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Abstract

Many applications are migrating or beginning to make use native XML data. We

anticipate that queries will emerge that emphasize the structural semantics of XML

query languages like XPath and XQuery. This brings a need for an efficient query

engine and database management system tailored for XML data similar to tra-

ditional relational engines. While mapping large XML documents into relational

database systems while possible, poses difficulty in mapping XML queries to the

less powerful relational query language SQL and creates a data model mismatch

between relational tables and semi-structured XML data. Hence native solutions to

efficiently store and query XML data are being developed recently. However, most

of these systems thus far fail to demonstrate scalability with large document sizes,

to provide robust support for the XPath query language nor to adequately address

costing with respect to query optimization.

In this thesis, we propose a novel cost-driven XPath engine to support the scal-

able evaluation of ad-hoc XPath expressions called VAMANA. VAMANA makes

use of an efficient XML repository for storing and indexing large XML documents

called the Multi-Axis Storage Structure (MASS) developed at WPI. VAMANA ex-

tensively uses indexes for query evaluation by considering index-only plans. To the

best of our knowledge, it is the only XML query engine that supports an index plan

approach for large XML documents. Our index-oriented query plans allow queries

to be evaluated while reading only a fraction of the data, as all tuples for a particu-

lar context node are clustered together. The pipelined query framework minimizes

the cost of handing intermediate data during query processing. Unlike other native



solutions, VAMANA provides support for all 13 XPath axes. Our schema inde-

pendent cost model provides dynamically calculated statistics that are then used

for intelligent cost-based transformations, further improving performance. Our op-

timization strategy for increasing execution time performance is affirmed through

our experimental studies on XMark benchmark data. VAMANA query execution is

significantly faster than leading available XML query engines.
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Chapter 1

Introduction

1.1 Motivation and Problem Definition

The increase in the number of applications dealing with data in the XML [1] format

has brought demand for a language to extract result sets with ease from a large

collection of stored XML documents. Over the recent years, several XML Query

languages like XPath [2,3] and XQuery [24] have been proposed for that purpose.

XPath is a World Wide Web Consortium (W3C) standard language that enables

one to write expressions to identify certain parts of the XML document. XQuery on

the other hand is the proposed query language by W3C focusing on XML document

querying and restructuring. Hence XPath is a subset of XQuery.

This raises the need to have query engines that can efficiently process a wide

variety of queries and data sets exposed in these new powerful query languages.

The Document Object Model (DOM) [28] is a language independent API from

W3C which is used to access the various parts of the document. Several DOM-based

query engines [8,9,10] have been proposed for XPath evaluation. DOM-based engines

load the entire document into main-memory before query execution. Thus they are
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very resource intensive. The maximum document size is bounded by the amount of

physical main memory. Furthermore, the DOM structure requires complex recursive

traversal for evaluation even for simple XPath expressions. The detailed comparison

presented in [12] demonstrates both the document size limitations and lack of XPath

support for the current DOM based systems.

In order to overcome the limitations of DOM based processing, several storage

and indexing techniques have been proposed that facilitate query evaluation over

persistent XML data. These systems can be divided along the line of relational

mapped systems [6,7] and native XML systems [4]. The common trend for both the

native and relational-backed systems to date has been to have excellent performance

for certain classes of queries and limited support for the rest of the XPath language.

The fundamental problem is that without adequate indexing and index-sensitive

query processing, there are many queries the cannot be evaluated efficiently.

The most recent native query engines [4,13,14,15,26] have begun to address a

wider variety of XPath expressions. The eXist system [13] uses four indexes and a

path-join algorithm to facilitate evaluation of all XPath axes over multiple XML doc-

uments. Predicate execution is supported, but requires a less efficient tree traversal

strategy. Furthermore, eXist’s clustered storage comes at a cost since XML nodes

from all documents must be filtered to locate nodes from a single document.

1.2 VAMANA Approach

VAMANA is our solution for robust, high performance processing for XPath queries.

VAMANA is built around an XML repository called Multi-Axis Storage Structure

(MASS) [4], which is an efficient system for storing and indexing XML documents

many gigabytes in size.
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VAMANA employs a cost model that is independent of the schema. Query costs

are obtained from the actual data rather than a data dictionary and thus are always

up to date and accurate. Furthermore, this guarantees that cost accuracy is not

affected by updates, inserts and deletes that may occur in the XML data. Our

cost model does not suffer the overhead of having to parse the entire document

would be the case for histogram-based costing. VAMANA’s costing system has

the further advantage in that exact counts can be obtained for both location steps

and arbitrary text values. This degree of accuracy allows VAMANA to decide

which query transformations are likely to lead to an efficient query plan. VAMANA

provides comprehensive support for XPath expression evaluation for all 13 XPath

axes.

Currently all index-based [23,13,15] XML storage makes use of a structural path

join algorithm to evaluate XML queries. In contrast VAMANA makes extensive use

of indexes for query evaluation by considering index-only plans. VAMANA accord-

ing to our knowledge is the only XML query engine that supports an index plan

approach for large XML documents. Also most prevalent XPath engines [9,10,11,13]

only deal with ancestor, descendant or child axes ignoring the other axes supported

by the XPath standard. While VAMANA on the other hand supports all 13 XPath

axes.

Contributions: VAMANA’s main contributions can be summarized as follows:

1. We define a physical algebra that supports index-based execution for any given

valid XPath expression, including all 13 axes, value predicates.

2. We describe a novel cost estimation model and describe our method for ef-

ficiently gathering accurate statistics from the underlying storage structure

MASS. Our costing algorithm has the option to calculate the cost over the
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entire database that may contain many XML documents or can be specific to

a particular XML document or even to a specific point in the XML document.

3. We illustrate empirically the effectiveness of the cost model to identify opera-

tors that are expensive and should this be optimized.

4. We present a set of transformation rules for our physical algebra based on

the XPath equivalence rules stated in [4]. Our proposed transformation rules

exploit properties of the underlying storage structure (MASS) to optimize

value-based XPath expressions.

5. We develop an execution strategy that employs an iterative, bottom-up, indexed-

based plan. While we illustrate that our execution is able to make effective use

of our underlying MASS XML index statistics and its capabilities, in principle

the execution algorithm is independent of our storage structure.

6. We describe experiments that demonstrate the effectiveness of our cost-driven

rule based optimizer, resulting constantly improvement in execution time.

7. We compare the VAMANA execution engine with leading DOM based [8,9,10]

which performs poorly against our engine and 50% faster than native XML

query engines [13].

1.3 Outline

The next chapter reviews related research in query processing and cost estimation.

The overall architecture of our VAMANA system is discussed in Chapter 3. Chapter

4 illustrates the steps involved in the generation of the default VAMANA query plan.

In Chapter 5 we describe the VAMANA cost estimation strategy which is used in

4



the optimization of the input XPath expression. Chapter 6 presents the VAMANA

iterative index-based execution strategy. Our experimental evaluation is presented

in Chapter 7 and conclusions is given in Chapter 8.
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Chapter 2

Related Work

2.1 Running Example

As running example, we use the XML document auction.xml generated by the

XMark [17] benchmark. Figure 2.1 shows an instance of a person in an XML docu-

ment.

<person id="person144">
<name>Yung Flach</name>
<emailaddress>Flach@auth.gr</emailaddress>            
<address>

<street>92 Pfisterer St</street> 
<city>Monroe</city> 
<country>United States</country> 
<zipcode>12</zipcode> 

</address>                                                      
<watches>

<watch open_auction=“open_auction108”/>
<watch open_auction=“open_auction94”/>
<watch open_auction=“open_auction110”/>

</watches>
</person>

Figure 2.1: XML Document

XPath [2,3] is a W3C language that enables one to write expressions to address
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certain parts of the XML document. XPath is made up of a series of location steps.

Each location step has three parts namely an axis specifier, a node test and an

optional predicate. An axis specifier defines the direction of the specified navigation

in the XML document tree structure. In this paper we use the XPath expressions

Q1 and Q2, shown in Figure 2.2, as our running examples.

// name[ text() = Yung Flach ]/following-sibling::emailaddress

1st Location Step

descendant-or-self::name[ text() = John ]

Axis NodeTest            Predicate

b. Q2:

descendant::name/parent::*/self::person/address

a. Q1:

2nd Location Step 

following-sibling::age

Axis NodeTest

Figure 2.2: XPath Illustration Example

The context node for an execution step in a query is defined by the XPath lan-

guage as an XML node (XPath Data model [2,3]) that is currently being processed.

In our example, the context node of the first location step in Q1 and in Q2 is the

root of the XML document. The context for the following location steps and pred-

icate expressions is provided by their corresponding parent. For example, in Q1

the context for the location parent::* is provided by the XML nodes returned by

descendant::name.

The axis specifier defines the relationship between the context node and the

selected XML nodes. The node test is the type name of the XML nodes from

the given context node and axis. Predicate is a filter on the nodes produced by

the combination of axis specifier and node test. In the XPath expression Q2, the

predicate text() = ’Yung Flach’ filters the elements returned by the location step

//name.
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2.2 XML Storage Structures

Significant research has been done in developing efficient storage and query strate-

gies for XML data. They can be broadly divided into two categories those storing

XML documents in relational tables and those employing a native storage for XML

documents.

2.2.1 XML to Relational Mapping

Relational databases have matured over the years providing stable database manage-

ment services like query processing, transaction management, concurrency control,

crash recovery, etc. These facilitate the management of XML data. The relational

solution is based on shredding the XML document into relational tables [6,7,24].

Many loading algorithms have been proposed [6,7,26], for example, [24] discusses

many algorithms to efficiently store XML data based on a work load query.

The relational solutions require a mapping algorithm to translate the user XML

query to SQL subqueries for the underlying relational data. We note that there are

certain XML queries that cannot be translated into SQL [8]. The relation storage

solution must cope with the mismatch between the relational and the semi-structural

XML data model. Also, the relational model has no built in support for structure

encoding nor for ordering. Long XPath navigations may require the execution of

many joins, a rather expensive process even in a relational engine. Hence, there is

a need for a native solution to efficiently store and query XML data.

2.2.2 DOM-based Solution

In recent years many DOM-based XQuery [9,10,22] and XPath evaluation engines

[11] have been proposed. DOM based query engines are very main memory intensive
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which poses a limitation on the size of the XML document that can be processed in

a reasonable time. A detailed discussion of the maximum size of the XML document

handled by a DOM-based engine is found in [12].

Galax [9] is a popular XML query engine developed by Bell and AT&T labs.

Based on our experiments described in Chapter 7, Galax does not support all XPath

axes and performs poorly against large XML documents. The query optimization

is only at the logical level and does not utilize any statistics that can be gathered

from the XML document.

Jaxen [22] is an open source XPath library for Java that supports various XML

API’s like DOM, JDOM, dom4j and ElectricXML. Jaxen makes use of the con-

ventional top-down tree traversal approach for query processing. Jaxen does not

support large XML documents of sizes ≥ 10Mb.

2.2.3 XML Indices

ToX [26], developed at University of Toronto, is a repository for XML data and

meta-data. ToX storage engine stores the XML documents in either a relational

database or an object-oriented database. The relational solution is on the same line

as discussed in Section 2.2.1. We find scanning of complete or partial documents to

be expensive for query evaluation. ToX also supports storing and indexing of the

DOM structure corresponding to an XML document. ToX query processor makes

use of a Path Index and a Value Index to handle XPath queries.

TIMBER [15] is a native XML database that can store and query XML docu-

ments. TAX, the tree-based query algebra used in TIMBER, makes use of pattern

trees to represent a query expression. The query execution in TIMBER heavily

depends on structural joins. Join operations can be very expensive as the query be-

comes more complex. Query optimization estimates in TIMBER involve estimating
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costs of all promising sets of evaluation plans. The physical algebra for a complex

query can have many nodes thus exponentially increasing the number of possible

evaluation plan. The criteria for selecting a promising plan is not specified. TAX

operator takes as input one or more sets of trees and produces one output tree that

preserves order. TIMBER makes use of a two dimensional histogram called position

histogram to estimate cost. It becomes expensive to maintain the histogram if there

are frequent updates of the XML document. It is unclear how the histogram is used

to estimate the cost for XPath axes like following-sibling, previous-sibling, etc.

eXist [13] is a native XML database system that provides an index-based query

processing for XPath expressions. eXist assigns a unique node identifier for all the

XML elements and attributes in the XML document(s). eXist indexes elements

or attributes based on its corresponding name. This index structure facilitates

the path-join algorithm used in eXist to evaluate XPath expressions. Since all

XML documents in a collection are indexed together, it leads to passing through

an array of nodes that have the same name but belong to different documents. If

the collection has large XML documents, many comparisons are required to arrive

at the required element or attribute. To evaluate predicate expressions that contain

value comparisons, eXist requires to switch back to conventional memory-based tree

traversal. An XML data store is used to facilitate storage of the DOM [4] structure.

This feature only indexes top-level elements. Hence predicate expressions involving

attributes, text or low-level elements will involve more than just one look-up, while

in VAMANA the index structure supports value-based comparisons in one look-up.

eXist currently fails to execute all XPath axes like following-sibling, previous-sibling,

etc.

The Xindice system [14] is another native XML database management system

that creates user-defined pattern indexes. Xindices is developed to store and index
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small to medium size documents less than 5Mb. While Xindice offer more complete

support for XPath, query execution and optimization is not defined.

Natix [23] is a native XML storage structure that clusters subtrees of XML

documents into small XML segments. The XML data tree is partitioned into small

subtrees and each subtree is stored into a data page. To facilitate the storage of large

documents, Natix makes use of proxy objects that maintain the record identifier for

the subtrees. Natix utilizes inverted index to efficiently support query evaluation.

The Natix query engine makes use of a path join algorithm for query execution.

Natix does not address cost estimation and query optimization phases in query

processing.

Multi-Axis Storage Structure (MASS) [14] developed at WPI provides an efficient

storage and access structure for XML documents. MASS provides an interface to

retrieve node-sets from all 13 XPath axes. It also provides some statistics like

number of tuples per page, number of pages, etc. In VAMANA we use MASS as

the underlying storage structure (See Section 3.1).

2.3 Cost Estimation

Many XML query estimation techniques [15,16,27] have been proposed in recent

years. Some of them extend the existing traditional databases histograms for statis-

tics gathering. In a histogram approach, the domain for an attribute attr in a

relation R is partitioned into buckets considering a uniform distribution of the data

in the relation. StatiX [16] is an XML query result estimator that makes use of

histograms to summarize the XML schema structure and gathers statistics. His-

tograms need to be maintained to make them accurate in predicting cost. This

could prove expensive if there are frequent updates to the XML documents.

11



[27] makes use of correlated sub-path tree (CST), which gathers statistics of only

frequently occurring sub-path or twiglets occurring in the data tree. While efficient

for those frequent and indexed paths this would prove not efficient for applications

with many ad-hoc XPath expressions.
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Chapter 3

System Architecture

Cost Estimator

Optimizer
Query Execution 

Engine

XPath Compiler

MASS Storage Structure
Loader

XML 
Documents 

---
---
---
---
---
---

Transformation 
Library

XPath Expression

Default Query Plan

Default Query Plan

Optimized  Query Plan 

Statistics

Axis or Value 
Based Queries

Resultant Tuples

XPath Engine

VAMANA

Figure 3.1: VAMANA Architecture Overview

The VAMANA system as shown in Figure 3.1 is comprised of the MASS stor-

age structure, XPath Compiler, Optimizer, Cost Estimator and Query Execution

Engine.

13



3.1 XML Storage Structure

VAMANA uses the MASS [4] indexing structure for all document storage and ac-

cess. MASS simplifies query processing by facilitating index-based plans for all

XPath location steps and value-based lookups. MASS also provides temporary

storage and buffer management for VAMANA’s query operators. The combination

of VAMANA’s pipelined query operators and MASS efficient indexing allows for

efficient query evaluation with minimal system resources.

MASS facilitates efficient evaluation of XPath axes, node tests, and range posi-

tion predicates using its clustered indexes. This is true for all 13 XPath axes and

both specific and wildcard (”*”) node tests. MASS node clustering allows efficient

sequential traversal over node sets with minimal I/O and key comparisons. MASS

can also count node set size for both axis-based and value-based lookups without

fetching the data. MASS efficient index lookups facilitates index-based query plans

that outperform join-based plans in many cases while the efficient counting allows

VAMANA to quickly and accurately cost query plans. VAMANA shares the same

node representation as MASS, which eliminates the cost of translating between node

representations. Furthermore, document nodes do not need to be materialized from

the persistent storage unless they are actually used in query processing. This is

accomplished by passing the FLEX keys the corresponding tuples.

MASS provides statistical information like number of tuples per page, number

of pages, etc. used in cost estimation. The count of the number of tuples that

satisfy a particular nodetest is used extensively and is not expensive to dynamically

calculate. MASS’s index structure facilitates count calculation from the FLEX key

of the first and last node that satisfy the node test. Thus we can avoid scans by

computing count on the index level without going to data.
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Parsing
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Plan Generation

XPath Compil er
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Transformed Query Plan (P t ))

Default Query Plan (P ))

Query Plan (P II )) + Heuristics (L ( P II ) ))

Clean Up**

Query Plan (P II ))

* −−Optimizer

Figure 3.2: Query Processing in VAMANA

3.2 XPath Compiler

All XPath expressions can be logically represented as an algebraic tree structure.

Our XPath Compiler[25] mimics the grammar given by the XPath Language [2,3] to

transform the input XPath expression into a default parse tree. Each location step

is translated into a parse tree node with relevant attributes like axis, node test and

predicate information. The parse tree is built bottom up, so as the nodes are being

created they are attached to its parent. A dummy root is attached to the generated

parse tree. The default parse trees for the XPath expressions Q1 and Q2 are shown

in Figure 3.3. Once the parse tree is generated we map each node to exactly one

VAMANA operator to produce the physical plan. The VAMANA physical algebra

is discussed in detail in Chapter 4.
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// name

BINARY
PREDICATE (EQ)

Yung Fl achtext()

child::address

self::person

parent::*

descendant::name

a. Q1 b. Q2

following−−sibling:: 
emailaddress

Figure 3.3: Default Parse Tree for Q1 and Q2

3.3 Cost Estimator

For each operator in the given physical query plan, the VAMANA cost estimator

gathers some statistics with the help of the underlying MASS index structure and

then applies computations to propagate estimations up to the tree to compute the

total cost. As VAMANA follows a pipeline style of execution the cost estimation of

a given query plan is started from the leaf operators to the root operator. Section

5.2 describes in depth the cost model and estimation process of VAMANA.

3.4 Optimizer

VAMANA optimizer (Chapter 5) consists of three subcomponents namely query

clean-up, cost estimation and optimization. During query clean-up all self axis

operators are eliminated. The plan is then sent to the cost estimator to gather

heuristics. Based on the selectivity ratio, determined by the cost estimator, the
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VAMANA optimizer tries to push selective operators down so as to reduce interme-

diate tuples and increase run time efficiency. This is achieved by applying XPath

equivalence rules available in the transformation library. The transformed query

plan undergoes several such iterations to explore for further optimization.

3.5 Query Execution Engine

VAMANA like many commercial database systems executes the query plan in a

pipelined-iterative fashion to avoid temporary copies of intermediate results when-

ever possible. This execution strategy (See Chapter 6) facilitates the reduction of

I/O operations as all tuples for a particular context node are clustered together.

VAMANA adopts a data flow style of query execution, where the control flows

downwards from the root to the leaves of the query plan and the resultant tuples

are returned upwards to the root.
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Chapter 4

Physical Algebra

VAMANA physical plan is designed to effectively support index-based query exe-

cution. In other XML query processing engines [6,7,13,15] each operator of their

physical algebra outputs a set of tuples which are then passed to its parent for fur-

ther processing. In VAMANA, on the other hand each operator in the query plan

iteratively outputs tuples that are used by its parent operator in a pipelined fashion.

4.1 Notation

A VAMANA default query plan P is an execution tree generated by replacing

each node of the parse tree with its equivalent VAMANA operator.

Definition 4.1.1 A VAMANA operator is denoted as opcond
id , where op is the symbol

of the operator type, cond represents a set of conditions applied by the operator, id

is an identifier that uniquely identifies each operator, with 1 ≤ id ≤ m, where m is

the number of operators for a given plan P.

In an XPath language a context node is defined as the current XML node being

processed. We extend the idea of a context node as a reference to an XML node in
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Figure 4.1: VAMANA Query Plan for Q1 and Q2

the underlying indexed structure. In a VAMANA query plan each operator returns

tuples which have structural encoding. This information can be used to define the

context node of its corresponding parent operator. MASS [4] uses Fast Lexicograph-

ical Keys (FLEX) for the structural encoding of XML nodes in the document. To

illustrate consider XPath expression Q2 (Figure 4.1) in which φ
//::name
6 is defined as

the context child of φfollowing−sibling::emailaddress
2 .

Definition 4.1.2 The context node of any given VAMANA operator opcond
id defines

uniquely the position of an XML node in the index structure. The position is obtained

by the structural path information encoded in the context node.

Predicate operators are used to represent XPath predicate filters [2,3]. The pred-

icate operator can have one or two predicate children and a predicate condition.

The context node for processing a predicate operator is provided by its parent op-

erator on which the predicate condition is evaluated. The predicate operator in

return provides the context node for its leaf operators. In Figure 4.1.b, the operator

φ
//::name
6 is the leaf operator and has no context children but one predicate child
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βEQ
3 .

Since the leaf operator has no context children, the context has to be set by the

query execution engine before executing the query plan. In our example, the context

of the leaf operator (φdescendant::name
5 in Q1 and φ

//::name
6 in Q2) is set to the root of

the XML document. Alternatively, in an XQuery expression [21] the leaf operator

could receive context nodes from another expression.

Next, we introduce the concept of context path and predicate path which are

required for dynamic context setting (Section 4.2) and cost estimation discussed

later in Section 5.2. A context path represents the path in the query plan from

which the context is obtained iteratively. It is a path of operators such that

each operator is the context child of the previous one. For example, the con-

text path of the root node R1 in Figure 4.1.b is denoted as context-path(R1) =

{φfollowing−sibling::emailaddress
2 , φ

//::name
6 }. A predicate tree represents a sub-tree of

operators starting from predicate children of a predicate operator to its leaves.

4.2 Dynamic setting of context

In VAMANA’s index-based execution strategy, every operator, to start execution,

requires a context node that uniquely refers to a particular XML node in the un-

derlying index structure.

Leaf operators in context path of the XPath expression are initially set by the

query execution engine to the root of the XML document. When the leaf operator

is first requested to provide tuples, it fetches the first XML node in the index

structure that satisfies the conditions described in the operator. As the leaf operator

is repeatedly requested for tuples, the context is dynamically moved over the index

until all XML nodes in the index structure that satisfy the condition are exhausted.
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The leaf operators on the predicate paths have their context set by the tuples

generated by the operators on which the predicate conditions filter on. For every

tuple generated by the parent operator, the context of leaf operators in the predicate

tree is set and then the predicate condition is evaluated.

The non-leaf operator starts execution from the context node whose information

is extracted from the tuple generated by its context child. As the current XML node

is processed the context node is dynamically changed to the next XML node in the

index structure. When the current non-leaf operator reaches an XML node that

does not satisfy its condition(s), it stops further advancement and requests the next

tuple from its context child. The operator finishes execution when it has exhausted

all the tuples provided by its context child.

4.3 VAMANA Operators

The default query plans for XPath expressions Q1 and Q2 are shown in Figure 4.1.

VAMANA operators used to perform XPath specific operations are given below.

4.3.1 Root Operator R1

The root operator identifies the starting point of the query plan. The root operator

has at most one context child and no predicate children. It returns all the tuples

obtained from its context child. A root operator with no context children represents

a null expression.

4.3.2 Step Operator φaxis::nodetest
id

Each location step in an XPath expression is identified by a step operator. A step

operator has at most one context child and at most one predicate operator. A step
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operator which is at the leaf has no context child. Each step operator fetches tuples

from the index structure that satisfies a particular nodetest at a given axis with

respect to a given context node.

4.3.3 Literal Operator Lυ
id

A literal operator represents a literal of a particular value υ, in Q2 the literal operator

has a value Yung Flach. A literal operator has no context child and no predicate

children. A literal operator can only occur as a leaf operator in the predicate path

of a query plan. A literal operator takes no input and always returns its value υ

when asked for tuples.

4.3.4 Exist Predicate Operator ξid

Denotes an exists predicate for an XPath expression. An exists predicate has one

predicate child. For each tuple obtained from its parent operator, the operator ap-

plies the predicate expression as a filter condition. If the tuples satisfy the condition

signal the parent operator to pass it to its corresponding parent. If the tuple doesn’t

satisfy the condition, it requests the next tuple from its parent.

4.3.5 Binary Predicate Operator βcond
id

A binary predicate operator is denoted as βcond
id , where cond is an operation like

AND, OR, etc., that represents a logical connector. A binary predicate has two

predicate children and a predicate condition. The execution of a binary predicate

operator is similar to that of an exists predicate operator. The predicate condition

is applied to each of the tuples fetched by the parent operator. The binary condition

is evaluated after executing both the sides of the predicate expression.
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4.3.6 Join Operator J cond
id

A VAMANA join operator has cond as its join condition. The join operator has

two context children and a join condition. Tuples are fetched from both the context

children and the join is applied.
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Chapter 5

Optimizer

The optimization of a query plan is comprised of three phases, namely expression

clean up, cost gathering and optimization. Iterations of these phases are performed

until the cost function of the query plan has been optimized for VAMANA execution

model. During optimization the query plan is transformed into an intermediate

query plan by applying equivalence rules [5] from the transformation library (see

Section 5.3). VAMANA optimization aims to transform the query plan such that

each operator in the query plan is executed in the most optimized fashion. The

query plan is incrementally optimized until the costs of all the operators have been

considered for optimization within the constraints of the VAMANA cost model.

5.1 Query Clean-Up

During each iteration before estimating the cost of each operator in the query

plan, the optimizer does a clean up that targets all self axis nodes. Figure 5.1.a is

the default query plan for Q1 : (descendant::name\parent::*\self::person\address).

The clean up phase merges nodes φself ::person
3 and φparent::∗

4 into a single operator

φparent::person
3 . The resultant query plan (Figure 5.1.b) is equivalent to the default
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Figure 5.1: Clean Up of XPath Expression Q1

AXIS CASE OUTPUT (opi)

child, descendant, COUNT (opi) > IN(opi) COUNT (opi)

descendant-or-self COUNT (opi) ≤ IN(opi)

parent, ancestor, ancestor-or-self, following, COUNT (opi) > IN(opi) IN(opi)

following-sibling, preceding, preceding-sibling COUNT (opi) ≤ IN(opi)

self COUNT (opi) > IN(opi) COUNT (opi)
COUNT (opi) ≤ IN(opi) IN(opi)

Table 5.1: Cost Table

query plan.

5.2 Cost Estimation

Since VAMANA uses a bottom-up execution strategy the cost estimation starts from

the leaf operator of a given query plan and is propagated upwards. To illustrate the

cost estimation process, consider the XPath expression Q1 in Figure 5.1.b. where

the cost estimation is started from (φ
//::name
5 ).

At each operator opi the following statistics are gathered:

1. COUNT(opi) : This statistics is only calculated for step operators. It repre-

sents the count of the number of XML nodes in the underlying index structure

that satisfy the node test of the step operator (φaxis::nodetest
i ). MASS provides an
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API to efficiently gather count of a particular node test in its storage structure

[4].

2. TC(opi): For a literal operator Lυ
i , text count (TC(opi)) is the number of

occurrences of a particular literal value (υ) in the index structure.

0

0

1

N i
δ
 i

COUNT = 4825
IN = 4825  OUT = 4825

5 
descendant::name

COUNT = 2550 
IN = 4825 OUTT  = 4825

3 
parent::person

COUNT = 1256
IN = 4825  OUT = 1256

2
child::address

R1

Figure 5.2: Cost Estimation of Query Plan in Figure 5.1.b

3. IN(opi) : The maximum number of tuples that the operator opi will receive

in total from its context child.

Case 1: For a leaf step operator on the context path of the query plan, the

total number of tuples received is equal to the number of tuples available in

the underlying index structure, i.e. IN(opi) = COUNT (opi).

Case 2: For all non-leaf operator(s), IN(opi) = OUT (opj), where opj is the

context child of opi.

Case 3: For all leaf step operator(s) on the predicate path of query plan, the

total number of tuples received is equal to the number of tuples received by

its predicate operator.
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4. OUT(opi) : The maximum number of tuples that the current operator opi

returns.

Case 1: A leaf step operator on the context path of the query plan returns

all the tuples that occur in the underlying index structure with respect to the

context of the leaf operator, i.e., OUT (opi) = COUNT (opi). For example, in

Figure 5.2 the leaf operator φ
//::name
5 returns all tuples satisfying the node test

name starting from the root of the corresponding XML document.

Case 2: A literal operator(s) returns the same values every time a request

for tuples is received. To facilitate the optimization of literal operators us-

ing a value-index, we define output as OUT (opi) = TC(opi), where TC(opi)

corresponds to the number of times a literal value occurs in the index.

Case 3: For all non-leaf step operator(s) (both context and predicate paths),

OUT (opi) is calculated using the cost table shown in Table 5.1.

Consider operator φparent::person
3 in Figure 5.2. It receives 4825 tuples from its

context child φ
//::name
5 , while there are only 2550 instances of person in the

XML document. This implies that the operator φparent::person
3 can return at

most 2550 tuples. Table 5.1 summarizes the upper bound of the number of

tuples that can be produced by a given step operator for each particular axis

type.

Case 4: For all leaf step operators on the predicate path, OUT (opi) is calcu-

lated by the cost table shown in Table 5.1.

Case 5: For binary predicate operators that have a value-based equivalence,

OUT (opi) is calculated as the minimum of number of tuples from the parent

operator and the text count (TC) of the literal value.

Case 6: For all other predicate operators, OUT (opi) is equal to the maximum
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number of tuples generated by the parent operator on which the predicate

expression is applied.

5. Selectivity Ratio: Defined as δ(opi) = Ii/Oi. After calculating the selectivity

factor for all the nodes it is scaled to a ratio between the bounds of 0 and 1.

After cost estimation the optimizer generates an ordered list L of all operators

sorted by their selectivity factor. The ordered list L(P) for a query plan P with

m operators is defined to be an ordered array << opj, δ(opj) > | where opjǫN (N is

the set of valid operators for the given query plan) and the pairs are sorted on the

selectivity ratio δ(opj) >.

5.2.1 Running Example

The cost estimation of query Q1 starts from the leaf operator φdescendant::name
5 (Figure

5.2). The leaf operator fetches the count of the number of XML nodes that satisfy

the node test name in the MASS index structure (COUNT(φ5) = 4825 ). Based

on the cost model for a leaf operator described in Section 5.2, IN(φ5) = OUT(φ5)=

COUNT(φ5) = 4825.

This cost is reflected in its parent φparent::person
3 as IN(φ3) = OUT(φ5) = 4825.

The count of the step operator is gathered in the same way as its context child

(COUNT(φ3) = 2550). Based on the cost table described in Table 5.1 we calculate

OUT(φ3) = IN(φ3) = OUT(φ5) = 4825.

To illustrate the logic in the cost table described in Table 5.1, consider the

estimation of the operator φchild::address
2 . IN and COUNT are gathered in the same

fashion as its context child. Operator φ2 has COUNT(φ2) = 2550 and receives as

input from φparent::person
3 4825 tuples. Since there are lesser number of address than

person and the axis is child, the upper bound of the number of output tuples is
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determined by φ2. In a similar fashion the cost estimation can be done for query

Q2 (Figure 5.3).

2
following-sibling::emailaddress

COUNT =2550

IN = 4825  OUT = 2550

6 
//::name

COUNT =4825

IN = 4825  OUT = 4825 β
3
EQ

5 
child::textL4 

‘Yung Flach’

COUNT =4825

IN = 4825  OUT = 4825

R1

TC = 1

IN = 4825  OUT = 1

Figure 5.3: Cost Estimation of XPath Expression Q2

5.3 Transformation Rules

The VAMANA transformation library has a list of transformation rules that include

extensions of the equivalence rules for XPath expressions stated in [5]. Some of

transformation rules that are supported by the current VAMANA structure is as

shown below.

• Rule 1 : /child::m/parent::n ≡ /self::n[child::m]

• Rule 2 : /child::n[parent::m] ≡ /self::m/child::n

29



• Rule 3 : /descendant::n/parent::m/.. ≡ descendant-or-self::m[child::n]/..

• Rule 4 : /descendant-or-self::n/child::m/.. ≡ descendant-or-self::m[parent::n]/..

• Rule 5 : p/following-sibling::n/parent::m ≡ p[following-sibling::n]parent::m

• Rule 6 : /descendant::n/parent::m ≡ descendant-or-self::n/child::m

• Rule 7 : p/following-sibling::m/parent::m ≡ p[following-sibling::m]parent::m

• Rule 8 : p/following-sibling::n[parent::m] ≡ p[parent::m]/following-sibling::n

• Rule 9 : /descendant::n[ancestor::m] ≡ descendant-or-self::m/descendant::n

• Rule 10 : p/following-sibling::n[ancestor::m]≡ p[ancestor::m]/following-sibling::n

• Rule 11 : /child::m/preceding-sibling::n ≡ descendant::n[following-sibling::n]

• Rule 12 : /descendant::m/preceding-sibling::m≡ descendant::n[following-sibling::m]

• Rule 13 : /descendant::n[preceding-sibling::m]≡ descendant::m/following-sibling::n

• Rule 14 : /descendant::n[preceding::m] ≡ descendant::m/following::n

• Rule 15 : /descendant::m/preceding::n ≡ /descendant::n[following::m]

5.4 Optimization

Starting from the operator with the highest selectivity ratio, the optimizer examines

each operator for its optimization potential. Expensive operators (based on selectiv-

ity ratio) are transformed into equivalent and less expensive operators by applying

transformation rules discussed in Section 5.3.

The applicable transformation rule is determined by verifying the new cost that

will incur if the transformation was done. If the transformation increases the cost of
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Figure 5.4: Optimization of XPath Expression Q1

execution of the current operator, then that transformation rule is not considered.

The increase in cost is identified if the transformed operator filters a lesser number

of tuples, when our aim instead is to increase its filtering capacity. This cost esti-

mation is done dynamically during the optimization phase. The cost involves the

estimation of the transformed operator or sub-query that replaces the operator. It

is very inexpensive as compared to costing the entire query plan. The cost model of

VAMANA is so designed to check the selectivity of a particular operator. When a

particular operator has been transformed, the optimizer repeats the entire process

of costing and transformation.
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Algorithm 1 Optimize()
Input:P.
Output: Optimal Execution Tree Popt

CostEstimate() //populates L(P)
for all operator opi in L(P) do

if ruleExist(opi) then

reOptimize = OptimizeNode(opi)
//Returns ‘true’ if any transformation done

end if

if reOptimize then

Optimize()
end if

end for

5.4.1 Problem of Termination

For any given VAMANA query plan P and given XML document(s) we have to

proof that the optimization phase is terminating.

Proof

Let the VAMANA query plan be denoted as P. The cost estimation is based on

the given XML document or set of XML documents indexed in the MASS storage

structure.

During optimization, the plan P is transformed into P
′

if and only if the selec-

tivity the optimized operator (in P) increases. Selectivity of the operator directly

affects number of output tuples or the total number of intermediate tuples which

would need to be processed during the execution of the query plan. When the op-

erator produces lesser number of tuples this reduction is propagated to its parent

operator, thus reducing overall output tuple count. In some cases operator may not

be able to reduce the overall output tuple count of the plan. But since it reduces the

number of tuples it affects the total number of intermediate tuples being processed

by the plan.

We can thus conclude that a plan P is transformed into P
′

if and only if the

number of output tuples that the plan generates is reduced or the number of inter-

mediate tuples are decreased.
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From lexicographic measure, we have m for a given plan P and XML document(s)

as m(P) = < m1(P), m2(P) >, where m1(P) = Total number of output tuples and

m2(P) = Total number of intermediate tuples.

A VAMANA query plan P can be transformed in to P
′

if and only if.

1. m1(P) > m1(P
′

) or

2. m1(P) = m1(P
′

) and m2(P) > m2(P
′

)

Lemma 1, If P → P
′

by applying a transformation then m1(P) > m1(P
′

)

The number of elements in the given document is fixed and is a positive inte-

ger value. Hence the total number of output tuples cannot be decreasing for ∞

iterations. Similarly the total number of intermediate tuples cannot be decreasing

infinitely.

Corollary, there does not exist ∞ sequence P → P
′

→ P
′′

...

We thus prove that the optimization strategy used in VAMANA is terminating.

5.4.2 Running Example Q1

The optimizer starts optimization of query Q1 from the most selective operator

φchild::address
2 in the ordered list L(P). Since VAMANA transformation library does

not have any equivalent rules for this operator it moves on to operator φparent::person
3 .

The optimizer finds an equivalence rule (Rule: 3) and performs the corresponding

transformation as shown in Figure 5.4.

We then repeat the process of estimation and transformation on the modified

query plan. The transformed query plan now facilitates the push-down of the most

selective operator φchild::address
2 by applying the transformation rule (Rule: 4) to

produce the query plan shown in Figure 5.5. Since no further valid transformation
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Figure 5.5: Optimization of XPath Expression Q1

rules is available to optimize the query plan, it is considered it optimal and passed

to VAMANA query execution phase for evaluation.

5.4.3 Running Example Q2

The initial costing of the default query plan for the XPath expression Q1 is shown in

Figure 5.3. VAMANA’s optimization strategy exploits the underlying index struc-

ture by translating value-based queries into a location step based on a value. To

illustrate, VAMANA facilitates the calculation of the text count TC for the literal

operator (L
′Y ungF lach′

4 ). The XML document has only one occurrence of the value

Y ungF lach. Hence βEQ
3 can at most return one person that can satisfy the predi-

cate condition, out of the 4825 tuples generated by its parent operator φchild::address
2 .
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Figure 5.6 describes the transformation of binary predicate operator βEQ
3 into a

location step φ
//::name
6 .
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Chapter 6

Query Execution Engine

The execution of a query plan P begins by setting the context of the leaf step oper-

ators on the context path of the query plan. In the running examples for example

the context of the leaf step operator is set to be the root of the XML document.

For an XQuery expression that typically contains multiple XPath expressions, the

context node could be provided from another XPath expression.

FLEX KEYS
<site> a
…
<person id="person144"> a.d.y                                                           

<name>Yung Flach</name> a.d.y.a
<emailaddress>Flach@auth.gr</emailaddress>            a.d.y.b
<address> a.d.y.c

<street>92 Pfisterer St</street> a.d.y.c.a
<city>Monroe</city> a.d.y.c.b
<country>United States</country> a.d.y.c.d 
<zipcode>12</zipcode> a.d.y.c.e

</address>                                                      
<watches> a.d.y.d

<watch open_auction=“open_auction108”/> a.d.y.d.a
<watch open_auction=“open_auction94”/> a.d.y.d.b
<watch open_auction=“open_auction110”/> a.d.y.d.c

</watches>
</person>
<person id="person145"> a.d.z                                                           
…

Figure 6.1: XML Document (Figure 2.1) with FLEX key
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A VAMANA operator during execution can be one of the following three states:

INITIAL, FETCHING or OUT OF TUPLES. A VAMANA operator is said

to be in the INITIAL state when it has not yet been requested for a tuple. A

VAMANA operator goes into the FETCHING state either when it is fetching

tuples from the underlying index structure, or when it is waiting for its context

child to fetch the next tuple to be processed, or when it is waiting for the predicate

children to finish processing.

Algorithm 2 Execute() - Step Operator
Input: Step Operator φcurrent;
Output: Resultant Tuple.

while φcurrent.state() != OUT OF TUPLES do

if φcurrent.getState() = INITIAL then

if φcurrent is a leaf node then

φcurrent.setState(FETCHING)
return φcurrent.fetchNextTuple()
// Fetches the next node from the MASS index.

else

φcurrent.setNextContext() // See Algorithm 3

end if

else

if φcurrent.getState() = FETCHING then

T = φcurrent.fetchNextTuple()
if φcurrent is a leaf node then

return T
else

if T != null then

return T
else

φcurrent.setNextContext()
end if

end if

if φcurrent has a predicate child then

if φcurrent.evaluatePredicate() then

return T;
end if

end if

end if

end if

end while

An operator goes into the OUT OF TUPLES state when both of the condi-

tions below are true.

Case 1: When all possible tuples have been extracted from storage with respect

to a particular context and satisfying the specified condition.

Case 2: Context child (if any) has no more tuples to return.
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Algorithm 2 explains in detail the execution of a step operator.

Algorithm 3 GetNextContext() - Gets the next context from the context child
child = Child()
newContext = child.execute()
if newContext != null then

φcurrent.resetContext(newContext)
φcurrent.setState(FETCHING)

else

φcurrent.setState(OUT OF TUPLES)
end if

To illustrate the execution process, consider the optimized query plan for Q1

generated by VAMANA optimizer. Figure 6.1 represents the element person with

its corresponding FLEX keys. To begin execution the query execution engine sets the

context of the leaf step operator φ
//::address
2 to the root (having FLEX key [a]) of the

XML document (as shown in Figure 6.2). The root node R1 goes into FETCHING

state and requests its context child (φ
//::address
2 ) to fetch context.

When operator φ
//::address
2 is requested for tuples it changes its state to FETCH-

ING and extracts the first address [a.d.y.c] in the storage structure. In the query

plan, the operator φ
//::address
2 has a predicate filter, ξ7. To execute the predicate ex-

pression, its context node must be set to tuple having FLEX key [a.d.y.c] generated

by φ
//::address
2 .

Once the context node of the predicate is set, the expression is evaluated. The

exist predicate operator ξ7 passes a request for tuples to its context child φ
//::person
3 .

This operator is turn fetches the first person [a.d.y] who satisfies the condition axis

parent with respect to the context node [a.d.y.c] in the index.

For each person tuple generated, the second predicate expression (ξ6)is executed

in a similar fashion. If the predicate condition is satisfied then φ
//::person
3 returns

the tuple to its parent ξ7 which in turn passes it to φ
//::address
2 . This signifies that

the XML node having a FLEX key [a.d.y.c] satisfies the predicate condition par-

ent::person[child::name]. It is then returned to R1 to be outputted. This process is
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R1

5
child::name

2
//::address

6

[a.d.y]

a.d.y

3
parent::person

a.d.y.c

[a]

[a.d.y]

[a.d.y.c]

[a.d.y.c] Context Node

7

Setting Context Node

Resultant Tuples

[a.d.y]

[a.d.y]

[a.d.y.a]

[a.d.y.a]

[a.d.y.c]

Figure 6.2: Execution of a Query Plan

recursively done for all the tuples returned by the leaf operator φ
//::address
5 .

39



Chapter 7

Experimental Studies

7.1 Setup

<!ELEMENT site (regions, categories, catgraph, people, open_auctions, closed_auctions)>

<!ELEMENT regions (africa, asia, australia, europe, namerica, samerica)>

<!ELEMENT categories (category+)>

<!ELEMENT catgraph (edge*)>

<!ELEMENT people (person*)>

<!ELEMENT person          (name, emailaddress, phone?, address?, homepage?, creditcard?, profile?, watches?)>

<!ATTLIST   person                id ID #REQUIRED>

<!ELEMENT address              (street, city, country, province?, zipcode)>

<!ELEMENT profile               (interest*, education?, gender?, business, age?)>

<!ELEMENT watches             (watch*)>

<!ELEMENT open_auctions (open_auction*)>

<!ELEMENT open_auction    (initial, reserve?, bidder*, current, privacy?, itemref, seller, annotation, quantity, type, interval)>

<!ELEMENT closed_auctions (closed_auction*)>

<!ELEMENT closed_auction  (seller, buyer, itemref, price, date, quantity, type, annotation?)>

Figure 7.1: Partial Schema Representation of XMark Auction Database

In this section we present our experimental evaluation of VAMANA XPath en-

gine using the data generated by the XMark [17] benchmark. The schema of the
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XMark auction database is partially described in the DTD shown in Figure 7.1.

We generated XML documents using the XMark benchmark for eight scaling fac-

tors, 0.001 (113Kb), 0.01 (1.11Mb), 0.05 (5.6Mb), 0.1 (11.3Mb), 0.2 (22.8Mb), 0.3

(34Mb), 0.4 (45.3Mb) and 0.5 (56.2Mb). The experiments where performed on a

Intel Celeron PC with 512MB of RAM running SUSE Linux 9.0. Currently there

does not exist a well documented benchmark for XPath queries. We hence choose

our XPath queries based on the following factors.

• Cover major forward and reverse XPath axes. Also cover predicate expressions

like position, range and equivalence.

• Experimentally demonstrate the correctness of the execution strategy.

• Empirically verify that optimization does not make the query more expensive

The queries considered for our experiments are stated as follows.

• Q1 : //person/address

• Q2 : //watches/watch/ancestor::person

• Q3 : /descendant::name/parent::*/self::person/address

• Q4 : //itemref/following-sibling::price/parent::*

• Q5 : //province[text()=”Vermont”]/ancestor::person

We compare VAMANA against IPSI [10], Galax [9] Jaxen [22] and eXist [13].

Out of which IPSI does not support many of the axes (Q2, Q4 and Q5) and per-

forms very poorly for queries Q1 and Q3 in comparison to other engines. The leading

index-based query engines like TIMBER [15] and Natix [23] do not have a release so

as to test our engine against. We compare against eXist which is a native solution
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XMark scaling factor
Engine 0.001 0.01 0.05 0.1 0.2 0.3 0.4 0.5

IPSI 11.82 18.49 DNF-MO DNF-MO DNF-MO DNF-MO DNF-MO DNF-MO
Jaxen 11.70 20.14 50.59 DNF-MO DNF-MO DNF-MO DNF-MO DNF-MO
Galax 1.85 23.36 154.08 446.29 2918.02 6331.33 DNF-2hrs DNF-2hrs
eXist 0.009 0.145 0.227 0.403 X-Map X-Map X-Map X-Map
VQP 0.002 0.021 0.12 0.23 0.49 0.89 1.08 1.55

VQP-OPT 0.002 0.009 0.10 0.049 0.21 0.35 0.59 0.64

Table 7.1: Execution Time of Q1 in Seconds

for XML storage. The execution time recorded represents the total CPU elapsed

time (user and system) used for execution of the query. All query evaluations that

failed to complete in two hours of CPU time are represented as ”DNF-2hrs” (”Did

Not Finish - With in two hours”) and queries that require more memory than avail-

able are denoted as ”DNF-MO”(”Did Not Finish - Memory Overflow”). Galax does

not support certain axes like following-sibling denoted in our charts as ”NS” (”Not

Supported”). eXist is unable to map into their storage structure large complex

documents having sizes ≥ 20Mb and we denote it in our experiment as ”X-Map”.

”VQP” represents the execution of default VAMANA query plan without optimiza-

tion while ”VQP-OPT” specifies the run time of optimized VAMANA query plan

over the underlying MASS structure.

7.2 Correctness of Execution Strategy

We verify the correctness of the execution strategy by comparing the output of

each query over different query engines. We physically compared the results of the

queries over smaller XML document (100Kb,1Mb). For the rest of the documents

we compared the counts of the result size, which was observed to be consistent over

all the engines.
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XMark scaling factor
Engine 0.001 0.01 0.05 0.1 0.2 0.3 0.4 0.5

IPSI NS NS NS NS NS NS NS NS
Jaxen 6.04 11.065 31.205 DNF-MO DNF-MO DNF-MO DNF-MO DNF-MO
Galax 1.80 19.95 184.98 557.31 3072 6419.77 DNF-2hrs DNF-2hrs
eXist 0.026 0.269 0.501 0.770 X-Map X-Map X-Map X-Map
VQP 0.005 0.037 0.25 0.45 0.92 1.54 1.98 3.10

VQP-OPT 0.003 0.022 0.10 0.19 0.40 0.657 0.8531 1.045

Table 7.2: Execution Time of Q2 in Seconds

7.3 Improved Performance

Tables 7.1 and 7.2 show the results of running query Q1 and Q2 over different en-

gines. The execution of the query Q1 //person/address involves physically fetching

for every person XML node a corresponding XML node that satisfies the condition

child::address. For instance, consider the XML document of size 10Mb, the total

number of XML nodes with the nodetest person is 2550. While there exist only

2550 address XML nodes, thus causing twice as much fetch operations.

On the other hand, the optimized query //address[parent::person] reduces the

number of fetches and also exploits the capability of MASS in finding the parent

XML node for any particular XML node. The path information of any XML node

in the MASS index structure contains in it the path information of its parent which

can be extracted with ease. Now, only a check to see if the parent has a node-test

person has to be make and thus reducing cost by at least 40%.

In query Q2, VAMANA optimizer reduces the execution by removing duplicates.

The optimizer translates //watches/watch/ancestor :: person into //watches[watch]

/ancestor :: person. This optimization is done only when duplicate elimination is

desired by the user.

VAMANA’s storage structure and execution structure facilitates evaluation of

predicate condition. In comparison with eXist for query Q5, VAMANA performs

nearly 100% faster. This is because eXist has to switch back to a tree traversal
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XMark scaling factor
Engine 0.001 0.01 0.05 0.1 0.2 0.3 0.4 0.5

IPSI 11.10 18.96 DNF-MO DNF-MO DNF-MO DNF-MO DNF-MO DNF-MO
Jaxen 5.87 8.597 18.91 DNF-MO DNF-MO DNF-MO DNF-MO DNF-MO
Galax 1.88 20.30 165.09 450.70 3413.01 6176.26 DNF-2hrs DNF-2hrs
eXist 0.049 0.201 0.412 0.885 X-Map X-Map X-Map X-Map
VQP 0.004 0.028 0.14 0.28 0.63 0.99 1.22 1.64

VQP-OPT 0.003 0.024 0.11 0.24 0.52 0.79 1.03 1.46

Table 7.3: Execution Time of Q3 in Seconds

XMark scaling factor
Engine 0.001 0.01 0.05 0.1 0.2 0.3 0.4 0.5

IPSI NS NS NS NS NS NS NS NS
Jaxen 6.08 10.30 25.01 DNF-MO DNF-MO DNF-MO DNF-MO DNF-MO
Galax NS NS NS NS NS NS NS NS
eXist DNF DNF DNF DNF DNF X-Map X-Map X-Map
VQP 0.003 0.020 0.09 0.17 0.34 0.88 1.08 1.79

VQP-OPT 0.003 0.016 0.08 0.20 0.35 0.58 0.77 0.98

Table 7.4: Execution Time of Q4 in Seconds

algorithm for predicate evaluation.

7.4 Correctness of Optimization Strategy

Table 7.3 experimentally confirms that the VAMANA optimizer each time generates

an optimized query plan that runs faster the default plan. The VAMANA optimizer

chooses to transform a particular operator such that the number of output tuples

of the current operation is reduced. This guarantees to produce a query plan that

has the same or better execution time as the previous query plan.

7.5 Summary of Experimental Evaluation

Many of the prevalent XPath engines [9,10,13] only support a subset of the XPath

axes. Galax currently does not support the following-sibling axes. The experiments

shown above illustrate that VAMANA supports all XPath axes.
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XMark scaling factor
Engine 0.001 0.01 0.05 0.1 0.2 0.3 0.4 0.5

IPSI NS NS NS NS NS NS NS NS
Jaxen NS NS NS NS NS NS NS NS
Galax 1.99 27.09 195 659.18 4282.57 9342.31 DNF-2hrs DNF-2hrs
eXist 0.018 0.620 1.206 1.92 X-Map X-Map X-Map X-Map
VQP 0.003 0.009 0.10 0.184 0.38 0.85 1.194 3.82

VQP-OPT 0.001 0.001 0.002 0.003 0.003 0.003 0.003 0.022

Table 7.5: Execution Time of Q5 in Seconds

VAMANA exploits the large storage capacity of MASS (up to several Gbs) and

can query large XML documents. While Galax can produce results in a reasonable

time frame (less than two hours) for XML documents of sizes ≤ 30Mb. Jaxen and

Xindices can handle small XML documents up to 10Mb and 5Mb respectively. We

conclude that the optimizer always generates query plan having the same or faster

performance (CPU time) with respect to the default query submitted by the user.

VAMANA’s cost model efficiently captures the selectivity of the operators, thus

aiding in transformations.

45



Chapter 8

Conclusion and Future Work

8.1 Summary

We present VAMANA, an efficient, cost-driven XML query execution engine (XPath).

The VAMANA physical algebra effectively supports execution of all 13 XPath axes

and predicate expressions like value, position and range conditions. VAMANA’s

index-only pipelined execution is novel to XML query evaluation as most of the

existing engines use structural joins for query evaluation. The index-only plan exe-

cution facilitate non-materialization of intermediate results.

The dynamic cost estimation support makes costing up-to-date in environments

which have frequent XML updates. The costing can be performed over the entire

database or for a particular XML document or a specific point in the document.

The VAMANA cost model is simple but very effective for identifying highly selec-

tive nodes. And hence can be pushed down to increase execution speed. The model

is well supported by a set of transformation rules used for operator optimization.

VAMANA exploit properties of the underlying storage structure (MASS) to opti-

mize value-based XPath expressions. Our experiments have shown that VAMANA

46



outperforms currently available DOM-based and index-based XML query engines in

both execution speed and document size.

XQuery Engine

(future development)

XPath Expression

Cost Estimator

Optimizer
Query Execution 

Engine

XPath Compiler

MASS Storage Structure
Loader

---
---
---
---
---
---

Transformation 
Library

Default Query Plan

Default Query Plan

Optimized  Query Plan 

Statistics

Axis or Value 
Based Queries

XPath Engine

VAMANA
XML 

Documents 

Figure 8.1: Future Research in VAMANA

8.2 Future Research

Unlike other XML query processing that start from the logical level of query exe-

cution to physical execution, we started our design and implementation ground up.

We here built a robust XPath engine called VAMANA around the already existing

storage structure MASS.

The work done in this thesis forms a building block for the next phase of de-

veloping a full-fledged XQuery Engine. VAMANA currently implements only a

subset of the XPath equivalence rules stated in [5]. VAMANA transformation li-

brary can extended to support all the transformation rules. The VAMANA cost
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model currently does not include estimation of join operations, leaving scope for

future research into proving that index-based plans are on par with structural join

algorithms. The current cost model can be exploited and extended to support for

XQuery optimization.

48



Chapter 9

References

1. T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler and F. Yergeau. Ex-

tensible Markup Language (XML) 1.0 W3C Recommendation. Available at

http://www.w3.org/TR/2004/REC-xml-20040204/, Feb 2004.

2. J. Clark and S. DeRose. XML Path Language (XPath) 1.0, W3C Recommen-

dation. Available at http://www.w3.org/TR/xpath, 2002.

3. A. Berglund, S. Boag, D. Chamberlin. M. F. Fernández, M. Kay, J. Robie and
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