
Diagnosing Robotic Swarms

(Dr. Swarm)

A Major Qualifying Project Report

 Submitted to the Faculty of

 WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for

the Degree of Bachelor of Science

By

Josiah Boucher (RBE)

Jerish Brown (RBE/CS)

Erika Snow (RBE/CS)

Alexandra Wheeler (RBE/CS)

Submitted on April 25th, 2019

 To Professors:

Carlo Pinciroli

Lane Harrison

i

Abstract

Troubleshooting a robotic swarm can be a daunting task due to large quantities of

information to sift through and many potential sources of problems. Currently there are no

widely adopted swarm diagnostic systems. We developed Dr. Swarm, a mobile application

which combines state-of-the-art AR technology and existing visualization techniques to create a

new kind of diagnostic tool for swarm robotics. Dr. Swarm enables developers to expose the

behavior of swarm systems through intuitive visualizations and assists with troubleshooting

swarm applications.

ii

Table of Contents
Abstract .. i

Table of Figures ... iii

Introduction ... 1

Background ... 2

Swarm Robotics .. 2

Open Problems in Swarm Robotics .. 2

Augmented & Mixed Reality .. 3

Current Debugging & Profiling tools .. 4

Design ... 6

Overall System Structure .. 7

User Interaction & Control .. 9

Implementation ... 12

Data Management ... 12

Visualizations .. 14

Pie Chart Visualizations .. 15

Indicator Visualization .. 16

Bar Graph Visualization .. 18

Line Graph Visualization ... 19

Visualization Management .. 20

User Interface .. 21

Variable Publisher ... 24

Deliverables .. 27

Goal 1: Gather Data from Many Robots ... 27

Goal 2: Provide Intuitive Visualizations Conveying Information about Swarm Robots to

Developers ... 27

Goal 3: Easily Integrate with Existing Swarm Projects .. 28

Goal 4: Allow Compatibility with Different Devices Simultaneously 28

Future Work .. 30

Conclusions ... 33

References ... 34

iii

Table of Figures

Figure 1: Dr. Swarm System Structure ... 7

Figure 2: Initial Design of the Visualization Menu .. 9

Figure 3: General User Activity Diagram for Visualization Creation & Modification 10

Figure 4: Add Visualization Workflow .. 11

Figure 5: Visualizations by Quantity of Variables and Robots/Tags Supported 14

Figure 6: Multivariable Pie Chart ... 15

Figure 7: Pie Chart .. 16

Figure 8: Range Indicator ... 17

Figure 9: Map Indicator .. 18

Figure 10: Bar Graph .. 19

Figure 11: Line Graph ... 20

Figure 12: Main Screen Menu .. 22

Figure 13: Process for Adding a Visualization ... 23

Figure 14: Tag UI.. 24

1

Introduction

 Swarm robotics has broad applications and immense potential. A robotic swarm is a large

number of robots interacting to create a collectively intelligent system [1]. Unfortunately,

diagnosing issues that occur with robot swarms during development is difficult. This is because

there are so many potential sources of error; all of the problems that occur with a single robot

exist for robot swarms, such as mechanical failure, sensor malfunction, or faulty code.

Additionally, robot swarms communicate with one another, causing every additional robot to

exponentially increase the possible sources of error.

 Currently, there are no tools available to help diagnose the source of an error within a

swarm beyond conventional integrated development environments (IDEs). This leads to swarm

developers spending a large portion of time digging through low-level data to find what went

wrong. The goal of Dr. Swarm is to enable swarm developers to more easily diagnose the

behaviors of swarm systems. Dr. Swarm is a general-purpose diagnostic tool for swarm robotics

that provides augmented reality visualizations to expose relevant data from the swarm. Seeing

this information in real-time visualized above the robot allows developers to quickly identify

issues as they happen and provides a starting point to fix the problem.

2

Background

Swarm Robotics

A robotic swarm is a large number of robots interacting to create a collectively intelligent

system [1]. These systems operate autonomously in large numbers and without centralized

control. In an ideal swarm system, the individual robots are dispensable and interchangeable [2].

Examples of robots designed to be part of a swarm are the Kilobot and Khepera IV. Both of

these robots house several sensors and can communicate with other robots. Swarms typically

utilize decentralized control in order to define the tasks which the robots work together to

complete. This allows swarms to work at smaller problems and have more reliable decision-

making. Common swarm tasks include flocking, foraging, and collaborative manipulation. These

tasks can vary in difficulty, output, and robot requirements (i.e., quantity and sensors).

Many industries are putting swarm robotics to use, from health care to automation.

Within these industries, there are four main areas where swarm robotics is useful. The first is

tasks that cover a large amount of physical space. Since swarm systems are able to scale up in

size and abstract the data collection from the individual robots, they are able to create a

distributed system that can complete tasks such as surveillance over very large areas. Secondly,

swarms can also complete tasks that are too dangerous for humans or more expensive robots.

Robot swarms are envisioned to be formed by dispensable, inexpensive, and easily replaceable

units, making them ideal for situations involving risk. The third area is “tasks that scale up or

scale down in time” [1]. Robotic swarms can resolve these issues more easily than other systems

due to their scalability; as a problem, such as an oil spill, gets worse over time, the system can

easily add additional robots to fit the new scope. Finally, swarm systems excel at tasks that are

repetitive and redundant [1]. Current research applies these strengths to aerial swarms, patrolling

swarms, foraging swarms, and much more.

Open Problems in Swarm Robotics

Despite the potential shown in this relatively new field, there are still many problems that

hamper the advancement of swarm robotics. One problem the field currently faces is how

expensive a large swarm can be. Even relatively low-tech swarms comprised of potentially

3

hundreds of robots require a significant investment to perform research. Error propagation is

another significant obstacle that swarm researchers face. Even with the simplest of algorithms,

errors have a tendency to cascade through both space and time. This can be difficult to correct

when dealing with large swarms. As the size of a swarm increases, its behavior becomes more

and more unstable as errors amplify through the swarm [3]. Error propagation is an open

problem in swarm robotics and the research community is currently devoting effort to devising

more robust solutions.

Another problem with swarm robotics is the amount of information gathered. Although

the individual robots that make up a swarm tend to be simplistic with only a few sensors, an

entire swarm’s worth of sensors provides a significant amount of data. This sort of data is most

useful when evaluated in real-time, since “[a robot’s] internal state is normally meaningful only

if considered alongside with the physical environment” [4]. Compounding on that is information

about how robots interact with each other, which is important for understanding the behavior of

the entire swarm. Generally, this information is unintuitive and must undergo processing in order

to summarize the raw sensor data and make it more comprehensible.

Debugging a robotic swarm is more challenging than debugging a single robot, and very

few tools exist to mitigate this. Problems with individual robots typically lie in either the

hardware or the software. However, things get more complex with a robotic swarm, as “the

behavior of an individual robot in a swarm robotic system is a product not only [of] its hardware,

software, and interactions with its environment, but also its interactions with other robots” [5].

Due to large quantities of information to sift through and many potential sources of problems,

troubleshooting a robotic swarm can be a daunting task.

Augmented & Mixed Reality

Augmented reality (AR) is a versatile technology growing in popularity. This field

involves displaying digital graphics in tandem with the real world, typically by overlaying useful

information or utilizing a user interface. Uses of this technology have expanded since its origin

in the mid 90’s, and now has applications in areas including education, tourism/exploration, and

entertainment/gaming [6]. AR provides a convenient and seamless method to display important

information for users of many systems, including swarm research applications.

4

ARDebug is an open-source AR tool used for debugging robotic swarms [5]. This tool

displays an augmented video feed of robotic swarm systems which provides customizable

overlays. It also equips users with the ability to map data to tables and graphs, providing live

information about various system components. Despite limitations to a 2D plane of wirelessly

connected robots, ARDebug is an exemplary model of a tool used for effective swarm debugging

using augmented reality [5]. Other systems, however, have shown promise with robotic systems

operating in three dimensions.

Mixed reality (MR) allows AR to interact with physical robots, producing many benefits

including simplified debugging and scaling up swarms [7]. Hoenig et al.’s [7] research applies

this use of AR with some success. MR serves as a stepping stone from simulation to physical

operation. Using the game engine Unity, Hoenig et al. [7] simulated human movement patterns

in tandem with a physical quadcopter. This enabled safe and easy testing of an otherwise

dangerous and unpredictable task.

Using AR and MR has the potential to solve many common problems when developing

robotic swarms. For example, simulating robots in the swarm negates the expense of purchasing

large quantities of robots, and allows developers to test in a controlled environment before

moving on to potentially problematic robots. Additionally, this simulation enables developers to

add virtual sensors, further reducing costs and time [7].

Current Debugging & Profiling tools

Debugging tools help developers test programs and identify bugs. Tools like GDB allow

developers to run their program and stop at specified points or conditions. Developers then see

what is happening in the program by examining data, the call stack, memory, and more.

Debugging tools also allow developers to experiment with the behavior of their programs. Other

tools exist to examine the performance of programs; these profiling tools allow developers to

collect data such as runtime, memory, and other performance statistics. Integrated Development

Environments (IDEs) combine debugging, profiling, and build tools with a text editor into a

single program. Having all the necessary development tools in one spot is convenient for

developers, enabling the various tools to work in tandem to make debugging easier.

5

In the context of robotics, debuggers and profilers both play important roles. Robotic

systems typically use custom software to assist in debugging issues related to sensors and

actuators. For example, the Robot Operating System (ROS) [8] has rviz, which allows developers

to visualize the robot and relevant sensor data. Many other tools exist in the ROS ecosystem that

help debug and profile robot performance, such as rqt_bag, rqt_plot, and rqt_graph. These are

profiling tools, as they exist to measure the performance of the program by examining robot

behavior and sensor data. Developers sometimes also use traditional development tools, like the

PyCharm IDE, to create ROS programs.

No comprehensive set of tools exists for developing and debugging swarm programs, as

it is a relatively nascent field. Difficulty arises when debugging swarm robotic systems due to the

large number of agents involved in the system [5]. Before deploying code to real robots,

simulating the behavior of the swarm in software can help developers catch problems early on.

Swarm developers use existing tools such as ROS to simulate swarm systems, but developers

often work with robots that do not support ROS. In these scenarios, developers create custom

solutions to simulate and debug their systems, such as simulations in the Unity game engine [9]

or tools like ARDebug.

Research institutions across the world use ARGoS, a general-purpose multi-robot

simulator. Designed from the ground up with accuracy, extensibility, and performance in mind, it

allows developers to create plugins that support different robot platforms, as well as the

simulation of large numbers of robots [10]. Additionally, ARGoS supports Buzz, a programming

language designed specifically for swarm robotics. Buzz is extendable, allowing the language to

work on any robot platform. However, Buzz does not have a comprehensive debugging/profiling

tool suite available, making it more difficult to use than similar tools. Using ARGoS and Buzz

together enables swarm developers to inspect data within the robot programs at runtime. This

combination provides developers with a robust suite of swarm-specific development

capabilities.

6

Design

The goal of this project is to enable swarm developers to more easily diagnose the

behaviors of swarm systems. We designed an augmented reality (AR) diagnostic tool for swarm

robotics called Dr. Swarm. This tool allows swarm developers to see relevant information about

their robots visualized in the real world. This section discusses the initial design goals and

structure of Dr. Swarm.

In order to achieve this goal, we identified the following objectives:

• Gather data from many robots.

• Provide intuitive visualizations conveying information about swarm robots to developers.

• Easily integrate with existing swarm projects.

• Allow compatibility with different devices simultaneously.

Before visualizing information about robots within a swarm, Dr. Swarm must gather data

from the robots. We chose to focus on data from variables stored in robot’s memory. Dr. Swarm

uses this data to display visualizations, allowing developers to intuitively understand what is

going on in their system. We designed Dr. Swarm with the intention that it could be used

regardless of the system with which it is being integrated. Dr. Swarm should work on different

types of devices such as AR headsets, mobile phones, and tablet devices. Additionally, we

wanted the application to be capable of running simultaneously on multiple devices, allowing

groups of developers to have multiple perspectives.

Example: Foraging Experiment

In order to understand the goals of this project, consider an experiment where a swarm is

implementing a foraging algorithm. In the experiment, the robots start at their home base,

explore their environment in search of food, and bring any they find back to base. In this

example, a user selects the bar graph visualization from the user interface. Each bar graph hovers

above a robot and displays the amount of food it has gathered, updating its values in real time.

With this information present as the experiment runs, the user is able to determine that a specific

robot is underperforming compared to the others. The user decides to add some new

visualizations that specifically target the underperforming robot and is then able to determine

7

that the robot’s battery is low. This is just one example of how Dr. Swarm can reduce the time it

takes to troubleshoot a problem.

Overall System Structure

The overall structure of Dr. Swarm is modular. Isolating the parts of the system allows

different application developers to easily replace components to better fit their needs. Between

any two components, communication is only one-way; this furthers the modularity of Dr.

Swarm, ensuring that replacing one component requires change from only one point of

communication.

Figure 1: Dr. Swarm System Structure

The system starts with the collection of data from the robots. Data collection can happen

in one of two ways: centralized or decentralized. In a decentralized manner, each robot reports its

own data. In a centralized manner, there is a single entity (typically external to the swarm) which

is in charge of collecting data from the robots. Although swarms typically use decentralized

methods over centralized ones, we chose to support a centralized approach to data collection

because it was simpler to implement. This takes the form of a single server, which sends data

previously gathered from the robots to connected instances of the Dr. Swarm mobile application.

8

In order for the mobile application to keep track of this data, the system needs to store the

data and make it accessible to different parts of the application. Visualizations specify the robots

that act as data sources for the visualization and display the requested data streams from each of

these robots. Users must be able to create, edit, and delete visualizations on-the-fly, which makes

visualizations another kind of information to keep track of. This outlines the two main systems

that drive Dr. Swarm, the Data Manager and the Visualization Manager.

The Data Manager is responsible for storing data received from the server and

making it accessible to the rest of the application. The Data Manager provides information

about what data has been received from the robots, as well as exposing the data itself.

Visualizations take data from one or more robots cataloged in the Data Manager and display

it in AR in the form of a line graph, bar graph, pie chart, range indicator, or a map indicator. The

Data Manager also provides the ability to know when data changes, so visualizations can

update in real time.

The Visualization Manager is in charge of maintaining data about the

visualizations and adding and removing visualizations. Since there are multiple ways to create

visualizations, any part of the application must have access to the visualization Manager

at any time. When the Visualization Manager receives a new visualization to add, it is in

charge of attaching the visualization to each corresponding robot and creating the graphical

elements of the visualization. Likewise, when a user deletes a visualization, the manager is

responsible for removing the visualization from the display and removing the data associated

with that visualization.

We designed Dr. Swarm to support two methods of visualizing data in AR: graph-based

visualizations, and indicators. Graph-based visualizations consist of robot data displayed on a

graph that exists in AR. We designed the application to support three types of 2D graphs: pie

charts, bar graphs and line graphs. Indicators are 2D objects, such as an arrow representing a

vector or a symbol representing the internal state of a robot.

9

User Interaction & Control

 We designed a user interface for Dr. Swarm in order to give users easy access to the

application’s main features. The main menu serves as a central hub for control of the application.

The menu contains tabs for controlling different parts of the application, including visualizations,

the communications display, robot tagging, and other miscellaneous options. The most important

tab is the visualizations tab, which allows users to add and remove visualizations. This tab

displays a list of added visualizations with an image preview for each one. There is also a

checkbox for each visualization; toggling that checkbox will display or hide that visualization

above the robots.

Figure 2: Initial Design of the Visualization Menu

10

Figure 3: General User Activity Diagram for Visualization Creation & Modification

The “Add Visualization” button triggers a wizard UI which walks users through the

process of adding a new visualization. This process is shown in Figure 3. First, the user selects a

visualization type. This can be one of the three graph types (bar, pie, line), or a map or range

indicator. Second, the user selects which robots to source the data. Finally, the UI transitions to a

screen that displays a filtered list of data for the user to select from; this list excludes data that is

not on the intersection of the previously selected robots. Different kinds of visualizations support

different numbers of data stream and robots. For example, a line graph, supports two data

streams (one per axis) for many robots.

11

Figure 4: Add Visualization Workflow

Example: Foraging Experiment

From the earlier example of the foraging experiment, a user could use this menu system

to add a line graph. The user selects the line graph type and the robots that the graph would be

over. The user then selects the data stream that is distance to a food source. Then, over each

selected robot, a line plot displays the distance from a food source over time.

12

Implementation

The first step to creating Dr. Swarm was finding a framework for developing augmented

reality (AR) applications. The WPI NEST Lab had a previously existing application for human-

swarm interaction using Vuforia. Vuforia is an AR framework that runs inside the Unity game

engine. We determined that using Vuforia and Unity would allow us to rapidly prototype ideas

which we could expand into our finished product. Furthermore, Vuforia and Unity support

exporting to many platforms, such as AR headsets, Android devices, and iOS devices. This

cross-platform support was important because we prioritized accessibility for swarm developers

regardless of their platform. One major limitation is that Vuforia currently supports tracking of

up to only five image targets. This means that Dr. Swarm can display only five visualizations at

the same time on any one device.

 We developed our application to accommodate the setup of the NEST lab at WPI. The

lab allowed us access to a small swarm of Khepera IV robots, and a larger swarm of Kilobots.

The Kilobots were too small to attach tracking images that would work with Vuforia. We

decided to focus on the Khepera IV robots. They had already been set up for tracking with

Vuforia for use in another application being developed in the NEST Lab, which made them easy

to integrate with our application. The Khepera IV robots were controlled using ARGoS and a

VICON motion capture system. The VICON system tracks small markers on the robots and

feeds their position into ARGoS. In this setup, ARGoS is used as a centralized controller which

coordinates the robots.

Data Management

 The Dr. Swarm mobile application needs to keep track of the data received from every

robot. There are two sets of clients, who will use the data in various ways: the visualizations and

the user interface. As previously mentioned in the Design section, visualizations need to take

data and display it in AR. This means that visualizations need to know not only what data exists,

but also the type of the data and what the current value is. Visualizations also need to know when

this data changes, so it can update accordingly. Additionally, the “Add Visualizations” menu in

the user interface needs access to what data exists, so it can show the user what data they can

13

visualize. These requirements drove the design of the Data Manager, specifying the

following requirements:

1. There must be one location for reading and writing all data.

2. Data must be indexed by which robot it belongs to.

3. All data must be accessible at any time by all clients.

4. Clients may choose to be notified when data changes.

 To satisfy these requirements, we decided that the Data Manager would be a singleton

object that stores the association between robots and their data. Clients can query the Data

Manager with the unique identifier of a robot, and it will return an object containing

information about the robot. The robot object contains its identifier, a color, and the data

associated with the robot. These features satisfy the first three requirements, but not the fourth.

To allow clients to be notified when data changes, we decided to use the observer software

design pattern. We chose to implement the pattern at the data-level. Clients can subscribe to

individual pieces of data which notifies the subscriber when the data changes.

 The decision to use the observer pattern drove the development of the Dr. Swarm

application as a whole. We chose to implement some features of Reactive Programming, a

paradigm where data takes the form of streams instead of immediate values. Specifically, we

decided that the flow of all data in Dr. Swarm should be reactive. This allows for high levels of

modularity and loose coupling between classes.

Dr. Swarm needs to keep track of many different types of data, including numerical

values (floats, ints), textual values (strings), and boolean values. Each piece of data

must have a name associated with it, have the name of the data stream retrieved from the robot,

and be stored inside the robot object. This could not be accomplished with a simple dictionary,

because a dictionary maps keys of one type to values of another type. We created a class called

VariableDict, a data structure which maps a string key to a value of any type. Each key is

associated with one value of a single type. This class uses two nested dictionaries; the outer

dictionary associates data types to the inner dictionary. The inner dictionary maps the name of

the data stream to the stream itself. This allows Dr. Swarm to have a one-to-one mapping of

names to values, but the type of the values can differ between different pieces of data.

14

Visualizations

 Each visualization is broken up into two classes: a class that handles the functionality of

the visualization, and a container class that handles displaying the visualization in Unity. Both

the functionality classes and the container classes implement their own interfaces, which allows

us to use the same methods on different types of visualization objects. In addition to increasing

the uniformity of our code, these interfaces improve readability and provide a straightforward

way of adding other visualization types in the future. We considered changing these interfaces

into abstract classes. We felt abstract classes would be a better design than the interfaces because

each of the functionality classes and each of the container classes share much of their code,

including both fields and methods. However, we left the interfaces in place due to time

constraints during implementation.

 We implemented four types of visualizations for Dr. Swarm. Below is a table

summarizing these visualizations. The data streams supported, and robots supported are in

reference to a single visualization appearing above one robot.

Visualizations Subtypes Data Streams Supported Robots Supported

Pie Chart Multi-Robot 1 1+

Multivariable 1+ 1

Indicator Range 1 1

Map 1 - 3 1

Bar Graph - 1+ 1+

Line Graph - 2 1+

Figure 5: Visualizations by Quantity of Variables and Robots/Tags Supported

15

Pie Chart Visualizations

Single variable pie charts support a single data stream across multiple robots. The

visualization above the robots selected for a single variable pie chart will contain data

exclusively from the robot below.

Multivariable pie charts support multiple streams of data from a single robot. With this

visualization, multiple robots can be selected, but when they are displayed above the robot in the

application, the information will be tailored to that specific robot. This differs from single

variable pie charts, where the visualizations above the robots pertain only to the robot below.

Multivariable Pie Chart Foraging Example: Time in each State

 During the foraging experiment, the user wants to know how much time each robot

spends in each of three states: exploring the environment, collecting food, returning to base.

They create a multivariable pie chart visualization that tracks the percentage of time in each state

for each robot. The user notices that some robots spend the majority of their time collecting food,

and very little time exploring the environment, and hypothesizes that those robots are prioritizing

food sources close to the base.

Figure 6: Multivariable Pie Chart

16

Pie Chart Foraging Example: Food Collected

 The user wants to explore their hypothesis by tracking which robots have collected the

most food. To accomplish this, they add a pie chart visualization that tracks the total amount of

food collected by each robot. When the experiment is run, the user notices that the robots that

have collected the most food stick close to the base and are also the same robots who spend the

most time collecting food. The user decides to modify the foraging algorithm to prioritize

exploring the environment close to the base in order to improve the efficiency of the swarm.

Figure 7: Pie Chart

Indicator Visualization

The indicator visualization supports any number of robots, and a single data stream for

each of their features. Currently, there are two types of indicator visualizations: range indicators

and map indicators, each with different kinds of features. Range indicators allow data streams to

be associated with the color and the shape of the visualization. Map indicators require a shape to

be specified during creation, but a data stream can be associated with its color, rotation, and fill

amount. With this visualization, multiple robots can be selected, but when they are displayed

above the robot in the application, the information will be tailored to that specific robot.

Indicators, of any kind, utilize policies to define the behavior of the visualization. Policies

associate a data stream with a feature of the indicator. Range indicators use range policies to

17

define a range of values for which the indicator should be a certain color or a certain shape. A

range indicator can have as many of these policies as the user needs in order to cover the desired

ranges and behaviors of the tracked data streams. Map indicators use map policies to define

which data stream should be mapped to a feature. A map indicator can currently have a

maximum of three map policies since there are only three features defined for a map indicator.

Range Indicator Foraging Example: Robot State

During the foraging experiment, the user wants to know what state a group of robots is in

at any given time. Specifically, they want to see when each robot changes its state. Conveniently,

the robot has a state data stream. When the data stream is equal to zero, the robot is exploring its

environment. When the data stream is equal to one, the robot is gathering food from a known

source. And when the data stream is equal to two, the robot is returning to its base. The user

creates a range indicator and specifies three range policies. When a robot’s state is zero, the

indicator will display a red circle. When the state is one, the indicator will display a blue square.

And when it’s two, the indicator will display a green triangle. With this visualization in place,

the user is able to clearly see that a specific robot never escapes the exploration state even though

its sensors should have discovered multiple sources of food during the experiment.

Figure 8: Range Indicator

18

Map Indicator Foraging Example: Battery Level

 The user notices that some of the robots run out of battery much faster than others. They

decide to keep an eye on the battery level of each robot through a map indicator. The user sets up

the indicator so that the battery voltage is associated with the fill amount of a circle. As the

voltage drops, the circle wedge gets smaller. Every robot in the swarm starts out with a full

charge. However, as the experiment continues to run, it becomes apparent that some of the robots

lose their charge much faster than others. By tracking these robots, the user is able to determine

that they are traveling farther than most of the other robots. The user modifies the swarm

behavior to equalize the distance each robot travels, giving the swarm a longer life-span.

Figure 9: Map Indicator

Bar Graph Visualization

Additionally, we created a bar graph visualization, which supports any number of

variables on any number of robots. When the visualization is displayed in the mobile application,

a legend below the graph shows the color associated with each data stream.

Bar Graph Foraging Example: Proximity Sensor

 Even though the user modifies the foraging algorithm to even out the amount each robot

travels, some of the robots’ battery levels are still dropping faster than others. The user notices

that these robots seem to be moving past sources of food instead of entering the gathering state.

19

The user decides to add a bar graph visualization to these robots that shows data from their sonar

sensors. In this way, the user can see how the robots are perceiving obstacles in their

environment. From this visualization, the user is able to determine that some of the sonar sensors

are not operating correctly.

Figure 10: Bar Graph

Line Graph Visualization

The last type of visualization we developed is a line graph, which supports a variable for

the x axis and another for the y axis. Any number of robots can be associated with an instance of

this visualization, and the mobile application will display the line graph above each robot.

Line Graph Foraging Example: Proximity Sensor

 The user now knows that some of the sonar sensors are not operating correctly, but they

want to see the data from these sensors over time in order to better understand how they are

operating. They create a line graph visualization on the robots that plot the data from the

malfunctioning sonars. The user is able to determine that the sensors are able to accurately detect

objects that are farther away, but they lose sight of the object when it is brought within a few

inches of the sensor.

20

Figure 11: Line Graph

Visualization Management

One main goal for Dr. Swarm is to display many different visualizations at the same time.

Visualizations need to be created in real-time by user input. Originally, we had planned to

support pre-defining visualizations to be displayed and creating visualizations over the network,

but these features were not implemented. Regardless, these drove the design of the

Visualization Manager, a central system where visualizations can be added, removed,

and edited. Similar to the Data Manager, any client within the application can have access to

the Visualization Manager at any time. This allows for the User Interface, described in

detail in the following section, to simply acquire the instance of the Visualization

Manager and then call the AddVisualization method to add new visualizations. Future

work could easily integrate the Visualization Manager to implement new features such

as pre-defined visualizations or adding through the network.

While designing the visualization system, we decided on two main features the system

must have. First, visualizations need to be able to be added, removed, and edited in real time.

Second, robots needed to be able to easily identify visualizations associated with themselves. In

order to create these features, we again turned to Reactive Programming. Representing a

visualization as a stream of data allows clients to subscribe to a specific visualization to get

21

updates about when it is added, edited, or removed. This also reduces overhead by only notifying

clients when a visualization changes, instead of the clients polling for updates about

visualizations. Next, we decided that the Visualization Manager would keep track of the

robot-to-visualization associations manually. This too would be a stream, so clients could

subscribe to their own stream of visualizations.

As mentioned in the visualization section, container classes are responsible for taking

data and displaying it to the user. Since a robot can have multiple associated visualizations, we

needed to create a class that would aggregate all the containers for the visualizations associated

with each robot. We called this the Visualization Window. This class displays a panel

behind containers to help contrast the visualizations from the real world, and handles switching

between multiple visualizations. A Visualization Window lives on each tracked robot

object and subscribes to the list of visualizations for that robot. When a visualization is added, it

creates a container for that visualization type and adds it to the scene. Likewise, when

visualizations are removed it deletes the container from the scene.

User Interface

 The user interface (UI) is broken up into several Unity panels on a single Unity canvas.

We chose this method because it makes it easier to interact with the AR elements and to organize

the panels for modification. Different panels have their own functions, from displaying current

visualizations to adding robots to a visualization. We originally wanted to have one class

containing the majority of our helper functions, but when the class needed to be added to the

panels, there were issues with the individual UI components. This led to individual panels having

their own script to determine what and how the content is displayed on the panel. However, most

panels also interact with the UI Manager.

The main component of the user interface is the UI Manager. This is a singleton class

that manages the UI by processing the big decisions and interacting with the Data Manager

and Visualization Manager. The main functions of this class are adding and editing

visualizations, as these functions are spread across several UI screens.

The majority of the Unity panels are dynamic, displaying different elements depending

on what has been previously done. Unity provides dynamic elements through scripting and

22

utilizing prefabs. We chose to use Unity prefabs, as they allow us to merge several game objects

into one, and then replicate that new game object many times. This process is significantly easier

than adding every element individually and provides a level of consistency. For example, when

adding a range policy, every dropdown and text input are in the same spots. Additionally, it

makes it easier to query each prefab for what the user has selected, and to add listeners to

different elements.

Figure 12: Main Screen Menu

 We created a wizard UI for adding and editing visualizations. This provides users with a

precise way of creating and editing while also reducing potential errors. The adding and editing

processes are essentially identical for the user. The first step is to select the type of visualization,

which determines if the user adds policies or data streams in subsequent steps. Next, the user

adds desired robots to the visualization by individually selecting them or hitting “Select All”.

Then, the user can add the data streams or policies. If a user selects line, pie, or bar, they can

then add the number of data streams they want. These data streams are an intersection of the total

data streams of the robots they previously selected. However, if a user picks map or range, they

can add one or more policies. Once a visualization has been added, it can be removed via the

main screen for visualizations.

23

Figure 13: Process for Adding a Visualization

 We also implemented a process for creating tags for robots. This process makes it easier

and faster to add specific groups of robots to visualizations. A user can create a tag that contains

a name and a set of robots. Then, when a user is adding robots to a visualization (whether adding

or editing), the user can select a tag to add the robots under that tag. This will add the set of all

robots the user had selected, including any that were previously tagged. Figure 14 shows the two

screens responsible for the creation and display of tags.

24

Figure 14: Tag UI

 There are a few other features added to the UI to make the application more user friendly.

The first miscellaneous feature is that a user is able to select robots by tapping on them on their

mobile device. Once a user has clicked on a robot, those robots will appear checked when

adding a visualization or creating a tag. This allows a user to add robots to a visualization

without knowing the name of the robot. This feature can be toggled on and off. Additionally, we

found that the map and range indicators could be difficult to see due to their size. Because of

this, we added the ability to remove the background from the indicators when the visualization is

displayed. At the moment this feature is only implemented when a user switches between

visualizations by tapping on a visualization above a specific robot on the mobile device.

Variable Publisher

 The Variable Publisher is a separate application which aggregates data from the

robots within a swarm. As discussed in the design section, this could be accomplished in either a

centralized or decentralized manner. We chose to use the centralized method, where one program

collects data from all the robots, and broadcasts that information to instances of the Dr. Swarm

25

application. We considered allowing each robot to broadcast its own data but decided that the

centralized method was simpler to implement.

 The Dr. Swarm application is designed to accept a JSON message from the Variable

Publisher. JSON is a widely used human-readable data interchange format. Its ease of use

due to the abundance of parsing libraries available for many languages made it a clear choice for

us. Currently, the protocol only encodes the data associated with each robot. In the future, adding

new features could be accomplished simply by adding new tags into each JSON packet.

{

 "variables":{

 "RobotTargetN":{

 "variable1":1.0,

 "variable2":2.0

 }

 }

}

Example of a JSON packet

 Developers can create their own implementations of the Variable Publisher to

use with their own robot swarms. For example, a developer using Robot Operating System

(ROS) could create a Variable Publisher to collect data from ROS nodes. We

implemented a Variable Publisher for ARGoS, supporting C++ and Buzz controllers.

Within ARGoS, a loop function collects relevant data (i.e. robot variables) from the robots,

running either C++ or Buzz controllers. A Transmission Control Protocol (TCP) server runs in

parallel, taking collected data and broadcasting them to any connected clients. Initially we were

going to use User Datagram Protocol (UDP) instead of TCP to make use of UDP broadcasting,

but the TCP client proved easier to implement in Unity.

 The ARGoS Variable Publisher was designed to be plug-and-play, allowing

developers to simply drop the required files into their project and add the publisher loop function

to their ARGoS configuration. Out of the box, it will look for any Buzz controllers and collect all

global data from the controllers. C++ controllers need to extend the

26

PublishableController class, which enables the controller to self-report which data is to

be published. A controller can add the value of a data stream by calling the AddInt,

AddFloat, and AddString methods. These methods take in the name of the data stream and

the corresponding value.

27

Deliverables

This project has many potential applications, and significant potential for future

improvements. The scope of this project was gradually narrowed after conducting research,

brainstorming features, and creating the preliminary design. We identified the four goals below

as essential and focused our efforts on completing them. These goals were successfully

completed over the course of this project.

Goal 1: Gather Data from Many Robots

 From a design standpoint, this goal was the most critical to Dr. Swarm, and was a

potential bottleneck for our application. Swarms can have large quantities of robots, leading to a

large amount of information that needs to be sent from the robots to Dr. Swarm. The large

amount of data provides network latency and leads to low network throughput. While TCP

networks handle packet loss, it is negatively affected by latency. We resolved this by using a

centralized controller and JSON protocol to send information. The centralized controller allows

Dr. Swarm to receive information from one source instead of communicating with many separate

servers.

 For the set up in the NEST Lab, the application needs to be able to handle at least four

sets of information from the robots. While this was not thoroughly tested, we ran several ARGoS

experiments of collective transport and created multiple visualizations with the information

received from the robots. As the experiments ran, there was no significant drop in performance

based on the amount of information gathered or displayed from the four robots. We also ran a

few tests where five robots could transmit information, and we had similar results with the

application successfully running in real-time. The maximum number of visualizations the

application can display at one time is five robots due to Vuforia limitations. With five robots

being able to work, this goal was met.

Goal 2: Provide Intuitive Visualizations Conveying Information about

Swarm Robots to Developers

 We developed four types of visualizations and obtained feedback about the visualizations

from several sources. Our research determined that line graph, pie chart, bar chart, and indicator

28

visualizations would be the most successful in conveying information in real time. A line graph

displays two sets of information in relation to each other. Generally, this is used with the x axis

referring to time. Bar charts allow a developer to estimate current values and compare those

estimates to each other. Pie charts are most useful for showing part-to-whole relationships.

Indicators allow users to quickly display changing data and the state of the swarm.

Additionally, we consulted with swarm developers from the NEST Lab throughout

development to gain iterative feedback about our visualizations. This enabled our visualizations

to become more intuitive. We also iteratively received feedback from Professor Lane Harrison,

an expert in data visualization. Through this iterative development, we have successfully

completed this goal.

Goal 3: Easily Integrate with Existing Swarm Projects

 There is no single set of software or single type of robot that every swarm developer uses,

so we designed our application to be general purpose. This involves being able to track different

types of robots as well as integrate with their software to send data to our application. In order to

track different types of robots, a developer can create a target database with Vuforia. This

database can then be imported into the Unity application and change the image targets on the

game objects. This allows the application to track any type of robot in their swarm.

 Utilizing a TCP server and client, our application can accept data from any type of robot,

software, or programming language. A developer can write a Variable Publisher or use

the one we provided for ARGoS, as described in the Implementation section. This enables the

application to take information from ARGoS, ROS, or any other software. We tested this by

creating two different publishers for ARGoS: a Buzz controller, and a C++ controller. Both were

successful in sending out relevant data to the application.

Goal 4: Allow Compatibility with Different Devices Simultaneously

 This goal has two parts: working with different types of devices (e.g. Android, iOS, AR

headsets), and running simultaneously on multiple devices (e.g. the lab tablet and a staff’s

phone). Unity allows our application to easily port to Universal Windows Platform (UWP),

Android, and iOS. This covers most widely available touch screen devices. Dr. Swarm is unable

29

to port to standalone desktop apps due to limitations with Vuforia. Due to control scheme

limitations of the user interface, the application only works with touch screen devices. We tested

our application using both an iPad and an Android phone. Having the application run on multiple

devices allows for multiple concurrent perspectives of the same swarm experiment. This allows

multiple developers to observe unique data about the swarm. The TCP server and client enables

this to happen with multiple devices.

30

Future Work

 This project had significantly more potential than we could feasibly complete in 28

weeks. We chose to focus on implementing back end functionality, including essential

visualizations and user interface features. This resulted in a strong framework for future projects

to build upon. This section outlines the ideas, features and goals that we determined to be outside

of our scope.

 There were many features that would improve the visualization system in general. First,

we had planned to create a 3D mesh visualization. This visualization would show how data

changes relative to space. The magnitude of the data would be shown in the z-axis. A simple

example of this would be visualizing the heat sensors of each robot in a swarm. If one area of the

room was warmer than the rest, the visualization would show hills and valleys representing

higher and lower temperatures, respectively.

 Another major planned feature was the virtual monitor. Currently, visualizations are

exclusively located above robots. We discussed allowing visualizations to exist elsewhere,

detached from the robots. Users could create a virtual area which acts similar to a computer

monitor, where a number of visualizations could be displayed at the same time. This virtual

monitor could be fixed to a physical location or move around at the user’s behest. This would

allow use of Dr. Swarm without AR as a dedicated diagnosing screen, as well provide a better

location to display visualizations about multiple robots. Some additional features would need to

be added to visualizations to make this workflow feasible, such as support for resizing

visualizations.

 There are also improvements to add to the visualizations themselves. On the front-end,

the visualizations could use additional clarity, such as a title bar for each visualization that could

show the name of the visualization. Some visualizations have keys which associate color to data

being visualized, but others like indicators and line graphs lack this feature. Additionally, some

parts of visualizations, such as axes and text, are difficult to see from far away. Tweaking of font

and object sizes could make the visualizations more readable. Finally, our method to assign

colors to graphical components needs to be reworked. Currently, only robots have a color

associated with them. This was initially random but had to be set to a constant value due to

31

technical limitations relating to Unity’s random implementation and threading. In order to

associate a color to a data stream, we created a function that uses the Golden Ratio in order to

assign a unique color to an undefined number of data streams. This worked quite well for our

purposes, but there are better ways to use color for data visualization. We therefore identified

multiple libraries for assigning color: the Tableau color pallet, ColorBrewer, and Colorgorical.

One of these libraries would need to be chosen and implemented in the future. We also realized

that the color of a data stream was not consistent across visualizations. A system needs to be

implemented which associates a color to each data stream but still be individualized across the

robots.

For the back-end, visualizations internally pass numerical values from the data class to

the container class. This means that any textual data cannot be visualized. We realized that being

able to show text above a robot would be a useful feature, which would require this back-end

change. We encountered situations where restarting the application removes all visualizations,

forcing us to manually recreate the same visualization that we were testing. Allowing

visualizations to be specified through the network would solve this issue. In the JSON packet

sent from the server, a new tag describing visualizations could be added. This way, a swarm

developer could specify new types of packages, such as a manifest file that specifies the

visualizations they want created when connecting the Dr. Swarm application to the swarm. These

visualizations would be created immediately and would save time for users of Dr. Swarm.

The current user interface could use significant visual improvement. Additionally, there

are still a few minor bugs and improvements to be made with the current functionality. This

includes a better method of navigating between tabs and improving the editing process.

Additionally, some screens with similar function and layout have inconsistent cosmetics.

The user interface uses simple raster graphics from the Unity game engine. Changing

graphics makes sharper images with magnification occurring when using larger screen sizes.

Potential improvements are switching to vector graphics or using libraries similar to d3 [11].

Other libraries can allow for the user interface to have more specification into what the

visualizations look like and function.

To make the visualizations and UI better, there are several potential improvements to the

AR aspects of the application. Adding mixed reality (MR) to Dr. Swarm would expand the

32

capabilities of the application. This could allow for the addition of a virtual robot into the swarm

as a control or for it to cause errors. It can also make the visualizations interactive and make it

easier to interact with the physical robots. This would provide an immersive tool, allowing

diagnostic capabilities beyond simple visualizations.

Our initial plan was to implement Dr. Swarm on AR headsets, such as the Hololens [12]

or Magic Leap [13]. However, this was financially unfeasible. The AR headset would give the

user a wider field of view and enable better tracking of the robots. Using an AR headset would

require a compatible user interface. An Xbox controller, or similar hardware, could prove useful

for controlling UI elements.

The limitations of Vuforia are acceptable for the NEST Lab and our preliminary efforts,

but are inconvenient for a general-purpose swarm tool. Changing the AR software would make it

easier to track more than five objects. This could also resolve other issues, such as being able to

increase distance between the robots and the user, targeting smaller objects, and targeting 3D

objects. A new AR software could mean that Dr. Swarm could work with Kilobots.

Our application lacks any formal testing. An in-depth user study that evaluates the

usability and performance of the application could identify specific strengths and weaknesses of

Dr. Swarm. This is most important in ensuring clarity of necessary and relevant information for

the application. Additionally, this would prove the significance and scope of the application’s

uses.

 Finally, the Dr. Swarm application could be integrated with other tools to create a full-

featured swarm development tool. The NEST Lab has created an application to control swarms

in AR and is planning on creating a debugging tool that works in AR as well. Integrating these

three tools together could create a very powerful general-purpose swarm development

application. A suite of tools like this has never been created for swarm robotics. To make this

work, the networking portion of Dr. Swarm would need to be expanded to receive other types of

information from the swarm. The networking would likely be a subsystem common to all three

tools, so it is likely that the network code would be rewritten altogether.

33

Conclusions

 This project was developed to expose the behavior of swarm systems through intuitive

visualizations and assist with troubleshooting swarm applications. A general-purpose diagnostic

tool outside of Dr. Swarm does not exist, making swarm diagnostics a daunting task for swarm

developers. To combat this, we created an application that provides four types of AR

visualizations that update with real-time information from the swarm. Developers can take

information from the application and use it as a starting point to look at the system, beginning the

diagnostic process.

 Throughout our project we learned three key lessons. First, AR allows a unique

opportunity to see relevant information in real-time by overlaying images in the physical world.

This statement is broad, but true to our project. Throughout development, we experienced the

uses and benefits of seeing swarm information in real-time. Second, we learned that reactive

programming enables highly extensible design. This allowed our application to seamlessly

update in real-time without creating latency in the application. Finally, we learned that visually

representing data makes swarm robotics more accessible, especially to non-experts. We are not

experts about swarm robotics, but by creating and using our application, we learned more about

how swarm robotics works, and how exciting the technology is.

34

References

[1] E. Şahin, “Swarm Robotics: From Sources of Inspiration to Domains of Application,” in

Swarm Robotics, 2004, pp. 10–20.

[2] T. Yasuda and K. Ohkura, “Collective Behavior Acquisition of Real Robotic Swarms

Using Deep Reinforcement Learning,” in 2018 Second IEEE International Conference on

Robotic Computing (IRC), 2018, pp. 179–180.

[3] M. Gauci, M. E. Ortiz, M. Rubenstein, and R. Nagpal, “Error Cascades in Collective

Behavior: A Case Study of the Gradient Algorithm on 1000 Physical Agents,” in Proceedings of

the 16th Conference on Autonomous Agents and MultiAgent Systems, 2017, pp. 1404–1412.

[4] F. Ghiringhelli, J. Guzzi, G. A. D. Caro, V. Caglioti, L. M. Gambardella, and A. Giusti,

“Interactive Augmented Reality for understanding and analyzing multi-robot systems,” in 2014

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 1195–1201.

[5] A. G. Millard et al., “ARDebug: An Augmented Reality Tool for Analysing and

Debugging Swarm Robotic Systems,” Frontiers in Robotics and AI, vol. 5, Jul. 2018.

[6] Dey, Arindam, Mark Billinghurst, Robert W. Lindeman, and J. Edward Swan, ‘A

Systematic Review of 10 Years of Augmented Reality Usability Studies: 2005 to 2014’,

Frontiers in Robotics and AI, 5 (2018) <https://doi.org/10.3389/frobt.2018.00037>

[7] W. Hoenig, C. Milanes, L. Scaria, T. Phan, M. Bolas, and N. Ayanian, “Mixed reality for

robotics,” in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference

on, 2015, pp. 5382–5387.

[8] Open Source Robotics Foundation (n.d.). ROS.org | Powering the world's robots. [online]

Ros.org. Available at: http://www.ros.org/ [Accessed 24 Apr. 2019].

[9] B. S. Le, V.-L. Dang, and T.-T. Bui, “Swarm Robotics Simulation Using Unity,” Faculty

of Electronics and Telecommunications, University of Science, VNU-HCM, Vietnam, 2014.

[10] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Mathews, E.

Ferrante, G. D. Caro, F. Ducatelle, M. Birattari, L. M. Gambardella, and M. Dorigo, “ARGoS: a

35

modular, parallel, multi-engine simulator for multi-robot systems,” Swarm Intelligence, vol. 6,

no. 4, pp. 271–295, 2012.

[11] Bostock, M. (2019). D3.js - Data-Driven Documents. [online] D3js.org. Available at:

https://d3js.org/ [Accessed 24 Apr. 2019].

[12] Microsoft (2019). Microsoft HoloLens | Mixed Reality Technology for Business. [online]

Microsoft.com. Available at: https://www.microsoft.com/en-us/hololens [Accessed 24 Apr.

2019].

[13] Magic Leap Inc (2019). Magic Leap. [online] Magicleap.com. Available at:

https://www.magicleap.com/ [Accessed 24 Apr. 2019].

