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Abstract

EEG and other Brain-Computer Interfaces (BCI) are
seeing increased use in cognitive neuroscience because
of the powerful neuroimaging data they deliver. In par-
ticular, wearable neuroimaging technologies, or ”wear-
ables”, have enabled prolonged, non-invasive recordings
in motion-rich environments. Two techniques - electroen-
cephalogram (EEG) and functional near-infrared spec-
troscopy (fNIRS) - have been widely commercialized due
to being non-invasive and low-cost. However, limitations
in their technology, namely variable signal quality and sus-
ceptibility to artefacts, have prevented them from reaching
their full potential. This paper proposes an adhesive, EEG-
fNIRS wearable patch as a solution to these limitations. As
measures of electrical and hemodynamic responses of the
brain, respectively, EEG and fNIRS possess complementary
features shown to be capable of creating more robust fea-
tures. The paper also presents the EEG analysis of three
proof-of-concept experiments and the device’s performance
compared to baseline metrics provided by the DSI-24 EEG
Headset.

1. Introduction
Robust characterizations of brain-behavior relationships

are a long-standing goal in cognitive neuroscience. With the
advent of neuroimaging techniques, specifically functional
neuroimaging, cognitive models have pivoted from neu-
ropsychological tests evaluating behavioral responses, to vi-
sualizations of the biological processes that underpin them
[51, 63]. These techniques involve localizing cognitive pro-
cesses spatially (e.g. with functional magnetic resonance
imaging (fMRI) and functional near-infrared spectroscopy
(fNIRS)) or temporally (e.g. with electroencephalography
(EEG)).

In classical neuroimaging investigations, participants un-
dertake a series of experiments that evoke activity in specific
brain regions. Often, these experimental paradigms are con-
tingent on the choice of imaging instrument. Such instru-
ments can be obstructive, as in the case of large EEG head-
sets, or fixed, as with fMRI scanners [49]. Other experimen-
tal constraints include high equipment costs and lengthy
set-up times. Recent developments in sensors and circuitry
have led to a proliferation of wearable brain-sensing solu-
tions for consumer use. These devices enable flexible, real-
time monitoring of localized brain activity in non-specialist,
motion rich environments.

Wearable EEG is perhaps by far the most established
portable imaging technique. It has found applications in
personalized health, such as sleep monitoring [47, 55, 23],
stress analysis [5, 29], seizure detection [13], drowsiness
detection [40, 42], and brain training (via neurofeedback)

[15]. Other applications include emotion recognition [22],
architectural and urban design [34], musical pleasure [17],
and brain-computer interfaces (BCIs) [16]. Despite these
successes, wearable EEG systems face several bottlenecks.
Firstly, their signal quality is more variable than research-
grade systems, particularly in dry electrodes (as opposed
to gel-based systems) [27]. Secondly, their electrode den-
sity must be low for affordability and user comfort, but not
enough to compromise source localization, signal quality,
artefact rejection, referencing/re-referencing schemes [41].
An absence of sensors on vital regions can also generate
significant information loss.

In this paper, we present a multimodal solution to over-
come these challenges. Multimodal functional neuroimag-
ing is the concurrent assessment of two or more comple-
mentary neurophysiological processes. Previous studies
have successfully combined hemodynamic and electrical in-
formation using EEG and fMRI [6, 65]. However, fMRI’s
fixed location and high cost prevent it from being used out-
side a laboratory. For this reason, multimodal studies have
expressed interest in fNIRS, a portable and cost-effective
light-based technique. We hypothesize that because fNIRS
and EEG have high spatial and temporal resolutions, respec-
tively, one can compensate for information loss in the other.

Thus, the study’s objectives are to:

• Provide a proof-of-concept of a portable EEG-fNIRS
device.

• Evaluate the device against several experimental
benchmarks

• Identify possible trajectories for generations of this de-
vice.

The organization of this paper closely follows our team’s
steps in achieving these objectives. Section 2 provides an
overview of relevant research in the fields of cognitive neu-
roscience and modern BCI technology. Section 3 takes this
technical background into market research, identifying var-
ious BCI products and evaluating them based on a value
analysis. Section 4 outlines our prototype device’s architec-
ture. Section 5 describes the experimental procedures for
testing our prototype, and section 6 discusses the results.

2. Background and Relevant Works
2.1. EEG

EEG is a non-invasive method that detects voltage fluc-
tuations from neuronal activity using scalp electrodes. Its
advantages include a high temporal resolution – the ability
to monitor brain activity to the millisecond – and a broad
signal range (0.1Hz-100Hz) [39]. EEG can be used to de-
tect five different brain frequencies [67], detailed in Table
1.
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Table 1: Description of frequency features [22]

Feature Freq (Hz) Distribution Conditions
Delta 0 - 4 Frontal lobe (adults)

Posterior region (chil-
dren)

Deep, non-REM sleep.
Not significant in awake
teenagers and adults.

Theta 4 - 8 Thalamic regionz Light sleep, drowsiness,
relaxation, and medita-
tion.

Alpha 8 - 13 Occipital (eyes closed) Relaxed state with some
mental processing (i.e.
memory, visual process-
ing)

Beta 13 - 30 Symmetrical
Extends from frontal to
parietal lobe

Excited, alert, or atten-
tive states.

Gamma 8 - 13 Somato-sensory cortex High-level brain activity
(i.e. information analy-
sis and perception.)

2.1.1 Montages

The arrangement of channels, known as montages, is essen-
tial to localizing these activities within brain regions. The
human brain consists of a left and right hemisphere, parti-
tioned into four lobes: Frontal, Temporal, Parietal, and Oc-
cipital (see Figure 1). The frontal lobe, located behind the
forehead, is involved in motor control, working memory,
abstract reasoning, decision making, emotional regulation.
Situated behind is the frontal lobe, which processes sensory
input (i.e. visual, auditory) into long-term memory. To the
top is the parietal lobe, which integrates sensory informa-
tion from various modalities (i.e. touch, temperature, and
spatial awareness). Finally, the occipital lobe, located at the
back of the head, processes visual stimuli [69, 25].

Figure 1: Regions of the human brain

In traditional EEG devices, electrodes are placed
equidistant from each other in a standardized 10-20 sys-
tem (see Figure 2). The system incorporates a total of 16
channels to ensure complete scalp coverage. Electrodes are
referred to by the first letter of their assigned region, fol-
lowed by an odd or even number to indicate their left or
right hemisphere position [12]. For example, the encoding
”F7” suggests an electrode on the frontal lobe on the left
side of the brain. Some encodings end with a ”z”, indi-
cating a position on the midline of the head. Additionally,
EEG devices can incorporate a ”common” reference (typi-

cally Cz) as a way of normalizing electric potentials. This
is commonly selected as Cz, A1, or A2.

Figure 2: 10-20 EEG placement from the left and top sides of the head.
The frontal lobe is monitored by electrodes Fp1 and Fp2 on the forehead,
followed by F7, F3, Fz, F4, and F8 from left to right. M1, T3, C3, Cz, C4,
T4, and M2 oversee the midsection of the head, while T5, P3, Pz, P4, T6,

O1 and O2 cover the posterior side. [2]

Most montages are either bipolar or referential, referring
to whether the potential difference at each electrode is mea-
sured between electrode pairs or with respect to a reference
[68]. In bipolar montages, electrode pairings occur in the
longitudinal or transverse directions (see Figure 3(A) and
(B)). The longitudinal bipolar montage features two elec-
trode sequences connecting Fp1/Fp2 to the next posteriorly
located electrode. Similarly, the transverse bipolar montage
connects electrodes from left to right (see Appendix I for
a list of common linkages). In both cases, electrodes alter-
nate between being active and reference. Bipolar montages
have the advantage of localizing cerebral potential from the
direction of deflection of two channels’ waveforms, known
as phase reversal [68, 12]. However, they may exhibit only
half the phase reversals due to a lack of comparative elec-
trodes at the beginning and end of a sequence.

In contrast, referential montages measure potential dif-
ferences with respect to a ”common” reference (CR). Since
there are no phase reversals, the waveform’s amplitude de-
termines the presence of regional activity. However, the
epileptiform discharges may not be as prominent as bipo-
lar montages [12].

Other notable montages include the Laplacian montage,
which utilizes the weighted average of neighboring elec-
trodes, and the common average montage, which sums up
the potential at each electrode divided by a calculated value
(i.e. global average, number of electrodes) [68]. A list of
common montage placements can be found here.1

1Standard montages from the American Clinical Neurophysiology
Society (ACNS): https://www.acns.org/UserFiles/file/
EEGGuideline3Montage.pdf
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(a) (b)

(c)

Figure 3: Visual representation of the longitudinal bipolar (a), transverse
bipolar (b), and referential (c) EEG montages.

2.1.2 Device Hardware

A standard EEG device consists of electrodes, amplifiers,
and Analog-to-Digital converters (ADC) [39]. These com-
ponents are often attached to a headset or cap, shown in
Figure 4:

Figure 4: EEG cap with gel-based (wet) electrodes [56]

In the case of wearable EEG systems, the electronics
must be small enough to fit inside a handheld case with-
out exceeding low power constraints. They must also be
compatible with a wireless transmitter, as the high input
impedance of EEG amplifiers is susceptible to wire move-
ments. With new advances in System-on-a-Chip (SoC)

technologies, modern EEG systems can fulfill the above
conditions at affordable prices. Ahn et al. [4], for exam-
ple, developed a coin-sized, low-power EEG device using
commercially available components. Their circuit, printed
on a PCB, utilizes a 24-bit ADC with a sampling rate of 250
sample/s and a Bluetooth module for data transmission. It
can monitor a single EEG channel using one active, ground,
and reference electrode, respectively.

For optimal EEG recordings, devices must ensure com-
plete contact between the scalp and its electrodes. Cur-
rently, wet electrodes are the gold standard for clinical
recordings due to their low impedance levels [16]. How-
ever, they require the application of a conductive gel or a
saline patch beforehand, leading to long set-up times or skin
abrasions. Dry electrodes, in contrast, are not affected by
these limitations. One example is a pronged electrode (see
Figure 5), designed to push away hair from the scalp. Due
to its smaller contact area, it is more susceptible to artefacts
and high impedance levels than wet electrodes. Despite this,
many studies examining both electrode types have obtained
comparable results between the two [27]

Figure 5: Dry electrode with prongs for seperating hair. Taken from the
DSI-24 [1]

More recently, capacitive or ’non-contact’ electrodes
have been gaining traction for their ability to amplify sig-
nals via AC coupling. In 2010, Chi et al [19]. developed a
coin-sized EEG electrode placed directly on skin or through
clothing. The device was later improved upon by Sullivan
et al [58] (see Figure 6). in 2019 to encompass EEG and
ECG. The multimodality and discreteness of their device’s
design serve as inspirations for this study.

Figure 6: Capacitive electrode for EEG-ECG sensing proposed by
Sullivan et. al [58]
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2.2. fNIRS

Functional near-infrared spectroscopy (fNIRS) non-
invasively maps hemodynamic responses in the brain. It
uses NIR spectrum light (600-900nm) to penetrate super-
ficial layers of the head and brain tissues [54]. This light
is also readily absorbed by oxygenated and deoxygenated
haemoglobin (HbO2/HbO and Hb/HbR). Figure 7 shows
the absorption coefficients of HbO2 and Hb, which are sim-
ilar at 800 nm, indicating the need for multiple wavelengths
for accurate detection. fNIRS devices are composed of two
parts: NIR sources and photodetectors [3]. These are at-
tached to the scalp in a predefined arrangement, with each
source-detector pair (also known as an optode) correspond-
ing to a single fNIRS channel. Light emitted from the
source is propagated through tissue and absorbed by HbO2
and Hb blood. Due to the scattering properties of biolog-
ical tissue, the light reaches the detectors through multiple
scatterings. Consequently, the optical path length is greater
than the actual source-detector separation.

(a) (b)

Figure 7: (a) Absorption spectra of HbO2 and Hb, (b) Path of light
propagation through the brain.

2.2.1 Placement

fNIRS optode placements often follow the international 10-
20 system or the more dense 10-10 or 10-5 systems (see Fig-
ure 8). While both the 10-10 and 10-5 systems are deriva-
tives of the 10-20 system, their difference lies in their elec-
trode densities. The 10-10 system places electrodes at 10%
increments along the medial-lateral contours of the brain,
whereas the 5-5 system uses 5% increments (see Figure 6).
These changes allow 10-10 systems to have approximately
80 standard positions and 5-5 systems to have over 300 [33].

fNIRS systems are also highly dependent on source-
detector separations. As separation distance increases, light
propagation increases, resulting in a higher attenuation in
the reflected light due to scattering. Studies have found a
source-detector distance of 3 - 5cm to be suitable for neu-
roimaging [3, 62]. However, this can vary depending on
the hardware setup and the desired data. One example is a

Figure 8: The 10-10 (left) and 10-5 international systems. EEG positions
are depicted in green, whereas fNIRS sources and detectors are depicted

in red and blue respectively [71].

”short channel”, or a source-detector pair with a distance of
5mm-10mm [18]. This kind of placement is helpful for arte-
fact removal as it can detect minor motion artefacts outside
the brain.

2.2.2 Device hardware

fNIRS source optodes typically consist of one multi-
wavelength LED or several single-wavelength LEDs. Their
peak wavelengths range from 700 to 850nm, corresponding
to the intersection between the absorption spectra of Hb and
HbO2 (see Figure 7). The LED/LEDs alternate between in-
tensities on a schedule enforced by a central processing unit
(i.e. a microcontroller). This schedule extends to fNIRS
detectors and how the system processes incoming signals.

Due to the availability of low-cost optical sensors on the
market, various wearable fNIRS systems have emerged for
research and consumer use [3, 54, 64]. These devices have
been experimented with across various unconstrained en-
vironments, including social interactions [49] and exercise
[50]. In addition, they have been made patchable or com-
patible with a headband [3, 54].

2.3. EEG-fNIRS

While EEG and fNIRS BCI systems are capable on their
own, their performance remains susceptible to inter-subject
variation or artefacts. For more effective brain readings,
studies have introduced multimodal imaging, combining
two or more signals, to assess both the electrical and hemo-
dynamic functions of the brain. In particular, EEG-fMRI
has successfully provided more robust features for analysis
[52, 7, 46, 30]. However, limitations to this technology (i.e.
high cost, fixed location) have barred it from consumer use.
As such, studies have increasingly turned to EEG-fNIRS as
an alternative for long-term monitoring.

The idea of EEG-fNIRS comes from the selective view
of brain functioning the two modalities provide separately
[30]. EEG has an extraordinary temporal resolution but a
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Table 2: Distinguishing characteristics of previous literature, compiled by Ahn et al [6] (ERP, event-related potential; SSVEP, steady-state visual evoked
potential).

Reference Regions of recording Task Feature Findings

Khan et al. 2014 [36] EEG: sensorimotor;
fNIRS: prefrontal

Mental arithmetic and
motor imagery

EEG: peak amplitudes;
fNIRS: HbO and HbR

Classification accuracies over 80%
were obtained from decoded EEG
and fNIRS signals from tasks in-
volving mental arithmetic and hand
tapping.

Tomita et al. 2014 [61] Occipital Visual attention to flick-
ering checkerboard stim-
ulus

EEG:SSVEP
fNIRS: HbO and HbR

Classification accuracies of SSVEP
was improved when fNIRS was
used to active the SSVEP BCI.

Morioka et al. 2014 [46] EEG: whole scalp
fNIRS: parietal and
occipital

Spatial attention EEG: alpha/beta
fNIRS: HbO

EEG-fNIRS decoder with cortical
current estimation performed better
than EEG decoders.

Putze et al., 2014 [52] EEG: whole scalp
fNIRS: temporal and
occipital

Visual and auditory per-
ception with movies and
audiobooks

EEG: ERP
fNIRS: HbO and HbR

The subject-dependent approach
achieved a higher classification ac-
curacy (over 90%) in discriminating
bteween states.

Koo et al., 2015 [37] Sensorimotor Motor imagery EEG: alpha
fNIRS: HbO

The study designed an fNIRS sen-
sor frame to block leaking light.
EEG-fNIRS was used to develop
an online self-paced motor imagery
BCI with fNIRS as a brain switch.
The system achieved an overall ac-
curacy was 90%.

Ahn et al. 2016 [7] EEG: whole scalp
fNIRS: prefrontal

Simulated driving EEG: alpha/beta
fNIRS: HbO

Normalized EEG and fNIRS were
used for drowsiness detection us-
ing a series of combined classifiers.
Combined EEG-fNIRS achieved a
greater classification accuracy EEG
and fNIRS alone.

Nguyen et al. 2017 [48] EEG: whoel scalp
fNIRS: prefrontal

Simulated driving EEG: beta
fNIRS: HbO

Beta-band power and HbO in the
frontal region detected drowsiness
more rapidly than eye-blinking.

low spatial resolution and signal-to-noise ratio due to the
conductivity of the skull [6]. In contrast, fNIRS has a
high spatial resolution but a low temporal resolution. Due
to their complementary natures, simultaneous EEG-fNIRS
could overcome the weaknesses of the individual modalities
to provide more robust data. Table 2 presents a summary
of findings from previous EEG-fNIRS studies compiled by
Ahn and Jun [6].

Although EEG-fNIRS systems generally have low-
design costs, their effectiveness remains dependent on three
factors: (a) the placement of the electrodes and optodes,
(b) the synchronization of fNIRS and EEG recordings, (c)
and the reduction of crosstalk between systems [65]. These
challenges are detailed below.

(a) Similar to wearable EEG devices, wearable EEG-
fNIRS systems must balance wearability with suffi-
cient scalp coverage. They must also consider the sen-

sors’ characteristics, such as the electrode type (wet or
dry) for EEG systems. Despite recent developments
in optode and electrode technology, they can take up
a large amount of space, preventing EEG and fNIRS
sensors from being positioned at appropriate 10-20
points.

(b) A significant limitation of fNIRS BCI is its hemody-
namic response delay (≈7s) compared to near-instant
EEG recordings. One solution is to use a slope indica-
tor feature, proposed Buccino et al. [14], representing
the difference between the current time segment aver-
age and the previous one. However, implementing this
on a smaller scale remains a challenge for wearable
devices.

(c) Since fNIRS systems involve the use of time/frequency
multiplexing or modulation, it creates the possibility

6



of crosstalk between EEG and fNIRS systems. Luh-
mann et al. [66] reported that this crosstalk is out-
side the frequency range of interest of EEG systems
and is removable with low-pass filters. However, time-
multiplexed fNIRS systems can exhibit source switch-
ing within this region, thereby posing constraints on
analysis [65].

We employ a pre-existing fNIRS and EEG sensor with
synchronization performed via software in this study. How-
ever, future designs must carefully consider the above fac-
tors to achieve complete wearability.

3. Market Research
3.1. Available devices on the market

To obtain a holistic and comparable view of consumer
neuroimaging technologies on the market, market research
was conducted for modern BCI products aimed for both
retail and research/medical consumers. These devices are
evaluated in terms of comfort, appearance, modality, sen-
sor count, applications, battery, data resolution, and data
storage. This section reviews the Muse, Emotiv Insight,
and Flow headsets, the AttentivU glasses, the Neurable and
Sens.ai headphones, and the Humm patch (see Figure 9 for
the form factors of each device).

3.1.1 Muse Headset

The Muse headset (InteraXon, Inc., Toronto, Canada) is a
comfortable and portable EEG headset that features a thin
band around the forehead that connects to wide hooks that
make contact behind the ear. Although there is no official
maximum comfort time, one customer stated in a review
that they achieved around “40 hours of use over a month”
out of the Muse headset. Using this estimated time, the
maximum comfort time is assumed to be about two hours.
The Muse headset incorporates six EEG sensors on the pre-
frontal cortex, and it aims to make meditation practices and
sleep habits easier through real-time neurofeedback. While
the device allows for data to be collected at a rate of 256
samples per second, neural features are produced at a rate
of approximately 10 Hz due to the speed of data process-
ing. The device has a battery capable of sustaining 5 hours
of continuous use and transmits data to external devices via
Bluetooth.

3.1.2 AttentivU Glasses

The AttentivU glasses (MIT Media Lab, Cambridge, USA)
are a subtle and portable EEG/EOG device that is meant to
appear as a normal pair of glasses. The glasses have a stock-
ier build and require a thicker frame to house the two EEG
and two EOG sensors that allow for the measuring of eye

movement, cognitive load, fatigue, focus, and other cogni-
tive processes. The sensors are aligned on the motor cortex
and somatosensory cortex in both hemispheres. The Atten-
tivU glasses are one of the few devices found that use a
multi-modal configuration, measuring both EEG and EOG
data. The 3.7V 150mAh Lithium Polymer battery supports
continuous use for 5 hours. Optionally, there is an exter-
nal battery that can be attached to the device and provides
15 hours of battery life. No data could be found about the
sampling rate but the device connects and transmits data via
Bluetooth.

3.1.3 Emotiv Insight Headset

The Emotiv Insight headset (Emotiv Inc., San Francisco,
USA) has a unique non-conventional headband design that
is sure to turn heads. The headset has two prong-like elec-
trodes that extend over the forehead to measure the pre-
frontal cortex. Additionally, there are three other electrodes
that extend behind the back of the head and measure data
from parts of the motor cortex and somatosensory cortex.
The Emotiv headset has three ‘gummy’ prong EEG sensors
that make for better hair penetration and thus a stronger
connection. No data could be found concerning the com-
fort level besides a claim from the source company that
the headset was indeed very comfortable. The headset has
been used for research purposes and for personal uses such
as meditation and focus improvement. The headset sports
a battery life of four hours in low power mode but that
time can be extended using a wireless Bluetooth receiver.
The headset connects to external devices via Bluetooth and
transmits data at a resolution of 128 samples per second.

3.1.4 Neurable Headphones

The Neurable headphones (Neurable, Inc., Boston, USA)
are a pair of fully functional headphones with eight EEG
electrodes in each earmuff and can be worn comfortably for
approximately 39 minutes. The device reads and interprets
neuronal activity in the auditory cortex, auditory associa-
tion area, sensory association area, primary somatosensory
cortex, and primary motor cortex in both hemispheres to
generate a focus score at all times during use. The intent
of this product is to provide neurofeedback for focus so the
user may track and improve their habits throughout the day.
Neurable guarantees this device has “all-day battery life and
rapid charge” capabilities and records data at a rate of 500
Hz. Data is transferred wirelessly to Bluetooth connected
devices.

3.1.5 Humm Patch

The Humm patch is a flexible, lightweight patch based de-
vice which performs neural stimulation called transcranial
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Device appearance for (a) Muse Headset, (b) AttentivU Glasses, (c) Emotiv Insight Headset, (d) Neurable Headphones, (e) Humm Patch, (f)
Flow Headset, (g) Sens.ai Headphones, and (h) Neurosky MindWave Mobile 2

alternating current stimluation (TACS). The patch must be
placed on the forehead and thus recordings and stimula-
tions are limited to the frontal cortex. Humm also claims
to improve mental performance and extend working mem-
ory. The device runs on disposable batteries. This product
is aimed for retail consumers and not researchers, since they
advertise consumer benefits of using the product and focus
more on stimulation than data collection.

3.1.6 Flow Headset

The Flow Headset (Flow Neuroscience, Malmö, Sweden)
is another forehead-based BCI headware. The device is an
unobtrusive headset which applies electrical stimulation to
the forehead. The battery lasts approximately 5 hours, there
are 2 sensors, and the data is transmitted to the user for local
storage via a bluetooth connection. Flow is an implementa-
tion of transcranial Direct Stimulation (tDCS), a treatment
for depression based on low power electrical stimulation on
areas of the head. It targets the frontal and prefrontal cortex
based on its position on the forehead. It is targeted at retail
consumers.

3.1.7 Sens.ai Headphones

The Sens.ai headphones (Sens.ai, Inc., British Columbia,
Canada) are a comfortable EEG-enabled set of over-ear
headphones. The device contains 3 EEG sensors over the
frontal cortex and the occipital lobe. The headphones also
come with 7 PhotoBiomoduleation LEDs which Sens.ai
claims can force mindstates by stimulating the wearer based
on EEG data. The built-in EEG sensor has a very high data
resolution, and can record at 1024 Hz for 8+ hours with

a lithium ion battery. Data is stored in a companion mo-
bile app. The sens.ai headphones are another retail product
aimed at consumers rather than researchers.

3.1.8 NeuroSky MindWave Mobile 2

The NeuroSky MindWave Mobile 2 (Neurosky, Inc., San
Jose, USA) is a portable DSI headset with one EEG elec-
trode in the FP1 position. The device is research oriented,
with the goal of being an easy, consumer grade headset to
measure, track, and improve attention. The EEG sampling
rate is 512 Hz, and the headset can stay on for 8 hours. The
Mobile 2 uses data from its EEG sensor to shed insight on
meditation, focus, and eye blinking for the wearer.

3.2. Important features

In this section, multiple design metrics are identified and
evaluated. The interpretation of each design metric and its
relative importance are discussed. The goal of this section
is to highlight what design metrics are considered valuable
for a neuroimaging device to be successful in market.

• Comfortability
One of the most important features to incorporate a
ubiquitous headset into the modern workplace is com-
fortability. The headset should be able to withstand the
movements required to do everyday activities for ex-
tended periods while not causing any sort of discom-
fort to the user. In the context of this project, this is
interpreted as 12-16 hours of continuous use. To max-
imize comfort, a design with as few wires as possible
should be implemented. While fewer wires are better,
the headset should still be adjustable to make room for
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extra wires if needed. Additionally, padding in cru-
cial areas that are important to comfortability should
be incorporated. This means extra fabric capable of
providing padding around sensors and other internal
components that could prove to be a source of uncom-
fortability. While comfort is key, convenience is also a
factor of great importance. The average person should
be able to easily follow along with the instructions on
how to put on the headset. Ideally, the ubiquitous head-
set should have a quick and easy configuration. No
help should be required to put on the headset even for
those of younger or elderly ages.

• Durability

Another important metric to consider is durability. The
device should be inexpensive to the point that it is
a prime candidate to consumers over other products
from a price-oriented perspective, but it should be fab-
ricated at a quality level that ensures durability through
constant use for over a year. The device should also be
able to withstand some blunt force trauma to a certain
extent. This will require protective casings around sen-
sors and incorporated bluetooth devices that will min-
imize sustained damage.

• Flexibility

The device must be flexible in both the sense that it
can conform to the shape of the head of any user and
also the sense that electrode placement on the head is
easily able to vary to encompass a number of different
applications. Different applications may require sen-
sors to get data from separate regions of the brain, so
this flexibility is a crucial feature in design.

• Low-Power The device must have all-day-use capabil-
ities. Low power consumption is a design priority so
as to minimize the battery size required for usage up to
16 hours.

• Signal Quality High quality of data is another priority
in the design of this device. The multimodal approach
utilizes two sensors in total (EEG, fNIRS), and their
placement must be carefully considered.

The EEG-fNIRS device is envisioned to be attached to
the user via a disposable bandage. The purpose of the dis-
posable bandage is to improve the cost efficiency of the de-
vice, increasing its appeal for both clinical and commer-
cial applications. Additionally, the bandage must allow for
minimum sensor movement and impedance, and be skin-
compliant. This will ensure that the data collected is con-
sistently of high quality.

3.3. Application Areas

Modern EEG and fNIRS wearable devices vary in terms
of their functionality and intended use cases. Broadly, the
devices can be broken into two categories: those intended
for retail consumers, and those for research. The retail prod-
ucts generally incorporate some kind of neurofeedback sys-
tem in order to create value for the consumer – see: Sens.AI,
Emotiv Insight, etc. The research products do not need to
create immediate value for the consumer because of their
use case, so they tend to focus on collecting higher quality
data. The sections below detail areas that an EEG-fNIRS
device would be applicable to.

3.3.1 Neurofeedback

Neurofeedback is a form of brain therapy in which a sub-
ject learns how to perform tasks more efficiently by being
consistently reinforced with real time feedback from their
brain activity.[10] This is one of the most common use-
cases for EEG, and most existing products on the market
can be used for neurofeedback. The goal of neurofeedback
is to teach patients to produce brain-wave patterns linked
with the qualities needed to perform a given task. [57]

3.3.2 Alzheimer’s

The cause of Alzheimer’s disease is due to the increased pile
up of amyloid beta peptide between the presynaptic axon
terminal and the postsynaptic dendrite. It takes roughly 15-
20 years of this amyloid beta to build up until it nears signif-
icant levels of accumulation, at which time the symptoms of
Alzheimer’s disease begin to occur. [26] A couple of neg-
ative health patterns that can increase the chance of being
diagnosed with Alzheimer’s disease are sleep deprivation,
high cholesterol, high blood pressure, unhealthy diet, lack
of physical exercise, smoking, and excessive alcohol con-
sumption. However, there has been a substantial increase
in neurofeedback research to treat Alzheimer’s disease.[28]
An essential concept for a solution is attempting to increase
neuroplasticity to reduce or even prevent Alzheimer’s dis-
ease. Some activities that can increase neuroplasticity are
mental math games, language comprehension tasks, tests of
memory, solving puzzles, physical exercise, etc.. Neuro-
feedback training can also refresh and revitalize parts of the
brain to increase neuroplasticity through clinical check-ups
and modifications of treatments by doctors and physicians.
A wearable BCI device that can be worn outside of a lab
environment would be a great tool for neurofeedback re-
search in Alzheimer’s patients. Although promising, there
exists severe limitations to BCI research and treatment of
Alzheimer’s due to the nature of patients inability to self
regulate brain activity. Currently, research is being con-
ducted into whether a device could differentiate ’yes’, ’no’
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and other emotional responses by correlating or mapping
them to positive and negative stimuli.[43]

3.3.3 Schizophrenia

Currently, an obstacle in treating schizophrenia is that pa-
tients often do not regularly take medication. Neurofeed-
back can provide a new and effective method where the
patient and their family do not have to take any specific ac-
tion to supervise their own neurofeedback training. BCI has
been able to detect certain network behaviors specific to pa-
tients diagnosed with schizophrenia in various studies, act-
ing as a key and efficient way to diagnose patients.[59] Pa-
tients with schizophrenia have been seen to have decreased
levels of alpha activity as well as or exclusively increased
beta and delta activity in their EEG recordings. Through
neurofeedback, clinicians are able to make more informed
decisions on how best to proceed with the treatment of a pa-
tient so that the appropriate brain regions and neuronal net-
works are affected.[9] Neurofeedback may also be utilized
to assess the reaction of a patient to specific medications
that are part of their regular treatment.[45]

3.3.4 Sleep

A major rising issue for the general population is chronic
insomnia, which may be caused by a problem with the
brain being unable to shut off its wake cycle and transition
into sleep.[21] EEG devices are often used in sleep stud-
ies to track and analyze certain patterns of brain activity
while a person is going through different stages of sleep.
Trained neurologists use the EEG sleep data from these de-
vices to identify and characterize abnormal patterns of ac-
tivity that occur during restfulness. Damaged areas of the
brain that may cause seizures may be identified through de-
tection of abnormalities in EEG data.[20] Benefits of sleep
EEG recordings include long recording periods and a more
complete evaluation of the brain. Additionally, it also pro-
vides data to physicians for analysis for better treatments
for insomnia or other sleep related issues. Neurofeedback
treatments may lead to increases in total sleep time and in-
creased REM sleep. [31]

3.3.5 Pz area of Brain

The Pz area of the brain consists of two parts. The first is
the anterior parietal lobe. It is responsible for most of the
basic movements and senses that humans have, such as sen-
sation of touch, spatial awareness, hand-eye coordination,
visual perception, speech, reading, writing, and math. The
other part of the Pz area of the brain is the occipital lobe.
Its job is to process visual information, as it contains both
the primary and association visual cortices. Various studies

have shown that an increase in alpha activity in the occipi-
tal lobe is linked to improved anxiety symptoms due to the
increase in neural activity stimulating relaxation [32].

3.3.6 Focus Level

While the use of electronics and different media outlets con-
stantly decrease the attention span and focus levels of typ-
ically younger generations, neurofeedback can provide an
applicable solution. The brain produces beta and gamma
waves when focusing and sustaining attention.[24] Thus, by
analyzing the brain waves of someone with ADHD, neuro-
feedback could help a patient improve their focus habits.
This practice may also be generalized to the public. [44]

3.3.7 Stress

Many people with anxiety and stress will produce more beta
waves, which may contribute to fear and panic depending
on which brain regions are expressing this activity.[70] Neu-
rofeedback can help reduce these thoughts by making the
user aware of their negative emotions when they first occur
and pulling them out of these harmful thought patterns. It
can also provide physicians and doctors with specific details
and information that can be used to alter treatments for high
stress and high anxiety. [35]

3.3.8 Social Interaction

Neurofeedback could also be used to provide real-time
feedback on the emotional states of others to allow for a
more intimate or more intellectual conversational experi-
ence. Examples include getting feedback when partici-
pants in conversation become sad or nervous around spe-
cific topics, and when statements are well-received or cause
elation.[38] It can help draw a line so people know which
topics and subjects their conversational partners prefer or
dislike in their social interactions with others. This way,
unpleasant conversational experiences may be more easily
avoided so as to allow for more positive and smarter ex-
changes.

3.3.9 Real-Time Commands

Neural activity may also be used to generate various com-
mands at certain levels of complexity depending on device
limitations. Disabled persons could make use of an EEG
wearable device to interface with a computer and make their
life easier for daily tasks and communication. Applications
include but are not limited to two-dimensional cursor con-
trol, navigation functions within a user interface, and the
control of neuroprosthetic devices.[11]
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3.3.10 Epilepsy

Epilepsy is categorized as a central nervous system disorder
that causes mild to severe symptoms such as seizures, loss
of awareness, and unusual behavior. [60] Since epilepsy can
affect any area of the brain, there are many potential side
effects of the disorder. Diagnosing epilepsy early is very
important as the symptoms can be life threatening. Neurol-
ogists have been successfully using EEG to diagnose and
assess epilepsy ever since the discovery of the technology
in 1929 [53]. Neurologists look for abnormal brain activ-
ity or epileptic waves, characterized by a particular pattern
of sharp spiking activity known as interictal epileptiform
discharge (IED) to classify and diagnose epilepsy.[8] Neu-
rofeedback is integral in determining the proper medication
and treatment for patients suffering from epilepsy.

3.4. Value Analysis of Device Characteristics

A value analysis table outlines the positive and negative
aspects of similar products in a standardized, easy to read
way. Table 3 provides a basic but informative value analy-
sis of all the previously mentioned products, judging them
on their modality, invasiveness, comfort, neural signal, and
usability to determine overall rankings. Each category is
unweighted, and each device’s total score is simply the sum
of its scores for each individual category.

4. System Architecture

This section outlines a potential design for a wearable
BCI device which uses the BioSignalsPlux EEG and fNIRS
sensors. The general system overview (i.e., the interactions
between each component) is discussed first, followed by
more detailed looks into each individual component, and
finally a 3D model of the device.

4.1. System Overview

For the purpose of this investigation, the wireless EEG
and fNIRS sensors from biosignalsplux (PLUX, Rua Corre-
douras, 2630 Arruda dos Vinhos, Portugal) were selected
for testing. The wireless functionality is presented in Fig-
ure 4. Each component is explained in further detail in the
sections below.

Figure 10: Block diagram of the biosignalsplux wireless application

4.1.1 BioSignalsPlux Hub

The biosignalplux hub features 4 analog channels that sup-
port 16-bit resolution and 3000Hz sampling frequency and
accepts a variety of sensors (EEG, fNIRS, accelerometer,
triggers, etc). The hub uses onboard bluetooth or an op-
tional high speed dongle to connect and stream data to de-
vices running the OpenSignals software. We experience ini-
tial struggles connecting the hub with the onboard bluetooth
but had success via the bluetooth dongle. The bluetooth
range is roughly 10m or line of sight. The hub has a battery
life of roughly 12 hours with a 2.5 hour charging time.

4.1.2 EEG Sensor

The kit contains a single EEG sensor that connects to the
biosignalplux hub via any analog channel 1 through 4. The
sensor features a bipolar configuration with the 2 short elec-
trodes (Red and Black) measuring electrical potentials in a
given region with respect to the single long white banded
lead as the reference electrode. The reference electrode
must be connected to a region with very low muscular ac-
tivity such as the bone behind one’s ear. The leads must be
fitted with a single-use sticky electrode pad that attaches to
the subject. Upon initial testing we were successfully able
to receive a quality signal from the EEG in OpenSignals.

Figure 11: The Plux EEG sensor

4.1.3 fNIRS

The kit contains a fNIRS transmitter that connects to the
ground port. The fNIRS transmitter and receiver must be
placed on the forehead. A fNIRS sensor uses a coupled
set of two emitters (1 Red and 1 Infrared LED) and one
photoreceptor in a reflectance mode. Sensor digital output
is composed of two channels. For now the sensors are held
in place with the black elastic band. There is one physical
difference between the stock Plux fNIRS sensor and the one
used in the prototype which does not affect functionality.
The transmitter and receiver are separated and not in the
same case.
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Modality Invasiveness Comfort Neural Signal Usability Total Score

Emotiv Insight 1 4 5 3 5 18

Neurable Headphones 1 2 8 4 5 20

Neural Interface In-Ear 1 6 2 6 6 19

Humm Patch 1 1 9 5 5 21

Flow Headset 1 2 6 2 2 23

Sens.ai Headphones 1 2 6 2 4 15

NeuroSky MindWave Mobile 2 1 3 5 1 1 13

Table 3: Value analysis of wearable EEG/fNIRS devices

Figure 12: The stock Plux fNIRS sensor

4.1.4 OpenSignals Software

OpenSignals is a software for interfacing with the Plux hub
and any of its connected sensors. It can run on windows,
mac, or linux. At the moment, we are running opensignals
on one of the laboratory desktop computers. In the future,
opensignals could run on a dedicated device. OpenSignals
also gives the option to stream data live over TCP/IP. This
is another option that could be explored in the future.

4.2. Patch Design

This study proposes a lightweight, adhesive patch-based
device which supports the Plux EEG and fNIRS sensors.
To be as small and unintrusive as possible, the patch is built
around the sensors with as little extra material as possible.
The patch’s total form factor is 135mm x 40 mm x 5mm.
The patch has three main impressions: one for the fNIRS
transmitter and receiver, and two for the EEG electrodes.
The impressions also allow for wires to be drawn out from
the sensors to the BioPluxHub, which will be in a secure
location on the user’s body such as their pocket. This allows
the patch to only contain sensors, keeping it as sleek and
lightweight as possible. A 3D render of the patch is shown
below:

Figure 13: CAD model of potential patch design

5. Experimental Studies

The viability of the Plux EEG and fNIRS device was
tested with three experiments: Eyes Open Eyes Closed
(EOEC), Sustained Attention to Response Task (SART),
and Mind Wandering (MW). Our code implementations can
be publicly accessed using the following link: https:
//github.com/Ubiquitous-EEG-IQP.

EOEC is a standard procedure for EEG devices which
tracks neural activity when the subject has their eyes open,
and then closed. With an accurate EEG device, there should
be clear activity in the alpha waves (8-12Hz range) when the
subject has their eyes closed, and this is generally a deter-
minant of sensor efficacy. The SART and MW experiments
are VR simulations aimed at tracking user attention, which
was identified as a key usage of multimodal wearable sen-
sors. The SART experiment keeps the user constantly en-
gaged by having them click a trigger in response to a rapidly
changing digit. MW tracks user focus while reading an es-
say which contains misspelled or gibberish words. The user
is tasked with identifying these words, and lapses in iden-
tification – i.e., type II errors, which are discussed later –
are indicative of mind wandering. All three of these ex-
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periments were performed multiple times, and the data and
derived results are discussed below.

5.1. Hardware Setup

All three experiments made use of the Plux EEG and
fNIRS sensors, but the SART and MW experiments also
made use of commercially available VR headsets. The Plux
sensors are discussed first due to their commonality, fol-
lowed by the VR headset and a note on eye tracking (which
is a VR feature used in the MW experiment but not SART).

5.1.1 Plux EEG and fNIRS sensors

The technical specifications of the Plux sensors have al-
ready been discussed, but not the pragmatic implications of
using the sensors in the experiments. The EEG sensor con-
tains 3 electrodes: active, reference, and ground. Each elec-
trode is attached with an adhesive gel pad to the required
location. The fNIRS sensor has two components: a trans-
mitter and a receiver. Both elements are held to the sub-
ject’s head in the appropriate locations (generally right next
to each other), and then held in place with an adhesive. To
make sure that the sensors do not fall off or lose connection,
they are secured with an elastic band around the head which
covers the sensors and keeps them in their desired location.

5.1.2 VR Headset

The SART and MW experiments make use of virtual re-
ality environments to immerse the subject in a completely
sandboxed environment. We used an HTC Vive Pro. In or-
der to get accurate sensor placement, the sensors are placed
and secured before the subject puts on the VR headset. The
SART experiment was developed in Unreal Engine, and the
MW experiment was done with Unity. Both are loaded into
the headset environment via the SteamVR API, which han-
dles connections between a desktop computer (and its GPU)
and the VR headset.

5.1.3 VR Eye Tracking

In addition to the standard VR environment, the MW ex-
periment makes use of the eye tracking functionality of the
HTC Pro Eye. Not all VR headsets have eye tracking func-
tionality, and so it is important to make sure that eye track-
ing is possible before running the MW experiment. If there
is no eye tracking functionality on the headset, the Unity
software will fall back to a vector orthogonal to the view-
port centered on the subject’s nose (by estimation). This can
create the illusion of eye tracking, but it is not accurate.

5.2. Experimental Protocol

This section describes the protocol for setting up and
running the EOEC, SART, and MW experiments with the

prototype device.

5.2.1 Eyes Open, Eyes Closed (EOEC)

The first of two experiments performed was an “eyes open,
eyes closed” experiment. This entailed the participant sit-
ting with eyes open for one minute, then closing eyes for
one minute, opening eyes again for a minute, then closing
eyes again for one minute. Multiple sensor placement ar-
rangements were attempted; however, the best results were
achieved by placing the EEG electrodes on T4 and F8 (as
dictated by the international EEG 10-20 system) with the
reference electrode placed on the back of the neck at the
base of the skull

5.2.2 Sustained Attention to Response Task (SART)

The second of the two experiments performed was SART
(Sustained Attention to Response Task). This is a clinically
recognized experimental procedure in which digits 0-9 are
presented for 250 ms immediately followed by a circle with
an X which is presented for 900 ms. The digits are dis-
played in the center of the screen sized to one of five random
font sizes. The participant is instructed to press a key as
quickly as possible if the number is not a 3, and to not press
the key at all if the number presented is a 3. Reaction times
and the success of each trial is recorded in a spreadsheet for
later analysis. The goal of this experiment is to detect neu-
ral activity in both the beta and gamma frequency bands, as
these are indicative of heightened levels of engagement and
focus.

5.2.3 Mind Wandering

Mind wandering is a phenomenon which occurs in humans
when they lose focus while completing mental tasks. The
mind wandering experiment attempts to track mind wan-
dering events as a subject reads a short essay within a VR
environment. The experiment induces and measures mind
wandering by having the subject identify misspelled words
in a long text. When a subject does not identify a misspelled
word, we can say that they are not focused and consider
them to be ”mind-wandering” at that point in the experi-
ment. The experiment controller uses eye tracking to watch
the user’s vision, so we can track exactly where they are in
the text throughout the experiment

For the subject, the sequence of the experiment is as fol-
lows (the subject is wearing a VR headset with eye tracking
enabled):

• Read the tutorial. The tutorial explains the experiment
and the controls.
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• Perform trial run. This is the same as the actual exper-
iment, except it is much shorter and there are no mis-
spelled words. It is just a sandbox for the subject to get
used to the reading pace and the controls for marking
words as misspelled.

• Read full text. This is where the bulk of the experiment
happens. It takes roughly 20 minutes to get through the
full text.

• Answer questions. There are a couple multiple choice
questions at the end of the experiment for the subject
to answer. The responses are recorded in a json file.

A screenshot from the subject’s view is included below.
In the screenshot, the word ”potter” is marked red because
the subject identified it as misspelled.

Figure 14: A user’s view during the Mind Wandering experiment

5.2.4 Mind Wandering: Type I and II Errors

During the MW experiment, the subject is tasked with iden-
tifying misspelled words. As such, the subject takes on the
role of a classifier for each word, where the classifications
are either misspelled or not misspelled. Thus user errors in
identification can be categorized as type I or type II, based
on the following null and alternative hypotheses.

H0 ≡ Word is not misspelled
Ha ≡ Word is misspelled

The user can make two errors:

• Type I: Marking a correctly spelled word

• Type II: Skipping an incorrectly spelled word

Type II errors signify mind wandering and are thus the pri-
mary focus, however type I errors are also discussed.

6. Experimental Results and Discussion
Each experiment was conducted multiple times with

varying sensor placements and subjects. The data and anal-
ysis of each experiment are discussed below.

6.1. Eyes Open Eyes Closed

Eyes open eyes closed is a standard procedure for test-
ing the output data of an EEG based BCI device. As per
its name, the subject spends time with their eyes open and
closed while connected to an EEG device. Generally, alpha
activity is noticeable when their eyes are closed and unde-
tectable when they are open. The experiment established a
baseline for the Plux sensor by ensuring a clear signal qual-
ity.

(a) Spectrogram for EOEC experiment with Subject 1

(b) Spectrogram for EOEC experiment with Subject 3

Figure 15: Spectograms from EOEC experiment

The spectrograms drawn from the EOEC data show
clear, discernible segments containing either strong alpha
activity or almost no alpha activity (Figure 15). The seg-
ments of high alpha activity correctly correspond to when
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the subject has their eyes closed, and the segments of no
alpha activity are when the subject has their eyes opened.

6.2. SART

The sustained attention and response task is a VR based
experiment that tracks user attention over time by having
the user respond to quickly flashing numbers (0-9). The
user is instructed to click their handheld trigger with each
digit, except for it is 3.

(a) SART EEG spectogram for Subject 1

(b) SART EEG spectogram for Subject 3

Figure 16 shows spectrograms that were created from
EEG recordings obtained from participants while conduct-
ing the SART experiment. Spectrograms illustrate the
change in power spectral density at various frequencies over
time. The highest levels of brain activity in the areas mea-
sured are indicated by yellow while the lowest levels of
brain activity are indicated by a dark purple. Levels of brain
activity in between the two ends of this spectrum take on ei-
ther blue or green, depending on if they are lower or higher
on the spectrum, respectively. There is a detectable level of

(c) SART EEG spectogram for Subject 4

(d) SART EEG spectogram for Subject 5

Figure 16: SART spectogram results for Subject 1, Subject 3, Subject 4,
and Subject 5

heightened activity present within the beta band and trace
amounts in the gamma band. This is in alignment with the
prior knowledge that activity in these frequency bands is in-
dicative of higher levels of engagement.

6.2.1 Performance Data

Figure 17 depicts performance data collected from the par-
ticipants. The reaction times for Subjects 1 and 4 corre-
sponding to correct answers form a cluster and therefore
have a lower variance. In contrast, the reaction times for
correct answers in Subjects 3 and 5 are more varied. One
reason for these differences could be that Subjects 1 and 4
were, on average, more mentally engaged than Subjects 3
and 5. Another reason could be an inherent difference in
the response dynamics of Subjects 1 and 4 than Subjects 3
and 5.

15



Figure 17: Depicts performance data collected from the participants.
Black points refer to correct answers that were not 3’s in all of the graphs

represented in the figure, as in the participant answered correctly to
numbers that were not 3 within the trial window. Blue points refer to
correct answers that were 3’s, whereas red points refer to incorrect

answers that were 3’s. Orange points may be noticed in the performance
graphs for Subject 4 and Subject 5. These refer to cases where the

participant answered incorrectly when the number presented was not a 3,
meaning the participant should have produced a reaction time but did not.
The participant either chose incorrectly to not answer or chose to answer
correctly but was not able to do so within the trial window. This results in

relatively low reaction times in the following trial. None of these
instances occurred in the experiments for Subject 1 and Subject 3.

6.2.2 Extracting Features from EEG Data

Two methods were implemented to extract features from the
recorded EEG data in this study. In both methods, a slid-
ing window of size 4 trials (4600 milliseconds) with step
2 trials (2300 milliseconds) was used to pull features from
temporally aligned slices of both the performance and EEG
data. The power spectral densities were then calculated for
each slice of EEG data, after which the units of power were
converted to units of intensity (dB). In the first method, spe-
cific frequencies of interest were chosen from both the beta
band (13 - 30 Hz) and the gamma band (31 - 50 Hz). The
corresponding intensity at both frequencies of interest were
saved as the extracted features from each slice of EEG data.
In the second method, both the maximum intensity across
the beta band and the maximum intensity across the gamma
band were saved as the extracted features from each slice of
EEG data. The reason for pursuing two different methods of
pulling features from the EEG data is to determine whether
pertinent information is contained within the neuronal ac-
tivity localized around a specific frequency or if all activity
within an entire frequency band is more informative.

6.2.3 Average Reaction Time

The first feature of interest that was pulled from the perfor-
mance data was the average reaction time for each sliding

window of 4 trials. The initial proposed hypothesis was that
lower levels of engagement would be linked to increased
reaction times, meaning that as average reaction times in-
crease it would be expected that signal intensity decreases.
Because increased beta activity is assumed to be correlated
with higher levels of engagement, this would result in a neg-
ative correlation between signal intensity and average reac-
tion time.

(a) Subject 1 average reaction time versus signal intensities from Method 1.

(b) Subject 3 average reaction time versus signal intensities from Method 1.

We plotted the average reaction time against the sig-
nal intensity features obtained by implementing Method 1
yielded in Figure 18. In all graphs present in the figure,
there appears to be a positive correlation between signal in-
tensity and average reaction time, with beta intensity consis-
tently yielding a higher correlation coefficient than gamma
intensity. The only exceptions are in the data produced by
Subjects 3 and5, This goes against the original hypothe-
sis that lower average reaction times would be indicative
of higher levels of engagement, yielding a negative correla-
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(c) Subject 4 average reaction time versus signal intensities from Method 1.

(d) Subject 5 average reaction time versus signal intensities from Method 1.

Figure 18: Average reaction time versus signal intensities from Method 1
for Subject 1, Subject 3, Subject 4, and Subject 5. The horizontal axis
represents the average reaction time over a window of trials, and the

vertical axis represents signal intensity in units of decibels.

tion coefficient. This supports the claim that higher levels of
engagement are linked to slightly increased reaction times
because the participant is thinking longer about which ac-
tion to make.

Figure 19 was produced by plotting the average reaction
time against the corresponding signal intensity features ob-
tained through the implementation of Method 2. With the
exception of the beta intensity versus average reaction time
graphs for Subject 3 and Subject 5, all graphs demonstrate
a positive correlation between signal intensity and average
reaction time. This supports the same claim as the graphs
produced by Method 1, which is that there is an associa-
tion between lower engagement levels and decreased reac-
tion times. The likely reason for this is that the participant
becomes more accustomed to habitually responding faster

(a) Subject 1 average reaction time versus signal intensities from Method 2.

(b) Subject 3 average reaction time versus signal intensities from Method 2.

(c) Subject 4 average reaction time versus signal intensities from Method 2.

without regard for the correctness of their answer as they
become increasingly disengaged.
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(d) Subject 5 average reaction time versus signal intensities from Method 2.

Figure 19: Average reaction time versus signal intensities from Method 2
for Subject 1, Subject 3, Subject 4, and Subject 5. The horizontal axis
represents the average reaction time over a window of trials, and the

vertical axis represents signal intensity in units of decibels.

6.2.4 Reaction Time Variance

The second feature extracted from the performance data was
the variance in reaction time over each sliding window. Ini-
tially, the hypothesis regarding reaction time variance was
that there would be a noticeable decrease in both beta and
gamma signal intensity as reaction time variance increased.
The logic for this hypothesis follows that lower levels of en-
gagement would result in increased reaction time variance,
meaning that higher variability in reaction time is indicative
of low focus levels.

(a) Subject 1 reaction time variance versus signal intensities from Method 1.

Figure 20 displays graphs the resulting from plotting re-
action time variance against the signal intensities obtained
through implementation of Method 1. All of the graphs,

(b) Subject 3 reaction time variance versus signal intensities from Method 1.

(c) Subject 4 reaction time variance versus signal intensities from Method 1.

with the exception of the beta intensity versus reaction time
variance plot for Subject 4 and the gamma intensity versus
reaction time variance plot for Subject 5, demonstrate a neg-
ative correlation between signal intensity and reaction time
variance. This is in alignment with the original hypothesis
that signal intensity would increase as reaction time vari-
ance decreases, meaning lower variability in reaction time
is associated with higher levels of engagement.

Figure 21 illustrates the graphs produced by plotting the
signal intensities as obtained through implementation of
Method 2 against the variances in reaction time for each
sliding window. Excluding the beta intensity against reac-
tion time variance plot for Subject 4, all graphs depict a
negative correlation between signal intensity and reaction
time variance. Like the plots produced using signal intensi-
ties from the first method, this affirms the original hypothe-
sis regarding a negative association between signal intensity
and reaction time variance.
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(d) Subject 5 reaction time variance versus signal intensities from Method 1.

Figure 20: Reaction time variance versus signal intensities from Method
1 for Subject 1, Subject 3, Subject 4, and Subject 5. The horizontal axis
represents the variance in reaction time over a window of trials, and the

vertical axis represents signal intensity in units of decibels.

(a) Subject 1 reaction time variance versus signal intensities from Method 2.

6.2.5 Proportion Correct

The third feature derived from the performance data was
the proportion of trials answered correctly for each sliding
window of 4 trials. Our initial hypothesis involved seeing
an increase in the proportion of correct answers per sliding
window as beta and gamma signal intensity increases. This
comes from the reasoning that higher levels of mental en-
gagement would lead to the participant answering correctly
for a larger number of trials per sliding window.

Depicted in Figure 22 are the plots of signal intensities
obtained from implementation of the first method versus
proportion of correct responses for each sliding window.
It may be noted that in none of the participants, except
Subject 1, the correlation coefficients of the beta intensity

(b) Subject 3 reaction time variance versus signal intensities from Method 2.

(c) Subject 4 reaction time variance versus signal intensities from Method 2.

and gamma intensity versus proportion of correct responses
plots had the same sign. This means that across all par-
ticipants, there was only one in which both plots produced
either supported the original hypothesis or did not support
the original hypothesis.

Figure 23 shows the graphs resulting from implementing
Method 2 to obtain signal intensity features then plotting
them against the proportion of correct responses for each
sliding window. Excluding both plots for Subject 5 and the
beta intensity versus proportion of correct responses plot for
Subject 4, all other plots demonstrate a positive relationship
between signal intensity and proportion of correct responses
per sliding window. This supports the original hypothesis
claiming that higher response scores are indicative of higher
levels of mental engagement.
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(d) Subject 5 reaction time variance versus signal intensities from Method 2.

Figure 21: Reaction time variance versus signal intensities from Method
2 for Subject 1, Subject 3, Subject 4, and Subject 5. The horizontal axis
represents the variance in reaction time over a window of trials, and the

vertical axis represents signal intensity in units of decibels.

(a) Subject 1 proportion correct versus signal intensities from Method 1.

(b) Subject 3 proportion correct versus signal intensities from Method 1.

(c) Subject 4 proportion correct versus signal intensities from Method 1.

(d) Subject 5 proportion correct versus signal intensities from Method 1.

Figure 22: Proportion correct versus signal intensities from Method 1 for
Subject 1, Subject 3, Subject 4, and Subject 5. The horizontal axis

represents the proportion of correct responses over a window of trials, and
the vertical axis represents signal intensity in units of decibels.

(a) Subject 1 proportion correct versus signal intensities from Method 2.
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(b) Subject 3 proportion correct versus signal intensities from Method 2.

(c) Subject 4 proportion correct versus signal intensities from Method 2.

(d) Subject 5 proportion correct versus signal intensities from Method 2.

Figure 23: Proportion correct versus signal intensities from Method 2 for
Subject 1, Subject 3, Subject 4, and Subject 5. The horizontal axis

represents the proportion of correct responses over a window of trials, and
the vertical axis represents signal intensity in units of decibels.

6.2.6 SART Analysis Overview

Deriving signal intensity features using Method 1 did show
some correlation with the performance features, proving
that there is some relevant information localized around the
specific frequencies of interest. However, this information
alone does not capture the full picture and therefore deriv-
ing signal intensity features using Method 2 proved to be the
more informative of the two feature extraction techniques.
The least informative of the performance features was the
proportion of correct responses for each sliding window, as
the correlation coefficients for both the beta intensity ver-
sus proportion correct responses plot and the gamma inten-
sity versus proportion correct responses plot were close to
zero across all participants except Subject 1 (when using
Method 2). However, the most informative of the perfor-
mance features was average reaction time per sliding win-
dow. The plots of beta and gamma signal intensity as ob-
tained through Method 2 versus average reaction time gen-
erally demonstrated a positive correlation between the two
variables and regression lines with steep slopes, meaning
that there is drastic change in information pertaining to beta
and gamma signal intensity when there are small increases
or decreases in average reaction time.

6.3. Mind-Wandering

The mind wandering experiment paints a picture of user
attention by counting mind wandering events, which are de-
fined as the user’s type II errors in misspelled word identi-
fication (i.e. the user does not identify a misspelled word,
incorrectly affirming the null hypothesis that the word is
correctly spelled). The times of these events are tracked and
recorded alongside EEG data. The following figures show
the results of the same mind wandering experiment, run first
with the Plux sensor on the F7 electrode, and then with the
DSI 24 headset (only showing the spectogram for the F7
electrode to make the most direct comparison possible).

Aside from periodic increases in alpha activity which do
not correlate with type II errors, there are no clear trends
in the spectogram data for either the Plux or DSI readings.
However, the shape of the data itself yields some meaning-
ful results. Firstly, the Plux data contains less artifacts than
the DSI data. Additionally, the artifacts in the DSI data are
significantly more pronounced and disruptive to the spec-
togram. This suggests that the Plux sensor may even out-
perform the DSI headset in terms of data clarity and artifact
resistance.

Although we did not find significant changes in EEG ac-
tivity associated with moments of perceived mind wander-
ing, this experiment did show us that the Plux EEG sensor is
capable of providing comparable data to the DSI 24, which
is a much more robust and widely used system. This in-
dicates that single (dual if we include reference) electrode
EEG sensors can be used in further research.
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(a) Plux F7 Spectogram

(b) DSI F7 Spectogram

Figure 24: Spectograms collected from Plux and DSI sensors, overlaid
by mind wandering events

7. Conclusion

Cognitive neuroscience depends on BCI devices to study
neural activity, but modern products – and therefore the
research which depends on such tools – are constrained
by wearability and modality. Wearable devices are cru-
cial for the future of brain research because they allow for
experimentation outside of stationary and delicately pre-
positioned activities; there is only so much that can be
learned from a subject sitting stationary at a desk, and get-
ting experiments out of the lab is imperative in furthering
our understanding of neural processes. The other limita-
tion of modern BCI technology is a lack of multimodal-
ity. The ability to collect synchronized multi-sensor data on
neural activity unlocks myriad opportunities for analyzing
data and understanding the underlying biological processes.
Wearable, multimodal BCI devices thus have the potential
to redefine the boundaries of cognitive neuroscience. We

propose a design for an adhesive, patch-based device with
EEG and fNIRS functionality as the solution to these lim-
itations and as a stepping stone for future research using
neuroimaging. The device is a disposable patch containing
EEG and fNIRS sensors which can be easily attached to a
subject. The design is sleek and lightweight, aiming to be
as non-intrusive as possible in order to allow for the widest
possible range of experimental procedures. The EEG and
fNIRS sensors combine high temporal and spatial resolu-
tions respectively to paint a wider and more detailed picture
of neural processes than either sensor could create alone.
This device is a viable alternative to modern BCI products.
Nonetheless, there is still room for improvement upon the
prototype going forward. The EEG and fNIRS sensors need
to be plugged into a physical hub that is separate from the
patch itself. As such, the device is not a true patch since
there is an external hub component. Additionally, the physi-
cal patch itself has not yet been developed – prototyping and
testing have been done solely with sensors and without any
unified adhesive casing. These issues do not represent limi-
tations in the design but rather engineering challenges to be
pursued in the further development of this device. This de-
vice is a stepping stone to a new generation of BCI devices.

7.1. Acknowledgements

We would like to thank Professors Ali Yousefi and
Soroush Farzin for mentoring and guiding us throughout
this IQP. None of this would have been possible without
you. Thank you and we wish you luck and success in your
future research.

References
[1] Dsi 24.
[2] Electrode 10-20 system. Engineers Community, Jul 2018.
[3] M. Abtahi, G. Cay, M. J. Saikia, and K. Mankodiya. Design-

ing and testing a wearable, wireless fnirs patch. In 2016 38th
Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pages 6298–6301,
2016.

[4] J. Ahn, Y. Ku, D. Kim, J. Sohn, J.-H. Kim, and
H. Kim. Wearable in-the-ear eeg system for ssvep-based
brain–computer interface. Electronics Letters, 54(7):413–
414, 2018.

[5] J. W. Ahn, Y. Ku, and H. C. Kim. A novel wearable eeg and
ecg recording system for stress assessment. Sensors, 19(9),
2019.

[6] S. Ahn and S. C. Jun. Multi-modal integration of eeg-fnirs
for brain-computer interfaces – current limitations and future
directions. Frontiers in Human Neuroscience, 11, 2017.

[7] S. Ahn, T. Nguyen, H. Jang, J. G. Kim, and S. C. Jun. Explor-
ing neuro-physiological correlates of drivers’ mental fatigue
caused by sleep deprivation using simultaneous eeg, ecg, and
fnirs data. Frontiers in Human Neuroscience, 10, 2016.

[8] B. e. a. Amin. The role of eeg in the erroneous diagnosis of
epilepsy. Top Geriatr Rehabi, 2019.

22



[9] C. e. a. Barros. Advanced eeg-based learning approaches to
predict schizophrenia: Promises and pitfalls. Artificial intel-
ligence in medicine, 2021.

[10] B. S. e. a. Batail JM. Eeg neurofeedback research: A fertile
ground for psychiatry? L’Encephale, 45:245–255, 2019.

[11] A. N. e. a. Belkacem. Investigating different stress-relief
methods using electroencephalogram (eeg). IEEE, 2020.

[12] S. Beniczky and D. L. Schomer. Electroencephalography:
basic biophysical and technological aspects important for
clinical applications. Epileptic Disorders, 22(6):697–715,
2020.

[13] M. A. Bin Altaf, C. Zhang, and J. Yoo. A 16-channel patient-
specific seizure onset and termination detection soc with
impedance-adaptive transcranial electrical stimulator. IEEE
Journal of Solid-State Circuits, 50(11):2728–2740, 2015.

[14] A. P. Buccino, H. O. Keles, and A. Omurtag. Hybrid
eeg-fnirs asynchronous brain-computer interface for multi-
ple motor tasks. PLOS ONE, 11(1):1–16, 01 2016.

[15] B. Byrom, M. Mc Carthy, P. Schueler, and W. Muehlhausen.
Brain monitoring devices in neuroscience clinical research:
The potential of remote monitoring using sensors, wearables
and mobile devices. Clinical Pharmacology and Therapeu-
tics, 104, 03 2018.

[16] A. J. Casson. Wearable eeg and beyond. Biomedical Engi-
neering Letters, 9:53–71, 2019.

[17] T. Chabin, D. Gabriel, E. Haffen, T. Moulin, and L. Pazart.
Are the new mobile wireless eeg headsets reliable for the
evaluation of musical pleasure? PLOS ONE, 15(12):1–19,
12 2021.

[18] W.-L. Chen, J. Wagner, N. Heugel, J. Sugar, Y.-W. Lee,
L. Conant, M. Malloy, J. Heffernan, B. Quirk, A. Zinos,
S. A. Beardsley, R. Prost, and H. T. Whelan. Functional near-
infrared spectroscopy and its clinical application in the field
of neuroscience: Advances and future directions. Frontiers
in Neuroscience, 14, 2020.

[19] Y. M. Chi and G. Cauwenberghs. Wireless non-contact
eeg/ecg electrodes for body sensor networks. In 2010 Inter-
national Conference on Body Sensor Networks, pages 297–
301, 2010.

[20] R. e. a. Cox. Analyzing human sleep eeg: A methodological
primer with code implementation. Sleep medicine reviews,
2020.

[21] D. a. Cunnington. Insomnia: prevalence, consequences and
effective treatment. The Medical journal of Australia, 2013.

[22] D. Dadebayev, W. W. Goh, and E. X. Tan. Eeg-based emo-
tion recognition: Review of commercial eeg devices and ma-
chine learning techniques. Journal of King Saud University
- Computer and Information Sciences, 2021.

[23] M. de Zambotti, N. Cellini, A. Goldstone, I. Colrain, and
F. Baker. Wearable sleep technology in clinical and research
settings. Medicine and Science in Sports and Exercise, 51,
02 2019.

[24] L. e. a. Fiedler. Single-channel in-ear-eeg detects the focus
of auditory attention to concurrent tone streams and mixed
speech. Journal of neural engineering, 2017.

[25] R. B. Firat. Opening the “black box”: Functions of the
frontal lobes and their implications for sociology. Frontiers
in Sociology, 4, 2019.

[26] K. Hill, N. L. Plasticity in early alzheimer’s disease: An
opportunity for intervention. Top Geriatr Rehabi, 2011.

[27] H. Hinrichs, M. Scholz, A. Baum, J. Kam, R. Knight, and H.-
J. Heinze. Comparison between a wireless dry electrode eeg
system with a conventional wired wet electrode eeg system
for clinical applications. Scientific Reports, 10, 03 2020.

[28] A. e. a. Horvath. Eeg and erp biomarkers of alzheimer’s dis-
ease: a critical review. Frontiers in bioscience, 23:183–220,
2018.

[29] B. Hu, H. Peng, Q. Zhao, B. Hu, D. Majoe, F. Zheng, and
P. Moore. Signal quality assessment model for wearable eeg
sensor on prediction of mental stress. IEEE Transactions on
NanoBioscience, 14(5):553–561, 2015.

[30] R. J. Huster, S. Debener, T. Eichele, and C. S. Herrmann.
Methods for simultaneous eeg-fmri: An introductory review.
Journal of Neuroscience, 32(18):6053–6060, 2012.

[31] G. M. Irimia R. Insomnia, sleep disorders, and neurofeed-
back. Biodiversity Data Journal, 2016.

[32] T. Isotani, H. Tanaka, D. Lehmann, R. Pascual-Marqui,
K. Kochi, N. Saito, T. Yagyu, T. Kinoshita, and K. Sasada.
Source localization of eeg activity during hypnotically in-
duced anxiety and relaxation. International journal of psy-
chophysiology : official journal of the International Organi-
zation of Psychophysiology, 41:143–53, 06 2001.

[33] V. Jurcak, D. Tsuzuki, and I. Dan. 10/20, 10/10, and 10/5
systems revisited: Their validity as relative head-surface-
based positioning systems. NeuroImage, 34(4):1600–1611,
2007.

[34] A. Karandinou and L. Turner. Architecture and neuro-
science; what can the eeg recording of brain activity re-
veal about a walk through everyday spaces? Interna-
tional Journal of Parallel, Emergent and Distributed Sys-
tems, 32(sup1):S54–S65, 2017.

[35] R. e. a. Katmah. A review on mental stress assessment meth-
ods using eeg signals. Sensors, 2021.

[36] M. J. Khan, M. J. Hong, and K.-S. Hong. Decoding of four
movement directions using hybrid nirs-eeg brain-computer
interface. Frontiers in Human Neuroscience, 8, 2014.

[37] B. Koo, H.-G. Lee, Y. Nam, H. Kang, C. S. Koh, H.-C. Shin,
and S. Choi. A hybrid nirs-eeg system for self-paced brain
computer interface with online motor imagery. Journal of
Neuroscience Methods, 244:26–32, 2015. Brain Computer
Interfaces; Tribute to Greg A. Gerhardt.

[38] e. a. Krylova, M. Progressive modulation of resting-state
brain activity during neurofeedback of positive-social emo-
tion regulation networks. Nature reviews, 11:23363, 2021.

[39] J. S. Kumar and P. Bhuvaneswari. Analysis of electroen-
cephalography (eeg) signals and its categorization–a study.
Procedia Engineering, 38:2525–2536, 2012. INTERNA-
TIONAL CONFERENCE ON MODELLING OPTIMIZA-
TION AND COMPUTING.

[40] J. LaRocco, M. D. Le, and D.-G. Paeng. A systemic review
of available low-cost eeg headsets used for drowsiness detec-
tion. Frontiers in Neuroinformatics, 14, 2020.

[41] A. Lau-Zhu, M. P. Lau, and G. McLoughlin. Mobile eeg
in research on neurodevelopmental disorders: Opportuni-
ties and challenges. Developmental Cognitive Neuroscience,
36:100635, 2019.

23



[42] G. Li, B.-L. Lee, and W.-Y. Chung. Smartwatch-based wear-
able eeg system for driver drowsiness detection. IEEE Sen-
sors Journal, 15(12):7169–7180, 2015.

[43] G. a. Liberati. Toward a brain-computer interface for
alzheimer’s disease patients by combining classical condi-
tioning and brain state classification. Journal of neural engi-
neering, 2012.

[44] N.-H. e. a. Liu. Recognizing the degree of human atten-
tion using eeg signals from mobile sensors. Sensors (Basel,
Switzerland), 2013.

[45] . M. e. a. Markiewcz, R. Evaluation of cognitive deficits in
schizophrenia using event-related potentials and rehabilita-
tion influences using eeg biofeedback in patients diagnosed
with schizophrenia. Psychiatria polska, 2019.

[46] H. Morioka, A. Kanemura, S. Morimoto, T. Yoshioka,
S. Oba, M. Kawanabe, and S. Ishii. Decoding spatial at-
tention by using cortical currents estimated from electroen-
cephalography with near-infrared spectroscopy prior infor-
mation. NeuroImage, 90:128–139, 2014.

[47] T. Nakamura, V. Goverdovsky, M. J. Morrell, and D. P.
Mandic. Automatic sleep monitoring using ear-eeg.
IEEE Journal of Translational Engineering in Health and
Medicine, 5:1–8, 2017.

[48] T. Nguyen, S. Ahn, H. Jang, S. Jun, and J. Kim. Utilization
of a combined eeg/nirs system to predict driver drowsiness.
Scientific Reports, 7, 03 2017.

[49] P. Pinti, C. Aichelburg, S. Gilbert, A. Hamilton, J. Hirsch,
P. Burgess, and I. Tachtsidis. A review on the use of wear-
able functional near-infrared spectroscopy in naturalistic en-
vironments. Japanese Psychological Research, 60(4):347–
373, 2018.

[50] S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. Haber-
mehl, J. Steinbrink, H. Obrig, and C. H. Schmitz. A wear-
able multi-channel fnirs system for brain imaging in freely
moving subjects. NeuroImage, 85:64–71, 2014. Celebrating
20 Years of Functional Near Infrared Spectroscopy (fNIRS).

[51] C. J. Price. The evolution of cognitive models: From neu-
ropsychology to neuroimaging and back. Cortex, 107:37–49,
2018. In Memory of Professor Glyn Humphreys.

[52] F. Putze, S. Hesslinger, C.-Y. Tse, Y. Huang, C. Herff,
C. Guan, and T. Schultz. Hybrid fnirs-eeg based classifi-
cation of auditory and visual perception processes. Frontiers
in Neuroscience, 8, 2014.

[53] K. e. a. Rosenow. Non-invasive eeg evaluation in epilepsy
diagnosis. Expert review of neurotherapeutics, 2015.

[54] M. J. Saikia and K. Mankodiya. A wireless fnirs patch with
short-channel regression to improve detection of hemody-
namic response of brain. In 2018 International Conference
on Electrical, Electronics, Communication, Computer, and
Optimization Techniques (ICEECCOT), pages 90–96, 2018.

[55] H. Scott, L. Lack, and N. Lovato. A systematic review of
the accuracy of sleep wearable devices for estimating sleep
onset. Sleep Medicine Reviews, 49:101227, 2020.

[56] T. Sheerman-Chase. Eeg brain scan, Oct 2012.
[57] R. e. a. Sitaram. Closed-loop brain training: the science of

neurofeedback. Nature reviews, 18:86–100, 2017.

[58] T. J. Sullivan, S. R. Deiss, and G. Cauwenberghs. A low-
noise, non-contact eeg/ecg sensor. In 2007 IEEE Biomedical
Circuits and Systems Conference, pages 154–157, 2007.

[59] T. Surmeli, A. Ertem, E. Eralp, and I. H. Kos. Schizophre-
nia and the efficacy of qeeg-guided neurofeedback treatment:
A clinical case series. Clinical EEG and Neuroscience,
43(2):133–144, 2012. PMID: 22715481.

[60] S. e. a. Thijs. Epilepsy in adults. Lancet, 2019.
[61] Y. Tomita, F.-B. Vialatte, G. Dreyfus, Y. Mitsukura,

H. Bakardjian, and A. Cichocki. Bimodal bci using simul-
taneously nirs and eeg. IEEE Transactions on Biomedical
Engineering, 61(4):1274–1284, 2014.

[62] J. Tremblay, E. Martı́nez-Montes, P. Vannasing, D. K.
Nguyen, M. Sawan, F. Lepore, and A. Gallagher. Compar-
ison of source localization techniques in diffuse optical to-
mography for fnirs application using a realistic head model.
Biomed. Opt. Express, 9(7):2994–3016, Jul 2018.

[63] M. Treviño, X. Zhu, Y. Y. Lu, L. S. Scheuer, E. Passell, G. C.
Huang, L. T. Germine, and T. S. Horowitz. How do we mea-
sure attention? using factor analysis to establish construct
validity of neuropsychological tests. Cognitive Research:
Principles and Implications, 6(51), 2021.

[64] F. Tsow, A. Kumar, S. H. Hosseini, and A. Bowden. A
low-cost, wearable, do-it-yourself functional near-infrared
spectroscopy (diy-fnirs) headband. HardwareX, 10:e00204,
2021.

[65] J. Uchitel, E. E. Vidal-Rosas, R. J. Cooper, and H. Zhao.
Wearable, integrated eeg–fnirs technologies: A review. Sen-
sors, 21(18), 2021.

[66] A. von Lühmann and K.-R. Müller. Why build an integrated
eeg-nirs? about the advantages of hybrid bio-acquisition
hardware. In 2017 39th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society
(EMBC), pages 4475–4478, 2017.
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