, nor does the

player need to install updates or data pertaining to the games.

Although cloud-based games are light on storage and graphics for the player,

another issue arises: latency. Latency is the delay in response to player input. There are

several possible sources of latency, both local and network, such as insufficient

computational power, input delay, and network congestion. A higher latency in a game

means more time from when the player provides input until that input is shown on the

screen. Latency can make a game more difficult to play, to the point of frustration, thus

lowering the player’s quality of experience (QoE).

A significant source of latency for cloud-based game systems is the network.

Until recently, games were all hosted locally, meaning the entirety of the game was

loaded directly onto the player’s console or computer. All computation and data was

stored and processed as a whole within the same piece of hardware. When a game is

played on a CG system, the input data provided by the player has to travel through the

network, wait for computations done by the server, then travel back to the client. Over

the internet, this round-trip time can increase latency by a lot.

In order to provide a high QoE, a developer on a CG platform must use latency

compensation techniques to counteract the effects of latency on gameplay. Many

compensation techniques have been researched and are used in games today.

However, not all of these techniques can be applied to CG. Techniques such as aim

assistance and time warping have commonly been used in network games [3,7]. World

alteration [4], the changing of the game world attributes based on latency, is a less

studied compensation technique. World attribute scaling can include visible alterations

such as target size, or invisible alterations such as hitbox size. The goal is to lower the

precision and deadline required in the game, thus lowering the level of difficulty to be

similar to the level with no network latency.

In this project, we created a game that adjusts to latency using world alteration

and deployed on Google’s CG service, Stadia [5]. We built a fast-paced rhythm shooter

game called Nova, in which targets appear to the beat of the music at random points in

the player’s field of view. Players receive points by hitting the targets before they

disappear. In rhythm games, correct timing of player actions is crucial for success. We

used a world alteration technique, specifically temporal accuracy adjustment, for latency

compensation to maintain game difficulty and QoE across different latencies. Temporal

adjustments may be less visible and thus less likely to be noticed by the player than

hitbox and target size adjustments. To scale temporal accuracy, we increased the

amount of time a player has to hit a note proportionally to network latency.

To evaluate the effectiveness of our latency compensation on the player’s QoE,

we conducted a user study with Nova to evaluate player performance when artificial

latency was applied. Users played through 16 different trials with varied amounts of

latency and game difficulty, and with latency compensation on and off. Players

completed a survey asking about their QoE after each trial. We had a total of 30

participants over the course of two weeks.

Analysis of the user study data shows that our latency compensation technique is

effective in improving player accuracy, increasing the player’s reaction percentage (the

amount of time in a target’s window it took for them to shoot the target), and marginally

increasing the player’s QoE. However, player performance and QoE still decreased as

latency increased, so our latency compensation may need to be adjusted. A stronger

latency compensation may have a more-constant QoE and player performance as

latency increases.

The rest of the paper is organized as follows: Section 2 introduces cloud gaming,

discusses cloud gaming’s sensitivity to latency, and the latency compensation technique

we implement. Section 3 outlines our game, which designed and developed from

scratch for this project. Section 4 outlines our user study evaluation, including our

methods, results, discussion, and limitations. Section 5 presents the conclusions from

our data. Section 6 outlines possible future work.

2. Background

2.1 Summary

This chapter provides an introduction to cloud gaming, the effect of latency on

player experience in cloud gaming, latency compensation techniques, and on rhythm

games. Cloud gaming is a lightweight platform for gaming, especially effective for users

that do not own powerful hardware. However, cloud gaming suffers from an increased

sensitivity to latency. Several methods exist to compensate for latency, such as world

alteration and deadline adjustment. For our purposes, we used the method of deadline

adjustment in our rhythm shooting game.

2.2 Cloud Gaming Explained
Cloud gaming is a gaming platform in which the player uses a thin client to play a

game hosted on a server [12]. The client sends all input to the server, and then receives

a video and audio feed from the server. This offers a lightweight gaming experience, at

the cost of increased sensitivity to latency [6].

2.2.1 Cloud Gaming vs. Conventional Online Gaming
Conventional online games require the player to install the game’s files on their

device, whether it is by sliding a disc or a game cartridge into a drive or by downloading

the game’s files onto a computer or console. This installs files onto the player’s device

that contains many of the game’s files, such as compiled code and art and audio assets.

Then, during online play, the client exchanges data with a single authoritative server

that handles the game logic [9]. The client sends player input data to the server and

then receives information about the game’s state, which it uses to render the game

world.

Cloud-based games work differently to online games. Compared to the traditional

“fat” client that keeps the game’s state and does all the rendering work, cloud-based

games rely on a thin client on the player’s device. Thin clients do not do most of the

rendering or computational work that fat clients would do. They only collect input and

play audio and video from a feed, while the server performs all game state computation

and rendering.The client sends input data to the server, and then the server then sends

the client an audio/video feed to display [12]. Compared to other online games, which

rely on the player’s client to make computations and render frames, cloud-based games

require little computational power from the player’s device [3]. All computation and

rendering is done on the cloud server. In theory, this allows for players to enjoy games

without paying for expensive hardware.

Figure 1. Player performance (in points) for Crazy Taxi vs. Latency on OnLive cloud gaming

system.

Source: [6]

However, cloud gaming’s QoE relies heavily on network quality. Since all player

input is transferred to the server and computed on the server, cloud games are

especially sensitive to network latency. Claypool and Finkel found that in cloud-based

games, player performance degraded up to 25% with every 100 milliseconds of latency,

as illustrated in Figure 1 [6]. Since cloud-based games are so sensitive to latency, it is

important to develop effective latency compensation methods for CG platforms, such as

the technique we implemented and evaluated for Google Stadia.

2.2.2 Google Stadia
Google Stadia (Stadia) is Google’s cloud gaming platform. Stadia allows players

to access any games they own on a variety of devices, from computers to mobile

phones and television screens with Chromecast [8]. In our project, we developed a

game with latency compensation and deployed it to Stadia to test the effectiveness of

our latency compensation techniques.

In order to use Stadia, Google requires that the player have an Internet

connection speed of at least 10 megabits per second (Mbps) and either a recent version

of the Google Chrome browser, or the latest version of the Google Stadia app installed.

It is not required, but recommended that the player turn on HDR and Game Mode on

their TVs in order to reduce local latency.

2.3 Latency in games
Latency becomes more of a factor that deters QoE, for there are multiple

characteristics of a game that can be affected by latency. Temporal accuracy, the time

that a player has to perform an action, can be decreased due to slow response from a

server or a lower feedback frequency [13]. Feedback frequency is how often the game

provides visual, auditory or haptic feedback to the player. With a higher latency,

feedback frequency is reduced. In a first person shooter (FPS) for example, the player

has a small temporal accuracy, as two players targeting each other must react first in

order to shoot the other. With a higher latency, the feedback frequency declines, which

in turn, creates an even smaller temporal accuracy for the player. Other characteristics

such as spatial accuracy and predictability can also be affected in the same way.

A study performed on both inexperienced and experienced game players tested

the relationship between game performance and delay on QoE [14]. Participants played

two games: “Need for Speed” and “Table Tennis”. For each segment they played, a

varying level of delay was added to the experience. They were asked to answer

questions after each segment in terms of QoE, such as challenge, flow, and immersion.

The study concluded in accepting the hypothesis: there is a relationship between

performance and QoE. The participant data showed that lower QoE ratings correlated to

a worse performance.

2.4 Latency Compensation
2.4.1 World Alteration

World alteration is a way of changing the difficulty of a game based on the

latency [4]. In a game, the optimal state for the user to be in is called flow [3]. A player is

in a flow state when they are engaged and not too challenged, but not too bored.

Latency can affect this balance because it increases the difficulty of a game.

Compensation through world alteration tries to maintain flow by decreasing the difficulty.

The more sensitive a game is to latency, the more difficult it becomes under a high

delay. The precision-deadline model proposed by Claypool and Claypool indicates two

causes for a game to be sensitive to latency: spatial accuracy (precision), and temporal

accuracy (deadline) [15]. Modifying the size of game objects will decrease the precision

required while changing the speed of the game will lessen the deadline.

Figure 2. Overview of latency compensation through geometric scaling.

Source: [10]

Geometric scaling, as proposed by Lee et al., is a model of world alteration that

changes the precision required to succeed in a game [10]. It geometrically transforms

the shape of the game scene to compensate for latency, as seen in Figure 2. For

example, in a shooter game that requires the player to aim and shoot at targets, latency

could make it more difficult for the player to aim, and thus lower their precision. In order

to compensate for this, the size of the target’s hitbox can be increased depending on

the amount of latency experienced. This would make it easier for the player to hit the

target with high latency and thus make up for the difficulty latency adds to aiming.

The effectiveness of geometric scaling has not been ascertained yet, and such is

outside the scope of our project. However, geometric scaling may be an effective

method of latency compensation and may particularly be useful in games with actions

that rely on precision, such as shooters. Though our game’s actions involve both

precision and deadline, we have chosen to focus on altering the deadline of our game’s

actions to compensate for latency.

2.4.2 Temporal Accuracy Adjustment

As previously mentioned, temporal accuracy, or deadline, refers to the amount of

time given to complete an action. The more latency there is, the harder it becomes to

complete an action in the required time frame. There are several ways to adjust the

required deadline in a game. In a study by Sabet et al. comparing the effect of delay on

QoE by increasing the deadline, participants played four games with varied levels of

latency [3]. They played two shooting games and two dodging games. To adjust the

deadline, the speed of the targets was decreased. The result of the compensation was

measured using input quality, calculated from a questionnaire about responsiveness

and controllability. They found an increase in input quality after adaptation for all the

games, but the shooting games had a significantly larger difference. Thus, increasing

the required deadline for input actions can be an effective method of latency

compensation for games that require short deadlines. This includes our rhythm game,

as shooting at the targets to the beat has a very specific deadline.

2.5 Rhythm Games
A rhythm game is a genre of music-themed action video game that challenges a

player’s sense of rhythm. Games of this genre mostly involve following the beat of a

song in the form of dancing, strumming a digital instrument, or accurately hitting a

target. One of the most famous rhythm games is “Guitar Hero” (RedOctane, 2005), in

which the player strums a digital guitar to the beat of a song as notes scroll towards

them. This game uses a customized guitar shaped controller that brings a new level of

immersion into play. On Stadia, rhythm games, such as “Just Shapes & Beats” (Berzerk

Studio, 2018) and “Thumper” (Drool, 2016), have the player move their character to the

beat of the music playing by using certain controller inputs. Other rhythm games such

as “Beat Saber” (Beat Games, 2018) and “Audica” (Harmonix, 2019), which are made

for Virtual Reality (VR), use physical human motion as controller input such as slicing a

block, or pointing a gun at a virtual target.

2.6 Summary
Cloud gaming is an emerging game platform that allows users to play games

through a thin client that sends input data to a server, which does all the computation

and rendering work before sending the client a video and audio feed. Cloud gaming

platforms such as Google Stadia allow users to play games on a variety of devices

without needing to acquire expensive gaming hardware. However, cloud gaming is even

more sensitive to latency than conventional online gaming [6].

The presence of latency in a game, such as from a poor network connection,

affects several parts of gameplay. Latency can affect the temporal accuracy, thus

decreasing the amount of time the player has to execute a certain action. Latency

lowers the feedback frequency, resulting in skipped frames and visible lag [13]. Latency

can negatively impact player performance, and thus negatively impact the player’s QoE

[11]. Thus, to maintain a high QoE for the player in cloud gaming, it is important to

implement effective latency compensation techniques.

Several latency compensation techniques have been proposed. Geometric

scaling compensates for latency by altering the physical geometry of the game world,

such as hitboxes. This makes it easier for the player to complete actions that require

precision, such as shooting a moving target in a first-person shooter. However, for our

rhythm game, we have chosen to focus on an alternate method of latency

compensation: loosening the deadline for game targets in response to higher latency.

3. Nova

3.1 Summary

To implement latency compensation and evaluate it on a cloud-based gaming

platform, we created Nova, a first-person shooter rhythm game in Unreal Engine 4. In

Nova, the player uses the mouse to look around and shoot targets that spawn to the

rhythm of a song. We implemented latency compensation through adjusting the time the

player has to shoot a target before it disappears. We spent a total of nine weeks

developing Nova, including time spent porting Nova to Google Stadia’s cloud gaming

servers.

3.2 Development

3.2.1 Platform

We started developing Nova in Unreal Engine 4 (UE4) version 4.25, since we

were most familiar with developing games in UE4. In order to spawn targets based on a

song, we also chose to use one of UE4’s plugins, Synesthesia, to read through a sound

file and provide an API for us to work with in syncing events to audio waveforms [16].

Later on, as we ported the game to Google Stadia’s cloud servers, we upgraded to UE

4.26.

3.2.2 Summary of Sprints

We split up Nova’s development into three seven-week terms: A Term, B Term,

and C term, with each term further split up into several one to two-week long

development sprints. In A Term, we planned out Nova’s features, including its latency

compensation, and wrote out a proposal for the game. We researched several latency

compensation techniques and decided on altering the targets’ lifetimes. We also

developed a basic prototype in UE 4.25, which included the game’s basic features and

a basic latency compensation model.

In B Term, we developed a pre-alpha build of Nova, suitable for basic latency

testing. For this build we created artificial latency within our game that could be

adjusted. We gave this build to another group of students and allowed them to use it in

testing the effect of latency on players’ performance in Nova [17]. Afterwards, we

completed an alpha build with all of the required features such as target spawning,

shooting, and music. We presented Nova in WPI’s yearly AlphaFest, an event for

students and faculty to showcase and test games that they have developed. After

AlphaFest we used the feedback from our playtesters to further refine Nova, thus

completing our beta build.

Nova was nearly finished at the beginning of C Term, and we spent the first two

weeks of C Term implementing final polish, implementing updated latency

compensation, and preparing Nova for our evaluation. We planned out our evaluation,

prepared survey questions and IRB protocol, and ported Nova to Google Stadia’s

platform. We partnered with the Stadia team and used the Stadia SDK to host an

instance of our game on Stadia’s cloud servers. This allowed us to easily host our game

on an existing cloud gaming system and provided us with an API to emulate various

network conditions, including varying network latency conditions with added jitter.

3.3 Latency Compensation

There were several ways we could have adjusted our game to latency. We chose

to alter the lifetime of the targets because the change is not visible to the player. Figure

3 displays the timeline of a target’s lifetime. In Nova, a target spawns and moves to a

random location on the screen. Then a colored circle appears and closes until the music

note associated with the target is played. Next, the circle changes color indicating that it

is time to shoot it. This window, or the amount of time between the music note and the

target’s death, is the time that we are lengthening based on the latency. The higher the

latency, the longer the player will have to shoot the targets. The idea is that players will

have more time to catch up if they fall behind due to a latency spike. This also means

that players will be less likely to be shooting on the beat.

Figure 3. A visual representation of a target’s lifetime, from spawn to death.

During this project, we collaborated with another team of WPI students doing an

Interactive Qualifying Project (IQP) so that we could understand how to scale the

window based on latency [17]. They were studying the effects of world alteration on

accuracy in games. They used the pre-alpha build of our game in a user study to

measure the effects of our latency adjustment technique on accuracy. In the study,

participants played through several rounds of the same song with varying levels of

latency, difficulty, and window time. To adjust the difficulty of the song they adjusted the

cooldown between targets spawning. Cooldown is the minimum amount of time in

seconds allowed between targets spawning. The shorter the cooldown, is the more

targets will be spawned, thus making the song more difficult. As an outcome of their

study, they gave us an equation which can be seen below. In this equation, latency is

measured in milliseconds, and both window and cooldown are measured in seconds.

Accuracy is on a scale from zero to one.

Accuracy = -0.00085351 * Latency + 0.09624587 * Window+ 0.09650269 * Cooldown +

0.6349996613850233

We were able to use this equation when scaling the window size. The IQP team’s

study used cooldown values from 0.5-1.0. We made several adjustments to our game

since their study, such as adding another type of target. We altered the cooldown values

for the songs to be between 1.0-1.5. This meant we were extrapolating beyond the

space measured by the IQP team. With a latency of 0, we would have gotten values as

low as 0.2 seconds. We adjusted the formula to return the types of values we expected

that the player would have time to hit. Our final equation is shown below in Figure 4 For

the hard songs with a cooldown of 1, this equation gives us values from 0.96-2.29 when

latency is from 0 -150. For a cooldown of 1.5, the equation gives values from 0.46-1.79.

Final Equation:

Window = (Average Latency * 0.008868 + Accuracy / 0.09624) – ((Cooldown -0.25)*

1.003) - 6.598,

Where Accuracy = 0.8.

Figure 4. The final equation for a target’s window.

In the equation latency is measured in milliseconds and window and cooldown

are both in seconds.To implement the equation in our game we got the latency,

calculated the average, and then entered that into the equation for window length. To

get the latency between the client and the Google Stadia servers we used the API

provided by Google Stadia and created an Unreal Blueprint node. Almost all of our

game was written in Blueprints, so creating a Blueprint node allowed us to easily

integrate the Stadia API with the rest of our code. The code shown below in Figure 5

gets latency in microseconds and converts it to a float so it is readable by Blueprints.

We used conditional-compilation directives to declare two versions of code. One that

compiles when launching to Google Stadia and the other when compiling for the local

machine. Having two versions allowed us to continue to test locally.

Figure 5. Code to retrieve latency from the Stadia servers and make it accessible via

Blueprints.

We have to account for jitter in the latency values because we are using real

latency from Google Stadia. To do this, we calculated the average latency. To calculate

the average we used a weighted moving average where Average = (Previous Average *

Weight) + (Current Latency * (1 – Weight)) and with a weight value of 0.9. The average

is updated every 0.5 seconds. Figure 6 shows an example of our measure of average

latency compared to the instant latency during a trial. Figure 7 displays the

implementation of calculating the weighted moving average. It gets the current latency

using the blueprint node we created called Get Stadia Latency and inputs this into the

equation. The variable storing the latency average is set with the result. Each target has

its own window and decides its window length while it spawns by putting the current

average latency into the equation defined above in Figure 4. This can be seen in Figure

8 which shows the function each note calls at spawn time to determine its window

length.

Figure 6. Google Stadia instant latency (blue) and average latency (orange) vs. time.

Figure 7. Blueprint code calculating latency average

Figure 8. Blueprint code scaling the window length.

3.4 Features
Nova has many features, from procedural target generation to health, song

selection, and a scoring system. In this section, we will outline them all.

3.4.1 Song Selection

Like many rhythm games, Nova includes several different songs. We chose

three: Mysterious Green Fluid, Pandemic, and Fist of Fury. All songs had either Creative

Commons licenses, or licenses that we purchased. In the main menu, the player can

view a short tutorial of the game, edit options such as mouse sensitivity, or proceed to

play the game, as seen in Figure 9.

Figure 9. Main Menu Screen.

Figure 10. Song Choices Screen

Once the player proceeds, the player is able to select from any of the three

songs and play through that song in its entirety, then go back and play through another,

as seen in Figure 10. This constitutes the main game loop. Once the player misses five

or more targets in a row, the game ends, as seen in Figure 11.

Figure 11. Game Over Screen

3.4.2 Procedural Generation spawning & clustering

Figure 12. Illustration of targets clustering in front of the player.

For each song in Nova, the targets are spawned procedurally. By using an

Unreal Engine plugin called Synesthesia, we are able to parse through the waveforms

of a given audio file, and retrieve the loudness of the wave at any given time within the

audio [16]. By doing this, we can then determine points in time relative to the start of the

song that have a loudness reading of above a predetermined threshold. This threshold

is a value that we manually set for each song in our game. For the songs implemented

in our user study, we used thresholds ranging between 0.5s and 0.75s. When a point in

time is identified that is above the threshold, we add it to an array of spawn times with

an adjustment that accounts for the time it takes for a target to travel to its position, as

well as the time it takes for the identifier circle to close around the target. This adjusted

timestamp is now exactly when a target should spawn during playback of a song. This

song preprocessing is done each time a level is loaded, and as the song plays, a target

is spawned at the exact time that is saved in the array of timestamps.

Another variable that can be altered per playback is the song cooldown. This

value, as mentioned previously, is the minimum amount of time in between two targets

spawning. As we preprocess the song for timestamps, we measure whether or not the

next timestamp would be within the cooldown time. If it is, we disregard the timestamp

so that the target will not spawn.

When a target spawns, we take the location of the previous target that was

created, and select a new location relatively at a predefined distance. This causes

targets to cluster nearer to each other (as seen in Figure 12) instead of appearing at

random points around the player. The reasoning for this is to reduce the amount of time

it takes for a player to locate their next target. When a target appears closeby to the

previous one, it is easier to locate. Targets are also confined to a 120° radius around the

player, in front of their view.

In addition to procedural target spawning, our game features two separate types

of targets. During preprocessing of a song, any time a timestamp is selected, we

determine if the target should be of type A (left click) or type B (right click). The two

target types can be seen in Figure 13 and Figure 14. A type B note is determined if the

audio loudness in the song's sound wave continues to be over the threshold for the

entirety of time it takes for the cooldown to run. All other notes would be of type A. We

had intended for this type B target to allow the player to click and hold for a more drawn

out firing effect, although we were not able to implement this feature in time. However, it

still stands that type A targets can only be destroyed via left click, and type B targets

can only be destroyed with right click.

Left Click Target:

Right Click Target:

Figure 13. Comparison of both types of targets

Figure 14. Screenshot displaying both target types

3.4.3 Health

In order to add consequences for missing targets, we added a health feature for

the player. Every time the player misses a target (does not shoot the target in its

lifetime), the player loses some health, and the screen becomes more red and cracked.

If the player does not miss any more targets, their health will slowly regenerate. After

five misses in a row, the game ends. The screenshots below in Figure 15 show the

progression from full health to no health.

Figure 15. Illustration of health decreasing in the game.

3.4.4 Score & Combos

For Nova, we implemented a simple scoring system. Each time the player

successfully shoots a target within the window time, 20 points are added to their score.

If the player hits 10 targets in a row, their score gains are multiplied by two. At 20, their

score gains are multiplied by four, and at 30, their score gains are multiplied by the

maximum factor of eight.

3.4.5. Art assets

Figure 16. Nova concept art (left), the Nova beta build (middle), and Nova final build (right).

All of the game’s visual art assets were custom-made. As mentioned in Section

3.4.1, all songs were downloaded from the Internet with either the Creative Commons

License or a purchased license. Sound effects were downloaded from freesound.org

[18] under the Creative Commons License.

4. Evaluation

4.1 Methods

4.1.1 Summary

To evaluate the effectiveness of latency compensation in a cloud-based gaming platform,

we ran a user study. Participants played several rounds of a build of Nova deployed to Google

Stadia’s cloud servers, both with and without latency compensation and at four set latency

levels. Participants then answered survey questions after every round about their quality of

experience.

4.1.2 Setup

4.1.2.1 Hardware specifications

We ran the study on a WPI-owned laptop. The laptop’s specifications are as

follows:

Processor: Intel(R) Core(TM) i7-5600U CPU @ 2.60GHz (4 CPUs),

~2.6GHz

Memory: 8192MB RAM

DirectX Version: DirectX 12

Graphics Card: Intel(R) HD Graphics 5500

Display Memory: 4169 MB

Native Display Resolution: 1920x1080

Average Local Latency: 39.6ms (with a standard deviation of 5.86ms)

Participants played a build of Nova deployed to Google Stadia on Google

Chrome version 88.0.4324. Nova ran in full screen mode on the native resolution of

1920x1080.

We measured local latency by recording laptop use with a high-speed camera

recording at 1000 frames per second, analyzing the resulting video, and determining the

difference in time between the user clicking and the result of that click displaying on the

screen. After a total of five clicks, we averaged the results together to find an average

local latency of 39.6ms, with a standard deviation of 5.86ms.

4.1.2.2 Lab setup

For the user study we conducted, we had participants sit at the laptop with our

game running on its Stadia instance. The laptop had a USB mouse and a wired ethernet

connection. A picture of the lab setup can be seen in Figure 17. A speed test using

fast.com [19] measured an average upload speed of 840 Mbps and average download

speed of 580 Mbps using the Ethernet connection for this laptop. The participants

played trials of Nova on the laptop, and alternated to another desktop computer nearby

to answer survey questions pertaining to quality of experience after each trial. A packet

management software called Clumsy [20] was running in the background during trials to

alter the amount of latency the user would experience. As participants progressed

through trials, we changed parameters for this latency.

Figure 17. Picture of lab setup.

4.1.3 Pilot Study

Before we began our study, we ran a couple of pilot trials to test certain aspects

of how our study would be run— more or less a practice round. From these pilot trials,

we found some important details that needed to be changed or implemented to our

game in order to have a smoother study. For example, the aiming reticle in our game

was too small to see during higher latencies when video quality dropped. Also, we

changed our trial ordering to implement a randomness in having latency compensation

on and off.

4.1.4 User Study

4.1.4.1 Trial Waves

Our study consisted of 17 different waves of Nova that participants played

through. These waves were 45 seconds in length and were each tied to varying values

of latency, difficulty, and latency compensation. We chose a trial duration of 45 seconds

after a pilot study, finding that 45 seconds of each song we included was long enough to

contain a substantial number of targets to shoot, while being short enough to allow for

multiple tests.

The first wave of the study was a simple tutorial of the game with no added

latency or compensation. Inthe following 16 waves, we altered the latency being

experienced by the participant between values of 0ms, 50ms, 100ms, and 150ms, along

with whether or not the game was compensated for latency, and the overall difficulty of

the song being played. We incorporated an easy and a hard song to be played for the

waves. Compared to the easy song, the hard song had a higher BPM (beats per

minute): 110 BPM v.s. 60 BPM. Therefore, the hard song has many more targets

spawning. The easy song contains a total of 21 targets while the hard song has a total

of 38.

The sequence of altering variables was as follows: A random uplink/outbound

latency of the four available options was selected and applied to the laptop's ethernet

connection. Four waves were played with a random combination of difficulty and

compensation being one of four options:

● Easy difficulty, no compensation

● Easy difficulty, compensation

● Hard difficulty, no compensation

● Hard difficulty, compensation

A diagram of how the waves were randomized can be seen in Figure 18.

Figure 18. Every possible combination of latency compensation status, song difficulty, and

latency levels.

4.1.4.2 Clumsy

In order to alter the latency the user experienced between trials, we used a third

party software called Clumsy [20]. Clumsy is a packet management application that is

able to filter incoming and outgoing traffic from a machine with whichever parameters

are entered. A screenshot of Clumsy’s interface can be seen in Figure 19. For our

study, we filtered all outgoing packets from the laptop, and added a lag of X ms, X

changing between 0, 50, 100, and 150 in random order as necessary. A diagram of the

network that this describes is shown in Figure 20. We automated this change in latency

by creating a windows batch script that ran in the background during the study. Every

four waves, the proctor of the study would continue the script which would re-launch

Clumsy with new parameters. This would remove any potential human error in setting

values of Clumsy incorrectly.

Figure 19. A screenshot of Clumsy’s interface.

Figure 20. Illustration of Clumsy adding latency to our laptop’s connection to the Google

Stadia servers.

During our study, we had found that the values of latency being recorded from

our game on Stadia were less than what should have been recorded. For example, with

a clumsy added latency of 150ms, we were reading roughly 80ms on Stadia. We then

determined that the function we had been using to record latency was returning only

half of the total round trip time.

Figure 21. Graph comparing recorded latencies from Stadia’s API to the recorded ping time to

the Stadia server.

To verify this, we began measuring ping to the instance IP address that our game

was being hosted on. This was done using a Windows batch script that repetitively

pinged the IP address and saved the output for analysis. We compared these ping time

measurements to the Clumsy latency that was set at a given time and found that we

were receiving a correct reading. We concluded that these ping values were a more

accurate reading of the current latency that was being experienced by a player at a

given time.

Figure 21 illustrates the latency values we recorded from Stadia compared to the

latency values retrieved by our pinging script. Stadia provides two different latency

records: network delay for input (blue line) and network delay for video. As seen in the

graph, the Stadia Latency Input is much lower than the recorded ping values. After

multiplying the latency values recorded from Stadia by two (red), we found that the

resulting values are nearly the same as the Stadia Latency Input + Video latency values

and ping. Thus, for our purposes, the two are functionally the same, and in our analysis

we can use the values gathered from Stadia Latency Input and multiply them by two.

4.1.4.3 Survey

As mentioned previously, participants were asked to complete a survey on

Google Forms as they progressed through the study (See Appendix A). Before they

began playing trials of Nova, they were asked to complete these questions:

1. How often do you play video games?

a. On a 1-5 scale from never played to multiple hours a day

2. What method of controls do you use the most?

a. Console controller

b. Keyboard / Mouse

c. N/A

3. Rate your experience with rhythm games

a. On a 1-5 scale of None to A Lot

Each participant was also given a participant ID number at this stage for us to compare

their answers to the gameplay data we collected. As they then proceeded through each

trial of our game, they answered these questions immediately after a wave:

1. Rate your overall experience

a. On a 1-5 scale from bad to excellent

2. Rate how much you agree with the following statements on a 1-5 scale from

strongly disagree to strongly agree

a. I was able to aim and shoot at the asteroids before they expired.

b. The asteroids spawned in time to the music.

c. There was a delay between when I clicked and the game responding.

3. Did you experience any difficulties? If so, please describe them here

a. Short answer

Finally, once all of the waves were complete, the participants answered these questions

as a way for us to collect their contact if they needed playtesting credit for a course or

wanted to be considered for our raffle.

End Questions:

1. Do you require playtesting credit for an IMGD course?

a. Yes

b. No

2. Do you want to opt in to a raffle for a gift card?

a. Yes

b. No

3. If yes to either above question, what is your wpi email? (Will only be used to get

you credit and/or for the raffle)

4.1.4.4 Data Collection

Aside from the data collected from the survey that participants filled out, we

collected data based on technical information that was processed during each wave of a

trial. We collected information including the wave number, current song, compensation

on or off, amount of shots taken, amount of left and right clicks, amount of targets hit,

amount of targets not hit, lowest health point and current latency being experienced. We

also recorded information for each target that appeared including the target’s ID

number, window length, and the time taken for the player to shoot the target within its

window. All of this information was recorded within the game during gameplay and

saved to text (.txt) files. After each trial, we were able to download the output text files

from the Stadia instance and save them for analysis.

4.2. Results

This section discusses the results of our user study. Figures in this section review

the demographics, accuracy, window length, reaction time and quality of experience

from participants.

4.2.1 Demographics

Our user study had 30 participants. Out of these 30 participants, 3 of the

datasets we collected from their sessions were found to be invalid due to a technical

error in Clumsy not working as intended. This brought our total to 27 valid participant

sessions. From the demographic surveys for these 27, most of them play video games

often, as seen in Figure 22 with median 4, mean 3.56, and standard deviation 1.25. The

participants have little or no experience with rhythm games, as seen in Figure 23 with

median 2, mean 2.59, and standard deviation 1.19.

Figure 22. Histogram answering “How often do you play video games?”. 1 indicates the

participant has never played and 5 indicates the participant plays multiple hours a day.

Figure 23. Histogram of user study participants answering “Rate your experience with rhythm

games”. 1 indicates no experience and 5 indicates a lot of experience.

4.2.2 Window Length

As mentioned in Section 4.1.4.1, our study contained trials with varying

difficulties, compensation, and latencies. Generally, our graphs show two data sets:

compensation for latency off (blue), and compensation for latency on (red). Additionally,

each variable comparison has two figures: one for easy difficulty (left) and one for hard

difficulty (right).

Figures 24 and 25 show the calculated target window length in seconds versus

measured latency in milliseconds. The blue non-compensated window lengths are

consistent throughout the trials as expected. The red compensated window lengths

show an increasing trend in both the easy and hard difficulties. This shows how Nova

increases target window length with latency.

The trendline equations for both charts are as follows:

Easy, Compensation On: 𝑦 = 0. 0044𝑥 + 0. 46

𝑅2 = 1

Hard, Compensation On: 𝑦 = 0. 0044𝑥 + 0. 96

𝑅2 = 1

Figure 24 and 25. Calculated window length (time a target is available to be shot by the player)

vs recorded latency compensation on and compensation off. Easy difficulty (left) and hard

difficulty (right)

4.2.3 Accuracy

Figures 26 and 27 display the average change in the player’s target accuracy

compared to added Clumsy latency. The points show the mean values for all

participants at that latency with the bars showing 95% confidence intervals. Accuracy is

calculated as the number of targets hit within a trial over the total number of targets

spawned in that trial, multiplied by 100. The change in accuracy is relative to the

measured accuracy with 0 milliseconds of added latency. For the easy difficulty, the

change in latency values had no significant difference in accuracy. This could be

because the challenge presented by our “easy” difficulty was not enough for players to

be unable to hit the targets. For the hard difficulty, there is a decline in change in

accuracy as latency increases. This shows that as latency increases, accuracy

decreases. In addition, when latency compensation is off, accuracy decreases at a

more severe rate. When latency compensation is on, there is a smaller change in

accuracy. This shows that our latency compensation is helping players maintain a

higher accuracy in the presence of latency.

The trendline equations for both charts are as follows:

Easy, Compensation Off: 𝑦 = − 0. 0055𝑥 + − 0. 2

𝑅2 = 0. 615

Easy, Compensation On: 𝑦 = − 0. 0011𝑥 + 1. 04

𝑅2 = 0. 004

Hard, Compensation Off: 𝑦 = − 0. 12𝑥 + 1. 63

𝑅2 = 0. 876

Hard, Compensation On: 𝑦 = − 0. 07𝑥 + 1. 44

𝑅2 = 0. 874

Figure 26 and 27. Change in accuracy compared to added latency (milliseconds). Change is

relative to the average accuracy with 0 ms of latency. Easy difficulty (left) and hard difficulty

(right).

4.2.3.1 Statistical Significance

Since our dataset includes multiple trials from the same subjects, with

compensation on and off, we used a paired t-test to determine if the difference in

accuracy between the two groups are statistically significant. We compared the

difference in accuracy values between the trials with compensation on and with

compensation off for both song difficulties. For the “easy” song, we determined there

was no significant effect on the difference in the trials with compensation on (M= 97.6,

SD=4.1) and without compensation (M=96.4, SD 5.2), t(98) = 1.86, p = .0693.

For the hard song, there was a significant difference in accuracy for trials using

compensation (M=93.5, SD=9.9) and no compensation (M= 89.1, SD= 14.6), t(98) =

3.03, p = 0.00313. This could be because the “easy” song was too easy. Players might

have been able to hit the targets in high latencies because they were given a lot of time

to aim at the next target. The easy song had a higher cooldown, creating longer pauses

between targets. The majority of our playtesters played video games regularly which

could have been why our “easy” song was not challenging enough to provide results.

To assess the effect of latency on player accuracy with both compensation off

and on, we ran ANOVA tests on the four latency groups. The results of these ANOVA

tests are summarized in Tables 2-3 for compensation off, and Tables 4-5 for

compensation on. In both tests, the F-value calculated (6.909 for compensation off,

6.093 for compensation on) was greater than the critical F-value (2.652 for

compensation off, 2.651 for compensation on), indicating that our latency compensation

did not mitigate the effect of latency on player accuracy enough, possibly because there

was not enough compensation (ie. the windows were not made large enough).

Added Latency
(ms)

P-value (p < 0.05 for significance,
significant values bolded)

0 0.207

50 0.020

100 0.0004

150 0.036

Table 1. Resulting p values from t-test on player accuracy for the hard song, compensation on

v.s. compensation off.

Table 1 shows the p values of paired t-tests at each latency value for the hard

song, comparing player accuracy with compensation off and compensation on. From

the table, three of our latency values (50ms, 100ms, and 150ms), there was a

statistically significant difference between compensation on and compensation off. This

suggests that our latency compensation was effective in increasing accuracy for higher

latency game conditions.

SUMMARY - Accuracy,
Compensation off

Groups Average
(percent)

Standard
Deviation

0ms 96.6 24.0

50ms 95.9 35.9

100ms 89.9 234.7

150ms 88.5 190.6

Table 2. A summary of average and standard deviation for each latency in terms of accuracy

with compensation off for the hard song.

ANOVA - Accuracy, Compensation off

Source of
Variation

SS df MS F P-value F crit

Between Groups 2538.325 3 846.108 6.909 0.00019 2.652

Within Groups 23514.10 192 122.469

Total 26052.42 195

Table 3. An ANOVA test for player accuracy for the hard song for all four latency groups, with

compensation off.

SUMMARY - Accuracy, Compensation on

Groups Average
(percentage)

Standard
Deviation

150ms 92.2 117.0

100ms 94.6 76.8

50ms 98.1 13.0

0ms 96.8 19.6

Table 4. A summary of average and standard deviation for each latency in terms of accuracy

with compensation on for the hard song.

ANOVA - Accuracy, Compensation on

Source of
Variation

SS df MS F P-value F crit

Between Groups 1024.973 3 341.658 6.034 0.00060 2.651

Within Groups 10985.510 194 56.626

Total 12010.483 197

Table 5. An ANOVA test for player accuracy for the hard song for all four latency groups, with

compensation on.

4.2.4 Reaction Time

Figures 28 and 29 show the average reaction time percentage for each trial

compared to latency added by Clumsy. Reaction time percentage is calculated as the

time taken for the player to shoot a target within its window, over the target's total

window length multiplied by 100. With compensation off for both difficulties, reaction

time increases as latency increases. This is because the window length maintains the

same value and the increase in latency makes it more difficult to aim. With

compensation on, there is a smaller overall reaction percentage for each value over 0

ms since the larger time window makes targets easier to hit. This shows that players

were given a better chance to succeed at hitting targets when latency compensation is

on.

The trendline equations for both charts are as follows:

Easy, Compensation Off: 𝑦 = 0. 05𝑥 + 31. 6

𝑅2 = 0. 8105

Easy, Compensation On: 𝑦 = − 0. 07𝑥 + 34. 3

𝑅2 = 0. 808

Hard, Compensation Off: 𝑦 = 0. 11𝑥 + 25. 8

𝑅2 = 0. 9642

Hard, Compensation On: 𝑦 = 0. 09𝑥 + 24. 1

𝑅2 = 0. 752

Figures 28 and 29. Average Reaction Percentage ((Time to shoot target within window / target

window length) * 100) vs added latency (milliseconds). Easy difficulty (left) and hard difficulty

(right)

Players’ increased performance when compensation is on can also be seen in

the change in reaction time. The reaction time is the time the player hit a target inside its

window divided by the amount of time they had to hit the target (window length). We

expected that with more latency, players would hit the target later in the window. The

graphs in Figure 28 and Figure 29 show our results. When compensation is off, the

trendline for reaction percentage increases with latency. For the trials that do use

compensation, we expected the reaction percentage would be lower because the

window size had increased. For both the “easy” song and the “hard” song, the trials

using compensation had a slightly lower trendline. We intended the reaction time to be

constant across all latencies, but there was still an increased reaction time for the hard

song. This suggests that more compensation (i.e. larger windows) may be needed.

4.2.5 Quality of Experience

After each round, participants were asked a question similar to Google Stadia’s

QoE question: “Rate your overall experience”. Possible responses are: “5 - Excellent”,

“4 - Good”, “3 - Fair”, “2 - Poor”, “1 - Bad”. Figure 30 shows the effects of added Clumsy

latency on average quality of experience (QoE) for the hard difficulty. As latency

increased, QoE decreased overall. However, with compensation on, QoE had a higher

average than when compensation was off.

Figure 30. Quality of Experience to added latency (milliseconds)

4.2.5.1 Statistical Significance

We tested if users’ Quality of Experience (QoE) was higher with compensation

on. We used a paired t-test to determine if our latency compensation on resulted in a

statistically significant difference in a player’s QoE compared to latency compensation

off. For the “hard” song there was a significant effect on the difference in QoE for

compensation on (M=3.85, SD=1.2) and compensation off (M=3.7, SD=1.2), t(197)=

1.87, p = 0.0325. Note, participants played with the same latency across four

successive trials for each latency. This could have caused their QoE response to be

similar across the four latencies.

Added Latency
(ms)

P-value (p < 0.05 for significance,
significant values bolded)

0 0.168

50 0.342

100 0.035

150 0.178

Table 6. Resulting p values from T-test on player QoE (both Easy and Hard songs),

compensation on vs. compensation off.

To assess the effects of latency on QoE with both compensation off and on, we

took the same approach that we used for player accuracy: We ran ANOVA tests on all

four latency groups. The results of these ANOVA tests are summarized in Tables 7-8 for

compensation off, and Tables 9-10 for compensation on. In both tests, the F-value we

calculated (17.151 for compensation off, 17.00924 for compensation on) was greater

than the critical F-value (2.651 for compensation off, 2.651 for compensation on).

This suggests that regardless of latency compensation, there was a significant

difference in QoE between all four added latency values. Thus, our latency

compensation did not mitigate the effect of latency on QoE enough. Similar to accuracy,

this may be because we did not apply enough latency compensation to have a constant

QoE regardless of latency.

SUMMARY - QoE, compensation off

Groups Average
(percentage)

Standard
Deviation

0ms 4.2 0.719

50ms 4.0 0.937

100ms 3.6 1.133

150ms 2.8 1.695

Table 7. A summary of average and standard deviation for the hard song for each latency in

terms of QoE with compensation off.

ANOVA - QoE, compensation off

Source of
Variation

SS df MS F P-value F crit

Between
Groups

57.63699443 3 19.212 17.151 6.4E-10 2.651

Within Groups 217.318 194 1.120

Total 274.955 197

Table 8. An ANOVA test for QoE for the hard song for all four latency groups, with

compensation off.

SUMMARY - QoE, compensation on

Groups Average
(percentage)

Standard
Deviation

0ms 4.408 0.663

50ms 4.135 0.942

100ms 3.816 1.0697

150ms 2.98 1.816

Table 9. A summary of average and standard deviation for the hard song for each latency in

terms of QoE with compensation on.

ANOVA - QoE, compensation on

Source of
Variation

SS df MS F P-value F crit

Between
Groups

57.334 3 19.111 17.00924 7.37E-10 2.651

Within
Groups

220.221 196 1.124

Total 277.555 199

Table 10. An ANOVA test for QoE for the hard song for all four latency groups, with

compensation on.

4.2.6 Survey Responses

Our survey results for the question “The asteroids spawned in time to the music.”

are shown in Figures 31, 32 and 33. On a scale from 1 to 5, 1 being “Strongly Disagree”

and 5 being “Strongly Agree”, participants answered lower on the scale as latency

increased for both the hard and the easy difficulties. For the easy difficulty, when

compensation was on, participants answered overall higher for this question. For the

hard difficulty, participants answered lower than with compensation off for latencies 0

and 50 ms and more than compensation off for 100 and 150ms.

Figures 31, 32 and 33. Survey responses to the question “The asteroids spawned in time to the

music.” with responses on a scale of 1-5 with 1 being “Strongly Disagree” and 5 being “Strongly

Agree” compared to added latency in milliseconds.

Figures 34, 35 and 36 illustrate participants' answers to the question “There was

delay between when I clicked and the game responding.” with answers on a scale of 1-5

with 1 with 1 being “Strongly Disagree” and 5 being “Strongly Agree”. As latency

increased for both difficulties, perceived delay increased. For the easy difficulty,

responses showed that perceived delay was greater with compensation off than with

compensation on for 100 and 150ms. For the hard difficulty, perceived delay was

consistently lower while compensation was on as actual latency increased.

Figures 34, 35 and 36. Answers to the question “There was delay between when I

clicked and the game responding.” with answers on a scale of 1-5 with 1 with 1 being

“Strongly Disagree” and 5 being “Strongly Agree”.

4.2.7 Limitations

In our user study we only compensated for half the actual latency. This was

because the function used to get the latency only returned latency in one direction

(outbound/uplink). We did not account for this in our formula adjusting the window

length.

Players only played each trial for 45 seconds. This means they were not playing

under normal gameplay conditions of a full song and may not have had enough time to

feel a difference between rounds. Finally, the beginning of the session was the first time

the participants had ever played our game. Throughout the trials, their accuracy could

have increased as they gained more experience with the game.

4.2.8 Summary

Based on our analysis, players perform better, react faster, and have a slightly

higher quality of experience when playing our game with compensation on. There is a

downward slope in accuracy as latency increases, but with compensation on, the slope

is shallower than with compensation off.

5. Conclusion
In order to determine if the latency compensation technique of attribute scaling

could be effective in increasing players’ Quality of Experience (QoE) and performance

during periods of high latency in cloud gaming, we developed Nova, a rhythm shooter

game. The objective of the game is to aim and shoot at as many targets or “notes” as

they appear to the beat of a playing song. Nova included latency compensation in the

form of longer deadlines, thus giving the player more time to complete this action as

latency increased.

To assess the effectiveness of our latency compensation model, we performed a

user study on a total of 30 participants, who played through several randomized rounds

of Nova with varying latencies and latency compensation on/off status.

We found that our latency compensation was effective in increasing player

performance as latency increased, and in increasing player QoE as latency increased.

Our goal was to keep player performance and QoE constant as latency increased, but

even with compensation, both saw a downward trend. Perhaps stronger latency

compensation could achieve this goal.

6. Future Work
Future work includes running the study again with adjusted code that

compensates for the full latency and with harder songs. Compensating for the full

latency would help determine if our original formula provides the right level of

compensation. Also, we found that playing a harder song resulted in a higher contrast in

the data so testing with a wider range of song difficulties would allow us to understand if

our technique works for different difficulties. To test these ideas we would add Stadia

latency in both directions (uplink/outbound and downlink/inbound) together in the code

and use this value when calculating the average latency. This new average latency

would then be used in our equation for window length. In our study we used cooldown

values of 1(hard) and 1.5 (easy). If running the study again we would instead use

cooldown values lower than 1. The same process as we described in our methodology

could be used for an additional study with these parameters.

Due to our short deadline for analyzing our data we were unable to analyze all of

it. If we had more time we would look at our other survey questions and how those

relate to compensation and latency. For example testing if perceived latency was similar

to actual latency and if compensation affected the players perception of the targets

spawning with the rhythm of the song. We would plot graphs comparing the answers on

a scale from 1-5 and latency. We would split up the results per song to see if there was

a difference in answers after playing the easy rounds and difficult rounds.

Nova at its current form uses procedural generation to determine at which points

in a song to place targets. We do not know the effect this has on QOE as players might

feel targets are not spawning with the rhythm. Future work could include creating a

version without procedural generation and running a user study to compare note

spawning techniques. This would help determine the effect of procedural generation on

our results.

Another future project could include testing different methods of attribute scaling

with Nova. Other scales could be target size, hitbox size, or even scaling multiple

attributes at the same time. Testing multiple techniques on the same game would allow

us to know if different techniques used on the same game can have the same or better

results. Also, because our game uses procedural generation, the difficulty can be scaled

based on latency during the runtime. To test this idea, we would run the study again,

only changing the technique used.

References
[1] A. McAloon, “Breaking down nearly 50 years of video game revenue.”

/view/news/335555/Breaking_down_nearly_50_years_of_video_game_revenue.php

(accessed Oct. 15, 2020).

[2] “2020 Gaming Industry Statistics, Trends & Data (Biggest Study),” GamingScan.

https://www.gamingscan.com/gaming-statistics/ (accessed Oct. 07, 2020).

[3] S. S. Sabet, S. Schmidt, S. Zadtootaghaj, B. Naderi, C. Griwodz, and S. Möller, “A

latency compensation technique based on game characteristics to mitigate the

influence of delay on cloud gaming quality of experience,” in Proceedings of the 11th

ACM Multimedia Systems Conference, Istanbul Turkey, May 2020, pp. 15–25, doi:

10.1145/3339825.3391855.

[4] Robert Salay. A Comparison of Automatic versus Manual World Adjustment for

Network Game Latency Compensation, M.S. Thesis, Interactive Media and Game

Development, Worcester Polytechnic Institute, Summer 2020.

[5] “Store - Stadia.” https://stadia.google.com/store (accessed Oct. 10, 2020).

[6] M. Claypool and K. Claypool, “Latency and Player Actions in Online Games,”

Communications of the ACM, vol. 49, no. 11, pp. 40–45, Nov. 2006, doi:

https://doi-org.ezpxy-web-p-u01.wpi.edu/10.1145/1167838.1167860.

[7] DevinDTV, How It Works: Lag compensation and Interp in CS:GO. 2015.

https://www.youtube.com/watch?v=6EwaW2iz4iA&ab_channel=DevinDTV

[8] “Stadia-compatible gamepads and screens,” Stadia Help.

https://support.google.com/stadia/answer/9578631 (accessed Oct. 12, 2020).

[9] Y. W. Bernier, “Latency Compensating Methods in Client/Server In-game Protocol

Design and Optimization,” p. 13.

[10] I. Lee, S. Kim, and B. Lee, “Geometrically Compensating Effect of End-to-End

Latency in Moving-Target Selection Games,” in Proceedings of the 2019 CHI

Conference on Human Factors in Computing Systems - CHI ’19, Glasgow, Scotland

Uk, 2019, pp. 1–12, doi: 10.1145/3290605.3300790.

[11] M. Long and C. Gutwin, “Effects of Local Latency on Game Pointing Devices and

Game Pointing Tasks,” in Proceedings of the 2019 CHI Conference on Human

https://www.gamingscan.com/gaming-statistics/
https://www.gamingscan.com/gaming-statistics/
https://doi.org/10.1145/3339825.3391855
https://doi.org/10.1145/3339825.3391855
http://www.cs.wpi.edu/~claypool/ms/world-alteration/
http://www.cs.wpi.edu/~claypool/ms/world-alteration/
https://stadia.google.com/store
https://doi-org.ezpxy-web-p-u01.wpi.edu/10.1145/1167838.1167860
https://doi-org.ezpxy-web-p-u01.wpi.edu/10.1145/1167838.1167860
https://www.youtube.com/watch?v=6EwaW2iz4iA&ab_channel=DevinDTV
https://support.google.com/stadia/answer/9578631
https://support.google.com/stadia/answer/9578631
https://doi.org/10.1145/3290605.3300790

Factors in Computing Systems, New York, NY, USA, May 2019, pp. 1–12, doi:

10.1145/3290605.3300438.

[12] K. A. Rahman, R. McCool, and G. Somadder, Gaming in the Cloud: A Technical

Deep Dive. May 15, 2019. Accessed on: Sep 29, 2020. [Video file]. Available:

https://youtu.be/K33gctpveuk.

[13] S. S. Sabet, S. Schmidt, S. Zadtootaghaj, C. Griwodz, and S. Moller, “Delay

Sensitivity Classification: Towards a Deeper Understanding of the Influence of Delay

on Cloud Gaming QoE,” p. 6, Apr. 2020, doi: 10.1145/3386293.3397116.

[14] S. Shafiee Sabet, S. Schmidt, S. Zadtootaghaj, C. Griwodz, and S. Moller, “Towards

Applying Game Adaptation to Decrease the Impact of Delay on Quality of

Experience,” in 2018 IEEE International Symposium on Multimedia (ISM), Taichung,

Dec. 2018, pp. 114–121, doi: 10.1109/ISM.2018.00028.

[15] M. Claypool and K. Claypool, “Latency can kill: precision and deadline in online

games,” in Proceedings of the first annual ACM SIGMM conference on Multimedia

systems - MMSys ’10, Phoenix, Arizona, USA, 2010, p. 215, doi:

10.1145/1730836.1730863.

[16] “Audio Synesthesia.”

https://docs.unrealengine.com/en-US/Engine/Audio/Synesthesia/index.html

(accessed Oct. 16, 2020).

[17] E. Carlson, T. Y. Fan, and Z. Guan, “Towards Usable Attribute Scaling for Latency

Compensation in Cloud-based Games.” Interactive Qualifying Project. Worcester

Polytechnic Institute.

[18] “Freesound.” Freesound. https://freesound.org/ (accessed Mar. 14, 2021).

[19] "Internet Speed Test. | Fast.com" Fast.com. https://fast.com (accessed Mar. 10,

2021)

[20] “clumsy, an utility for simulating broken network for Windows Vista / Windows 7 and

above” GitHub. https://jagt.github.io/clumsy/ (accessed Mar. 10, 2021)

https://doi.org/10.1145/3290605.3300438
https://doi.org/10.1145/3290605.3300438
https://youtu.be/K33gctpveuk
https://doi.org/10.1145/3386293.3397116
https://doi.org/10.1109/ISM.2018.00028
https://doi.org/10.1145/1730836.1730863
https://doi.org/10.1145/1730836.1730863
https://docs.unrealengine.com/en-US/Engine/Audio/Synesthesia/index.html
https://docs.unrealengine.com/en-US/Engine/Audio/Synesthesia/index.html
https://freesound.org/
https://fast.com
https://jagt.github.io/clumsy/

List of Figures and Tables

Figure 1. Player performance (in points) for Crazy Taxi vs. Latency

on OnLive cloud gaming system.

Source: [6]

Figure 2. Overview of latency compensation through geometric scaling.

Source: [10]

Figure 3. A visual representation of a target’s lifetime, from spawn to death.

Final Equation:

Window = (Average Latency * 0.008868 + Accuracy / 0.09624) – ((Cooldown -0.25)*

1.003) - 6.598,

Where Accuracy = 0.8.

Figure 4. The final equation for a target’s window.

Figure 5. Code to retrieve latency from the Stadia servers and make it accessible via Blueprints.

Figure 6. Google Stadia instant latency (blue) and average latency (orange) vs. time.

Figure 7. Blueprint code calculating latency average

Figure 8. Blueprint code scaling the window length.

Figure 9. Main Menu Screen.

Figure 10. Song Choices Screen

Figure 11. Game Over Screen

Figure 12. Illustration of targets clustering in front of the player.

Left Click Target:

Right Click Target:

Figure 13. Comparison of both types of targets

Figure 14. Screenshot displaying both target types

Figure 15. Illustration of health decreasing in the game.

Figure 16. Nova concept art (left), the Nova beta build (middle), and Nova final build (right).

Figure 17. Picture of lab setup.

Figure 18. Every possible combination of latency compensation status, song difficulty, and

latency levels.

Figure 19. A screenshot of Clumsy’s interface.

Figure 20. Illustration of Clumsy adding latency to our laptop’s connection to the Google Stadia

servers.

Figure 21. Graph of recorded latency from Stadia’s API v.s. recorded ping time to the Stadia

server.

Figure 22. Histogram answering “How often do you play video games?”. 1 indicates the

participant has never played and 5 indicates the participant plays multiple hours a day.

Figure 23. Histogram of user study participants answering “Rate your experience with rhythm

games”. 1 indicates no experience and 5 indicates a lot of experience.

Figure 26 and 27. Change in accuracy compared to added latency (milliseconds). Change is

relative to the average accuracy with 0 ms of latency. Easy difficulty (left) and hard difficulty

(right).

Added Latency
(ms)

P-value (p < 0.05 for significance,
significant values bolded)

0 0.207

50 0.020

100 0.0004

150 0.036

Table 1. Resulting p values from t-test on player accuracy for the hard song, compensation on

v.s. compensation off.

SUMMARY - Accuracy,
Compensation off

Groups Average
(percent)

Standard
Deviation

0ms 96.6 24.0

50ms 95.9 35.9

100ms 89.9 234.7

150ms 88.5 190.6

Table 2. A summary of average and standard deviation for each latency in terms of accuracy

with compensation off for the hard song.

ANOVA - Accuracy, Compensation off

Source of
Variation

SS df MS F P-value F crit

Between Groups 2538.325 3 846.108 6.909 0.00019 2.652

Within Groups 23514.10 192 122.469

Total 26052.42 195

Table 3. An ANOVA test for player accuracy for the hard song for all four latency groups, with

compensation off.

SUMMARY - Accuracy, Compensation on

Groups Average
(percentage)

Standard
Deviation

150ms 92.2 117.0

100ms 94.6 76.8

50ms 98.1 13.0

0ms 96.8 19.6

Table 4. A summary of average and standard deviation for each latency in terms of accuracy

with compensation on for the hard song.

ANOVA - Accuracy, Compensation on

Source of
Variation

SS df MS F P-value F crit

Between Groups 1024.973 3 341.658 6.034 0.00060 2.651

Within Groups 10985.510 194 56.626

Total 12010.483 197

Table 5. An ANOVA test for player accuracy for the hard song for all four latency groups, with

compensation on.

Figures 28 and 29. Average Reaction Percentage ((Time to shoot target within window / target

window length) * 100) vs added latency (milliseconds). Easy difficulty (left) and hard difficulty

(right)

Figure 30. Quality of Experience to added latency (milliseconds)

Added Latency
(ms)

P-value (p < 0.05 for significance,
significant values bolded)

0 0.168

50 0.342

100 0.035

150 0.178

Table 6. Resulting p values from T-test on player QoE (both Easy and Hard songs),

compensation on vs. compensation off.

SUMMARY - QoE, compensation off

Groups Average
(percentage)

Standard
Deviation

0ms 4.2 0.719

50ms 4.0 0.937

100ms 3.6 1.133

150ms 2.8 1.695

Table 7. A summary of average and standard deviation for the hard song for each latency in

terms of QoE with compensation off.

ANOVA - QoE, compensation off

Source of
Variation

SS df MS F P-value F crit

Between
Groups

57.63699443 3 19.212 17.151 6.4E-10 2.651

Within Groups 217.318 194 1.120

Total 274.955 197

Table 8. An ANOVA test for QoE for the hard song for all four latency groups, with

compensation off.

SUMMARY - QoE, compensation on

Groups Average
(percentage)

Standard
Deviation

0ms 4.408 0.663

50ms 4.135 0.942

100ms 3.816 1.0697

150ms 2.98 1.816

Table 9. A summary of average and standard deviation for the hard song for each latency in

terms of QoE with compensation on.

ANOVA - QoE, compensation on

Source of
Variation

SS df MS F P-value F crit

Between
Groups

57.334 3 19.111 17.00924 7.37E-10 2.651

Within
Groups

220.221 196 1.124

Total 277.555 199

Table 10. An ANOVA test for QoE for the hard song for all four latency groups, with

compensation on.

Figures 31, 32 and 33. Survey responses to the question “The asteroids spawned in time to the

music.” with responses on a scale of 1-5 with 1 being “Strongly Disagree” and 5 being “Strongly

Agree” compared to added latency in milliseconds.

Figures 34, 35 and 36. Answers to the question “There was delay between when I

clicked and the game responding.” with answers on a scale of 1-5 with 1 with 1 being

“Strongly Disagree” and 5 being “Strongly Agree”.

Appendices

Appendix A: Survey Questions

