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Abstract

In this thesis, we present a new mechanics model for notched-tube continuum wrists, a
class of mechanisms frequently used to implement distal steering in needle-sized surgical
robotic instruments. Existing kinematic models available for these devices use two simplifying
assumptions, namely (i) frictionless actuation and (ii) linear material properties, so that wrist
bending can be treated as a purely geometric problem. This approach is analytically attractive,
but, as we show in this thesis, it can sometimes fail to provide good tracking accuracy. The
model proposed in this thesis relaxes both of the assumptions above, and provides superior
accuracy compared to previous models. Wrist deflection is estimated using Castigliano’s
second theorem, with the addition of a capstan friction term that models frictional losses on
the actuation tendon. Because notched-tube wrists are typically made of Nickel-Titanium
(Nitinol), which has nonlinear stress-strain characteristics, we introduce a technique to
obtain a local linearized approximation of the material modulus, suitable for use in the
deflection model. The result of our modeling is a system of nonlinear equations that can be
solved numerically to predict the wrist configuration based on the applied actuation force.
Experimental validation was performed on manufactured notched-tube continuum wrists.
Our model had an average Root-Mean-Square error of only 1 degree per notch and we show
that our model has an average tip position Root-Mean-Square error of only 0.3 millimeters
where models with tighter assumptions have greater errors around 0.73 millimeters on
average.
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1
INTRODUCTION

The use of robots is becoming increasingly prevalent in medicine and surgery. Worldwide, the

number of surgical procedures performed annually with the assistance of robots is estimated

to be in excess of 1.2 million [5]. The introduction of robotic technology in the operating room

has enabled numerous new minimally invasive surgical techniques. Benefits of robot-assisted

minimally invasive surgery include reduced patient discomfort, costs, and hospital time. Robots

offer increased precision and enhanced ergonomics. The Da Vinci family of robots (Intuitive

Surgical, Sunnyvale, CA) is arguably the most commercially successful class of surgical robots to

date. The Da Vinci is a teleoperated robot system that allows the surgeon to manipulate a 3-D

vision system and wristed laparoscopic surgical instruments [1].

As the benefits of the synergy between robotics and surgery become increasingly apparent,

new application areas continue to materialize. The current frontier in robot-assisted surgery

is in the development of flexible robotic arms that can navigate through, and offer dexterity

within, confined cavities within the human body. Until recently, commercially available surgical

robots did not exhibit these properties: in fact, for the most part, they consist of systems that use

traditional, rigid manipulator arms. These manipulators possess a limited number of degrees of

freedom, which is simply determined by their number of joints.

The work described in this thesis is rooted in the field of continuum robotics. Continuum (i.e.,

continuously flexible) robots are a new class of manipulators that can assume (virtually) any

curvilinear shape in space. Unlike traditional hyper-redundant manipulators, continuum robots

do not use any traditional linkages and therefore they can be easily miniaturized (Fig. 1.1).

Thanks to their small size and flexibility, continuum surgical robots have found application

in numerous medical specialties (Fig. 1.2). A review of all the clinical applications of continuum

robots is beyond the scope of this thesis, and interested readers are referred to [1].
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CHAPTER 1. INTRODUCTION

Figure 1.1: Continuum robots contain no joints but an infinite-Degree-of-Freedom curvilinear
elastic structure. Traditional manipulators, in contrast, have discrete links. Reproduced from [1].

1.1 Notched-Tube Continuum Wrists

Within the field of continuum robots, the problem of creating distal dexterity has recently received

a considerable amount of attention. In this thesis, we focus on notched-tube wrists, a class of

bending mechanisms fabricated by cutting a pattern of notches into the body of a thin-walled

superelastic Nickel-Titanium (Nitinol) tube (Fig. 1.4). Removing material from the body of the

tube creates a compliant section that can be articulated by applying a bending moment, e.g., by

pulling one or more tendons attached to the tip of the tube. Numerous wrist designs have been

proposed in the literature in the past decade, with tube diameters ranging between 0.5 and 10

mm (see e.g. [6, 7, 8, 2, 9, 10, 11, 12, 13, 14, 15]).

Among these, York and Swaney et al. [9, 2] proposed a notched-tube wrist where the notches

are created asymmetrically with respect to the centerline of the tube, as shown in Fig. 1.3.

Compared to other wrist designs, this solution has two main benefits: (i) cutting asymmetric

notches effectively offsets the neutral bending plane of the tube, enabling bending in tighter

radii; (ii) actuation only requires a single tendon, which makes the wrist simple to operate. A

downside of asymmetric notches is that they only permit bending in a single direction, but this

limitation can be overcome by axially rotating the entire tube. Since their appearance in [9],

2



1.1. NOTCHED-TUBE CONTINUUM WRISTS

Figure 1.2: Surgical applications of continuum robots by discipline. Reproduced from [1].

Figure 1.3: An example of notched-tube continuum wrist. These mechanisms are manufactured
out of a tube of superelastic Nickel-Titanium (Nitinol) and are articulated by pulling a tendon
attached to the tip. Notched-tube wrists can be created in small diameters and can bend in tight
radii of curvature. A bending radius of 1.42 mm was demonstrated in [2].

3



CHAPTER 1. INTRODUCTION

Figure 1.4: Actuation of two different notched-tube wrists. In wrist (a), which features five
identical notches, the most proximal notch bends first (due to tendon friction, which makes the
moment highest at the base of the device), while the most distal notch is the last one to reach the
hard stop. Wrist (b), which features variable notch depths with the tip notch being deepest, exhibits
the opposite behavior, i.e., the most distal notch is the one that closes first since it is the least stiff of
the notches (tip-first bending). In this thesis, we propose a mechanics model capable of explaining
these different behaviors.

asymmetric notched-tube wrists have rapidly been adopted in the development of numerous

medical devices, including instruments for endoscopic ear procedures [16, 17, 18, 19], hand-held

tools for brain surgery [20], a set of miniaturized instruments for the Da Vinci robot [21, 22], a

robotic radiofrequency (RF) probe for the treatment of liver tumors [23], and a pair of forceps for

robot-assisted vocal folds surgery [24].

While asymmetric notched-tube wrists are conceptually simple to manufacture and operate,

their mechanics have previously been modeled using the assumptions that the tendon is fric-

tionless and the material is linear elastic. In this thesis, we relax these assumptions in order to

describe the non-constant curvature shapes that these devices can sometimes take on.

Initial kinematic models (without friction and material nonlinearities) of notched-tube wrists

predict constant curvature shapes (see [3] for an overview of the kinematics of constant curvature

continuum robots). While a constant curvature model is convenient and can work in some

applications, one can observe practical devices taking on variable curvature shapes (see Fig. 1.4).

To accurately model wrist deflection, it is necessary to understand how friction and material

nonlinearities change the loading conditions applied by the tendon at each notch.

To accomplish this, in this thesis we formulate a mechanics-based model that incorporates

friction and material nonlinearities to describe the deflection of each individual notch. We

model frictional losses along the tendon using the capstan friction model, producing a system of

nonlinear equations that can be solved iteratively to calculate the bending moment experienced

by each individual notch, and hence the corresponding deflection. Experiments demonstrate the

4



1.2. SCOPE OF THESIS

descriptive power of the proposed model. We compare the importance of accounting for friction

and material nonlinearities by comparing our model to versions of our model with assumptions

made in prior literature, namely one where we assume linear material properties but still account

for friction; one where we assume linear material properties and consider the tendon to be

frictionless; and one where we assume nonlinear material properties and consider the tendon

to be frictionless. The models without friction maintain constant curvature among the notches

while the models with friction predict each notch will have a variable curvature.

1.2 Scope of Thesis

The main contributions of this thesis are:

1. A model for tendon friction in asymmetric notched joints. We add a capstan friction term

that models the reduced local moment experienced by each notch. Applying Castigliano’s

Second Theorem, we can determine the angular deflection of the individual notches based

on the local moment experienced.

2. A technique to approximate the nonlinear stress-strain curve of Nitinol. We obtain a local

linearized approximation of the material modulus, suitable for use in the deflection model.

1.3 Outline

The remaining four chapters of the thesis are organized in the following manner:

Chapter 2 presents an overview of the current modeling techniques used for continuum robots.

Specific focus is given to modeling techniques currently used for asymmetric notched-tube wrists.

Both kinematic and static models for these wrists are reviewed.

Chapter 3 presents a novel approach to model the angular deflection of the asymmetric notched-

tube wrist assuming tendon friction and material nonlinearities.

Chapter 4 presents the experimental verification of the model. We compare the model to experi-

mental data from three uniquely constructed wrists.

Chapter 5 concludes the thesis and discusses the limitations as well as uses of the model.

5
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2
BACKGROUND: KINEMATICS AND STATICS OF NOTCHED-TUBE

CONTINUUM WRISTS

In this chapter, we introduce the mathematical framework necessary to model the mechanics

of notched-tube continuum wrists. We begin with a review of the continuum robot kinematics

developed by Webster et. al. [3]. We then delve into existing kinematics and statics models for

notched-tube wrists developed in prior literature which provides a foundation for the mechanics

model proposed in this thesis.

2.1 Kinematics of Continuum Robots

In prior work, Webster et al. [3] established a unified framework to model the kinematics of

continuum robots. By modeling continuum robots as constant curvature links, the kinematics

can be separated into a robot-independent and robot-dependent mapping. While the work of this

thesis focuses on the robot-dependent kinematics of notched wrists, we present the full framework

below.

The key modeling assumption of this framework is that continuum robots bend in a shape

that can be described as a sequence of piecewise constant curvature segments (which in the

following we shall refer to as “links"), each of which can be described by a set of arc parameters.

The arc parameters for a single continuum link are illustrated in Fig. 2.1: they are, namely, the

curvature κ, the rotation φ, and the arc length s. Having established this new vector space that

describes the geometry of continuum links, the forward kinematics of continuum robots can

then be modeled as a two-step process, as illustrated in Fig. 2.2: a robot-independent mapping

between the arc parameters space and the task space; and a robot-dependent mapping between

the configuration space of the robot (i.e., the set all of all possible actuator values q ∈Rn, where n

6



2.1. KINEMATICS OF CONTINUUM ROBOTS

Figure 2.1: The arc parameters, κ, φ, and s, for a constant curvature segment. The curvature of
the arc is κ. The base rotation is φ. The arc length of the tube is s. Adapted from [3].

q , , , ,

Actuator
Variables

Arc
Parameters

Task Space
Position

fdependent findependentfdependent

f-1dependent f-1independent

Figure 2.2: To determine the tip position of the end effector, the actuator variables are first
mapped to a set of arc parameters (curvature, rotation, and arc length). The arc parameters are
then mapped to a tip position in Cartesian Coordinates [3].

is the number of degrees of freedom of the robot) and the arc parameters space. In the following,

we analyze each of these mappings in more detail.

2.1.1 Robot Independent Kinematics

For a single curved link (see Fig. 2.1), the transformation between the base of the link to the tip

can calculated using the following product of exponentials:

T = eξ̂rotφeξ̂inps (2.1)

where ξrot and ξinp are two 6-dimensional twist vectors. The first twist, ξrot, is a screw axis

representing a rotation about the z-axis of the link, i.e.,

ξrot =
[

vrot

wrot

]
=

[
0 0 0 0 0 1

]T
(2.2)

7



CHAPTER 2. BACKGROUND: KINEMATICS AND STATICS OF NOTCHED-TUBE
CONTINUUM WRISTS

The second twist, ξinp, represents an in-plane transformation which translates the coordinate

frame along the link from base to tip given a specific curvature κ, i.e.,

ξinp =
[

vinp

winp

]
=

[
0 0 1 0 κ 0

]T
(2.3)

To calculate the robot-independent transformation matrix for each curved section, we take the

twist coordinates above and map them to 4×4 elements of se(3) (i.e., the Lie Algebra of the special

Euclidean group SE(3)):

ξ̂rot =
[
ω̂rot vrot

0 0

]
=


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 (2.4)

ξ̂inp =
[
ω̂inp vinp

0 0

]
=


0 0 κ 0

0 0 0 0

−κ 0 0 1

0 0 0 0

 (2.5)

We recognize that se(3) can be parameterized by an element in R6, so we define the ·̂ operator

to represent the isomorphic mapping fromR6 to se(3) [25]. Therefore, for ξ= [vx vy vz ux uy uz]T ∈
R6:

ξ̂=


0 −uz uy vx

uz 0 −ux vy

−uy ux 0 vz

0 0 0 0

 (2.6)

Similarly, we recognize so(3) is a 3×3 skew-symmetric matrix which is isomorphic in R3. We

overload the ·̂ operator to map vectors in R3 to so(3) as follows [25]. For u = [ux uy uz]T ∈R3:

û =


0 −uz uy

uz 0 −ux

−uy ux 0

 (2.7)

Then, expanding Eq. 2.1 produces the following transformation matrix:

T =


cos(φ)cos(κs) −sin(φ) cos(φ)sin(κs) cos(φ)(1−cos(κs))

κ

sin(φ)cos(κs) cos(φ) sin(φ)sin(κs) sin(φ)(1−cos(κs))
κ

−sin(κs) 0 cos(κs) sin(κs)
κ

0 0 0 1

 (2.8)

As we shall see in the following, the transformation matrix in Eq. 2.8 can be directly applied to

model the kinematics of individual curved sections in a robot [2]. Creating a transformation matrix

for each section of the robot and multiplying them sequentially will produce the transformation

from the base of the robot to the tip.

8



2.2. PRIOR MODELING OF ASYMMETRIC NOTCHED-TUBE WRISTS

Actuation
Tendon hj

gj

cj

Fp

jth notch

jth uncut section

Fp

Twrist

Figure 2.3: A notched-tube wrist is an open kinematic chain consisting of a sequence of inter-
leaving notches and uncut sections. Throughout this thesis, we use c j to indicate the length of the
jth uncut section, while h j and g j respectively denote the length and depth of the jth notch. Wrist
actuation is performed by applying a pulling force Fp on the tendon. Kinematic models provide a
mapping between the tendon displacement ∆l and the tube pose Twrist ∈ SE(3). A consequence of
assuming a frictionless tendon in prior models is that each notch undergoes the same amount of
deflection θ j.

2.1.2 Robot-Dependent Kinematics

The purpose of the robot-dependent kinematics is to create a relationship between the actua-

tor variables of the robot and the arc parameters of the curved links. While the equations in

Section 2.1.1 hold for any piecewise constant curvature robot, there is no single closed-form

solution to the robot-dependent kinematics. The design of the robot will dictate how to map the

actuator variables to the arc parameters. As we shall see later in this chapter, this is the case of

notched-tube wrists, whose robot-dependent kinematic relations are presented in Section 2.2.1.

2.2 Prior Modeling of Asymmetric Notched-Tube Wrists

Let us consider a generic notched-tube wrist, with dimensions as noted in Fig. 2.3. Throughout

this thesis, we will use the convention of numbering notches from 1 (most proximal) to n (most

distal). When a pulling force Fp is applied on the actuation tendon, a moment M will be created at

the tip of the tube, which will make the wrist bend. We make several key modeling assumptions

about the tendon: it is attached to the tip of the tube, on the opposite side of the wrist spine, it is

inextensible, and it will not significantly contribute to the flexural compliance of the wrist.

2.2.1 Wrist Kinematics

York and Swaney et. al. previously developed a geometric robot-dependent forward kinematics

model. The model determines the arc parameters κ and s based on the tendon displacement

9
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CONTINUUM WRISTS

Tendon

Neutral
Bending
Plane

ri
γ

Figure 2.4: Representation of a single notch and the arc parameters κ j and s j that describe it.
The neutral bending plane maintains the length h j, the height of the cut, during bending. The
distance of the neutral bending plane from the center of the tube is denoted by x̄ j. Reproduced
from [2].

∆l. To simplify the analysis, the authors assume a frictionless tendon, and only model a single

notched section - with the assumption that all notches in the wrist undergo the same deflection.

Let us consider an individual notched section (Figure 2.4) which we assume is bending in a

constant curvature arc. We begin by calculating the distance between the neutral bending plane

and the centerline of the tube. The neutral bending plane is the area of the tube that does not

experience longitudinal strain when bent and is located at the centroid of the notch’s horizontal

cross-section. For the sake of conciseness, the calculation of x̄ j is omitted here, and interested

readers are referred to Appendix A. We can use x̄ j and the notch height, h j, to find the mapping

from curvature, κ j, to tendon displacement, ∆l, using the chord function and arc geometry [9]:

∆l = h j −2
(

1
κ j

− r i

)
sin

(
κ jh j

2(1+ x̄ jκ j)

)
. (2.9)

Then by applying a small angle approximation, we can invert Eq. 2.9 to define curvature as a

function of tendon displacement:

κ j ≈ ∆l
h j(r i + x̄ j)−∆l x̄ j

. (2.10)

Once κ j is known, the arc length s j and the bending angle θ j can be found using arc geometry:

s j =
h j

1+ x̄ jκ j
, (2.11)

θ j = κ js j. (2.12)

10



2.2. PRIOR MODELING OF ASYMMETRIC NOTCHED-TUBE WRISTS

The relations above permit the calculation of the arc parameters κ j and s j given the amount of

tendon displacement ∆l. Then using the transformation matrices from Eq. 2.8 we can build the

forward kinematics for a notched tube wrist [3]:

Twrist =
n∏

j=1
Tnotch, j Tuncut, j (2.13)

here Tnotch, j and Tuncut, j are the transformations across the jth notched and uncut sections,

respectively. We assume that uncut sections do not bend, therefore Tuncut, j is a simple translation

along the z axis by a distance c j equal to the length of the jth uncut section. For the notched

sections, Tnotch, j can be calculate using Eq. 2.8 where the curvature and arc length are calculated

with Eq. 2.10 and Eq. 2.11.

The assumption of a frictionless tendon in prior kinematic modeling implies that during

actuation, for a wrist comprised of n geometrically identical notches, each notch undergoes the

same amount of deflection, i.e., θ1 = θ2 = ·· · = θn. As we have shown earlier in Fig. 1.4, this

assumption does not always describe the shape of these devices accurately. As we shall see

later in Chapter 3, we relax this assumption and explicitly model tendon friction and material

nonlinearities to describe these non-constant curvature behaviors.

2.2.2 Wrist Statics

In [2], York and Swaney also propose a statics model to determine the actuation force necessary

for wrist actuation. Briefly, the authors first calculate the total amount of elastic energy U stored

in the wrist, then apply Castigliano’s First Theorem to calculate the bending Moment M acting on

the wrist. The authors maintain their assumption that each notch bends in a constant curvature

arc. Based on this assumption, the strain along the length of the wrist varies proportionally to

the distance from the neutral bending plane:

ε= κ(y− x̄)
1+ x̄κ

(2.14)

where y is the distance between the neutral bending plane and location of interest in the backbone

[2].

The strain energy in the system can then be computed using the relationship between the

geometry and the material deformation. The behavior of Nitinol is highly non-linear, though, and

the authors simplify the stress-strain relationship with the following piecewise equation:

σ(ε)=


σl p ε≤ σl p

E

Eε σl p
E < ε≤ σup

E

σup
σup
E < ε

(2.15)

where E is the elastic modulus of the material, σl p is the lower stress plateau, and σup is the

upper stress plateau.
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The strain energy density, W(ε), is the area under the stress-strain curve and is defined by

the integral:

W(ε)=
∫ ε

0
σ(e)de. (2.16)

The integral of the strain energy density of a notch with respect to the volume of the notch is the

strain energy. The total strain energy, U(κ), stored in the wrist is given by the strain energy in a

single notch multiplied by the number of notches:

U(κ)= n
∫

Vc

W(ε(y,κ))dV (2.17)

where Vc is the volume of the notched section. The relationship between the tip deflection, θ, and

the input force F is given by Castigliano’s first theorem:

∂U
∂θ

= M = Fd (2.18)

where d is the length of the moment arm given by d = (r i + x̄) [2]. The authors include a frictional

component strictly to measure the increase in actuation force necessary to bend the tube. The

frictional force does not have any effect on the modeled notch closure sequence and is not used to

measure the different local moments experienced by the notches. The frictional force is applied at

the corners of the notched sections and is described as:

F = ηFtendon = sin(γ/2)−µs cos(γ/2)
sin(γ/2)+µs cos(γ/2)

(2.19)

where γ is the angle defined in Figure 2.4 and µs is the coefficient of friction between the tendon

and the tube. Solving Eq. 2.18 for the force of the tendon we get:

Ftendon = 1
η2nL

∂U(κ)
∂θ

. (2.20)

In separate work, Eastwood et al. [4] developed a kineto-static model that uses Castigliano’s

Second Theorem to estimate the deflection of a wrist subject to external forces.

The authors first model the second moment of area for the beam I(z), which is a discontinuous

function because of the removed material from the tube. The second moment of area is a function

of the tube’s length:

I(z)=


π(r2

o − r2
i )/4 i f (0< z ≤ a)

I I I i f (a < z < L−b)

π(r2
o − r2

i )/4 i f (L−b < z)≤ L

(2.21)

where the position along the beam, z ∈ [0,L], is described by Fig 2.5. The function I I I represents

the second moment of area for the notched section of the tube and is itself a piecewise function.

For a cut section of the tube, the second moment of area is the superposition of the second moment

of area for two circular segments, Ĩ I I . One circular segment uses the inner radius of the tube and

12



2.3. LIMITATIONS OF CURRENT MODELS

Figure 2.5: The representation of the neutral bending plane and notched-tube parameters used
in [4]. Here a represents the length of the tube before the first notch and b is the length after the
last notch. Reproduced from [4].

one uses the outer radius. For an uncut section, the second moment of area is just the second

moment of area for a cylinder.

I I I =
π(r4

o − r4
i )/4 i f (z−b)Mod(h+ c)< c

Ĩ I I − ȳ2(As(ro, qo)− As(r i, qi) otherwise
(2.22)

In Eq. 2.22, As(r, q) is the area of the circular segment with radius r, and angle q.

The authors apply Castigliano’s second theorem to calculate the deflection of a point on the

notched-wrist where a load is applied. Since they are assuming a load is applied to the tip of the

tube, to determine the deflection of other areas on the notched-wrist, a dummy load is applied at

the point of interest. The strain energy of the system is given by the following equation:

U(z)=
∫ L

0

M2

2EI
dz. (2.23)

The authors then calculate the deflection of the points on the beam by applying Castigliano’s 2nd

Theorem:

∆y= ∂U(z)
∂Q

. (2.24)

Here it is important to note that the authors are concerned with external loads being applied to

the tube. They are not measuring the impact the internal forces created by the wire will have on

the deflection of the tube which is instead the main focus of the work described in this thesis.

2.3 Limitations of Current Models

The kinematic model we discussed assumes a frictionless tendon, and so each notch, when the

tube is actuated, will experience the same tendon displacement and bend the same amount.

As we have seen though, (see Fig 1.4), when the tube is actuated, each notch has a different

bending rate. In some cases, we see the proximal notches closing more quickly and in others we

13
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Figure 2.6: If we change the distribution of the wrist deflection among the notches, we can get
drastically different tube shapes. in this image, each tube bends a total of 90 degrees but the
distribution of the bending angle varies among the tubes: the blue line has an equal bending
distribution among the notches, the red line has the proximal notches take a majority of the total
deflection, and the yellow line has the distal notches take a majority of the total deflection. The
current models assume that we have an equal bending distribution (blue line), but this is not the
case. Continuing to use the assumption that each notch bends the same amount can produce large
inaccuracies in the tip position of the tube.

see the distal notches closing more quickly. This assumption, while it simplifies the calculations,

can create large inaccuracies when determining the position of the tube as seen in Fig. 2.6.

Similarly, the statics model developed by Swaney et al. maintained the assumption that each

notch would bend uniformly. The friction term was included purely to model the necessary

increase in actuation force, but not to model the individual notch bending rates and so suffers

from the same inaccuracies as the kinematic model. The statics model developed by Eastwood

et al. is mainly concerned with external forces applied to the tube, and so does not model the

internal forces between the tendon and tube. Additionally, this model assumes a purely elastic

material and does not account for the material nonlinearities of Nitinol. As we shall see in the

following chapter, we believe it is the frictional forces between the tendon and the tube, as well

as the material nonlinearities, that contribute to the unique notch deflection rates, we see in the

tubes.
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3
WRIST MECHANICS

We now study the mechanics of notched tube wrists, and formulate a model that describes the

deflection of each individual notch. Our analysis is structured as follows: we first focus on the

mechanics of notched sections and use Castigliano’s Second Theorem to derive a formulation

for the notch deflection based on the local bending moment experienced at each notch. We then

propose a model for the frictional forces occurring between the actuation tendon and the walls of

the tube, and study how these losses affect the local moments. The result of our analysis is a set

of recursive equations that can be solved to calculate the wrist kinematics.

3.1 Force Model

Throughout our analysis, we consider the same generic notched wrist illustrated earlier in

Fig. 2.3. To denote the wrist dimensions, we use the nomenclature introduced in Section 2.2. For

convenience, relevant variables are summarized in Table 3.1.

3.1.1 Notch Deflection via Castigliano’s Second Theorem

Recall from basic mechanics [26] that the total strain energy U stored in a cantilever beam of

length L subject to a bending moment M is given by:

U =
∫

L

M2

2EI
dz (3.1)

where E is the elastic modulus, and I is the second moment of area of the beam about its

neutral axis. This relation is valid so long as we operate within the linear (elastic) region of the

stress-strain curve for the material that the beam is made of. In Section 3.1.3, we will extend
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CHAPTER 3. WRIST MECHANICS

Table 3.1: Wrist Parameters

r i Inner Radius of Wrist
h j Height of notch
c j Length of uncut section
g j Depth of cut for notch
θ j Angle of notch deflection
x̄ j Distance to neutral bending plane
n Number of notches

Fp

Applied Capstan

Figure 3.1: Diagram of the forces and moments being experienced at each notch due to the tendon
force and the capstan loss model being applied at each cut section of tube.

our analysis to consider the case of materials with a non-linear stress-strain curve, as is the case

with Nitinol.

If we assume that M, E, and I are uniform along the length of the beam, Eq. 3.1 simplifies to:

U = M2L
2EI

. (3.2)

Having obtained a relation for the strain energy U , we can now use Castigliano’s Second Theorem

to determine the angular deflection of the beam:

θ = ∂U
∂M

= ML
EI

. (3.3)

These results for a cantilever beam can be applied to calculate the deflection of each notched

section in a wrist. For a notched-tube joint with n notches, the bending angle of the jth notch θ j is

given by:

θ j =
M jh j

E j I j
(3.4)

where M j is the local bending moment, E j is the local elastic modulus, I j is the second moment

of area, and h j is the notch height. Note that this equation is general in the sense that it allows

for variations in notch geometry and material.

3.1.2 Modeling the Frictional Losses on the Actuation Tendon

We now study tendon friction and evaluate how it affects the loading conditions at each notch.

Without loss of generality, let us consider the 3-notch wrist shown in Fig. 3.1. Pulling on the
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3.1. FORCE MODEL

Figure 3.2: Due to the tension on the tendon and frictional forces between the tendon and the
capstan surface about the angle ψ, a small holding force can hold a much higher loading force.

tendon with a force Fp exerts a force F3 at the distal tip of the wrist. If there were no losses, then

Fp would be equal to F3. However, as it was discovered in [9, 2], F3 will generally be smaller

than Fp due to the frictional contact between the tendon and the corners of the notched sections.

As the tendon is pulled to deflect the wrist from an initially straight configuration, friction will

progressively reduce the tension on the tendon towards the distal end of the wrist. We propose

to model these interactions using a capstan loss model. For a tendon or rope wrapped around

an object, the loading force gets reduced by an exponential term relative to the angle, ψ and the

coefficient of friction µ. The application of an ideal capstan is demonstrated in Fig. 3.2 and by the

following equation:

Fload e−µψ = Fhold. (3.5)

The capstan is applied at the corners of each notch, denoted with a pink circle in Fig. 3.1. The

tendon travels around each capstan with an angle of θ j
2 . As the tendon passes through a notched

section it will pass around two capstans and will experience the equivalent frictional loss of a

single capstan about an angle of θ j. Therefore we can model the force experienced at each notch,

F j, as a function of the pulling force, Fp and the angle of each notch.

F j = Fp

j∏
k=1

e−µθk . (3.6)

We are now ready to calculate the bending moment experienced by each notch, which is simply

given by:

M j = F j(r i + x̄ j). (3.7)

In the equation above, the term r i + x̄ j represents the moment arm. Recall from Section 2.2.2

that this expression for the moment arm length is valid so long the actuation tendon is attached

at the tip of the tube on the opposite side of the spine

Finally, we can substitute M j in Eq. (3.4) to obtain an expression that relates the bending

angle of the jth notch to the pulling force Fp, yielding the key modeling result of this thesis:

θ j =
(r i + x̄ j)h j

E j I j
Fpw

j∏
k=1

e−µθk . (3.8)
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Linear

Superelastic Plastic

Figure 3.3: Illustrative stress-strain curve of Nitinol as per Eq. (3.9).

The system of transcendental equations above - note that θ j appears both on the left-hand

side as a linear term and on the right-hand side as an argument to one of the exponentials -

can be solved numerically to obtain the notch deflections for a given actuation force Fp. Note

also how the right-hand side of Eq. (3.8) contains E j, i.e., the elastic modulus of the material.

To account for the fact that Nitinol has a nonlinear stress-strain curve, we replace E j with an

effective (secant) modulus Eeff, j, as we describe in the following.

3.1.3 Handling Material Nonlinearities

The stress-strain curve of Nitinol has a distinctive non-linear behavior that is convenient to

approximate using a piecewise formulation (adapted and slightly modified from the model

discussed in Section 2.2):

σ(ε)=


εE l in ε≤ εl

σl + (ε−εl)Ese εl < ε≤ εp

σp +Epe−β/(ε−εp) εp < ε
(3.9)

where E l in, Ese, and Ep are the effective moduli in the linear, super-elastic, and plastic regions

(respectively); σl , σp are the lower and upper plateau stresses; εl , εp are the lower and upper

plateau strains; and β is a heuristic parameter. An illustrative stress-strain curve of Nitinol,

showing these three regions, is shown in Fig. 3.3.

From Eq. 3.9 and Fig. 3.3, it is evident that so long as we operate within the elastic region of

the stress-strain curve, it is possible to estimate the deflection θ j by simply replacing E j with

E l in in Eq. (3.8). However, as soon as the amount of strain created on the notch exceeds εl , i.e., as

soon as the material enters the superelastic regime, the linear modulus E l in no longer adequately

captures the mechanics of the notch, and we need to find an approximation for E j that ensures

consistency with the assumptions of the model. For this purpose, we use the effective (secant)

modulus Eeff, j. To calculate Eeff, j, we use a gradient descent approach. We begin by setting
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Figure 3.4: Iterative secant modulus approximation of superelastic material behavior: (top)
modulus approximation for a tube in the superelastic range, (bottom) convergence plot.

E[0]
eff, j = E l in, and then use the following update law:

E[k]
eff, j = E[k−1]

eff, j −η
(
E[k−1]

eff, j − σ j

ε j

)
(3.10)

where η is the descent rate, and σ j and ε j respectively are the stress and strain created on the

jth notched section. The execution of the algorithm is illustrated in Fig. 3.4. At each step k of

the algorithm, the values of σ j and ε j are updated to reflect the update in the effective elastic

modulus. To perform these updates, we use the relations derived in [2], which we report below for

completeness:

κ j =
θ j

h j − x̄ jθ j
, (3.11)

ε j =
κ(ro − x̄ j)
1+ x̄ jκ

. (3.12)

The deflection angle θ j used in the relations above is calculated by evaluating Eq. (3.8) with a

modulus value of E[k−1]
eff, j . This process is repeated until the modulus converges (E[k]

eff, j −E[k−1]
eff, j < ε).

The full algorithm can be seen in Appendix B.
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4
EXPERIMENTAL VERIFICATION

Here we describe the experiments that we performed to verify the model proposed in the previous

chapter. We created three different wrists designs, with notch geometries as listed in Table

4.1. Nitinol tubing was procured from Johnson Matthey (West Chester, PA, USA), and notches

were created by laser cutting. Wrists A and B feature a uniform notch geometry, and they were

designed to achieve a maximum deflection of 150°and 90°, respectively. These two wrists were

designed to test the main hypothesis of this thesis; namely, that uniform-notched wrists undergo

non-constant curvature due to the presence of tendon friction, as illustrated earlier in Fig. 1.3(a)

(i.e., proximal notches close first). Wrist C was instead designed to compensate for these frictional

losses by having increasingly deeper notches towards the distal end, with the goal of replicating

the tip-first bending behavior observed previously in Fig. 1.3(b).

4.1 Tendon Attachment

In our model, we assume the tendon is attached to the tip of the tube on the opposite side of the

wrist spine. In order to guarantee this positioning, we designed a specific procedure for tendon

attachment taking advantage of the tube’s bending behavior. The tendon is threaded through the

tube while the tube itself is resting on a curved platform. The tendon is then pulled towards the

table surface, creating tension and causing the tube to bend slightly. This causes the wire to rest

in a position opposite the spine, and super glue can be added to the tip of the tube (Fig. 4.1). After

the glue has cured, the tension on the wire is released, excess wire is cut, and the wrist is ready

for use.
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Table 4.1: Geometric design parameters of the wrists used for experimental verification. Each
wrist has an inner diameter of 1.4 mm and an outer diameter of 1.62 mm.

Wrist A Wrist B Wrist C

h (mm) 0.8 0.5 1.0
c (mm) 2.2 1.5 1.0
g (mm) 1.4 1.4 [1.36, 1.39, 1.42, 1.45]

n 5 5 4

Figure 4.1: By using a curved surface, the tube bends when tension is applied to the wire. This
causes the wire to settle in the ideal position for gluing.

4.2 Experimental Setup

The experimental setup is shown in Fig. 4.2. Each wrist was mounted on a collet and the actuation

tendon was pulled by means of a linear slider (Velmex, Bloomfield, NY, USA). Throughout each

experiment, the tension on the tendon was monitored with an FT-17 force sensor (Alberobotics,

Genoa, Italy).

Experiments were carried out as follows: starting from an initially straight configuration,

each wrist was progressively bent by pulling the tendon in increments of 0.25 mm. At each step,

a digital single-lens reflex camera outfitted with a macro objective (Nikkor 40mm f/2.8G, Nikon

Corporation, Tokyo, Japan) was used to document wrist deflection. This procedure was repeated

five times on each wrist, i.e., each wrist was cycled for a total of five times. After the experiment,

each photograph was analyzed with a custom image processing MATLAB script (MathWorks Inc.,

Natick, MA, USA) to measure the bending angle of each notch.

4.3 Identification of Material Properties

For reasonable (non-plastic) strains, the mechanics model in Eq. (3.8) is dependent on three

different material properties of Nitinol, namely the linear elastic modulus E l in, the superelastic

modulus Ese, and the lower strain plateau εl p, plus the coefficient of friction µ of the actuation

tendon. To identify these parameters, we ran a global optimization routine in MATLAB seeking

to solve the following problem:

min
E l in,Ese,εl p,µ

||eA||+ ||eB||+ ||eC|| (4.1)
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Camera

Force Sensor

Linear Slide
Collet

Wrist

Figure 4.2: Experimental setup. Notched-tube wrists were mounted in a collet, and a linear slider
was used to pull the actuation tendon. Tension on the tendon was measured by means of a force
sensor, while the wrist deflection was recorded with a digital single-lens reflex camera.

Table 4.2: Material parameters determined by global search optimization.

E l in Ese εl p µ

10.7 GPa 2.9 GPa 0.0255 0.13

where eA, eB, and eC, are (n+1)-dimensional vectors containing the model Root-Mean-Square-

Error (RMSE) of the individual notches and total wrist deflection for Wrist A, Wrist B, and Wrist

C respectively, and the || · || operator denotes the Euclidean norm. The error vectors for each

wrist were generated using the measured angles from the 5 cycles of each wrist, and the models

predicted angles for a given set of parameters. The parameters that minimized the error vectors

would minimize our objective function, and the results of the material identification routine

produced the parameters listed in Table 4.2.

4.4 Model Verification

Using the material properties identified in the previous section, we generated the plots in

Figure 4.3, which show a comparison between experimental data and model predictions. The

model was found to accurately predict the deflection of each notch, and hence the curvature of

each different wrist. The Root-Mean-Square errors (RMSE) of the model with respect to each

individual notch are reported in Table 4.3. The largest observed error was 2.27° (notch 1 in wrist

C), while the RMSE was around or below 1° for most other notches.
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Figure 4.3: Experimental Results. (Top Row) Model output for the three different wrist designs
considered in the experiments. Wrists A and B were designed to exhibit proximal-first bending,
while wrist C displayed tip-first bending. Note how the model correctly captures the notch closing
sequence in all cases. (Bottom Row) Comparison of model output versus experimental data.

4.5 Comparison with Simpler Models

To illustrate the importance of accounting for both tendon friction and material nonlinearities,

we report results comparing the tracking accuracy of our model against three simpler models,

namely one where we assume linear material properties but still account for tendon friction (i.e.

Eq. 3.8 assuming E j = E l in∀ j)

θ j =
(r i + x̄ j)h j

E l inI j
Fp

j∏
k=1

e−µθk ; (4.2)

one where we assume linear material properties and consider the tendon to be frictionless (i.e.

Eq. 3.8 assuming E j = E l in∀ j and µ = 0)

θ j =
(r i + x̄ j)h j

E l inI j
Fp; (4.3)

one where we assume nonlinear material properties and consider the tendon to be frictionless

(i.e. Eq. 3.8 µ = 0)

θ j =
(r i + x̄ j)h j

E j I j
Fp. (4.4)

Note that the second set of assumptions are the same used in prior modeling (as we saw

in Section 2.2), and that under these assumptions, wrist deflection can be treated as a pure

elastic beam bending problem; i.e., notch angles can be calculated with Eq. (3.4). To ensure a
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CHAPTER 4. EXPERIMENTAL VERIFICATION

Table 4.3: Model RMSE (degrees) for each notch for wrists A, B, and C.

Notch Wrist A Wrist B Wrist C

1 1.80 0.43 2.47
2 1.32 0.41 1.49
3 1.01 0.39 1.15
4 0.84 0.57 0.79
5 0.89 0.57 —
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Figure 4.4: Sample wrist shapes observed during experimentation, along with the wrist shapes
predicted by three different models. The model we propose in this thesis (Non-Linear with Friction)
predicts the wrist shape almost exactly, while models assuming linear material properties generally
provide a higher tracking error.

fair comparison with our model, we repeated the material identification procedure described in

Section 4.3 to identify a value of elastic modulus that yields the best tracking accuracy for these

three simpler models.

Results are summarized in Fig. 4.4. It can be observed that the shape of the wrist estimated by

Eq. (3.8) (blue line) matches the experimental wrist shape almost exactly. Conversely, assuming

linear material properties will generally produce a higher tracking error. Assuming nonlinear

material properties but removing friction produces closer estimates, but without friction cannot

accurately model the different notch bending rates, causing inaccuracy.

Fig. 4.5 summarizes the tip tracking RMSEs afforded by each of the three models under

consideration. These results further demonstrate the higher accuracy of our model (average

RMSE: 0.30 mm) compared to simpler models (average RMSEs: 0.91 mm, 0.88 mm, and 0.41 mm,

respectively).
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4.5. COMPARISON WITH SIMPLER MODELS

Figure 4.5: Tip tracking accuracy (Root-Mean-Square Error) of three different models calculated
on Wrists A, B, and C.
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5
DISCUSSION AND FUTURE OUTLOOK

The model presented in this thesis aims to include the effects of tendon friction and material

nonlinearity to enhance the tracking accuracy of notched-tube continuum wrists. The model

was verified through experiments on three different Nitinol wrists, each designed to achieve

a different bending profile. By relaxing the assumptions made in prior work that the tendon

is frictionless and that the material of the wrist is linearly elastic, our model can predict the

disparate loading conditions at each notch, and therefore accurately capture the actual shape of

notched-tube wrists.

By observing the Force/Deflection plots for Wrists A and B in Fig. 4.3, the effects of tendon

friction manifest as differences in slope for each notch under loading. We observe that, for more

distal notches, parasitic capstan friction effects ultimately reduce the effective moment seen

by each notch, thereby reducing deflection for a given tendon force. The fidelity of our model is

especially well illustrated in the Force/Deflection plots for Wrist C in Fig. 4.3, where the effects

of tendon friction and material nonlinearity on the resulting kinematics are abundantly clear.

For an input force of 1 N, notches 1 and 2 remain in the linear elastic regime, whereas notches 3

and 4 have transitioned to superelastic, as indicated by the abrupt increase in slope. Our model

matches the experimental data extremely well, and a simpler model relying on linear elastic

material assumptions would not be able to capture this phenomenon.

Although we did not conduct experiments with varying diameters, we hypothesize that in

certain cases of large tube diameters, the different notch bending rates may not occur for two

reasons: firstly, the material may be purely linear (not Nitinol), and secondly, the friction between

the tendon and the tube may be negligible compared to the bending stiffness of the tube, EI.

The large differences in bending rate we see in nitinol tubes is due to Nitniol’s nonlinearities

amplifying the small differences created by friction. So a purely elastic material will not see as
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5.1. FUTURE WORK

large of a difference between each notch. Additionally, if the bending stiffness of the material is

large enough (increasing with tube size), friction’s effect will be lowered even more.

The fabrication process of Nitinol tubes can vary extensively between manufacturers which

necessitates the characterization of material properties for a given tube. Our material identifica-

tion process provided values for the wrist samples we used, which were all cut from the same

Nitinol tube, however, future samples may need to undergo the same material identification

process.

The algorithm is relatively complex compared to traditional forward kinematics because both

θ j and Ee f f must be solved numerically. In our implementation, the effective modulus converged

in less than 100 iterations, and θ j converged in 10. This means for each notch we ran 1000

iterations of the gradient descent, with a worst-case complexity scaling linearly with the number

of notches O(n). Since there is a one-to-one relationship between the input force and the tube

position, a lookup table could easily be generated to store the relationship between the force on

the tendon and the bending angles of the tube or even the position of the tube. This would provide

fast computation and a relatively granular resolution.

5.1 Future Work

By modeling both friction and material nonlinearities, this work provides a foundation for future

research in the simulation and design of notched-tube continuum wrists. Simulations concerned

with reachability or path planning can use this model to more accurately determine the position

of the tube, the path it will follow, and any collisions that may occur. Furthermore, as we have

shown, our model will accurately predict the notch closure sequence for tubes with non-uniform

geometry. The process can be inverted to design the notch geometry for a tube based on a desired

notch closure sequence. This enables the design of tubes to account for patient-specific anatomy

or specific curvature profiles for intravenous and intraluminal navigation.

Additional modeling could be done to account for the wrist "unbending" (i.e., the kinematics

when a tendon relaxes and the tube is allowed to return to its original shape). It was noted

during experimentation that the behavior of the wrist when the tendon was relaxed was not

simply the inverse of applying tension to the tendon. For example, for a uniformly designed wrist,

the proximal notches close before the distal notches when tension is applied to the tendon. We

hypothesized, based on the inverse of the model, that the proximal notches would open last as the

tendon is relaxed. However, we observed that the proximal notches opened first. We believe this

is due to, again, a combination of material nonlinearities and friction. The stress-strain curve of

Nitinol changes between loading and unloading, so we would need to create an approximation for

the unloaded case. Additionally, our use of the capstan model has varying behavior for unloading

and loading. As the tube is bending, the loading force on the tendon for the capstan comes from

pulling on the tendon and the holding force comes from the tube. When unloading the tendon,
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CHAPTER 5. DISCUSSION AND FUTURE OUTLOOK

the opposite effect will actually occur; the tube will be applying the loading force on the tendon

and the holding force will be the force maintaining tension on the tendon.

Another avenue of extension for this work could be by incorporating a rotation between the

notches of a tube which would allow the tube to bend out of plane. Currently, our model assumes

that the tendon maintains contact with the tube, and the force applied by the tendon is strictly

along the z axis of the tube. If we incorporate rotations among the notches, these two assumptions

would have to be relaxed, and a more complex model would need to be created.

A potential source of error in the model is the assumption that the entire notch will transition

from linear-elasticity to super-elasticity once the strain in the notch reaches a specific threshold.

This is best demonstrated by the small error we see in accurately predicting the strain transition

value for Wrist C which has a varying backbone thickness. The strain thresholds for the first

two notches are underestimated, while those of the most proximal are overestimated. For beam

bending, the entire beam does not experience the same amount of strain. Fibers closer to the

neutral bending plane will experience strains approaching zero while fibers closer to the outer

edge of the beam will experience the maximum amount of strain. When our model transitions

from the linear elastic region to the superelastic region, in reality, only the outer fibers of the

notch are actually transitioning. Our approximation of Nitinol’s material nonlinearity also loses

accuracy the more a notch bends which is demonstrated in Wrists A and B. Wrist B, which has

the smallest bending angle per notch ( 18 degrees) has higher accuracy than Wrist A ( 30 degrees

per notch). Our linear approximation of the effective modulus is still an underestimate of the

strain energy in the system that becomes more inaccurate the more strain (and hence the larger

the bending angle) the notch experiences. Future work would investigate whether the tracking

performance of our model can be improved further by accounting for strain variation throughout

the notch cross-section and its resulting effect on the notch modulus.

We noticed during experimentation that the tendon thickness played a vital role in the

behavior of the wrist. A thicker tendon would produce substantially different results than the 0.1

mm tendon we used for the experiments. Specifically, a thicker tendon would require more force

to close the notches. In extreme cases, the tendon could prevent notches from fully closing. Our

model assumes the strain energy in the system is entirely determined by the bending angle of

the notch, however, a thick enough tendon could store a non-negligible amount of strain energy.

Our model implicitly accounted for the effect of tendon thickness when we identified the material

properties of the wrist, but changing the tendon thickness would then result in different material

properties. To further improve the model, we would investigate the strain energy experienced

by the tendon and how it contributes to the notch deflection. Modeling the tendon would build a

basis for accounting for the stiffness of tools passed through the wrist. Notched tube wrists are

usually designed to have a tool passed through the open lumen, like a laser fiber. This tool would

have its own stiffness, similar to the tendon, that would impact the bending of the wrist.

With these considerations, a more complete model describing the internal forces of the wrist
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would be created, but the position of the tube can still be influenced by external factors. With

visual servoing, it may then be possible to estimate the external or contact forces being applied

to the tube. The first step would be to perform an analysis similar to what was done in [4],

but extend the work to tube positions that do not start initially straight. This would provide a

measure of how much additional deflection will occur from external forces applied to an actuated

tube. From here, the position of the tube, actuation force, and a relationship between deflection

and external forces could be used to determine the external forces being applied to the tube.

If the ultimate goal is a full dynamic model representing the motion of the notched wrist given

a pulling force on the tendon, the Cosserat rod model becomes an attractive option. Given the

design of the tube, a piecewise function for the second moment of area could be used to account for

the notches in the tube similar to [4]. Additionally, a more extensive identification of the material

properties of Nitinol would be required.

5.2 Concluding Remarks

As the use of asymmetric notched-tube wrists in robotic minimally invasive surgeries increases,

it is important to have accurate models for the simulation and actuation of these devices. Cur-

rently available models for asymmetric notched-tube wrists assume that the actuating tendon

is frictionless and the material is linear elastic. In this thesis, we presented a mechanics-based

model which relaxes these assumptions in order to determine the deflection of the notches indi-

vidually. We modeled the frictional losses using a capstan friction model and accounted for the

non-linear material properties using a secant modulus. The result of our modeling is a system of

transcendental equations that can be numerically solved to calculate the deflection of each notch

in a wrist based on the actuation force. Experimental data was gathered using three wrists with

varying geometries and the proposed model was shown to outperform prior models in accurately

predicting the wrist deflection.
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CALCULATING THE NEUTRAL BENDING PLANE

The neutral bending plane for a single notch in an asymmetric notched-tube wrist, x̄, is located

at the centroid of the notch’s horizontal cross-section. The cross-section’s centroid and shape is

determined by the cutting pattern used: either an off-axis cut or an on-axis cut. An off-axis cut is

one where the cut direction is perpendicular to x-axis of the tube see in Fig. A.1. An on-axis cut is

one where the cut direction is along the radial axis of the tube seen in Fig. A.2. With both cut

types, x̄ can be found using the following geometric relationship:

x̄ = x̄o Ao − x̄i A i

Ao − A i
. (A.1)

where the Areas, Ao and A i, and their respective centroids, x̄o and x̄i, are defined by the geometry

of the cut in the following sections.

A.1 Off-Axis Cutting

An off-axis cutting pattern, shown in Fig. A.1 was used in the wrists developed by York and

Swaney et. al. [2]. For an off-axis cutting pattern, Ao and A i are circular segments. To determine

their area and centroids, we first define the angle of the segments, φo and φi.

φo = 2arccos(
g− ro

ro
) φi = 2arccos(

g− ro

r i
) (A.2)

Ao =
r2

o(φo −sin(φo))
2

A i =
r2

i (φi −sin(φi))

2
(A.3)

x̄o =
4ro sin3(1

2φo)
3(φo −sin(φo))

x̄i =
4r i sin3(1

2φi)
3(φi −sin(φi))

(A.4)
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APPENDIX A. CALCULATING THE NEUTRAL BENDING PLANE

Off-Axis Cut

ri g-roro

Ao

Ai

o

i

Figure A.1: A visual representation of off-axis cutting and the resulting circular segments Ao
and A i.

On-Axis Cut

Ai

Ao

g-roro

Figure A.2: A visual representation of on-axis cutting and the resulting circular sectors Ao and
A i.

A.2 On-Axis Cutting

An on-axis cutting pattern, shown in Fig. A.2 was used for the wrists used in the experimental

verification. For an on-axis cutting pattern, Ao and A i are circular sectors. To determine their

area and centroids, we first define the angle of the sectors, φ.

φ= 2arccos(
g j − ro

ro
) (A.5)

Ao = φ

2
r2

o A i = φ

2
r2

i (A.6)

x̄o =
2ro sin φ

2

3φ
2

x̄i =
2r i sin φ

2

3φ
2

(A.7)

34



A
P

P
E

N
D

I
X

B
NOTCH DEFLECTION ALGORITHM

Algorithm 1 Runs the gradient descent algorithm to determine the notch angles.
1: procedure GETNOTCHANGLE(Fp)
2: Θlast = [0] ; Initialize deflection vector
3: while ε< 10−6 and m < maxiter do
4: for j ← 1,n do
5: Ee f f = E l in ; initialize effective modulus
6: Solve F j(Fp,Θlast) ; estimate friction force from last deflection vector
7: Solve M j(F j) ; estimate moment
8: while εE > 10−6 and k < maxiter do
9: Solve θ j(M j,Ee f f )

10: Solve ε(θ j), σ(ε) ; estimate stress from nonlinear curve
11: Enew = Ee f f −η(Ee f f −σ/ε) ; gradient descent step
12: εE = (Enew −Ee f f )/Ee f f ; compute percent change
13: Ee f f = Enew
14: k++
15: Θ= [θ1,θ2, ...,θn]T ; save notch angle vector
16: ε= |Θ|− |Θlast| ; compute norm error
17: Θlast =Θupdate
18: m++
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