
Oil Detection Sensor

Oil Detection Sensor

Oil Detection Sensor

Major Qualifying Project Report completed for a
Bachelor of Science in Electrical and Computer

Engineering degree at
Worcester Polytechnic Institute, Worcester, MA

Submitted to: Professor John Orr

Submitted By:
 Austin R. Alibozek
 David H. James

April 30, 2015

 1

Oil Detection Sensor

Table of Contents

ACKNOWLEDGEMENTS:... 4

TABLE OF FIGURES: .. 5

ABSTRACT: ... 6

INTRODUCTION:... 7

BACKGROUND: ... 11

1. OIL FURNACE .. 11
2. POWER SOURCE: .. 13
2.1 LOW POWER MODE: ... 14
3. WIRELESS TRANSMISSION: .. 15
3.1 ZIGBEE: .. 15
3.2 WI-FI: .. 17
3.3 BLUETOOTH: .. 18
4. SENSORS: ... 20
4.1 PIEZOELECTRIC VIBRATION SENSOR: .. 20
3.2 MICROPHONE: .. 21
4.2 ELECTRICITY SENSING: ... 22
5. PROCESSOR: .. 22

PRODUCT GOALS: ... 24

1. MARKET COMPETITOR: ... 25
2. CONNECTION: ... 26
3. LOW POWER AND LONGEVITY: ... 27

METHODOLOGY: ... 27

1. ORIGINAL DESIGN: ... 28
2. CHANGES TO ORIGINAL DESIGN: ... 30
3. BLUETOOTH CONNECTION: ... 31
4. PCB DESIGN: .. 32
5. ANDROID APPLICATION: ... 33
6. CASE: ... 34
7. USER AND INSTALLATION GUIDE: ... 35
8. SENSOR CODE BUILD: ... 35
9. CODE SIMPLIFICATION:.. 37

COST AND BUDGET: ... 37

TESTING: .. 38

1. DISCRETE COMPONENTS: .. 38
2. PCB ... 41

CONCLUSION: ... 43

 2

Oil Detection Sensor

FUTURE ADDITION FOR ANOTHER MQP TEAM: .. 44

REFERENCES: .. 45

APPENDIX A: ... 46

HARDWARE CODE: ... 46

APPENDIX B (SCHEMATICS): .. ERROR! BOOKMARK NOT DEFINED.

APPENDIX C (PCB BOARD): ... ERROR! BOOKMARK NOT DEFINED.

APPENDIX D (CASE): .. ERROR! BOOKMARK NOT DEFINED.

APPENDIX E (USER MANUAL): ... 55

 3

Oil Detection Sensor

Acknowledgements:

 We would like to thank the following people and departments for the support and

help that they provided throughout the building, designing, and creating a prototype of

our Oil Detection Sensor.

John Orr: Project Advisor and ECE Professor

Thank you for the help with ideas during the design phase, brainstorming solutions to

problems that came up along the way, and providing us with helpful feedback throughout

the project.

Joe St. Germain: RBE lab advisor

Thank you for the great tutorial on how to use UltiBoard so we were able to design and

order the final PCB prototypes.

Robert Boisse: ECE shop

Thank you for all the help ordering all the needed parts for the project. It was also very

helpful when it came time to solder the very small surface mounting chips and populating

our PCB.

Department of Electrical and computer Engineering

We would just like to thank them for the opportunity and challenge with coming up with

an idea of how to use a sensor in the usage of oil being burnt in a house hold that uses an

oil burning furnace to heat their home during the winter.

We would also like to take a moment and thank everyone that went to the presentation for

the Energy related IQP and MQP’s. The great questions asked, the feedback that was

given, and new ideas where very helpful with designing and coming up with future ideas

that could be added by a upcoming MQP team.

 4

Oil Detection Sensor

Table of Figures:
1. Figure #1: Oil vs. Gas Price………………………………………………..8
2. Figure #2: Winter Heating Forecast……………………………………...9
3. Figure #3: Average Heating Bill By Fuel Type………………………….9
4. Figure #4: Oil Tank Fuel Gage…………………………………………...10
5. Figure #5: Oil Furnace……………………………………………………12
6. Figure #6: Example of Star Network…………………………………....15
7. Figure #7: Example of a Tree Network…………………………………16
8. Figure #8: Example of a Mesh Network………………………………..16
9. Figure #9: Wireless Network Technologies…………………………....19
10. Figure #10: Piezoelectric Vibration Sensor……………………………21
11. Figure #11: Electret microphone………………………………………..22
12. Figure #12: Nest Thermostat ……………………………………………26
13. Figure #13: Design Process Flow Chart……………………………….29
14. Figure #14: Hardware Block Diagram………………………………...30
15. Figure #15: Populated Final PCB………………………………………33
16. Figure #16: Smartphone software block diagram…………………….34
17. Figure #17: Parts List and Cost…………………………………………38
18. Figure #18: Test on an Oscilloscope……………………………………39
19. Figure #19: Phone Application Screen Shot and Sensor…………….43

 5

Oil Detection Sensor

Abstract:

This project involved the design and implementation of a system to report to a

homeowner his or her oil consumption in an easy to understand manner. A sensor and

phone application were designed, built, and interfaced to track the run time of the furnace

and process and report that data to the user on a graph. Energy consumption is a leading

topic of discussion for homeowners and given the current economic climate, households

are always looking for new and innovative ways to cut costs.

The sensors that has been designed, reports back to the application when the

furnace turns ON or OFF. This data is then sent to an Android application we designed

by means of Bluetooth LE where it is then processed and graphed. Bluetooth LE falls

under the IEEE 802.15.3 Wireless Personal Area Network (WPAN) Standard. The graph

of the data shows the daily oil usage of the furnace on the Y axis and the date on the X

axis so homeowners can see different trends over time. The purpose of this graph style

was so the homeowner could see his or her oil consumption trends and see how changes

in the weather or temperature set on the thermostat affect the oil usage of his or her

furnace.

 6

Oil Detection Sensor

Introduction:
 The idea of coming up with ways to reduce one’s oil consumption has always

been a topic to save money. In recent years with oil prices rising and hitting record highs

it has become a more popular subject. For the common homeowner in the Northeast,

where they generally experience a colder climate, these rising oil prices have a very

pronounced effect.

“The group said the national average cost to heat a home with oil this winter will

be $2,593, up from $1,962 last winter. Families in cold-weather Northeast states will be

hit even harder.” According to an article published earlier this year from USA Today,

you can see that the cost of heating a home with heating or fuel oil has gone up from last

year.

Naturally homeowners are trying to get the best deal possible. With almost half

of Massachusetts home owners using oil burning furnaces to heat their homes there was

an opportunity to design some type of product that could possibly help homeowners

reduce these costs.

In recent years we have seen a greater focus placed on energy usage reduction in

the United States, and around the world. This can be seen in the recent successes of the

Toyota Prius, a hybrid car, and Tesla Motors, a young company specializing in electric

vehicles. Furthermore, we have seen great progress in renewable resources, specifically

solar and wind technologies. The growing concern with this topic can be result of a few

factors. The first is the rising price of oil worldwide. This has affected gasoline and oil

prices and has helped to bring the idea of energy conservation to the forefront of people’s

minds. Here in Figure 1, we can see how the price of heating oil has also risen over the

years of 2000 to 2010 compared to its closest competitor, natural gas. Heating oil today,

in the Massachusetts area, is on average around $3.60 per gallon, whereas natural gas is

around $2.42 for compressed natural gas. The second is the current economic situation,

with the United States having gone through a recession that has affected people’s

livelihood. While the recession is now over, this has caused many people to try to save

money whenever possible, energy bills included. The third reason is environmental

preservation. In recent years the fear of climate change has led to an increased awareness

 7

Oil Detection Sensor

of energy usage and the effects on the planet. While many homeowners understand these

reasons to try and conserve energy, not as many have the tools to help them do so.

Figure #1: Oil vs. Gas Price

Below in Figure 2, you can see what the heating forecast for the year is going to

be. Within the graph you can see how Massachusetts is compares to New England and

the United States as a whole. The factors that went into the predictions for this graph

were supply constraints that cause the price of fuels to rise, natural gas constraints, and

winter electricity prices are expected to increase across all utilities. In Figure 3, the graph

clearly depicts the average bill spent on heating ones home over the past six winters for

different fuel types. The graph shows that heating oil is much more expensive than

natural gas or electric heating systems.

 8

Oil Detection Sensor

Figure #2: Winter Heating Forecast

Figure #3: Average Heating Bills by Fuel Type

Electric and natural gas furnaces have the ability to be able to help homeowners

track their energy use more easily thanks to meters outside the house, but oil furnaces do

not have an equivalent. Homeowners with oil furnaces often rely on a small gauge on the

oil tank, as well as a projected energy use given to them by the oil company to monitor

the energy use of their furnace. Figure 4 displays an example of the gauge that

imprecisely displays your oil level making it hard to track how much oil has been used.

Oil furnaces are generally older technology that is not being phased out at fast as some

 9

Oil Detection Sensor

would like. The availability of natural gas still is not available everywhere in the

country, only being used by approximately half of the residential homes in the US.

Figure #4: Oil Tank Gage.

Being the “old way”, oil furnaces leave room for these homeowners to

miscalculate their energy use on a daily basis, which over time can amount to large

discrepancies between their projected energy use, and the actual amount used. The goal

behind this project is to produce a product for the average homeowner to monitor their oil

consumption throughout a given period and use this information to reduce their carbon

footprint on the environment and reduce financial and energy waste. The sensor should

be able to monitor the oil usage of the furnace, and allow for this oil usage information to

be presented to the homeowner in a clean and understandable format.

 10

Oil Detection Sensor

Background:
One of the fundamental aspects for this project was to learn how an oil furnace

functions. As this project is aimed at sensing when an oil furnace is turned ON and OFF,

we must understand in detail how a furnace works. Knowing the workings of an oil

furnace should allow the team to choose the best way to sense the furnaces ON or OFF

state.

1. Oil Furnace
One of the first and most important controls in a furnace is the thermostat. The

thermostat is a very important control in a heating system because it turns the furnace on

and off. There are a few different kinds of thermostats, but for the purposes of their

integration into a heating system, they all work fairly similarly. They allow the user to set

a desired temperature for the house, and once set, the thermostat will attempt to keep the

temperature in the house at this temperature by switching the furnace on and off. The

temperature range can be adjusted on some models to keep from the furnace short

cycling, or turning on and off very often. For example, on some thermostats the user can

adjust how many degrees the temperature of the room can differ from the desired

temperature. The thermostat controls the furnace electronically with an on and off signal.

This is most often done using a relay between the thermostat and the furnace itself,

although it is theoretically possible to use a transistor, such as a MOSFET or BJT instead,

allowing the thermostat, a relatively low power circuit to control the furnace, which, by

comparison, uses much more power.

Once the furnace is given the signal to burn the oil from the thermostat, the pump

on the furnace turns on and starts pumping oil from the tank through a spray nozzle and

into the combustion chamber. Every spray nozzle is rated for a certain flow rate i.e. .85

gallons per hour. This constant flow rate for the spray nozzle means that the oil used by a

furnace is linearly related to the time it is burning oil. This is a very important

characteristic to keep in mind when developing a sensor to track oil usage of a furnace.

When the furnace is on, the pump forces oil through the spray nozzle into the

combustion chamber. In this combustion chamber, a fire occurs which passes the heat

through a heat exchanger to heat either air or water. In a forced air system, there is a fan

 11

Oil Detection Sensor

or blower that blows hot air from the furnace throughout the house, while in a radiant

heat system, there is a pump that circulates hot water through a series of radiators in the

house. While these systems have some major differences in their heat delivery, for the

purposes of this project they are similar enough to treat the same. The diagram below

shows a forced air system.

Figure #5: Oil Furnace

Apart from these parts of the furnace, there are also furnace controls, which are

responsible for preventing a buildup of unburned atomized oil in the combustion chamber

without igniting, and also responsible for limiting the temperature of the furnace to

prevent heat damage. The prevention of this unburned atomized oil in the combustion

chamber is handled by either the stack control on older furnaces, or on newer furnaces, an

infrared flame sensor. Both of these detect the presence of a flame when the oil is being

sprayed into the combustion chamber, and if no flame is present, will stop the flow of oil.

This successfully prevents a buildup of unburned atomized oil in the combustion

chamber, thus preventing a possible explosion. The second control is the limit switch.

The limit switch has multiple purposes. The first is that it prevents the blower from

 12

Oil Detection Sensor

turning on too quickly when the furnace first turns on, in order to prevent cold air being

circulated throughout the home. The limit switch also has an upper limit, which turns the

burner off if the temperature in the combustion chamber reaches the upper temperature

limit. In this case, heat may still be being delivered to the house despite the furnace not

burning any fuel.

There are multiple indications to an observer that the furnace is on. Two of the

most obvious indications are that the furnace makes noise, and vibrates. This is mainly

due to the aforementioned fuel pump and blower. Another observable change when most

oil burners turn on is that the draft regulator opens up to some degree. The purpose of the

draft regulator is to regulate the draft over the fire in the combustion chamber. If there is

too much draft, there ends up being some heat waste, while if there is too little draft, the

fuel may not burn completely thus wasting fuel, thus the draft regulator must be

calibrated to each individual furnace. This ends up resulting in a different amount of

measurable change in the draft regulator from furnace to furnace, with some homeowners

reporting that their draft regulator hardly moves at all.

2. Power Source:
The power source that was needed for the choice of the system needed to be easily

accessible for a “do it yourself” homeowner. The options were to use alkaline batteries,

hardwire the sensor to the furnace, or plug the sensor into a wall outlet. With the thought

of ease of installation in mind the best choice for power supply can be narrowed down to

a wall outlet or alkaline batteries. Knowing that there is a possibility that the homeowner

may not have an open outlet near the furnace, alkaline batteries become the best choice to

keep from having a professional hardwire or install an outlet.

For safety reasons this is also the best choice. There are 120 AC voltages running

thought a wall outlet in your home and unless you are a trained electrician this could be a

very dangerous situation for someone trying to hardwire the sensor to the furnace. Using

batteries may also have the benefit of drawing in more customers because of the ease of

installation. With these factors it also made an easier decision to choose battery. One

advantage to non-rechargeable batteries that was not identified is the ability for the user

to use rechargeable batteries in the device instead. While this would end up increasing the

 13

Oil Detection Sensor

cost to the user, it remains an option for those customers who would like to use

rechargeable batteries.

2.1 Low Power Mode:

There are many different techniques that can be used to design a low power

circuit. One of the most effective and simple ways to reduce power consumption within a

circuit is to reduce the frequency of the digital circuits within the circuit. This helps to

reduce the power consumption for two reasons. The first reason is that there is a certain

amount of energy used every time a CMOS transistor transitions between the high and

low states, thus if the frequency with which this occurs is reduced, less power is being

consumed. The second reason is that the supply voltage of digital circuits using CMOS

transistors can usually be lowered when the frequency is lowered. This process of setting

the operating frequency of a digital circuit below the normal operating frequency is

known colloquially as “underclocking” and can be an easy way to reduce the power

consumption of a circuit if the normal performance of the digital circuits is greater than

the performance required by the user.

Another simple way to reduce power is to have a sleep mode on the device.

When a device can go into sleep mode it consumes much less power. In this application,

this may be very plausible because there will only need to be transmission of the data

when the furnace starts up and shuts off. This is a pretty basic technique, the device isn’t

always running at full power, therefore it is not using as much power.

 One alternative to creating a low power circuit is power harvesting. What this

actually means is the circuit just draws power from somewhere else in the environment.

The circuit can derive energy from external sources such as thermal energy, wind energy,

salinity gradients, and kinetic energy. This captured energy can be stored for small

devices. Energy scavenging can provide a very small amount of power for low-energy

electronics. This is possible for our design by the choice of sensor that we selected in the

piezoelectric sensor. The piezoelectric sensor creates a voltage as it vibrates back and

forth. This is one way in the circuit that we might be able to harvest some energy. When

the furnace turns on the sensor would vibrate creating the voltage. Since we believe that

we only need to transmit data when it turns on this new voltage created from the

 14

Oil Detection Sensor

vibrations could possibly be used to supplement the power used from transmission of the

data.

3. Wireless Transmission:

3.1 Zigbee:

Zigbee is a fairly new short-range wireless network with a possibility for extremely

low power consumption. ZigBee was conceived in 1998, it was then standardized in

2003, and revised in 2006 (IEEE 802.15.4 International Standard). The general range for

a Zigbee personal wireless network is 10m to, roughly 20 meters. Zigbee is based on

low-power digital radios. Although Zigbee has a low range transmission, it is capable of

long rage transmission. It is able to do this through a different array of networking

techniques outlined below.

 This type of wireless network is usually used for low data transmission. The

applications for Zigbee have a wide range from simple wireless applications such as light

switches to industrial equipment with short range and low data transfer. This technology

tends to be a simpler and more cost efficient than other wireless personal area network

(WPAN) choices out on the market. Also it has lower power consumption for longer

battery life making Zigbee a good choice for wireless control or monitoring applications.

 The ZigBee network layer natively supports both star and tree networks. These

are the type of techniques that can be used when the data may have to be transmitted over

longer distances. Star networks are shaped like their name, a star.

Figure #6: Example of Star Network

 15

Oil Detection Sensor

Star networks are one of the most common computer network technologies. In its

simplest form, a star network consists of one central hub or computer, which acts as the

main transmitter. This is basically the center point where all the other nodes connect; this

central node provides the common connection point to all the other nodes. In star

topology, every computer workstation is connected to a central node called a hub.

Figure #7: Example of a Tree Network

Tree topology is structured like a tree in the real world. The main idea behind the

tree structure is it has a root node or the main node. All nodes off of this root node are

intermediate nodes and can be called the branches and leaves. The root node is the main

node of the structure, the branches are the nodes in between, and the leaves are the nodes

that are last in line.

Figure #8: Example of a Mesh Network

 16

Oil Detection Sensor

A mesh network can be designed using a flooding technique or a rerouting

technique. When using a routing technique, the message is propagated along a path, by

hopping from node to node until the destination is reached. A mesh network whose

nodes are all connected to each other is known as a fully connected network.

For our situation with using ZigBee form of transmission would be simple with

very few nodes. The most logical form would be the Star Network with our sensor

device being the central hub connecting and transmitting its info to two to three devices

such as cell phones or computers. ZigBee is used for much longer range than really

necessary for the idea at hand. One benefit ZigBee technology has is that it has the

capability of being lower power than Bluetooth or Wi-Fi networks.

3.2 Wi-Fi:

Wi-Fi is a local area wireless network technology. A Wi-Fi network allows the

transfer data to the Internet or other devices on the bands from 2.4 GHz to 5 GHz radio

waves (which falls under the IEEE 802.11 radio standards). To connect to a Wi-Fi Local

Area Network, a device needs to be equipped with a wireless network interface controller.

The combination of device and interface controller is called a station that shares the data

through a single radio frequency communication channel. All stations within range

receive transmissions on this channel. The hardware does not signal the user that the

transmission was delivered. A carrier wave is used to transmit the data in packets,

referred to as Ethernet Frames. Each station is constantly tuned in on the radio frequency

communication channel to pick up available transmissions.
 Wi-Fi networks have limited range. A typical wireless access point with a stock

antenna might have a range of 35 m indoors and 100 m outdoors. Due to reach

requirements for wireless local area networks (LANs) applications, Wi-Fi has fairly high

power consumption compared to some other standards. Technologies such as Bluetooth

provide a much shorter range between 1m to 60m and so in general have lower power

consumption. Other low-power technologies such as ZigBee have a possibility of a fairly

long range when connecting networks, but much lower data rate. The high power

consumption of Wi-Fi makes battery life in mobile devices a concern. See figure # 6 for a

comparison of the differences between the wireless networks.

 17

Oil Detection Sensor

 Using a Wi-Fi connection to transfer the data from the sensor may be the best

option in the event of posting the information on a web page. Since Wi-Fi tends to deal

with the Internet this would be the easiest way to transfer data. In this case if it is decided

that the information should be posted to a web page it will be able to be accessed by any

device with the Internet capability. The downfall to this is when trying to keep power

consumption to a minimum will be difficult because Wi-Fi has the highest power

consumption.

3.3 Bluetooth:

Bluetooth technology has made its strides in the tech market for short-range wireless

data transfer. Bluetooth is a wireless technology standard for exchanging data over short

distances using short-wavelength radio wave frequencies from 2.4 to 2.485 GHz (IEEE

802.15.1 International Standard). The signal frequencies come from fixed or mobile

devices to create a Personal Area Networks. Bluetooth is capable of a transmission range

of 1m to roughly 10m. This is in the globally unlicensed but not unregulated Industrial,

Scientific and Medical 2.4 GHz short-range radio frequency band.

A master Bluetooth device can communicate with a maximum of seven devices. The

network topology standard for a standard Bluetooth device is a star type network. The

number of device connected should not be of concern with the situation at hand, although

seven devices are able to connect, our design should only be connecting to one or two

devices most likely being connected to the oil burning furnace detection sensor. The

devices can be switched between the role of master and the slave. At any given time,

data can be transferred between the master and one of the other devices. The master

chooses which slave device to address; typically, it switches rapidly from one device to

another in a round-robin fashion.

The master is the one that chooses which slave to address and send data. While the

slave has the role of listening and receive the data being transmitted from the master unit.

The master has a slightly lighter load than the slave. Being a master of seven slaves is

possible; being a slave of more than one master is difficult but would have no relevance

in the task of the oil burning furnace detection sensor.

 18

Oil Detection Sensor

Figure #9: Wireless Network Technologies

 19

Oil Detection Sensor

4. Sensors:

4.1 Piezoelectric Vibration Sensor:

When it comes to sensing the state of the furnace there are a variety of techniques and

sensors available to use. As mentioned previously, when an oil furnace is on, it creates a

significant amount of vibration. This is one possible area to design a device around. One

of the most common vibration sensors is the piezoelectric vibration sensor. This sensor

works by using an unconstrained mass on one end, and a crystal capable of producing a

piezoelectric effect, such as quartz, on the other end. The piezoelectric effect refers to an

effect observed when pressure is applied to certain special materials. These materials

transform the mechanical energy of pressure into electrical energy. The sensor in this

case, works by allowing the mass to pivot in one dimension, and as this mass pivots

pressure is applied to the crystal, which generates electricity. In the case of a vibration,

the mass would repeatedly move back and forth, causing the crystal to give an oscillating

output. The sensitivities of these sensors are typically measured in volts per unit of

acceleration due to gravity, or V/g, with the sensitivity being highest at the resonant

frequency of the sensor. Depending on the mass, these sensors can be configured to have

resonant frequencies as low as low as 20 Hz or upwards of 100Hz. This sensor would

most likely require tuning the mass in order to get the strongest signal at the resonant

frequency of the furnace.

 20

Oil Detection Sensor

Figure #10: Piezoelectric Vibration Sensor

3.2 Microphone:

In addition to the vibration generated by a furnace, noise is also generated. This

could also provide a simple method for creating a product to sense the state of the

furnace. This would require the use of a microphone. While there are many types of

microphones, dynamic, condenser, and ribbon being just a few, the type with the most

relevance to this project is the electret microphone. Electret microphones are relatively

small and cheap to produce, with one of their major uses being in cell phones. The

sensitivities of these devices are often measure in volts per Pascal, or V/Pa, and they can

have frequency responses as wide as 10Hz to 30kHz, wider than the human range of

hearing. Some drawbacks to these microphones are that they can have high noise floors,

high distortion, and uneven frequency response. While the last 2 drawbacks do not really

concern this project, the first will have to be taken into account if an electret microphone

is used, though the noise floor does vary from microphone to microphone.

 21

Oil Detection Sensor

Figure #11: Electret microphone

4.2 Electricity Sensing:

The third and final sensing technique to be discussed is a purely electrical sensing

technique based around the thermostat. This technique would most likely not work as

intended though, because while the signal from the thermostat may be telling the furnace

to stay on, the stack control, or limit switch on the furnace could turn the furnace off

despite the signal from the thermostat. On the other hand, this technique wouldn’t require

a “sensor” in the traditional sense, as our device would simply connect electrically to the

thermostat. One other benefit to this technique is that it might be possible to draw power

directly from the thermostat.

5. Processor:

One of the most important factors when making a low power system is to design

something with as few components as possible. With this in mind, it was determined that

the sensor system needed a microprocessor, because without it, the functionality would

be severely compromised. For example, the software side of the project necessitated that

the sensor send out a timestamp when the state of the furnace changed. This would not

have been done as easily without the use of a microprocessor and most likely would have

ended up using up more power and space if done purely in the analog domain. Another

important factor in the design was that users be able to use their smartphone normally,

meaning the smartphone would not always be within range to the sensor. This

necessitated that the usage data be kept on memory in the sensor until the smartphone

 22

Oil Detection Sensor

came back into the range of the sensor, which once again could be implemented much

more easily digitally.

 For our choice of microprocessor, we went with the MSP430 family of

microprocessors. There were two main reasons for this choice. The first reason was

familiarity. Both students working on this project have experience programming this

family of processor, which should allow for quick development of the software as well as

a more reliable product at the end of prototyping. The second reason for choosing this

family of microprocessors was the power draw. In a datasheet provided by TI, a

thermostat built using the MSP430 microcontroller used was found to have a battery life

of over 15 years on a single AA battery. While our application will most likely use more

power, this is encouraging because that battery life is an order of magnitude larger than

the desired runtime of 1 year.

 23

Oil Detection Sensor

Product Goals:
 The main goal of our oil detection sensor was to design a functional, cheaper

alternative to compete with expensive thermostats as a way to track and try to reduce the

amount of oil that is being burned in older less efficient oil burning furnaces. As the

team’s sensor is not an alternative to a thermostat, it is an addition or another option for a

homeowner that allows them to track how much heat fuel has been burned in a given time

frame. With a product like this it would be a helpful tool for any home and smart phone

owner to try to reduce the amount of money that they are spending to heat their home by

just being smarter about monitoring when to run their furnace.

For our product to be successful there are some major requirements that must be

fulfilled. While all of these requirements may not be able to be fully fulfilled

simultaneously, the goal is to balance all of them to create the most enticing product for

the consumer. The following is a list of our product requirements:

• Easy to use

• Affordable

• Durable

• Long Battery Life

• Low power

• Accurate

 The first product requirement is that it is easy to use. Due to the fact that the target

market for this product is the average homeowner, it is important to deliver a sensor

system to them that can be easily installed and used. Making it as simple as possible to

understand the product design is so important. This would fully extend the information

that is presented to them. The user interface of the app must be simple too while being

able to get the information they desire quickly and easily.

The second product requirement is that it is affordable. This is a completely

relative term depending on the market, but for this product in a market where the average

cost of heating a home for the winter in the Northeast region of the United States is

expected to jump to over $2500, the target MSRP is to be under $75 with the application

 24

Oil Detection Sensor

included. Relative to the price of heating their homes, this would represent a small

amount of money, and allow customers to save money in the future.

 The third product requirement is durability and longevity. Ideally, the sensor

system will last 5 years, with 3 years being the absolute minimum. This is important

because the combination of the price and the lifespan of the device can impact the

perception of value to the customer. No matter how cheap the device is, if it has a short

lifespan, the value to the consumer is immediately reduced. On the other hand, no matter

how durable and long lasting the device is, if it is priced too high, then the value is also

reduced.

 The fourth requirement is low power. In an ideal world, the sensor would be able

to scavenge some power from the surrounding area, but for this project, it seems like

battery power is inevitable. With battery power, the goal is a battery lifespan of at least

one year for the prototype, hopefully longer than that though.

 The final product requirement is accuracy. This is very important because if the

product is not accurate, it quickly becomes useless. At this point we hope to be 98%

accurate on the timescale of one month. That is, the fuel usage we claim to have detected

should be within 2% of the actual fuel used by the furnace.

1. Market Competitor:
There are multiple competitors on the market in the form of smart thermostats.

One that is the most similar, in terms of functionality to the teams Oil Detection Sensor is

the Nest Thermostat. As the main competitor to the Oil Detection Sensor the Nest

product is a $250 smart thermostat depicted below in Figure 9. The Nest has the ability

to connect to a phone, set a schedule, track your energy use, as well as set temperature

wirelessly from wherever you are. This is different than the teams Oil Detection Sensor

because the sensor is not a thermostat and does not have the ability to charge the

temperature setting. The sensor is designed to track the furnaces run time and display the

oil usage for the home owner to decide when they want the furnace running.

The major differences with our product is the fact that you would have to

manually adjust the thermostat since our product is not attached to the thermostat at all,

 25

Oil Detection Sensor

but attached to the furnace itself. Where it does have the possible benefit of being much

cheaper would be through its simplicity and zero cost for installation. With the

competitor, Nest, it is recommended that your heating and cooling professional install it,

which would cost more because of the installation bill. Our product is installed by simply

attaching the housing of the sensor to the housing of the furnace with the use of magnets

that will be provided.

Figure #12: Nest Thermostat

Our product has the ability to connect with the homeowner’s smart phone by

using the Bluetooth certification standard (IEEE 802.15.1), which falls under the

Wireless PAN standard (IEEE 802.15). This allows the homeowner to access the data

whenever they please and whenever they are within range of the unit. This can be looked

at as a benefit or hassle. It would be beneficial because the application is not always

running along with always wasting battery trying to receive new data throughout the day.

2. Connection:
As previously stated the smart phones connected to the sensor through Bluetooth

Low Energy (LE) and should be able to collect the new data that has been stored on the

MSP430 chip on the sensor whenever the homeowner pleases. Since Bluetooth devices

are only PAN networks, that means when the smart phone is not connected to the sensor,

 26

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.prlog.org/11989963-nest-thermostat-coupon-nest-thermostat-discount-nest-thermostat-best-price.html&ei=VA7tVNaINqrlsATX9ILIBQ&bvm=bv.86475890,d.cWc&psig=AFQjCNFA7JmlQb0P0wakXi8SLHLPzBhmew&ust=1424908233439203

Oil Detection Sensor

or central hub, and you exceed the range of the Bluetooth antenna, the data that is

collected while away needs to be stored and transmitted at a later time without losing data

points. Once collected the data should be graphed and oil consumption calculated on the

phone application for the homeowner.

Bluetooth LE was built with the idea that the slaves may or may not be connected

to the center at any time. Thus, the network topology of Bluetooth LE lends itself to this

application. The smartphone in this case is the hub of the network, connecting and

disconnecting to the sensor at will, and when connected polling the sensor for the data.

This allows for the user to continue using his or her smartphone normally.

3. Low Power and Longevity:
Bluetooth LE is commonly used within the medical and sports and fitness

accessories. It is more beneficial in our case also because of the lower peak current draw

than normal Bluetooth connection. Low Energy has the benefit of being able to run for

years on batteries, as well as lower implementation expenses, and low idle current draws.

The main goal behind having a system use the lowest energy possible was to

achieve the longest battery life possible. With making the system as simple as possible

the team wanted to be able to use simple AA or AAA batteries for ease of use for the

consumer that would potentially be buying the product. The team ended up choosing 3

AA batteries

Methodology:
In order to design the sensor and the system an assortment of parts will need to be

chosen. The design of our system will have multiple options in the type of sensor, the

different wireless technologies to transmit the information, the type of battery that will be

the best fit for our requirements, and finally the microcontroller. In order to choose these

parts a value analysis will be performed. In the following section our analysis was done

to show which parts may be most suitable for our application in our sensor and system

design.

 27

Oil Detection Sensor

1. Original Design:
In figure 10 below, a flow chart of the design process that the team took for the

approach on the design of the sensor is depicted. This flow chart is what the team had

originally used during the start of the design phase. It was decided that the first step was

to somehow detect the state of the furnace. In this case either the furnace is completely

ON or completely OFF. This made this part easy because of only two different state

changes. Next was figuring out how to store this data locally on the sensor itself. For

this the team used the MSP430 microprocessor to log the time of these state changes and

store them to the MSP’s flash memory. This data then has to be sent from the sensor to a

smart phone. Once the data is received at the smart phone the data needs to then be

processed and displayed in a way that is helpful for the homeowner. In this case the team

went with a graph that can easily display the fuel that is being burned and when that fuel

was burned.

 28

Oil Detection Sensor

Figure #13: Design Process flow Chart.

Low Power
Detect state

change

Graph the
data

Send data to
application

Process data
on

Log time of
state change

Save time on
sensor

 29

Oil Detection Sensor

In figure 11 below, the high-level block diagram shows the process of how the

team went about designing the sensor. This is only the block diagram for the hardware

circuit. Looking closer at the block diagram it shows how the battery is feeding the buck

converter voltage regulator. From there the voltage regulator is taking the 4.5 volts from

the three AA batteries and regulating it down to the desired 3.3 volts that the other

components need to operate. The Piezoelectric sensor detects the state change from the

furnace. There are only two different states in this case, either the furnace is ON or OFF.

From there the signal needed to be amplified before being sent and stored in the

microprocessor. The signal from the piezoelectric sensor should be amplified so the data

is more easily tracked and saved to the microprocessor.

Figure #14: Hardware Block Diagram

2. Changes to Original design:
 Once the original design was created minor changes had to be made to achieve the

performance deemed necessary in our proposal. These minor changes were simple part

swaps due to power requirements not being met. Both the OP amp and buck converter

needed to be changed out due to their relatively high quiescent current. These crucial

parts of the system can be seen outlined in a schematic that has been added at the end in

Appendix B.

The new buck converter and OP amp also came with the benefits that they were

more readily available. These parts were about the same cost as the parts they replaced

as well, so the change had no negative impact on our product requirements.

Microprocessor

Filter and
Amplification

Ci i
Piezoelectric Sensor

Buck Converter

Wireless Circuit

Battery

 30

Oil Detection Sensor

 The resistor values for the OP amp circuit were also changed in order to create a

more suitable gain of 67 for our circuit. This value was chosen because the measured

output voltage of the piezoelectric sensor was roughly 75mV while the ADC on the

MSP430 goes from 0 to 3.3V. With a gain of 65-70, this comes out to roughly 3.3V at the

output, which works great for our purpose. The schematic changes can be seen added in

at the end in Appendix B as the last schematic. Some oscilloscope images from early

stages of test that depict the gain of the system can been seen later on in the testing

section.

 One of the few drawbacks of the current design is that the Bluetooth module that

is in use is only readily available from China. While we were able to locate one in the

United States on eBay, if another is required on short notice it will most likely create

another delay in the development cycle.

3. Bluetooth Connection:
Originally the connection of the Bluetooth module to the smartphone appeared

easy, but unfortunately this turned out not to be the case. Finding a suitable Bluetooth LE

module for our application was fairly simple, but after that the process became relatively

complicated. Interfacing the module with the MSP430 over Bluetooth was more difficult

than we had initially anticipated, but by far the hardest part of the Bluetooth connection

was connecting the application and the module and sending and receiving the data

between the phone and the sensor reliably.

The application development was done in the official Android IDE, Android

Studio in JAVA. Coding the application was very difficult because of the limited

experience we had with JAVA. While other pieces of the application such as the graph

were fairly simple, the Bluetooth side was quite difficult. Initially everything was done

using the older Bluetooth APIs but upon trying this, we realized that we needed to use the

Bluetooth LE API which is much more difficult to use as it uses GATT profiles and other

systems that make serial communication much more difficult. We ended up using another

application that we found the source code for which was a serial communication app, and

modifying it to include the graphing code. This proved fruitful and luckily we got the app

to work properly.

 31

Oil Detection Sensor

There is an app that came included with the Bluetooth module that made

debugging very simple. Initially, we simply established a connection to the module. After

the connection was confirmed, we moved on to interfacing the module with the MSP430

over UART (EIA standard). Once we programmed the MSP430 we were able to send and

receive commands. This was initially verified by turning an LED connected to the

MSP430 on and off using a command sent from the app.

4. PCB Design:
To design the PCB for the first prototype of the project it was decided that the

company Advanced Circuits was the best fit for a simple board that the team needed.

When designing the board it was fairly straightforward by using MultiSim and UltiBoard,

two National Instruments programs that are accessible on the WPI campus. MultiSim is

a very powerful schematic capture and simulation environment for not only students, but

professionals too. UlitBoard is a similar product that goes hand in hand with MultiSim.

What UltiBoard is, is a PCB design environment program that helps accelerate the design

of PCB’s with automated functionality while maintaining precision.

The team used MultiSim to draw up a schematic with all the selected parts.

MultiSim has a wide variety of parts with different layout packages, but unfortunately it

did not have some of the chosen parts for the project build. This made the schematic

drawing and PCB design only slightly more difficult because it required the design of the

part specifically within the program itself. This provided a minor step back in the

finalization of a design within UltiBoard but was quickly overcome with the help of Joe

St. Germain.

Once the schematic was finalized on the MultiSim it was then transferred over to

UltiBoard. Within UltiBoard the team went about designing the layout for the board,

which went smoothly after the tutorial from Joe St. Germain. With the board being fairly

basic, only a two-layered PCB was needed as a finished product. This was also a benefit

to keep the cost of the final product down as well. Below in Figure 15 is the final PCB

when it has been complete and populated with all the components.

 32

Oil Detection Sensor

Figure #15: Populated Final PCB

5. Android Application:
The development of the application is only Android compatible at the present

moment. The application can communicate with the sensor wirelessly and display the

graphically as a visual aid to see when the furnace was running and for how long. The

graph is a line graph showing the oil usage per day, in gallons. The user can adjust the

timescale for the graph as well.

 For developing an Android application we used a program called Android Studio,

version 1.0.2 for Mac OS X. This is an integrated development environment or IDE and

all the programming had to be done in Java. The team originally lacked experience with

Java, but now is more proficient because of the gain of experience through self-taught

trial and error throughout the design of the project.

 The block diagram below shows the function of the application at a fairly high

level. The application retrieves the raw data from the sensor. This will be done over

Bluetooth LE connection to the phone. The raw data is time stamped to display of when

the furnace turned on and off. This data will allow us to calculate how long the furnace

was on for and from there can display the data as a graph on the smartphone. This graph

shows the homeowner their energy usage over time allowing the user to see how much

oil they have accurately burned over the given time scale.

 33

Oil Detection Sensor

Figure #16: Smartphone software block diagram
Another important factor in the software is the calibration of the sensor. As was

documented in the background, furnaces consume oil at a fixed rate when generating

heat, but this rate differs between furnaces because the nozzles differ in ratings. Often

times this rating is not known to homeowners so obtaining this information will need to

be done in a different manner. One of the simplest solutions to this problem is to have a

“calibration period” for the sensor. During this calibration period, the user would fill the

oil tank for the furnace to a known quantity, and the sensor would record the total

duration that the furnace was on while that known quantity was fully consumed. Then,

by having both the duration that the furnace was on and the quantity, the application

could easily calculate the rate at which the furnace burns oil by dividing the total quantity

burned by the duration that the furnace was on. While this approach is simple and

effective, it does have one major drawback and that is that it is fairly time consuming

because the furnace will have to burn through a considerable amount of fuel.

 One of the major hurdles when implementing the application was establishing a

Bluetooth connection. While the documentation for implementing Bluetooth into an

android application is abundant, the same is not true for Bluetooth LE. Thus our

approach was to find working source code for an existing application and modify it so

that the application could work for our needs. These modification mainly revolved

around changing the user interface to include a graph, and then adding in the necessary

code behind the scenes to process the data from the sensor and display it on the graph.

6. Case:

The case for the sensor is a simple acrylic box that encloses the hardware. The

case was designed on the SolidWorks software program on the WPI campus. Once the

design was finalized on the computer the team was then able to bring it over to the

Smartphone

Bluetooth Radio Display

 Energy use
information

Microprocessor

Graph of
energy use

 34

Oil Detection Sensor

Washburn workshop and use the laser cutting to cut out the 6 sides of the enclose. There

is a small cut out on the top of the case where the Bluetooth module is able to stick out

slightly to ensure that there is less obstruction for the antenna. This first prototype of the

case is a little large for a first design. It does have the room to be made smaller but the

team had decided against stacking the battery and PCB because size was not a real

constraint.

In the Design the team discussed a few options and possible problems. With

choosing to attach the sensor and enclose to the furnace via magnets, the first choice was

using magnets, but a worry of the magnetic field disrupting any of the chips on the PDC

board. The other choice for attaching the sensor to the furnace was Velcro. But the

problem of the Velcro absorbing some of the vibrations need for data collection through

the piezoelectric sensor. The final choice was the magnets because the fields in theory

should not disrupt anything.

7. User and Installation Guide:
Since this is product that has the possibility of being sold to the public there is a

user manual and a do it your self-installation guide that has been attached in Appendix E.

This is a quick tip guide for the customer to be able to solve any of the questions that they

might have after purchasing the product. It has a quick layout of how to install the

application on a smart phone as well as install the sensor to your furnace at home. It also

includes a small trouble shooting section were some problems that were encountered

during the design and build of the sensor have been outlined with a solution of how to fix

them.

8. Sensor code build:
With the circuit fully designed and created on the proto-board we could start

moving forward on the software for the sensor. The plan was to break the code into

chunks instead of trying to write all the code at once. This way when problems arose,

finding the problem and debugging it would be simpler. Approaching the code like this

 35

Oil Detection Sensor

also has the benefit of having functional milestones to present to others to demonstrate

progress.

The first goal for the piece-by-piece build was to have the processor and proto

board preform a simple action such as having the board preform an ON or OFF function.

This would be done by turning ON and OFF a few LED lights. This was done by

sending an “R” or “r” and “G” or “g” to the Bluetooth module, which was now added to

our circuit, to turn on or off the Red and Green LED. Upper case letters turned the LED

on while lower case letters would turn the LED off.

The next goal was getting a timer to work. This is crucial because the sensor must

know exactly how much time occurred between furnace cycles. To confirm that the timer

was running correctly the green LED was changed to alternate turning on and off every

second. Along with the visual flashing of the green LED, when the letter “T” was sent

wireless from the phone to the MSP430, the MSP430 would return the number of

seconds that had passed. Initially the timer was only counting 10 seconds at a time, but

eventually it was expanded to count minutes and hours as well. The only problem at this

point was that the time could not be set.

The original idea on how to set the time was to allow the phone to send the

current time to the MSP430 and have the MSP430 keep time. We did accomplish this and

if the “s” character was sent the included app would prompt the user to enter the hour,

minute and second on separate prompt lines, and the MSP430 would keep the real time.

This idea was quickly dismissed once it was time to implement that flash though, as the

amount of memory needed to keep the exact time was too large. Instead it was decided

that the MSP430 would simply count the number of 30 second cycles that has occurred

since the last synchronization with the app.

The ADC code was one of the most time consuming blocks of code that we

encountered during the programming process. The first attempt made to help this process

was to look at example code from ECE 2049, but while the microprocessor used in that

class was also an MSP430, the control registers were different. This meant that more

example code from other sources on the Internet was needed. Eventually, the ADC was

implemented, but only after first implementing it in its own project, and then moving the

necessary code over.

 36

Oil Detection Sensor

A very important part of the build is the flash code. The flash is where the data

will be stored upon capture before sending to the app when it is synced with the sensor.

As of now the flash works. Data can be written to and read from the flash. One of the

difficult parts of implementing the flash stemmed from the fact that data in flash cannot

be overwritten; it must first be deleted first. This, combined with the fact that the flash

must be erased in 512 byte segments at a time, means that overwriting small amounts of

flash is something that should be avoided at all costs. The current flash implementation

only overwrites the flash once the data has been transferred to the phone. This technique

avoids repeatedly expending energy to write and erase the flash.

9. Code Simplification:
A plus to using a smart phone is that it has a much more powerful microprocessor

than the MSP430 and thus can be used to do more of the complex tasks. Because of this

this, we have thought some of our tasks that we are having the MSP430 do now, may

actually be better to have done on the phone. One change is to keep the absolute time on

the application and keep the relative time on the application. By this we mean that the

application would keep the date, while the microprocessor will just count the number of

30-second ticks that have occurred. Once the data is received from the phone the

application will update the time and the number of ticks will be reset to 0 so the sensor

will be measuring from the updated time.

Cost and Budget:
For this project the team went in with the one of the goals to keep costs as low as

we could. With a fairly simple design, a good portion of the work being done on the

homeowner’s smartphone, and a free app development program this proved to be a fairly

easy task.

One point to make on how to keep cost as low as possible when thinking of mass

production is to look at the cost of the parts on a mass scale. During our prototyping

phase we may end up paying slightly more per part simple because the quantity that we

are buying these parts in are. The cheaper the parts used in our prototype, the cheaper the

finished final product to the consumer would be therefore.

 37

Oil Detection Sensor

Below in Figure #17 is a list of parts used with the project and their costs. The

part numbers of the capacitors and resistors were left out because they are not specific

and are interchangeable with other capacitors and resistors of the same value.

Figure #17: Parts List and Costs

Testing:

1. Discrete Components:

 As far as testing goes for the development of the sensor system, many small tests

were performed along the way to ensure that each individual unit of the design was

working. For example tests were set up to test the ADC as well as the UART capability.

While these individual unit test were very important in making sure that everything

worked as intended they will not be discussed in detail in this report. Instead

comprehensive tests, which test the integrity of the whole system, including

communication between different units, will be used to show proper functionality.

 38

Oil Detection Sensor

 One very important unit test was testing the analog parts of the circuit. For the

voltage regulation circuit, not much testing was needed because the circuit was designed

using the schematic provided in the data sheet for the buck converter, which was

previously depicted in the schematic for the circuit. On the other hand, the amplification

circuit was tested and tweaked to meet our needs. Figure 18, below, shows the results of

the amplification circuit. We can clearly see it is bringing the small voltage of about

100mV up to about 4.3V at the output. While this is only a gain of 43 rather than the

theoretical 67.7, we did notice other weird behavior with the circuit, which could most

likely be attributed to some slightly faulty soldering as well as the use of a breakout board

mounted to a breadboard. Another factor, and the most likely one was that there was a

large capacitive effect somewhere in the circuit which was causing the voltage of the

output to stay at a rail for long periods of time. The combination of these factors resulted

in the circuit sometimes sitting at either rail with no input or not amplifying properly.

Nonetheless, when the circuit was not exhibiting this strange behavior it accomplished

the goal of amplifying the voltage from the vibration sensor.

Figure #18: Test on Oscilloscope.

 39

Oil Detection Sensor

 The next test we ran was testing that all the components of the MSP430 software

were working properly. We began by connecting a function generator directly to the

ADC of the MSP430 and connected to the UART ports of the MSP430 using PuTTY, a

serial terminal interface. In this test we would turn the function generator on or off at

random frequencies and amplitudes to try and get an understanding of what what range of

frequencies and voltages the sensor would detect. If the sensor detected a signal change

from on to off or off to on, it would send the most up to date state through the serial

interface to the terminal. We found that anything above 20Hz was detected and that the

minimum voltage necessary to consistently detect the presence of the signal was 1.5V,

which was our original goal in terms of voltage. In terms of the minimum frequency,

while we do not know exactly what frequency a furnace will generate, we can safely

assume there is a significant portion above 20Hz since the hum is audible and the lowest

frequencies humans can hear is 20Hz.

 The second portion of this test was to make sure that the sensor could keep track

of the time in 30-second segments, and write to and read from the flash memory. This

was done by sending a certain character to the MSP430 through UART, which would

prompt the MSP430 to dump the contents of its flash to the serial terminal. This test

worked as intended and confirmed that the data we wanted was being accurately saved

and read from the flash memory.

 The final test was to make sure that the application worked properly. This was

accomplished by making sure that the application could find the device, connect, and

send and receive data, as well as process and graph this data. As previously stated, the

team took an existing open source application and modifying it to our needs for the

development of the application. As such, testing was done in two parts. The first part was

testing the original Bluetooth terminal application and that data could be sent and

received. This was fairly simple as we just replicated our above test, but replaced PuTTY

with this Bluetooth terminal application. This worked as expected

 The second half of the test was to make sure that the application could take data

from the MSP430 and process and form a graph from it. This was done by generating

 40

Oil Detection Sensor

random data in the same format, on the phone and feeding it into the graphing

application. This test was successful as the graph was generated properly.

 The final test of the systems before being placed on the PCB was a

comprehensive test, and unfortunately it failed. The main problem was in the integration

between the sensor and the application. For some reason most likely relating to Bluetooth

LE, random characters were being added to the data being sent from the sensor to the

application. While the sensor could accurately record and send the data, and the

application could accurately process and graph the data, somewhere between the sensor

and the app the data was being corrupted. We are currently looking into this, and feel that

a solution should be fairly simple, but at this time no solution has been found.

2. PCB
The next set of tests involved getting the circuit working on the PCB. The manner

in which we went about these tests was fairly similar to how we did the previous tests,

but unfortunately we did not have time to go as in depth with the tests on the PCB.

The first test that we did was to make sure that the voltage regulator was

delivering the proper voltage to all of the components on the board. This test

unfortunately failed and halted many of the other tests which we would have liked to

complete. The main problem with the power delivery on our circuit board was noise on

the 3.3V output from the buck converter. While we are not exactly sure where this noise

came from, we presume it may have come from the fact that our PCB was fabricated

without using separate layers for the ground and 3.3V planes. This most likely would

have reduced noise considerably, because when using the breadboard, no noise was

exhibited with the same components. We now know for future reference to isolate the

power and ground planes from the rest of the circuit when making a PCB in order to

minimize the noise on both the power and ground traces.

While we weren’t able to revise the PCB and get a new revision delivered, we

were able to filter the noise on the power plane and test other parts of the system on the

breadboard, while being powered by the PCB. This was done by using a 100uF capacitor

across the ground and power planes to eliminate any noise on the breadboard. Once this

was done we were able to confirm some results that had been previously established by

the earlier tests. The first is that the Bluetooth module and the MSP430 were

 41

Oil Detection Sensor

communicating properly and could send and receive data reliably over UART. The

second is that the once again, the data was getting corrupted when being processed by the

application. This meant that we still could not get data to be sent from the MSP430 to our

application to be graphed. While we know the application could graph the data reliably,

we were not able to get the proper data to the application.

 42

Oil Detection Sensor

Conclusion:
Although the team ended up having a few unexpected problems that ended up

prolonging the design process, the project as a whole turned out to be pretty successful.

When it came to debugging the code it ended up being more difficult than we had

foreseen. We ended up trying to find examples and help on the internet, but with

Android Studio being in its infancy, this ended up being relatively difficult. As a project

that we took from the initial concept stage to an almost fully realized product, we are

happy with what we accomplished.

We successfully designed a sensor which could track vibrations and keep a log of

the times when these changes in vibrations occurred. We were also able to create an

application to connect to the sensor over Bluetooth and send and receive data from the

sensor and graph it. There were two areas where we ended up falling short of ours goals.

The first was getting the hardware to work properly on the PCB. This did not happen

because of inexperience with PCB layouts amongst other things. The second area where

we failed to complete our goal was in getting data to reliably be transferred between the

application and the sensor. While this whole project proved to be more difficult than we

had initially anticipated, and we were not able to fully achieve our goals, we are

nonetheless happy with the outcome and how much we accomplished. Figure 18 below

shows what ended up being the final deliverable for the sensor and application for this

project.

Figure #19: Phone Application Screen Shot and Sensor

 43

Oil Detection Sensor

Future Addition for another MQP Team:
 After presenting the project idea and working on it for a few months the team was

able to come up with a couple ideas have come up for future additions. With these ideas

open many new possibilities for growth to take this product to the next level. These ideas

are not all from the team involved with the project some are from the students and

professors who attended the Energy IQP and MQP presentation throughout the year.

 One idea that came up during one of the presentation days was that the sensor

send out an email to the homeowner’s local oil provider to notify them that the tank was

running low. This would be a super helpful and useful addition to add to the product. It

also has the benefit of adding another buying point to the product. The only problem

with the idea is it would have to transfer from Bluetooth to a Wi-Fi form of

communication because of the need of the Internet to send the email.

 One idea that we had originally proposed was the addition to be able to change

the time scale of the graph so that the user had the ability to decide a week, month or

years’ worth of data to view. This is still on the horizon for the extra time during D term

but is lower on the priority list. To add this is just more coding within the application and

maybe a MQP team with more coding experience would find this to be a very doable

addition to add to the product.

 For a final future suggestion would be to minimize the size of the final product

while adding more powerful computing chip with more memory available. As with many

products on the market today, as the new model is released it always seems that they are

getting smaller and more powerful. This is something that could be accomplished very

easily. During the building of the device the team came to notice about half way through

B term that a processor with more flash would have been more beneficial, but the chip

chosen still would work fine. Also the layout of the PCB is not condensed as much as is

could be.

 With these suggestion the team believes that there is definite room for

improvement. There are many more ways to better and make this product more

appealing to a consumer. With these ideas there is at least a good starting platform for

another MQP team to possibly take over.

 44

Oil Detection Sensor

References:
CNG Units Explained. Retrieved April 28, 2015, from http://www.nat-g.com/why-
cng/cng-units-explained/

Household Heating Costs. Retrieved April 28, 2015, from
http://www.mass.gov/eea/energy-utilities-clean-tech/misc/household-heating-costs.html

Inside & out. Retrieved November 12, 2014, from https://nest.com/thermostat/inside-and-
out/#explore-your-nest

Introduction to How to Repair Oil Furnaces - HowStuffWorks. Retrieved September 17,
2014, from http://home.howstuffworks.com/home-improvement/heating-and-
cooling/how-to-repair-oil-furnaces.htm

Levi, M. (2010, June 11). Reducing U.S. Oil Consumption. Retrieved September 22,
2014, from http://www.cfr.org/oil/reducing-us-oil-consumption/p22413

Northeast braces for home heating oil increases. Retrieved September 20, 2014, from
http://abcnews.go.com/Business/story?id=5270588

Ruede, D. Temperature@lert blog. Retrieved October 7, 2014, from
http://www.temperaturealert.com/blog.aspx?CntTagID=f0e3f5dc-cabe-434a-8134-
a13aee22e872

Seeed Growing the Difference. Retrieved September 20, 2014, from
http://www.seeedstudio.com/depot/Piezo-Sensor-MiniSense-100-p-426.html

The Brooklyn Cooperator. (2010, October 19). Retrieved October 7, 2014, from
http://bkcoop.blogspot.com/2010/10/natural-gas-vs-heating-oil.html

Uses of Natural Gas. Retrieved September 17, 2014, from
http://geology.com/articles/natural-gas-uses/

 45

Oil Detection Sensor

Appendix A:

Hardware Code:
/* Example code demonstrating the use of the hardware UART on the MSP430G2553
to receive
 * and transmit data back to a host computer over the USB connection on the
MSP430
 * launchpad.
 * Note: After programming it is necessary to stop debugging and reset the uC
before
 * connecting the terminal program to transmit and receive characters.
 * This demo will turn on the Red LED if an R is sent and turn it off if a r
is sent.
 * Similarly G and g will turn on and off the green LED
 * It also transmits the received character back to the terminal.
 */

#include "msp430g2553.h"
#define LED0 BIT0
#define LED1 BIT6
#define ON 1
#define OFF -1

void UARTSendArray(unsigned char *TxArray, unsigned char ArrayLength);
void flashSave(signed long int elapsed);
void readFlash();
void clearFlash();
void ConfigureAdc(void);
char* itoa(long value, char* result, int base);
void write_SegC (long fValue);
void copy_C2D (void);
void erase(void);

long fValue;
char *Flash_ptrC = (char *) 0x1040;
char *Flash_ptr = (char *) 0x1040;
static unsigned char data;
static unsigned int resolution = 30;
static long int ticks=0;
static long int flashTest = 0;
static unsigned int tempSecs = 0;
static char aTime[10];
int setTime=0;
int timeCount=0;
unsigned int value=0;
static signed char state;
static signed char tempState;

void main(void)

{
 WDTCTL = WDTPW + WDTHOLD; // Stop WDT

 46

Oil Detection Sensor

 P1DIR |= LED0 + LED1;
 P1OUT &= ~(LED0 + LED1);

 BCSCTL1 = CALBC1_1MHZ; // Set DCO to 1MHz
 DCOCTL = CALDCO_1MHZ; // Set DCO to 1MHz

 /* Configure hardware UART */
 P1SEL = BIT1 + BIT2 ; // P1.1 = RXD, P1.2=TXDs
 P1SEL2 = BIT1 + BIT2 ; // P1.1 = RXD, P1.2=TXD
 P1SEL |= BIT5;
 UCA0CTL1 |= UCSSEL_2; // Use SMCLK
 UCA0BR0 = 104; // Set baud rate to 9600 with 1MHz clock (Data Sheet
15.3.13)
 UCA0BR1 = 0; // Set baud rate to 9600 with 1MHz clock
 UCA0MCTL = UCBRS0; // Modulation UCBRSx = 1
 UCA0CTL1 &= ~UCSWRST; // Initialize USCI state machine
 IE2 |= UCA0RXIE; // Enable USCI_A0 RX interrupt

 ConfigureAdc();
 TACCTL0 = CCIE; // TACCR0 interrupt enabled
 TACCR0 =8191;
 TACTL = TASSEL_1 + MC_1; // ACLK, continuous mode

 FCTL2 = FWKEY + FSSEL0 + FN1; // MCLK/3 for Flash Timing
Generator
 fValue = 0x506F7065;

 erase();
 //clearFlash();

 __bis_SR_register(LPM0_bits + GIE); // Enter LPM0, interrupts enabled
}

#pragma vector=TIMER0_A0_VECTOR
__interrupt void Timer_A0_ISR(void)
{
 if (tempSecs==(40-1)){
 int tempValue;
 tempSecs = 0;
 ticks ++;
 ADC10CTL0 |= ENC + ADC10SC;
 __bis_SR_register(CPUOFF + GIE);
// for(i=1;i<1000;i++){
// tempValue = ADC10MEM;
// if(tempValue>value)
// value = tempValue;
// }
 tempValue = ADC10MEM;
 if(tempValue>value)
 value = tempValue;
 if (value>300)
 {

 47

Oil Detection Sensor

 P1OUT &= ~(LED0 + LED1);
 P1OUT ^= LED0;
 tempState = ON;
 //UARTSendArray("H", 2);
 }
 else
 {
 P1OUT &= ~(LED0 + LED1);
 P1OUT ^= LED0;
 tempState = OFF;
 //UARTSendArray("L", 2);
 }
 value = 0;
 if (tempState != state)
 {
// switch (tempState){
// case(ON):{
// UARTSendArray("On", 2);
// }
// break;
// case(OFF):{
// UARTSendArray("Off", 3);
// }
// break;
// default:
// break;
// }

 state = tempState;
 write_SegC((long)state*ticks*1000);
 }
 }
 else if (tempSecs==(40-2)){
 int tempValue;
 ADC10CTL0 |= ENC + ADC10SC;
 __bis_SR_register(CPUOFF + GIE);
 tempSecs++;
 tempValue = ADC10MEM;
 if(tempValue>value)
 value = tempValue;
 }
 else if (tempSecs==(40-3)){
 int tempValue;
 ADC10CTL0 |= ENC + ADC10SC;
 __bis_SR_register(CPUOFF + GIE);
 tempSecs++;
 tempValue = ADC10MEM;
 if(tempValue>value)
 value = tempValue;
 }
 else if (tempSecs==(40-4)){
 int tempValue;
 ADC10CTL0 |= ENC + ADC10SC;

 48

Oil Detection Sensor

 __bis_SR_register(CPUOFF + GIE);
 tempSecs++;
 tempValue = ADC10MEM;
 if(tempValue>value)
 value = tempValue;
 }
 else{
 tempSecs++;
 }

}

// Echo back RXed character, confirm TX buffer is ready first
#pragma vector=USCIAB0RX_VECTOR
__interrupt void USCI0RX_ISR(void)
{
 data = UCA0RXBUF;

 //UARTSendArray("Received command: ", 18);
 //UARTSendArray(&data, 1);
 //UARTSendArray("\n\r", 2);

 switch(data){
 case 'R':
 {

 //char* itoaResult = (char*)malloc(15);
 P1OUT ^= LED0;
// write_SegC((long)fValue); // Write segment C,
increment value
 //copy_C2D();
 //itoaResult = itoa(0x506F7065, itoaResult, 10);
 //UARTSendArray(itoaResult, 15);
 UARTSendArray("1000\n", 5);
 UARTSendArray("-2000\n", 6);
 UARTSendArray("3000\n", 5);
 UARTSendArray("-4000\n", 6);
 UARTSendArray("5000\n", 5);

 }
 break;
 case 'r':
 {
 P1OUT &= ~BIT0;
 }
 break;
 case 'f':
 {
 //readFlash();
 }

 49

Oil Detection Sensor

 break;
 default:
 {
 //UARTSendArray("Unknown Command: ", 17);
 //UARTSendArray(&data, 1);
 //UARTSendArray("\n\r", 2);
 }
 break;
 }

}

// ADC10 interrupt service routine
#pragma vector=ADC10_VECTOR
__interrupt void ADC10_ISR (void)
{
 __bic_SR_register_on_exit(CPUOFF);
}

void UARTSendArray(unsigned char *TxArray, unsigned char ArrayLength){
 // Send number of bytes Specified in ArrayLength in the array at using
the hardware UART 0
 // Example usage: UARTSendArray("Hello", 5);
 // int data[2]={1023, 235};
 // UARTSendArray(data, 4); // Note because the UART transmits bytes it
is necessary to send two bytes for each integer hence the data length is twice
the array length

 while(ArrayLength--){ // Loop until StringLength == 0 and post decrement
 while(!(IFG2 & UCA0TXIFG)); // Wait for TX buffer to be ready for
new data
 UCA0TXBUF = *TxArray; //Write the character at the location
specified py the pointer
 TxArray++; //Increment the TxString pointer to point to the next
character
 }
}

// Function containing ADC set-up
void ConfigureAdc(void)
{
 ADC10CTL1 = INCH_5 + ADC10DIV_3 ;
 ADC10CTL0 = SREF_0 + ADC10SHT_3 + ADC10ON + ADC10IE;
 ADC10AE0 |= BIT5;
}

//void clearFlash()
//
//{
//
// _DINT();

 50

Oil Detection Sensor

// while(BUSY & FCTL3);
// FCTL2 = FWKEY + FSSEL_1 + FN3; // MCLK/3 for Flash Timing
Generator
// FCTL1 = FWKEY + ERASE; // Clear LOCK bits
// FCTL3 = FWKEY; // set erase bit;
// char *addrErase = (char*) 0x0E000;
// *addrErase = 0;
// addrErase = (char*) 0x0E020;
// *addrErase = 0;
// while(BUSY & FCTL3);
// FCTL1 = FWKEY; // Clear WRT bit
// FCTL3 = FWKEY + LOCK; // Set LOCK & LOCKA bit
// _EINT();
//
//}
//
//void readFlash(){
// unsigned int i;
// signed long int output;
// unsigned char toggle = 0;
// int upper;
// int lower;
// int *Read_ptr = (int*)0x0E000;
// /*for(i=0; i<128; i++){
// if (toggle==0){
// upper = *Read_ptr;
// toggle++;
// Read_ptr++;
// }
// else if (toggle ==1){
// lower = *Read_ptr;
// toggle--;
// Read_ptr++;
// output = lower + ((long int)upper<<16);
// char str[10];
// snprintf(str, 10, "%d", output);
// UARTSendArray(str, 11);
// UARTSendArray("\n\r", 2);
// }
// }*/
// //upper = *Read_ptr;
// //Read_ptr++;
// //lower = *Read_ptr;
// //char up[2];
// //up = "1";
// //char low[2];
// //low = "1";
// UARTSendArray("N", 1);
// UARTSendArray("O", 1);
// UARTSendArray("\n\r", 2);
//
// //clearFlash();
//}

void erase(){

 51

Oil Detection Sensor

 Flash_ptr = (char *) 0x1040; // Initialize Flash pointer
 FCTL1 = FWKEY + ERASE; // Set Erase bit
 FCTL3 = FWKEY; // Clear Lock bit
 *Flash_ptr = 0;
 FCTL1 = FWKEY; // Clear WRT bit
 FCTL3 = FWKEY + LOCK;
}

void write_SegC (long fValue)
{
 //char *Flash_ptr; // Flash pointer
 //unsigned int i;

 if(Flash_ptr==(char*)0x1080){
 erase();
 }
// Flash_ptr = (char *) 0x1040; // Initialize Flash pointer
//FCTL1 = FWKEY + ERASE; // Set Erase bit
FCTL3 = FWKEY; // Clear Lock bit
// *Flash_ptr = 0; // Dummy write to erase Flash
segment

 FCTL1 = FWKEY + WRT; // Set WRT bit for write operation

 char first, second, third, fourth;
 first = (char) fValue;
 second = (char) (fValue>>8);
 third = (char) (fValue>>16);
 fourth = (char) (fValue>>24);
// first = 'e';
// second = 'p';
// third = 'o';
// fourth = 'P';

 *Flash_ptr++ = fourth; // Write value to flash
 *Flash_ptr++ = third;
 *Flash_ptr++ = second;
 *Flash_ptr++ = first;

 FCTL1 = FWKEY; // Clear WRT bit
 FCTL3 = FWKEY + LOCK; // Set LOCK bit
}

void copy_C2D (void)
{
 // Segment C pointer
 //char *Flash_ptrD; // Segment D pointer
 unsigned int i;
 char first, second, third, fourth;
 long result;
 char* itoaResult = (char*)malloc(15);

 52

Oil Detection Sensor

 Flash_ptrC = (char *) 0x1040;

// if(Flash_ptrC == (char*)0x1080){
// Flash_ptrC = (char *) 0x1040; // Initialize Flash segment
C pointer
// }

 //Flash_ptrD = (char *) 0x1000; // Initialize Flash segment D
pointer
 FCTL1 = FWKEY + ERASE; // Set Erase bit
 FCTL3 = FWKEY; // Clear Lock bit
 //*Flash_ptrD = 0; // Dummy write to erase Flash
segment D
 FCTL1 = FWKEY + WRT; // Set WRT bit for write operation

 while(Flash_ptrC < Flash_ptr){
 fourth = *Flash_ptrC++; // copy value segment C to
segment D
 third = *Flash_ptrC++;
 second = *Flash_ptrC++;
 first = *Flash_ptrC++;
 result =
((long)fourth<<24)+((long)third<<16)+((long)second<<8)+((long)first);
 itoaResult = itoa(result, itoaResult, 10);
 UARTSendArray(itoaResult, strlen(itoaResult));
 UARTSendArray("\n", 1);
 }

 free(itoaResult);
 erase();
 ticks = 0;

 FCTL1 = FWKEY; // Clear WRT bit
 FCTL3 = FWKEY + LOCK; // Set LOCK bit
}

//void flashSave(signed long int elapsed)
//{ int lower = 0x00;
// int upper = 0x00;
// lower += (int) elapsed;
// upper += (int)(elapsed>>16);
// if(Flash_ptr < (int *)0xFFC0){
// _DINT(); // Disable interrupts(IAR
workbench).
// FCTL2 = FWKEY + FSSEL_1 + FN2; //set clock
// FCTL3 = FWKEY; //unlock
// FCTL1 = FWKEY + WRT; //enable writing a single word
// *Flash_ptr++=upper;
// *Flash_ptr++=lower;
// while(BUSY & FCTL3);
// //clear wrt bit
// FCTL1 = FWKEY;
// FCTL3 = FWKEY + LOCK; //lock the memory.

 53

Oil Detection Sensor

// _EINT();
// }
//}

char* itoa(long value, char* result, int base) {
 // check that the base if valid
 if (base < 2 || base > 36) { *result = '\0'; return result; }

 char* ptr = result, *ptr1 = result, tmp_char;
 int tmp_value;

 do {
 tmp_value = value;
 value /= base;
 *ptr++ =
"zyxwvutsrqponmlkjihgfedcba9876543210123456789abcdefghijklmnopqrstuvwxyz" [35
+ (tmp_value - value * base)];
 } while (value);

 // Apply negative sign
 if (tmp_value < 0) *ptr++ = '-';
 *ptr-- = '\0';
 while(ptr1 < ptr) {
 tmp_char = *ptr;
 *ptr--= *ptr1;
 *ptr1++ = tmp_char;
 }
 return result;
 }

 54

Oil Detection Sensor

Appendix B (schematics):

 55

Oil Detection Sensor

Appendix C (PCB Board):

 56

Oil Detection Sensor

Appendix D (Case):

Appendix E (User Manual):
Oil Detection Sensor:

Thank you! You have purchased the wireless Bluetooth connective Oil Detection Sensor

to help your family track and discover what your house holds patterns are in their home

heating habits. This device has an application for your android smart phone that is

connected to the sensor that will be installed on your furnace through Bluetooth 4.0 BLE

Connectivity.

Customer Requirements:

• Android or Apple smart phone

• 3 AA batteries

• Oil Furnace

Installation Instructions:

This device has a very simple installation plan for the everyday do-it-yourselfer. Before

attaching the device to the furnace it is required that 3 AA batteries are installed. Please

remove the cover of the sensor to expose where the batteries must be installed. Note:

 57

Oil Detection Sensor

make sure that the batteries are installed in the proper position before re-installing the

cover of the sensor.

Next you should identify a free space on the outer metal protective cover for the furnace.

Make sure that there are no obstructions or obstacles roughly 2 inches around the sensor.

The sensors shell has four magnets attached to it and only requires the user to place on

the metal housing of the furnace. Note: for the best results place the sensor as close to

the top of one of the four side of the furnace as possible.

Sensor installation is now complete.

Downloading the Application:

The first step is to search for the application in the mobile application store. Then Click

download. Open the application and begin the process of connecting you phone to the

sensor device.

Trouble Shooting:

Problem: Possible Solution:

Device not Turning on. Dead Batteries, Battery pack may not

connected.

Phone not retrieving data. Bluetooth is not ON on phone, Phone is out

of range, device is not ON,

Missing Data transfer. Bluetooth transmission was cut during sync

time, memory was filled from the last sync

so there may be a date gap in the data that

was received.

 58

	Acknowledgements:
	Table of Figures:
	Abstract:
	Introduction:
	Background:
	1. Oil Furnace
	2. Power Source:
	2.1 Low Power Mode:

	3. Wireless Transmission:
	3.1 Zigbee:
	3.2 Wi-Fi:
	3.3 Bluetooth:

	4. Sensors:
	4.1 Piezoelectric Vibration Sensor:
	3.2 Microphone:
	4.2 Electricity Sensing:

	5. Processor:

	Product Goals:
	1. Market Competitor:
	2. Connection:
	3. Low Power and Longevity:

	Methodology:
	1. Original Design:
	2. Changes to Original design:
	3. Bluetooth Connection:
	4. PCB Design:
	5. Android Application:
	6. Case:
	7. User and Installation Guide:
	8. Sensor code build:
	9. Code Simplification:

	Cost and Budget:
	Testing:
	1. Discrete Components:
	2. PCB

	Conclusion:
	Future Addition for another MQP Team:
	References:
	Appendix A:
	Hardware Code:

	Appendix B (schematics):
	Appendix C (PCB Board):
	Appendix D (Case):
	Appendix E (User Manual):

