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Abstract

Filtering is the process of recovering a true state, x(t), at some time t, from

a noisy measurement process z(t), given all noisy measurements up to and

including time t. One common filtering technique is the Kalman Filter, which

is known to be the optimal filter under certain conditions. However, while the

Kalman Filter is shown to be the optimal conditional minimum variance es-

timator when the random processes involved are Gaussian, many real-world

applications involve non-Gaussian processes. In this regard, one Kalman Fil-

ter parameter of particular importance is the measurement noise covariance

matrix R, which is the covariance of the noisy measurements z(t) obscuring

the true state x(t). In practice, the precise determination or estimation of R is

difficult and often relies on cross-validation and domain knowledge. To ad-

dress this problem, we develop a novel deep learning-Kalman Filter hybrid

algorithm called the Autoencoder-Kalman Filter (AEKF). The AEKF leverages

the computational power of an autoencoder with the well-known mathemat-

ical foundation of the Kalman Filter. This merger results in a robust state es-

timation system, which is able to successfully perform state estimation on a

variety of function families and a variety of noise types.

The training of this robust state estimation system is facilitated by a tech-

nique called domain randomization. The standard application of domain ran-

domization is to the modeling of physical parameters in deep learning sys-

tems. In our approach we apply domain randomization to the state estima-

tion of different function families, where each function family is thought of as

occupying distinct regions of a Hilbert Space.

In terms of demonstrated applications, we first address the problem of

chemical classification using noisy time series measurements collected from

chemical sensors. These experiments show that preprocessing noisy time se-
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ries data with a Kalman Filter significantly improves early and accurate chem-

ical discrimination. In particular, when Kalman Filter first derivative estimates

of a sensor’s underlying state are used for feature engineering, early and ac-

curate detection of chemical agents is improved. Building on the success of

the Kalman Filter for feature engineering, we explore the AEKF’s state esti-

mation capabilities on progressively more general function families and noise

types using our variant of domain randomization. Since the AEKF is a deep

learning-Kalman Filter hybrid model, we compare its performance against

a standard Kalman Filter and a Long-Short Term Memory (LSTM) recurrent

neural network. In the majority of our experiments, the AEKF outperforms

both the Kalman Filter and the LSTM, particularly in the context of mitigating

the effect of outlier measurements.

Specifically, we begin by training three different AEKF models to perform

state estimation on exponential, sigmoidal, and sinusoidal functions with added

Gaussian, bimodal, and Cauchy noise. Next, we train a single AEKF model to

filter all three of these function families on the same noise varieties. Lastly, at

the most general level we train the AEKF to filter truncated Taylor Polynomi-

als with the same three noise distributions. Given the success of the AEKF in

all these experiments, we develop an extension of it called the Autoencoder-

Interacting Multiple Model Kalman Filter and apply it to simulated target

tracking problems.

Lastly, given the successful application of the AEKF in a variety of contexts,

we derive a theorem which explains the AEKF’s outlier mitigation capabilities

in terms of learned matrix eigenvalues. This theorem not only provides insight

into the workings of the AEKF, but serves as a metric to judge whether or not

the AEKF is working correctly. As a result, our theorem is a valuable tool

for the design of the AEKF’s neural network architecture and more generally
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demonstrates how well-understood mathematical models can inform neural

network design.
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Executive Summary

The story we tell in this dissertation is one of leveraging the power of deep learn-

ing and mathematics in the service of developing a generalized time series state

estimation system. In particular, we utilize a deep autoencoder [11], with train-

ing inspired by Hilbert Space representations of functions [21, 31], to enhance the

filtering capabilities of the Kalman Filter [3, 7, 29, 54, 57, 61, 65].

Specifically, we combine a deep autoencoder and Kalman Filter to produce

a hybrid filtering algorithm called the Autoencoder-Kalman Filter (AEKF). The

thinking behind this merger is to combine the computational power of deep learn-

ing with a theoretically well-established filtering method. The resulting AEKF

not only shows improved state estimation over the standard Kalman Filter and a

Long Short-Term Memory (LSTM) [23] recurrent neural network (RNN), but also

solves the problem of how the Kalman Filter handles outlier measurements. This

is demonstrated in Figure 1, which shows an AEKF state estimate of a sinusoidal

curve with Cauchy noise.

The training of the AEKF is somewhat non-standard and relies on a technique

known as domain randomization [41, 52, 58]. The overarching purpose of domain

randomization is to train deep learning models completely in simulation which

then generalize to real-world data without any further training or parameter tun-

ing. Instead of training a neural network to learn parameters from a fixed training

set and then generalize to a testing set, we utilize domain randomization to train a

neural network to learn parameters within a specified range of values, [a, b], in sim-

ulation. In some sense, this process can be thought of as learning a covering of a

subspace in a Hilbert Space, an idea that will be elaborated on in Section 3.2. As an

example, in the context of state estimation, we train the AEKF to learn how to filter
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Figure 1: AEKF filtering of a test set sine function with Cauchy noise. Note the state
estimate, represented by the solid green line, stays close to the ground truth even
in the presence of outliers. This behavior is difficult to achieve with a standard
Kalman Filter, which is more easily misled by outlier data.

a family of exponential curves with Gaussian noise. Each training epoch, a ran-

dom exponential curve, f(x) = eαx, is generated by uniformly sampling α ∈ [a, b].

This smooth curve serves as the ground truth or true state in the context of state

estimation. A random draw of Gaussian noise is then added to the ground truth

curve. The smooth ground truth with added noise serves as a noisy training sam-

ple. Each epoch, the AEKF is given a new noisy sample and trained to estimate

the ground truth by minimizing the difference between the AEKF’s output and

the ground truth in the AEKF’s cost function. If trained successfully, the AEKF has

not generalized to a specific dataset but generalized to a family of functions within

the domain of x, the range of α and noise distribution parameters used in training.

Due to the use of domain randomization, during training the AEKF almost certainly never

sees the same ground truth and noise sample twice. Trained in this way, the AEKF is

truly learning to generalize to the family of functions it was trained on.

Working towards the goal of a generalized time series state estimation system,
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Figure 2: Figure depicting our progressive domain randomization scheme. The
concentric circles represent a progressively larger subregion of a Hilbert Space,
each including the smaller circles. The smallest circle represents all exponential,
sigmoidal, and sinusoidal function families individually while the middle circle
represents a single family consisting of all exponential, sigmoidal, and sinusoidal
functions. The outermost circle represents the most general class of functions, Tay-
lor Polynomials.

we train a single AEKF to filter progressively larger families of functions, each of

which contains the previous family as a subset. This is shown visually in Figure 2,

where each circle represents a higher level of generality. The smallest circle repre-

sents training three different AEKF models to filter exponential, sigmoidal, and si-

nusoidal families individually. The next larger circle represents a single AEKF that

is trained to filter all three of these families. Lastly, wanting to achieve a higher

level of generalization, we train an AEKF to filter truncated Taylor polynomials as

shown in the largest circle.

Table 1 shows the results of training two AEKF models, five LSTM models, and

two Kalman Filter models on exponential, sigmoidal and sinusoidal curves with

Cauchy noise individually (corresponding to the innermost circle in Figure 2) and

then testing each model on the same family it was trained upon. Taking the AEKF
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Table 1: MSE and ratio results for single curve family models with Cauchy noise.
This result demonstrates the AEKF achieves a significantly lower MSE for all three
curve families on a noise distribution that is very challenging for the traditional
Kalman Filter. Bold values indicate the smallest MSE in each column. Note, NCV
and NCA refer to specific Kalman Filter models in the AEKF and standard Kalman
Filter and the number following each LSTM model is the sequence length used for
that model.

Model Exp. MSE Exp. Ratio Sig. MSE Sig. Ratio Sine MSE Sine Ratio

AEKF NCV 0.39 1.00 1.16 1.00 3.56 1.00
AEKF NCA 0.43 1.08 0.89 0.77 2.96 0.83

LSTM 1 35.90 90.99 45.45 39.16 82.12 23.06
LSTM 10 1.35 3.42 5.72 4.93 21.18 5.95
LSTM 15 5.15 13.04 45.43 39.14 109.56 30.77
LSTM 20 10.66 27.01 183.51 158.11 644.53 180.99
LSTM 25 63.08 159.89 509.68 439.12 835.96 234.74
KF NCV 99.26 251.58 953.21 821.25 2979.70 836.72
KF NCA 212.33 538.18 3541.22 3051.00 13427.75 3770.61

NCV row as an example, the Exp. MSE column is the exponential curve test set

state estimation MSE for the AEKF NCV model trained on exponential curves with

Cauchy noise, where the MSE is computed by comparing the AEKF NCV estimate

against the ground truth. However, the ground truth is only used to compute the

MSE and did not affect the AEKF NCV state estimation. The Exp. Ratio column

is the ratio of each model’s MSE and the AEKF NCV MSE. The next four columns

follow similarly for sigmoidal and sinusoidal curve families. The top performing

models for each of the three curve families are shown in bold. These results show

that either of the two AEKF models outperformed both the LSTM and Kalman

Filter models on all three curve families. Note, NCV and NCA refer to specific

Kalman Filter models in the AEKF and standard Kalman Filter and the number

following each LSTM model is the sequence length used for that model.

Given the AEKF performance in Table 1, we note one of our primary results

is the ability of the AEKF to mitigate the presence of outliers when trained with
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Figure 3: Single test set trial sample plot of ρ(S−1
k ) vs. ‖z̃k‖2 for the AEKF. The

related estimated parameters appear in the legend. This figure is consistent with
our hypothesis that ρ(S−1

k ) and ‖z̃k‖2 share an inverse relationship.

domain randomization using Cauchy noise. The Kalman Filter is known to be op-

timal if, among other Gaussian assumptions, the noise obscuring the state being

estimated is Gaussian. However, noise distributions with large tails, such as the

Cauchy distribution, present a problem for the Kalman Filter. As the Kalman Fil-

ter’s state estimate takes into consideration the measurements it receives, it must

be able to distinguish reliable and unreliable measurements. This role is handled

by the Kalman Filter’s measurement noise covariance matrix R. However, a single

measurement noise covariance matrix for a distribution such as the Cauchy distri-

bution is problematic as the long tails allow for values with large variance. The

primary reason the AEKF is able to perform well in the presence of these outliers

is it learns not a single measurement noise covariance matrix R, but a sequence

of them, {Rk}Nk=1, one for each measurement. This point-wise measurement noise

covariance allows the AEKF to “tell” the Kalman Filter how reliable each measure-
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ment in a time series is.

After we present empirical evidence that the AEKF mitigates the effect of out-

liers in a variety of contexts, in Section 4.5 we prove a theorem which shows the

Kalman Filter’s outlier mitigation capacity is upper bounded by the largest sin-

gular value and eigenvalues of three Kalman Filter matrices, H
T

k , Pk|k-1, and S−1
k

respectively. Specifically,

‖Kkz̃k‖2 ≤ ρ(Pk|k-1)σ1(H
T

k)ρ(S−1
k ) ‖z̃k‖2 (1)

from which we hypothesize that ‖z̃k‖2 and ρ(S−1
k ), the largest eigenvalue in S−1

k ,

share an inverse relationship. Thus, if the AEKF’s behavior is consistent with (1), it

is learning the sequence of measurement noise covariance matrices {Rk}Nk=1 in such at

way that large outliers are ignored by the Kalman Filter. This hypothesis is then con-

firmed experimentally as shown in Figure 3. As a result, in this dissertation we

demonstrate how well-understood mathematical models can inform neural net-

work design.

15



Road Map

Kalman Filter Autoencoders

Autoencoder
Kalman Filter

Domain
Randomization

Application of 
Kalman Filter to 

Machine Learning

Applications of the Kalman 
Filter to Chemical Sensors 
for Downstream Machine 
Learning. IEEE Sensors 
Journal, 2018

Autoencoder 
Kalman Filter
for Robust 

State Estimation

Deep Learning with Domain 
Randomization for Optimal 
Filtering.  Proceedings of the 
18th IEEE International 
Conference On Machine 
Learning And Application, 2019 

The Autoencoder-Kalman 
Filter: Theory and Practice.  
Proceedings of the 53rd 
Asilomar Conference on 
Signals, Systems, and 
Computers, 2019

Generalized
State Estimation

with Taylor
Polynomials

Measurement Noise
Covariance Analysis

for the AEKF

Autoencoder 
Interacting

Multiple Model Filter
For Target Tracking

Maneuvering Target Tracking 
Using the Autoencoder-
Interacting Multiple Model 
Kalman Filter.  Submitted to 
the 54th Asilomar Conference 
on Signals, Systems, and 
Computers, 2020

Working Paper

Autoencoder 
Interacting

Multiple Model
Kalman Filter (*)

* In collaboration with Kirty Vedula and Professor Donald R. Brown of Worcester Polytechnic Institute

Graphene Nanoplatelet-
Polymer Chemiresistive 
Sensor Arrays for the 
Detection and Discrimination 
of Chemical Warfare Agent 
Simulants. ACS Sensors, 2017

Detection and
Discrimination of

Chemical Warfare
Agents Simulants

Impact of Graphene 
Nanoplatelet Concentration 
and Film Thickness on Vapor 
Detection of Polymer based 
Chemiresistive Sensors.  
Current Applied Physics, 2019

Sensor Performance
Maximization with

GNP-polycaprolactone
Composite Sensors

Robust Variational 
Autoencoders: Generating 
Noise-Free Images from 
Corrupted Images.  AdvML '20: 
Workshop on Adversarial 
Learning Methods for Machine 
Learning and Data Mining

Robust Variational
Autoencoders

Figure 4: Research Road Map. This figure is a summary of our research over the
past four years and can be broken down into algorithms and publications, with
the blue boxes indicating algorithms and the orange their application in publica-
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papers written in collaboration with CCDC-SC scientists and members of the WPI
community, a co-first author paper in submission, and one working first author
paper.
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1 Introduction

Filtering is the process of recovering a signal, x(t), from noisy measurements, z(t).

In general, the filtering problem attempts to recover, estimate, or determine some

information about a state x(t) given values of a measurement process z(t), up to

and including time t, where the state is assumed to be obscured by noise present in

z(t). For example, z(t) may represent noisy time series measurements from a sen-

sor and x(t) may represent the signal assumed to be the true sensor response ob-

scured by noise in the sensor [3]. Filtering can also be distinguished from smooth-

ing and prediction. In the case of smoothing, an estimate of x(t) is made using

measurements beyond time t. Prediction attempts to estimate x(t+ δt), for δt > 0,

using measurements up to and including time t [3].

The problem of separating signal from noise has a long history and these at-

tempts can broadly be broken into the frequency approach and statistical approach.

The frequency approach assumes the signal and noise lie in different frequency

bands with a certain amount of overlap. Conversely, the statistical approach as-

sumes there are certain shared statistical properties of the signal and noise. Ini-

tial contributions to statistical filtering were made by Norbert Weiner and Andrey

Kolmogorov [3]. However, these methods assumed the statistical distributions

involved were stationary, which imposed a limitation that was subsequently ad-

dressed by Rudolf Kalman. In [29] Kalman developed the initial formulation of

what came to be known as the Kalman Filter, which did not rely on the above sta-

tionary assumption. This initial development, and subsequent additions, led to

the Kalman Filter as a mainstay in the communications and control communities.

For more on the history of filtering and related references see [3].

One of the Kalman Filter’s advantages is the simplicity and elegance of its the-
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oretical foundation, where the Kalman Filter can be shown to be the optimal filter

under specific conditions. However this comes with a price. The fact that the

Kalman Filter can be solved analytically is a result of it belonging to the class of

linear filters. That is, the Kalman Filter can be shown to be the optimal conditional min-

imum variance estimator among all filters which are an affine transformation of the input

measurements when the random variables involved are assumed to be Gaussian and the

Kalman Filter’s dynamical model is correct. One particular consequence of the Gaus-

sian assumption is that the measurement noise present in z(t) is assumed to be

Gaussian. As many applications of the Kalman Filter involve estimating processes

with non-linear dynamics and non-Gaussian noise, these assumptions present a

certain limitation. Thus, subsequent variants of the Kalman Filter, such as the Ex-

tended Kalman Filter [3], were developed to address these limitations. Continuing

in this tradition, the work presented here can be seen as an extension of the Kalman

Filter to domains where the traditional optimality conditions are not necessarily

met.

The primary contribution of this research is the Autoencoder-Kalman Filter

(AEKF), a novel deep learning-Kalman Filter hybrid algorithm which addresses

the difficulty posed by the Kalman Filter when the statistical distribution of the

input measurements, {zk}Nk=1, and/or the covariance of these inputs, {Rk}Nk=1, is

unknown, difficult to estimate, or does not exist. Although there exists previous

work addressing Kalman Filter performance under sub-optimal conditions [50],

the application of deep learning to filtering [63], and the merger of deep learning

and the Kalman Filter [19, 34, 45], to our knowledge, the AEKF distinguishes itself

by incorporating all of the following, many of which are original:

• The AEKF addresses the Kalman Filter measurement noise covariance esti-
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mation problem by reformulating the problem to one of training a neural

network.

• The derivation of a novel algorithm where the encoder portion of an au-

toencoder is used to map noisy time series measurements to a learned mea-

surement sequence {zk}Nk=1 and a learned measurement noise covariance se-

quence {Rk}Nk=1, which are used as inputs to the Kalman Filter, thereby cre-

ating a system with the flexibility of deep learning, and the principled theo-

retical foundation of the Kalman Filter.

• The demonstration that the merger of an autoencoder and Kalman Filter al-

lows the AEKF to be effectively used even in the context where the theoretical

conditions for optimality of the Kalman Filter are not met.

• The leveraging of domain randomization, which allows training with simu-

lated data, by-passing the practical difficulty of securing enough data to suf-

ficiently train a deep learning model and avoiding overfitting.

• Numerical demonstrations of the AEKF which show, in the majority of tested

cases, it outperforms both a traditional Kalman Filter and state-of-the-art

LSTM.

• The restriction of the Kalman Filter’s dynamical model to a linear model and

the learned Kalman Filter parameters to measurements {zk}Nk=1 and the mea-

surement noise covariance {Rk}Nk=1. This allows us to perform a mathemati-

cal analysis in which we prove a theorem explaining how the AEKF mitigates

the effects of outliers.

In [25, 34, 45, 63] deep learning technology is applied in some way to learn an
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aspect of a Kalman Filter’s dynamical model. [10] is similar to our work concep-

tually in that deep learning is used to estimate {Rk}Nk=1. However, three separate

LSTM modules are used to estimate {Fk}Nk=1, {Qk}Nk=1 and {Rk}Nk=1 respectively. In

[15], the authors apply the combination of a Kalman Filter and variational autoen-

coder (VAE) [33] to missing data imputation, which requires the combination of

prediction and inference. In [19], the authors propose the backprop Kalman Filter

(BPKF), which uses a feedforward neural network to learn an {Rk}Nk=1 and {zk}Nk=1

which then passes these to a Kalman Filter. In their first experiment, the added

noise is Gaussian and the trajectories of the tracked objects have linear-Gaussian

dynamics. However, the AEKF developed herein was tested on both Gaussian

and non-Gaussian noise. In the second experiment the Extended Kalman Filter

was used in place of the standard Kalman Filter. Lastly, while the BPKF passes a

linear transformation of the Kalman Filter output directly to its objective function,

the AEKF places the decoder layer between the Kalman Filter’s output and the

final AEKF output, thus the AEKF allows for a non-linear mapping between the

Kalman Filter’s output and the original measurement space.

Following this introduction, Section 2 presents the theoretical background of

the Kalman Filter (2.1), the Interacting Multiple Model Kalman Filter (IMMKF)

(2.2), autoencoders (2.3), Long Short-Term Memory (LSTM) recurrent neural net-

works (RNN) (2.4), the Autoencoder-Kalman Filter (2.5) and the Autoencoder-

Interacting Multiple Model Kalman Filter (AEIMMKF) (2.6). This is followed by

Section 3 on training, which covers Hilbert Space representation of functions (3.1)

and domain randomization (3.2) as they relate to the training of neural networks.

The application and analysis of the algorithms and training methods presented

in Sections 2 and 3 begins in Section 4.1, with the application of the Kalman Filter
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to feature engineering for accurate and early chemical discrimination. In this work,

using noisy chemical sensor time series data, we demonstrate that the accurate and

early detection of non-mixture chemical warfare agent simulants and obscurants

is improved when the Kalman Filter is used for feature generation.

In Sections 4.2, 4.3, and 4.4, having seen the value of the Kalman Filter in the

context of feature engineering and knowing its limitations, we apply the AEKF to

filtering problems in regimes where the Kalman Filter is known to be non-optimal.

In Section 4.2 we train the AEKF with domain randomization on a family of sig-

moidal curves, where we introduce the notion of sequence length for an autoen-

coder. Here the AEKF achieves lower test set MSE as a function of sequence length.

However, in Section 4.2 each measurement noise covariance matrix in {Rk}Nk=1

was restricted to R1×1. Once we understood how to ensure the AEKF learns a

non-singular measurement noise covariance matrix Rk ∈ Rn×n for each entry in

{Rk}Nk=1, we were no longer restricted to R1×1. As a result, in Section 4.3, via do-

main randomization, the AEKF is trained such that each learned measurement

noise covariance matrix is in R16×16. Furthermore, the AEKF is no longer restricted

to filtering sigmoidal functions, as three separate AEKFs are trained to filter sig-

moidal, exponential and sinusoidal curve families, with added Gaussian, bimodal,

and Cauchy noise. The three AEKFs correspond to the inner circle of Figure 2. Ad-

ditionally, in Section 4.3 we train a single AEKF to learn all three families of functions:

sigmoidal, exponential and sinusoidal, corresponding to the second largest circle in

Figure 2. These results indicate a single AEKF can generalize to more than one

family of functions and, in most cases, the AEKF obtains better test set MSE than a

standard Kalman Filter and LSTM. Based on these results, in Section 4.4 we again

train the AEKF with domain randomization to filter a more general class of func-
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tions based upon truncated Taylor Polynomials:

f(x) = a0 + a1x+ a2x
2 + · · ·+ apx

p

where each coefficient ai for i = {0, 1, . . . , p} and the polynomial order p are sam-

pled randomly. As in Section 4.3, Gaussian, bimodal, and Cauchy noise are added

to the ground truth truncated Taylor polynomials. The results in this section demon-

strate the state estimation capabilities of the AEKF successfully generalize to a

larger family of functions than simply exponential, sigmoidal, and sinusoidal.

In the process of performing the tests in Section 4.4, we discovered the AEKF

was able to mitigate outliers more effectively than a standard Kalman Filter and

LSTM. Subsequent investigation revealed the AEKF had learned the sequence {Rk}Nk=1

in such a way as to mitigate the effect of outlier measurements. In Section 4.5, ap-

plying matrix analysis to the Kalman Filter, we derive a theorem which explains

this outlier mitigation behavior in terms of the eigenvalues of the learned mea-

surement noise covariance matrices {Rk}Nk=1. This allows us to hypothesize an

empirically testable relation between these learned eigenvalues and the norm of

the Kalman Filter’s innovation. This hypothesis is then confirmed in subsequent

tests. Thus, while a complete understand of “how” the AEKF learns {Rk}Nk=1 is still

unclear, the results in Section 4.5 provide a theoretical understanding of “what” the

AEKF is doing to mitigate outliers.

Building on the state estimation capabilities of the AEKF, in Section 4.6 we ex-

tended the AEKF to a new algorithm, the AEIMMKF. Similar to the AEKF, the

AEIMMKF places an Interacting Multiple Model Kalman Filter in the latent layer

of a deep autoencoder. The IMMKF is similar to a standard Kalman Filter ex-

cept now there is a bank of M Kalman Filters, where the output of the IMMKF is
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a statistical weighting of the M Kalman Filters. In the tracking community, it is

common practice to replace a standard Kalman Filter with the IMMKF, so the step

from the AEKF to AEIMMKF is a natural one. Training the AEIMMKF on simu-

lated single-turn flight paths with added Gaussian and Cauchy noise, we show the

AEIMMKF achieves superior state estimation compared with a standard Kalman

Filter, IMMKF, and AEKF.

Lastly, having seen a connection between Kalman Filter state estimation and

the Hilbert Space representation of functions from Section 3.1, we investigate the

theoretically well-known properties of Hilbert Spaces as they relate to state esti-

mation in Section 4.7. Here the AEKF is replaced by the Hilbert Space Filter, which

is a single feedforward neural network that learns a smooth, global estimate of

the ground truth instead of a point-wise estimate as the AEKF does. The ideas

and results in this section are preliminary and present a promising area of future

research.
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2 Algorithms

2.1 Kalman Filter

The Kalman Filter [3, 7, 29, 54, 57, 61, 65] estimates the state of a system at time

k, xk, using all measurements, zk, up to and including time k and is based on the

following linear model

xk = Fkxk-1 + wk (2)

zk = Hkxk + vk (3)

where, for fixed k, Fk is a linear mapping Fk : Rn 7→ Rn from the state space to itself

which projects the state forward from time k-1 to time k, xk-1 is the state at time

k-1, and wk is the process noise at time k. Thus, (2) models the temporal transition

between states as the sum of a linear transformation of the previous state, Fkxk-1,

and an added “noise” or random term, wk ∼ N (0,Qk) which is assumed to be a

zero mean Gaussian process with covariance Qk. In (3), Hk is defined as a linear

mapping Hk : Rn 7→ Rm from the state space to the measurement space, zk is

the actual measurement or observation at time k, and vk ∼ N (0,Rk) is the noise

present in the measurements at time k which obscures the state and is assumed to

be a zero mean Gaussian process with covariance Rk.

To summarize, equation (2) defines how the state evolves in time and equation

(3) models the relationship between the actual state and observed measurements.

Based on this model, the goal of the Kalman Filter is to find the optimal estimate

of the sequence {xk}Nk=1 given sequences {Hk}Nk=1, {Fk}Nk=1, {zk}Nk=1, {Rk}Nk=1 and

{Qk}Nk=1 for k = {1, 2, . . . , N}. For reference the four vectors at time k and their
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associated names are

• xk ∈ Rn state estimate vector

• zk ∈ Rm measurement vector

• wk ∈ Rn process noise vector

• vk ∈ Rm measurement noise vector

and the related matrices at time k are similarly defined as

• Fk ∈ Rn×n state transition matrix

• Hk ∈ Rm×n observation matrix

• Qk ∈ Rn×n process noise covariance matrix

• Rk ∈ Rm×m measurement noise covariance matrix

For a given k, each iteration of the Kalman Filter begins with an estimate of the

state xk, the a priori state estimate, based the expected value of (2). The final, or a

posteriori, estimate of xk is then an affine function of the a priori state estimate and

actual measurement at time k, along with Hk and Kk. This process is depicted in
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Figure 5 and mathematically represented by the series of equations

x̂k|k-1 = Fkx̂k-1|k-1 (4)

Pk|k-1 = FkPk-1|k-1F
T

k + Qk (5)

z̃k = zk −Hkx̂k|k-1 (6)

Sk = HkPk|k-1H
T

k + Rk (7)

Kk = Pk|k-1H
T

kS
−1
k (8)

x̂k|k = x̂k|k-1 + Kkz̃k (9)

Pk|k = (I−KkHk)Pk|k-1 (10)

where equations (4) through (10) represent a single iteration of the Kalman Filter

and can be broken down into two parts: prediction [(4) - (5)] and update [(6) - (10)].

Equation (4) represents the a priori state estimate of xk at time k, where the sub-

script k|k-1 indicates an estimate of the state at time k given all data up to and

including time k-1. Since the Kalman Filter is estimating the state at time k before

having seen the actual measurement at time k, this estimate is referred to as the

a priori estimate. Equation (5) represents the covariance of the estimate in (4) and

is referred to as the a priori estimate covariance. Equations (6) and (7) represent

the innovation and innovation covariance respectively. The innovation is simply

the difference between the actual measurement, zk, and the a priori estimate, x̂k|k-1,

mapped into the measurement space via Hk. Equation (8) is the Kalman Gain,

which weights the innovation’s contribution to the final state estimate. Lastly, (9)

and (10) are the a posteriori state estimate and a posteriori estimate covariance re-

spectively. The distinction between the a priori and a posteriori estimates and co-

variances rests on whether the actual measurement, zk, has been considered by the
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Kalman Filter when estimating the state at time k.

2.1.1 Kalman Filter Optimality Conditions

The presentation of the Kalman Filter optimality conditions in this section and

Section 2.1.2 motivates our merger of deep learning and the Kalman Filter in the

AEKF. To that end, here we discuss the regime where the Kalman Filter is the

optimal filter among a certain class of filters. Furthermore, and more importantly

for the purposes of this dissertation, through understanding the Kalman Filter’s

limitations, we indicate where its performance may be enhanced by deep learning.

Traditionally the derivation of the Kalman Filter begins by assuming the ran-

dom processes in (2) and (3) are Gaussian. Here we take a different approach and

begin by showing the Kalman Filter is the optimal filter among a specific class of

filters. We then show, in the Gaussian case mentioned above, the Kalman Filter is

the optimal filter, in the sense of conditional minimum variance estimation, among

all filters.

The essence of the problem the Kalman Filter addresses is embodied in (3).

Since the true state is obscured by the noise, only the noisy measurements are

observed. Thus, the question becomes: what can be said in a principled manner

about the true state given only knowledge of the noisy measurements [29]? More

precisely, assume a random vector



x

z0

z1

...

zN


(11)
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Step 1 Step 2 Step 3

Step 4

Prediction Step: Based 
Upon Dynamical Model

Update Step: Combination of A 
Priori Estimate and Innovation

Initial or Prior 
State

Calculation 
of Innovation

A Priori 
Estimate

A Posteriori 
Estimate

Figure 5: Conceptual diagram depicting a single iteration of the Kalman Filter.
Step 1 is the initial input at time zero or output of the previous iteration. Based on
this, the Kalman Filter computes the a priori estimate at step 2. Using the a priori
estimate and the measurement, the innovation is calculated at step 3. These are
then combined to form the a posteriori output in step 4, where the relative weighting
between the a priori estimate and the innovation is determined by the Kalman Gain
(8). The a posteriori output is then used as the input to the next iteration at step 1.
This process is repeated iteratively until all measurements are exhausted.
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where x and z0, z1, . . . , zN are considered random variables and thus take on values

in a random fashion. If we require that they all vary for the same underlying rea-

sons, whatever that may be, it seems plausible that knowledge of {z0, z1, . . . , zN}

may allow for a principled estimation of x. Put another way, if all the circum-

stances affecting {x, z0, z1, . . . , zN} are in the same sample space Ω, and thus {x, z0, z1, . . . , zN}

are functions on Ω, any covariance between x and {z0, z1, . . . , zN}may, in principle,

be utilized to estimate x. This is the idea behind the Kalman Filter [3, 7].

2.1.2 Best Linear Minimum Variance Estimate

The approach here, which follows the derivation given in [3], is to assume the

estimate of the true state, x, is a function of the observations, represented here by

x̂ = f(z) (12)

where f(·) in (12) is not restricted to a specific functional form, such as linear or

non-linear. In the case where f(·) is an affine function of z, the Kalman Filter is the

best estimator of any affine filter when the noise processes {vk}Nk=1 and {wk}Nk=1

are mutually uncorrelated, zero-mean, and white and further uncorrelated with

the initial state estimate x0. Here we also see a hint as to why the Kalman Filter is

referred to as a linear filter, as the estimate x̂ is defined as a linear transformation

of the measurements z plus an additive term independent of the measurements.

Thus, while technically the Kalman Filter is the best affine minimum variance es-

timator (BAMVE), the term best linear minimum variance estimator (BLMVE) is

most commonly used in practice and we follow this convention.
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More formally, rewriting (12) as an affine function of z

x̂ = Az + b (13)

where A is a matrix mapping from the measurement space to signal space and b

is a vector in the signal space. The goal is then to solve

arg min
A,b

E
[
‖x− x̂‖2 ] (14)

which upon substitution of (13) becomes

arg min
A,b

E
[
‖x−Az− b‖2 ] (15)

Given random vectors x and z with means x̄ and z̄ and covariances

Cov
(
x,x

)
= Σxx

Cov
(
x, z
)

= Σxz

Cov
(
z,x
)

= Σzx

Cov
(
z, z
)

= Σzz

it can then be shown the solution to (15) is given by

A = (Σxz(Σzz)−1) (16)

b = x̄−Az̄ (17)
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substituting (16) and (17) into (13) gives

x̂ = x̄ + (Σxz(Σzz)−1)(z− z̄) (18)

which we will see corresponds to the Kalman Filter’s a posteriori estimate if we

make the follow identifications

x̄ , x̂k|k-1

z̄ , Hkx̂k|k-1

Σxz , Pk|k-1H
T

k

Σzz , Sk

Up to this point nothing specific to the Kalman Filter has been used. Now we

consider the form (18) takes when the linear model in (2) and (3) is assumed. After

some lengthy calculations and reintroducing the standard Kalman Filter subscript

notation, we arrive at formulas for the recursive estimation of the a posteriori state

estimate and associated covariance given by

x̂k|k = x̂k|k-1 + (Pk|k-1H
T

kS
−1
k )(zk −Hkx̂k|k-1) (19)

Pk|k = (I−KkHk)Pk|k-1 (20)

A complete derivation of the above is given in appendix A.1.

We now show how the Kalman Filter is the best conditional minimum variance

estimator (BCMVE), for any class of filters defined by f in (12), when a specific

assumption is made about the joint distribution between x and z. Namely, we as-

sume x and z are jointly Gaussian, along with the assumptions regarding variables
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being uncorrelated above. First, we state a well-known theorem from probability.

Suppose we want to estimate the value taken by a random variable x, represented

by x̂, given the value taken by another random variable z. In this case, the condi-

tional minimum variance estimate of x given z = z is defined as x̂ such that

E
[
‖x− x̂‖2 |z = z

]
≤ E

[
‖x− y‖2 |z = z

]
(21)

for all vectors y. With this definition of the minimum variance estimate, given

jointly distributed random variables x and z (regardless of the distribution) and

letting z take on the value z = z, then x̂ is uniquely defined as the conditional

mean of x given z = z. That is,

x̂ = E
[
x|z = z

]
(22)

Note that equation (18) above represents the best linear minimum variance estimate

and (a) is not an expectation and (b) is not necessarily the best minimum variance

estimate. However, we can ask whether there is a statistical distribution where the

conditional minimum variance estimate is an affine function of the variable conditioned

on. If so, perhaps the form of this estimate is similar to (18). It turns out that the

this is exactly the case. That is, if x and z are jointly distributed Gaussian random

variables with means and and covariance as above, then x, conditioned on the fact

z = z, is a Gaussian random variable with mean

E
[
x|z = z

]
= x̄ + (Σxz(Σzz)−1)(z− z̄) (23)

which is the same as (18). This provides insight into why the Kalman Filter is con-
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sidered optimal when the above Gaussian assumptions are made. Most generally,

the Kalman Filter is an affine function of the measurements z. However, in the

Gaussian case, the BCMVE is the same as the BLMVE. Put another way, the an-

swer to the question “what statistical distribution has a best conditional minimum

variance of the form in (18)” is the Gaussian distribution.

2.1.3 Kalman Filter’s Dynamical Model

The Kalman Filter’s a priori estimate in (4) is a linear transformation independent

of the measurements. For this reason it can be understood as representing the

hidden state’s dynamics or a model of how the true state transitions from xk-1

to xk. Some well-known dynamical models used in the Kalman Filter are the

nearly constant velocity (NCV), the nearly constant acceleration (NCA), and the

jerk model [4], whose matrix representations, Fk, are modeled by (24), (25), and

(26) respectively [4].

1 dt

0 1

 (24)


1 dt 1

2
dt2

0 1 dt

0 0 1

 (25)



1 dt 1
2
dt2 1

6
dt3

0 1 dt 1
2
dt2

0 0 1 dt

0 0 0 1


(26)
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Taking the NCA model as an example, since Fk ∈ R3, the state vector at k-1 consists

of the position, first derivative, and second derivative


x̂k-1|k-1

ˆ̇xk-1|k-1

ˆ̈xk-1|k-1

 (27)

Thus projecting forward in time via Fk gives


x̂k|k-1

ˆ̇xk|k-1

ˆ̈xk|k-1

 =


1 dt 1

2
dt2

0 1 dt

0 0 1




x̂k-1|k-1

ˆ̇xk-1|k-1

ˆ̈xk-1|k-1

 (28)

=


x̂k-1|k-1 + ˆ̇xk-1|k-1(dt) + ˆ̈xk-1|k-1(1

2
dt2)

ˆ̇xk-1|k-1 + ˆ̈xk-1|k-1(dt)

ˆ̈xk-1|k-1

 (29)

where (29) indicates the state transitions according to the well-known law of kine-

matics. That is, in the first row of (29) the position is modeled as transitioning

according to a second-order time-dependent model, the second row indicates ve-

locity transitions via a linear time-dependent model, and the last row indicates

that the acceleration is constant; hence the name, nearly constant acceleration. As

mentioned above, one important aspect of Kalman Filter design is selecting a dy-

namical model that is appropriate to the problem one is modeling. In scenarios

where model dynamics are known to change, a fixed Fk can be problematic. For

example, in the context of air traffic control, one may have a plane that flies at a

constant velocity for a long period and then exhibits accelerated turning or de-

scending. In the next section we discuss the IMMKF, which address the limitations
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of a single dynamical model.

2.2 Interacting Multiple Model Kalman Filter

As discussed in section 2.1, capturing the correct model dynamics with a single

Kalman Filter can be problematic in situations where the state being estimated ex-

hibits multiple dynamic modes. For example, when constant velocity motion tran-

sitions to accelerated motion as a plane begins turning. These two distinct modes,

constant velocity motion and constant acceleration, are modeled by NCV and NCA

dynamical models respectively in a Kalman Filter. The IMMKF address this limita-

tion by using multiple Kalman Filters with varying internal parameters, which of-

ten include the process noise covariance matrix and dynamical model [4, 5, 39, 48].

While the idea of multiple models is elegant and the idea has a certain simplicity,

the essence of the IMMKF is in how it combines, or weights, the multiple mod-

els to produce a single state estimate. The next two sections consist of a general

overview of the IMMKF followed by a more technical description. Both these sec-

tions closely follow [48] and are included here for reference.

2.2.1 General Description of the Interacting Multiple Model Kalman Filter

Figure 6 presents the steps for a single iteration of the IMMKF. Since the IMMKF

hasM distinct Kalman Filters, step (a) consists ofM three-tuples
(
x̂

(i)
k-1|k-1,P

(i)
k-1|k-1, µ

(i)
k-1

)
,

for i = {1, 2, . . . ,M}. x̂
(i)
k-1|k-1 and P

(i)
k-1|k-1 are either the a posteriori state estimate and

associated covariance at time k-1 for i = {1, 2, . . . ,M} from the previous itera-

tion or the initial estimates. However, µ(i)
k-1 is a new term not seen in the standard

Kalman Filter. Recall that one goal of the IMMKF is to allow the use of multiple

dynamical models, each defined by one of the M distinct Kalman Filters. Here the
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Figure 6: This figure depicts a single iteration of the IMMKF. Step (a) is either the
outputs from the prior iteration of the IMMKF or the initial inputs at time zero. In
addition to the state estimate and associated covariance, the term µ

(·)
k-1 in step (a)

represents the probability the state being estimated was in the mode defined by the
ith Kalman Filter at time k-1, conditioned on all measurements up to and including
time k-1. These probabilities are then used in the mixing step (b) to determine
x̂

(·∗)
k-1|k-1 and P

(·∗)
k-1|k-1 as a linear combination of the state estimates and associated

covariances in step (a) for each of the M Kalman Filters. The output of the mixing
step in step (c), along with the measurement and measurement noise covariance
matrix in step (d), are then passed as input to the corresponding Kalman Filter in
step (e). Note that each of the M Kalman Filters receives the same measurement
and measurement noise covariance matrix. The a posteriori estimate and associated
covariance for each of the M Kalman Filters appear in step (f), along with Λ

(·)
k ,

which is the likelihood of the measurement for the a given Kalman Filter. The M a
posteriori estimates and associated covariances are combined in step (g) to form the
IMMKF’s single a posteriori estimate and associated covariance in step (h). Lastly,
theM a posteriori estimates and associated covariances from step (f), along with the
updated probability µ(·)

k , in step (i) are used by the IMMKF at step (a) of the next
iteration. Apart from minor notational differences, this figure is the same as in [48] and is
included here for reference.
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term µ
(i)
k-1 represents the probability the state being estimated was in the mode de-

fined by the ith Kalman Filter at time k-1, conditioned on all measurements up to

and including time k-1. Herein, we sometimes refer to this as simply the IMMKF

“being in mode i at time k-1”. Although one might consider passing x̂
(i)
k-1|k-1 and

P
(i)
k-1|k-1 directly to the corresponding ith Kalman Filter, there is an intermediate

mixing at step (b). Here each µ
(i)
k-1 (along with other terms) for i = {1, 2, . . . ,M}

are used to form linear combinations of the terms from step (a). The output of this

mixing step is shown in step (c), which can be thought of as the weighted ”a pos-

teriori” state estimate for each of the M Kalman Filters from step (a). These, along

with the measurements zk and measurement noise covariance matrix Rk in step

(d), are then input to the M Kalman Filters in step (e), each represented by KaF
(i)
i

for i = {1, 2, . . . ,M}, to produce their respective a posteriori estimate and associated

covariance. Step (f) shows another three-tuple, with x̂
(i)
k|k and P

(i)
k|k representing the

a posteriori output of the ith Kalman Filter at time k. Since there is only one mea-

surement at time k for all M Kalman Filters, the third term, Λ
(i)
k , is the likelihood

of the measurement zk given the IMMKF is in mode i at time k, which is used to

determine the updated µ
(i)
k . Similar to step (b), in step (g) the a posteriori estimates

from step (f) are combined based upon the updated µ
(i)
k . In step (h) a single a pos-

teriori state estimate and associated covariance, x̂k|k and Pk|k, are output and serve

as the IMMKF’s output state estimate and covariance at time k. Lastly, at step (i)

each of theM a posteriori state estimates and associated covariances, along with the

updated µ
(i)
k , serve as the three-tuples in step (a) at the next iteration.
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2.2.2 Mathematical Description of the Interacting Multiple Model Kalman Fil-

ter

In this section we present the steps in Figure 6 in more mathematical detail. When

implementing the IMMKF a transition matrix, pij , must be defined prior to imple-

menting the algorithm. This represents the probability of being in mode j at time

k given the IMMKF was in mode i at time k-1

pij = Pr(mk = j|mk-1 = i) (30)

where mk = j means the “IMMKF was in mode j at time k”. Also µ(i)
k-1 mentioned

above is formally expressed as

µ
(i)
k-1 = Pr

(
mk-1 = i|{zl}k-1

l=1

)
(31)

where zl is the measurement at time l. Algorithmically, the IMMKF proceeds in

the following steps:

1. Given the input in Figure 6(a), the first step is to compute the probability

the IMMKF was in mode i at time k-1 given it is in mode j at time k, condi-

tioned on all measurements up to and including time k-1. This is expressed
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mathematically as

µ
(i|j)
k-1 = Pr

(
mk-1 = i|mk = j, {zl}k-1

l=1

)
(32)

=
Pr
(
mk = j|mk-1 = i, {zl}k-1

l=1

)
Pr
(
mk-1 = i|{zl}k-1

l=1

)
Pr
(
mk = j|{zl}k-1

l=1

) (33)

=
Pr(mk = j|mk-1 = i)Pr

(
mk-1 = i|{zl}k-1

l=1

)
Pr
(
mk = j|{zl}k-1

l=1

) (34)

=
pijµ

(i)
k-1

c̄j
, c̄j =

M∑
i=1

pijµ
(i)
k-1 (35)

where (33) results from applying Bayes’ theorem to (32), (34) results from

the fact the probability of transitioning from mode i at time k-1 to mode j at

time k is independent of {zl}k-1
l=1 (i.e. (30) is independent of {zl}k-1

l=1), and (35)

follows from substituting (30) and (31) in the numerator and applying the

law of total probabilities to the denominator.

2. Using the mixing probabilities from (35), the next step is to compute the

mixed state estimates and associated covariances corresponding to Figure

6(c). This is done according to

x̂
(j∗)
k-1|k-1 =

M∑
i=1

x̂
(i)
k-1|k-1µ

(i|j)
k-1 (36)

P
(j∗)
k-1|k-1 =

M∑
i=1

[
P

(i)
k-1|k-1 +

(
x̂

(i)
k-1|k-1-x̂(j∗)

k-1|k-1

)(
x̂

(i)
k-1|k-1-x̂(j∗)

k-1|k-1

)T]
µ

(i|j)
k-1 (37)

for j = {1, 2, . . . ,M}, where x̂
(j∗)
k-1|k-1 and P

(j∗)
k-1|k-1 are the mixed a posteriori state

estimate and associated covariance input to the jth Kalman Filter at time k.

These, along with the measurements zk and measurement noise covariance

matrix Rk, are then used by each of the M Kalman Filters to produce their
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respective a posteriori outputs x̂
(j)
k|k and P

(j)
k|k for j = {1, 2, . . . ,M} at time k in

Figure 6(f).

3. In order to produce a single a posteriori output in Figure 6(g), the M a poste-

riori outputs from Figure 6(f) are combined in Figure 6(g). These combina-

tions are similar to (36) and (37) using an updated mixing probability µ(j)
k for

j = {1, 2, . . . ,M}. This updated mixing probability is the a posteriori proba-

bility of the IMMKF being in mode j at time k, hence it should consider the

measurement zk. The first step in determining the updated mixing probabil-

ity is to compute Λ
(j)
k , which is the likelihood of measurement zk given the

IMMKF is in mode j at time k. For each j = {1, 2, . . . ,M}, this is determined

by evaluating the Gaussian probability density function (PDF).

Λ
(j)
k = N

(
zk; Hkx̂

(j)
k|k,S

(j)
k

)
(38)

=
1

(2π)n/2
∣∣S(j)

k

∣∣e- 1
2

(
zk−Hkx̂

(j)
k|k

)(
S
(j)
k

)−1(
zk−Hkx̂

(j)
k|k

)T
(39)

where, for time k, zk−Hkx̂
(j)
k|k is the jth IMMKF’s innovation (6), S

(j)
k is the as-

sociated innovation covariance (7), and n is the dimensions of zk. Rewriting

42



(31) updated for time k gives

µ
(j)
k = Pr

(
mk = j|{zl}kl=1

)
(40)

= Pr
(
mk = j|zk, {zl}k-1

l=1

)
(41)

=
Pr
(
zk|mk = j, {zl}k-1

l=1

)
Pr
(
mk = j|{zl}k-1

l=1

)
Pr
(
zk|{zl}k-1

l=1

) (42)

=
N
(
zk; Hkx̂

(j)
k|k,S

(j)
k

)
Pr
(
mk = j|{zl}k-1

l=1

)
Pr(zk)

(43)

=

Λ
(j)
k

M∑
i=i

Pr
(
mk = j|mk-1 = i, {zl}k-1

l=1

)
Pr
(
mk-1 = i, {zl}k-1

l=1

)
Pr(zk)

(44)

=

Λ
(j)
k

M∑
i=i

pijµ
(i)
k-1

Pr(zk)
(45)

=
1

c
Λ

(j)
k c̄j (46)

where c̄j is defined in (35) and c =
M∑
j=1

Λ
(j)
k c̄j is a normalizing constant which

ensures
M∑
j=1

µ
(j)
k = 1.

4. Having updated the mixing probabilities the output IMMKF state estimate

and covariance are determined in the mixing step, Figure 6(g), as

x̂k|k =
M∑
j=1

x̂
(j)
k|kµ

(j)
k (47)

Pk|k =
M∑
j=1

[
P

(j)
k|k +

(
x̂

(j)
k|k-x̂k|k

)(
x̂

(j)
k|k-x̂k|k

)T]
µ

(j)
k (48)

where x̂
(j)
k|k and P

(j)
k|k are the jth Kalman Filter’s a posteriori estimate and asso-

ciated covariance at time k.
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5. Lastly, in Figure 6(i) the M individual a posteriori state estimates, their asso-

ciated covariances, and the updated mixing probabilities from Figure 6(f) are

passed to the next iteration of the IMMKF.

This concludes our discussion of the Kalman Filter and IMMKF. In sections 2.5

and 2.6 we present our main theoretical contribution where deep autoencoders

are combined with the Kalman Filter and IMMKF. First though, we present an

overview of autoencoders and LSTMs.

2.3 Autoencoders

An autoencoder [11] is a type of artificial neural network which attempts to copy

an input φ to an output φ̂, using intermediate mappings which constitute the net-

work’s hidden layers. The case where there are multiple hidden layers is referred

to as a deep autoencoder. The mappings between the hidden layers are typically

non-linear and may increase or decrease the dimensions of the preceding layer’s

feature space. In practice, a common application of an autoencoder is dimension-

ality reduction, similar to principal component analysis (PCA). In fact, if the map-

pings between the hidden layers are linear, an autoencoder will span the same

subspace as PCA [11]. However, if they are non-linear, an autoencoder may be

used to achieve non-linear dimensionality reduction.

Figure 7 depicts a deep autoencoder with depth, or number of layers, S and

varying dimensions per layer, both indicated by ellipsis. The mapping from the

input, φ, to the smallest hidden layer, or latent layer, z is the encoder and the map-

ping from the latent layer to the output, φ̂, is the decoder. While it may seem trivial

to copy φ to φ̂, the essence of the autoencoder in Figure 7 is that it must learn the

important features to encode such that an accurate representation of the input can
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φ

E1

ES

z

D1

DS

φ̂

Figure 7: Diagram of a deep autoencoder with input φ, output φ̂, a single latent
layer z, and S hidden layers in both the encoder and decoder represented by Ek

and Dk for k = {1, 2, . . . , S} respectively. The stacked discs represent the values
in each layer while vertical ellipsis indicate the omitted values and the horizontal
ellipsis represent omitted layers.

be reconstructed from the latent layer. In the case of dimensionality reduction,

since the latent layer has a smaller feature space than the input, some information

is lost in the encoding. Thus, the goal of the autoencoder is to learn the mappings

between hidden layers such that the features essential to reconstruction are pre-

served. In other words, the autoencoder must learn what to throw out and what

to keep. Representing the encoder and decoder mappings by E(W,b) and D(W,b),

the autoencoder’s cost function is

J(W,b) = arg min
W,b

∥∥∥φ− φ̂∥∥∥2

F
(49)

= arg min
W,b

∥∥φ− (D(W,b) ◦ E(W,b))(φ))
∥∥2

F
(50)

where W and b are the matrices and vectors learned by the autoencoder and the

norm is the Frobenius norm squared.

In the case of non-linear mappings, the function mapping between layers is

represented by σ(·) and is commonly a sigmoid, hyperbolic tangent or rectified

45



linear unit (ReLU) [49] function, where the argument of the function is an affine

transformation of the previous layer’s output. For example, the mapping from

hidden layer m to m+ 1 would be

Hm+1 = σ(WmHm + bm) (51)

where the individual entries in Wm and bm are learned for each of the hidden

layers in the network via backpropagation [53]. Thus, despite the mystification

of deep learning, a deep autoencoder is nothing more than the composition of N

affine transformations g(x) and activation functions σ(x)

(σN ◦ gN ◦ σN−1 ◦ gN−1 ◦ · · ·σ1 ◦ g1)(x) (52)

For more details on autoencoders, including many of the common variants, see

[11].

2.4 Long-Short Term Memory Recurrent Neural Network

A classic approach in the deep learning literature is an LSTM RNN applied to time

series. As we will be comparing the AEKF against an LSTM, here we present some

background on LSTMs.

LSTM networks were initially introduced to solve the vanishing gradient prob-

lem present in RNNs [23]. As a result, LSTMs are able to learn long term de-

pendencies among data separated in space and time by preserving network error

throughout. This facilitates the application of LSTMs to sequence labeling prob-

lems [18], where the features of the input vectors can not be assumed to be in-

dependent, such as natural language processing (NLP) [64]. LSTMs have also
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been applied to time series classification [30] and prediction [66]. In the context

of such methods, the AEKF may be seen as contribution to time series state esti-

mation and prediction problems involving deep learning, where the Kalman Filter

is used for state estimation and the encoder/decoder are used for non-linear data

transformation. An excellent general introduction to the LSTM can be found at

https://colah.github.io/posts/2015-08-Understanding-LSTMs.

The standard LSTM implementation is composed of four main components: a

cell or memory unit and three gates which serve to regulate the flow of information

into and out of the cell unit. The cell unit acts as the memory and keeps track of

the relation between elements in the input sequence. For example, in the case of a

time series the cell would maintain a history of the dependencies between elements

of the time series. As the LSTM processes its input, it needs to determine which

new values are added to the cell, which are maintained in the cell, and which are

removed. This is accomplished by the input, output, and forget gates. Formally,

these three gates are defined by the composition of affine transformations and non-

linear activations functions as

F (i)
k = σ(Wixk + Uihk−1 + bi) (53)

F (o)
k = σ(Woxk + Uohk−1 + bo) (54)

F (f)
k = σ(Wfxk + Ufhk−1 + bf ) (55)

where, at time k, the input sequence is xk, the hidden state or LSTM output from

the previous iteration is hk-1, W, U, and b are the weights and biases learned dur-

ing training, and σ is a sigmoid activation function. The subscripts i, o, and f ,

indicate which of the three gates (input, output, or forget) the weights and biases

belong to. Similarly, the superscript in parenthesis in F (·)
k indicates which gate the
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function corresponds to. Each of the three gate functions takes as input the current

input sequence xk ∈ Rm and the previous LSTM output hk-1 ∈ Rn, and then applies

their weights and biases accordingly. The output of all three gates are in Rn.

The cell state is updated based upon the previous cell state and a cell input

vector as

F (c)
k = F (f)

k �F
(c)
k−1 + F (i)

k �F
(ĉ)
k (56)

where F (c)
k−1 is the cell state at k-1, � is the Hadamard product, and the cell input

vector is defined similarly to the gate functions as

F (ĉ)
k = σ̂(Wcxk + Uchk−1 + bc) (57)

where σ̂ is now the hyperbolic tangent activation function. Inspection of (56) indi-

cates how the LSTM determines which new information to add to the cell state and

which to remove from the cell state. Since the activation function in both F (f)
k and

F (i)
k is a sigmoid function, combined with the Hadamard product, these vectors

weight each entry in F (c)
k−1 and F (ĉ)

k−1 respectively between 0 and 1. This provides

some intuition into why (53)-(55) are referred to as gate functions.

Finally, the output of the LSTM is given by

F (h)
k = F (o)

k � σ̂(F (c)
k ) (58)

where the output gate, F (o)
k , acts element-wise on the cell state composed with a

hyperbolic tangent function. Other variants such as the peephole LSTM [16, 17]

and convolutional LSTM [55] also exist with differences in architecture.
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2.5 Autoencoder-Kalman Filter

Before presenting the details of the AEKF we stop to make a point about our philo-

sophical approach in designing the AEKF. The combination of an autoencoder and

Kalman Filter merges the computational power of deep learning with the theo-

retical understanding of a simple and elegant linear system. In our experience,

one of the more challenging aspects of working with neural networks is the lack of

mathematical principles to guide training. However, if combined with well-known

mathematical models such as the Kalman Filter, certain design and training issues

can be addressed in the Kalman Filter itself, where the decision was informed by

the Kalman Filter’s well-known theoretical basis. At the same time, the compu-

tational power of deep learning allows a hybrid model such as the AEKF to out-

perform a traditional Kalman Filter. Wanting to only leverage deep learning for

parameters external to the Kalman Filter, it was a specific design decision to only

utilize the autoencoder’s computational resources for learning or transforming pa-

rameters related to the measurements, i.e. only {zk}Nk=1 and {Rk}Nk=1. As we will

see in section 4.5, “what” the AEKF learns is entirely consistent and can be derived

from the mathematical theory of the Kalman Filter.

2.5.1 Technical Details

In the larger picture, the AEKF simply places a Kalman Filter in the latent layer

of the standard deep autoencoder [11] shown in Figure 7. However, due to the

presence of the Kalman Filter, the roles of the encoder and decoder portions of the

AEKF vary slightly from a standard autoencoder. That is, while the encoder and

decoder portions of the AEKF ensure that the input and output of the AEKF are

in the same space, the goal is not to minimize the difference between the input
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and output, but the difference between the ground truth of the input and a state

estimate of the input. The question may be asked here how access to the ground

truth is possible, given that the goal of the AEKF is state estimation. This is made

possible by the use of domain randomization as will be discussed in section 3.2.

With the AEKF we make a slight change in notation from the traditional Kalman

Filter. In keeping with the notation that the sequence of measurements passed to

the Kalman Filter is {zk}Nk=1, we define the actual measurements, prior to transfor-

mation by the encoder, as {φk}Nk=1, consistent with the notation in Figure 7. Given

a single time series sequence of measurements {φk}Nk=1, with k indexing time, or

sample, and each φk ∈ Rp, we define the stacking of {φk}Nk=1 into a matrix as φ.

Here there areN rows with each row representing a sample in the time series and p

columns representing the dimension of each sample, thus φ ∈ RN×p. This notation

applies throughout to any variable defined in terms of as sequence, for example

{zk}Nk=1, {Rk}Nk=1, etc.

Figure 8 presents the AEKF and is similar to Figure 7 except that the single

latent layer has been replaced by z, R, KaFi, and ẑ, which represent the learned

measurements, learned measurement noise covariance matrix, Kalman Filter, and

Kalman Filter’s a priori estimate of the learned measurements respectively. The

sequence {φk}Nk=1 mentioned above is shown in the first column and represented

by the variable φ. The input φ is passed to the encoder portion of the AEKF rep-

resented by E1 through ES where S is the number of layers in the encoder por-

tion. The encoder portion then outputs two variables: z and R, which represent

the sequences {zk}Nk=1 and {Rk}Nk=1 respectively. From the encoder’s perspective

these are just two variables resulting from the encoder portion’s transformation of

φ. However, from the point of view of the Kalman Filter placed in the AEKF’s
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φ

E1

ES

z
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KaFi ẑ

D1

DS

φ̂

Figure 8: Diagram of the Autoencoder-Kalman Filter which is the same as Figure
7 apart from the presence of a Kalman Filter, and related variables, in the latent
layer. Here the output of the encoder results in two variables, z and R, which
are the measurements and measurement noise covariance matrices passed to the
Kalman Filter, represented by KaFi. The Kalman Filter’s a priori estimate of z, ẑ,
is then passed to the decoder, which maps ẑ to the final output φ̂. The lines with
arrows to the left of the Kalman Filter indicate the Kalman Filters inputs without
any transformation and the line with a disc indicates the linear transformation H.

latent layer, they represent the measurements and associated measurement noise

covariance matrices of the Kalman Filter. Thus, the AEKF’s goal is to learn a trans-

formation of φ, via the encoder portion, such that {zk}Nk=1 and {Rk}Nk=1 allow the

Kalman Filter to accurately filter φ. However, the output of the Kalman Filter, ẑ,

is not the actual filtered version of φ as ẑ is in the AEKF’s latent space, which is

not necessarily in the same space as φ. Thus, the decoder portion with layers D1

through DS maps ẑ from the AEKF’s latent dimension to the original measure-

ment dimension. The AEKF’s cost function then compares the AEKF output, φ̂,

with the ground truth of φ and updates the encoder and decoder weights and bi-

ases via backpropagation. Note, in Figure 8, the lines between the encoder and

decoder layers represent the standard composition of affine transformations and

non-linear activations in a neural network, the lines with arrows to the left of the
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Kalman Filter indicate the Kalman Filter’s inputs without any transformation, and

the line with a disc indicates the linear transformation H. The horizontal ellipses

represent the omitted hidden layers, and the vertical ellipses represent each layer’s

omitted samples.

In slightly more mathematical detail, the AEKF is summarized as follows:

1. Apply a transformation, E(·), to φ using the encoder portion of the AEKF,

where E(φ) = ES ◦ ES-1 ◦ · · · ◦ E1(φ)

2. Apply two affine transformations, z = WzE(φ)+bz and L = T ◦ (WLE(φ)+

bL), to E(φ), where T is a stacking operation described below.

3. Compute R = L
T
L and pass z and R to the Kalman Filter.

4. Return the Kalman Filter’s a priori estimate, ẑ = KaFi(z,R)

5. Apply an affine transformation, ẑp = Wpẑ + bp, to ẑ

6. Apply a transformation, D(·), to ẑp using the decoder portion of the AEKF,

where D(ẑp) = DS ◦DS-1 ◦ · · · ◦D1(ẑp)

7. Apply an affine transformation, φ̂ = WoD(ẑp) + bo, to D(ẑp)

8. Compute ||φtrue− φ̂||2F , where φtrue is the ground truth of φ, and backpropa-

gate the errors, updating the weights and biases.

Steps (1) and (2) contain the essence of how the AEKF addresses the problem

of learning transformations related to the original measurements φ. E(φ) in step

(1) is the result of multiple non-linear and affine function compositions, which

transform the original measurements, {φk}Nk=1 , producing a new basis, {zk}Nk=1,

onto which the Kalman Filter’s state estimate, {x̂k}Nk=1, is an orthogonal projection,
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as indicated by (13). However, the bases are not fixed but learned by the AEKF, as

{zk}Nk=1 is a function of the parameters learned by the AEKF. Thus, if the AEKF

shows improved performance over a standard Kalman Filter, it is finding a trans-

formation of the measurements that produces a more accurate orthogonal projec-

tion. Furthermore, while in practice only the actual measurements are available,

the compositional nature of the autoencoder’s encoder mapping allows the input

dimensions to be mapped to an arbitrary number of output dimensions. Thus, we

not only use the encoder to learn a transformation of {φk}Nk=1, resulting in an input

to the Kalman Filter {zk}Nk=1, but also the covariance of this input {Rk}Nk=1. It is

important to note that in the Kalman Filter the only term affected by {zk}Nk=1 is the

a posteriori output (9). Thus, if the AEKF were to only learn {zk}Nk=1 the Kalman

Gain (8) would not be affected by the encoder portion of the AEKF. This fact plays

an essential role in AEKF and will be discussed below.
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2.5.2 Autoencoder-Kalman Filter Formalism

Given an input φ ∈ RN×p, the layer-by-layer mathematical model discussed above

for the AEKF is broken down into four parts:

Encoder



E1 = σ
(
W

(e)
1 φ+ b

(e)
1

)
(59)

E2 = σ
(
W

(e)
2 E1 + b

(e)
2

)
(60)

...

ES = σ
(
W

(e)
S ES−1 + b

(e)
S

)
(61)

z = WzES + bz (62)

L = T ◦ (WLES + bL) (63)

R = L
T

L (64)

Kalman Filter

{
ẑ = KaFi(z,R) (65)

ẑp = Wpẑ + bp (66)

Decoder



D1 = σ(W
(d)
1 ẑp + b

(d)
1 ) (67)

D2 = σ(W
(d)
2 D1 + b

(d)
2 ) (68)

...

DS = σ(W
(d)
S DS−1 + b

(d)
S ) (69)

Output
{
φ̂ = WoDS + bo (70)

where each symbol to the left of the equals sign, for example ẑ, is the stacked

sequence {zk}Nk=1 as mentioned previously. Equations (59)-(61) represent the en-

coder portion of the AEKF, which takes φ in the original measurement space as

input. Here El represents the lth hidden layer, for l = {1, 2, . . . , S}, in the encoder

portion. W
(e)
l and b

(e)
l represent the weights and biases, respectively, of the lth
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hidden layer and (e) indicates that the given variable belongs to the encoder por-

tion. Each layer’s element-wise activation function is represented by σ. Equations

(62) and (63) consist of affine transformations of the encoder output, ES , with the

subscripts z and L on the weights and biases indicating which output variable, z

or L, they correspond to. However, the affine transformation in (63) is composed

with a function T , which maps its input vector to an upper triangular matrix with

positive diagonal elements. More formally, for R ∈ Rm×m

T : R
m2+m

2 7→ Rm×m (71)

where m2+m
2

is the number of terms necessary to form an upper triangular matrix

in Rm×m. Taking m = 3 as an example and writing the input to T as

a
T

= [a1, a2, a3, a4, a5, a6] (72)

the result of T ◦ a is 

a1

a2

a3

a4

a5

a6


7→


a1 a2 a3

00 a4 a5

00 00 a6

 (73)

where the matrix on the right side of (73) is L in (63), from which a symmetric

positive definite R is formed in (64). (65) is the Kalman Filter mapping of z and R,

which returns the Kalman Filter’s a priori estimate (mapped into the measurement

space) and is followed by an affine transformation in (66). In (66), the subscript p
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Figure 9: Diagram depicting the path of a single sample, φk, through the
Autoencoder-Kalman Filter. The meaning of the figure elements are the same as
in Figure 8. The encoder portion maps φk to zk and Rk which, along with the a
priori estimate at time k, are used to compute the Kalman Filter’s a posteriori es-
timate at time k. However, it is the a priori estimate at time k that is passed to
the decoder portion of the AEKF. Thus, the final state estimate, φ̂k, is independent
of φk. However, zk−1 and Rk−1 do affect φk since x̂k−1|k−1 is used to determine
x̂k|k−1. This architecture forces the encoder portion to learn a mapping such that
the Kalman Filter’s a priori estimate, mapped through the decoder, accurately esti-
matesφk having only seen {φl}k−1

l=1 . In this light, while our design of the AEKF uses
a fixed dynamical system, the AEKF can be thought of as learning a transformation
which attempts to minimize (74) constrained by this fixed dynamical system.

stands for “post” Kalman Filter affine transformation. The decoder portion (67)-

(69), taking ẑp as input, maps back to the original measurement space. Here the

notation is the same as the encoder portion with the exception of (d) replacing (e).

Lastly, while keeping the dimensions the same, an affine transformation is applied

to the decoder output in (70), resulting in the final AEKF output φ̂.

The AEKF loss function given by (74) utilizes the Frobenius norm. The loss is

computed using the difference between the ground truth φtrue and φ̂ as previously

mentioned.

J(W,b) = arg min
W,b

∥∥∥φtrue − φ̂∥∥∥2

F
(74)

Since φ̂ is based on the Kalman Filter’s a priori estimate, φ̂ never “sees” the true

φ. When φ and φ̂ are compared for a fixed k, φ̂k is the AEKF’s “a priori” prediction

of φk, never having seen zk and Rk, and thus being independent of φk. This is
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shown in Figure 9, which tracks the full path of a single sample, φk, through the

AEKF. The input φk passes through the encoder which results in a transformed

measurement zk and transformed measurement noise covariance matrix Rk. How-

ever, the Kalman Filter in the latent layer only uses zk and Rk for the a posteriori estimate,

as shown by the lines with arrows from zk and Rk to x̂k|k. The a priori estimate of

zk, which is independent of zk, is given by ẑk = Hkx̂k|k-1, where the line with a disc

indicates the linear transformation Hk. ẑk is then passed to decoder which pro-

duces the final output φ̂k. Thus, for k = {1, 2, . . . , N}, φ̂k is a function of the first

k-1 measurements {φl}k−1
l=1 . This is different from a traditional autoencoder where

φ̂k, the autoencoder’s reconstruction of the input, has “seen” what it is trying to

encode during training, i.e. the true φk.

Of the three phases in the AEKF, only the Kalman Filter is making a prediction,

i.e, projecting forward in time. Both the encoder and decoder are simply non-linear

transformations of their respective input sequences at a fixed time. As a result,

passing ẑp to the decoder forces the AEKF to learn a transformation of the mea-

surements that minimizes the AEKF cost function, having only seen the Kalman

Filter’s a priori estimate.

2.6 Autoencoder-Interacting Multiple Model Kalman Filter

The AEIMMKF is conceptually very similar to the AEKF. The primary difference

is the Kalman Filter in the latent layer is replaced with an IMMKF. This is shown

in Figure 10, which is identical to Figure 8 apart from the M Kalman Filters in the

latent layer, representing the IMMKF. Note the line with the disc represents the

linear transformation H applied to (75). Note that each of the M Kalman Filters

receive the same inputs z and R. The box around the M Kalman Filters indicates
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Figure 10: Diagram of the AEIMMKF which is the same as Figure 8 apart from
the IMMKF in the latent layer. Note that each of the M Kalman Filters in the
IMMKF receive the same z and R as input. The box around the IMMKF represents
the entire process from Figure 6 with the ellipses indicating the omitted Kalman
Filters. Since the AEKF passes the Kalman Filter’s a priori estimate to its decoder
portion, a single a priori estimate for the IMMKF must be generated. However the
standard IMMKF does not do this. Here we compute a single a priori estimate in
a manner similar to how the IMMKF computes the single a posteriori estimate via
(75). This is then mapped by H to produce ẑ

the entire process shown in Figure 6 occurs in the AEIMMKF’s latent layer with the

ellipses indicating the omitted Kalman Filters. Just as in the IMM, each of the M

Kalman Filters are given the same z and R and the final estimate, ẑ, is the IMMKF’s

“a priori estimate” mapped into the measurement space via H. However, a close

inspection of Section 2.2 shows there is no single IMMKF a priori estimate, as each

of the M Kalman Filter’s a priori estimate is only used internally in the IMMKF.

On the other hand, there is a single a posteriori state estimate, given as the linear

combination in (47). Since the AEKF passes the a priori estimate of the Kalman

Filter to its decoder portion, we need a single a priori estimate for the IMMKF. This

is generated as a linear combination according to

x̂k|k−1 =
M∑
j=1

x̂
(j)
k|k−1µ

(j)
k−1 (75)
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which is a modification of (47) with the jth Kalman Filter’s a priori estimate given

by x̂
(j)
k|k−1 and µ

(j)
k−1 is the mode probability (31) before updating in (46) for j =

{1, 2, . . . ,M}.

3 Training

3.1 Hilbert Space Representations of Functions

In this section we present a summary of Hilbert Space theory, which serves as a

background for understanding our application of domain randomization in Sec-

tion 3.2 and the Hilbert Space Filter in Section 4.7. Although the functions in

Section 4.7 are restricted to R, the Hilbert Space presentation here is general and

focuses on the canonical Hilbert Space L2(Ω), which is the set of all functions

f(x) : F 7→ F, where F is either R or C, which satisfy

∫
Ω∈F

(
|f(x)|2dx

)1/2
<∞ (76)

The presentation of Hilbert Spaces in this section is drawn from [21, 31] and the

reader is directed therein for further details. Additionally, while the ideas in this

section technically apply to separable Hilbert Spaces, we drop “separable” and

simply write Hilbert Space.

What is special about Hilbert Space representations of functions is that a large

class of functions can be exactly represented by the countably infinite sum

f(x) =
∞∑
i=0

〈f(x), ϕi〉ϕi (77)

where 〈·, ·〉 is the inner product in L2(Ω) and {ϕi}∞i=1 are a set of orthonormal func-
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tions. These orthonormal functions are analogous to the canonical basis vectors

e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1) in R3 in that they have unit norm, are

mutually orthogonal, and form a basis in the Hilbert Space. The concept of norm

and orthogonality for functions is based on a generalization of the vector inner

product in Rn to L2(Ω) explained below. Just as any vector in R3 can be repre-

sented as a linear combination of the canonical basis vectors, any function in L2(Ω)

can be represented by (77). This ability to represent any vector in R3 stems from

the fact the vectors in the set {ei}3
i=1 are a basis for R3. From this it follows that the

inner product of vectors in {ei}3
i=1 obey

〈ei, ej〉 = δi,j (78)

where δi,j is the Kronecker delta function, which is 1 if i = j and zero otherwise. In

Hilbert Space there is the analogous idea for the orthonormal functions mentioned

above

〈ϕi, ϕj〉 = δi,j (79)

The difference between (78) and (79) is that each ϕi in {ϕi}∞i=1 is no longer a vector

in a finite dimensional vector space but a function in a Hilbert Space, which can be

thought of as an “uncountably infinite dimensional” vector. The term “uncount-

ably infinite dimensional” comes from the fact functions in a Hilbert Space can be

thought of as a vector with an uncountably infinite number of elements. Further-

more, the inner product for two (possibly complex) functions f(x), g(x) ∈ L2(Ω) is

now defined as

〈f, g〉 =

∫
Ω∈F

f(x)g(x)dx (80)

Based on this, we can think of the inner product 〈f(x), ϕi〉 as the projection of
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the function f(x) onto the ith orthonormal basis function ϕi, directly analogous to

vector projection onto ei in R3.

A key idea of Hilbert Space function representation is an uncountably infinite object,

f(x), can be represented by a countably infinite weighted sum of orthonormal basis func-

tions {ϕi}∞i=1, where the weighting is done by {αi}∞i=1, with each αi = 〈f(x), ϕi〉. Just as

a vector in RN can be written as

r =
N∑
i=1

βiei (81)

where {βi}Ni=1 are the coordinates of r in RN , the sequence {αi}∞i=1 above represents

the “coordinates” of f(x) on an orthonormal basis {ϕi}∞i=1 in a Hilbert Space.

Some common families of orthonormal basis functions are the Legendre and

Hermite Polynomials [35]. Once a particular family of functions is chosen, each ϕi

in {ϕi}∞i=1, for fixed domain x ∈ [a, b], is uniquely determined. At this point the

only parameters that differentiate functions in a Hilbert Space are the coefficients

{αi}∞i=1. Given that functions in a Hilbert Space are differentiated by their coeffi-

cients {αi}∞i=1, we can think of different subspaces of Hilbert Space as the regions

where different function families “live”, where the different regions are defined by

the different values of {αi}∞i=1. This is shown in Figure 11, where for visualization

purposes only two dimensions are shown. The regions representing exponential,

sigmoidal, and sinusoidal functions individually are indicated by circles with their

respective names. These three function families are subsumed under the more gen-

eral family of Taylor polynomials. Experiments in Sections 4.2, 4.3, 4.4, 4.6, and 4.7

progressively train an AEKF and Hilbert Space Filter (introduced in Section 4.7) to

perform state estimation on more general classes of functions in these families.
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Figure 11: Curve families as occupying different regions of Hilbert Space. The
region of Hilbert Space occupied by exponential, sigmoidal, and sinusoidal func-
tions are each represented by the circle with the respective name. At a higher level
of generality, these three families are each a subset of all functions representable
by a Taylor polynomial. In Hilbert Space, each family is distinguished by the coef-
ficients {αi}∞i=1 projected onto the orthonormal basis functions {ϕi}∞i=1.

3.2 Domain Randomization

One difficulty when training deep learning models is the requirement that large

amounts of training data be made available. This requirement can be mitigated

by the use of simulated data, which effectively allows for infinite training data.

However, the differences between models trained on simulated data and the real

world, known as the reality gap, are often difficult to overcome. Even when tuning

parameters in simulation to match the real world, a technique known as system

identification, physical quantities such as wear-and-tear and fluid dynamics often

remain unmodeled [58].

Domain randomization [41, 52, 58] attempts to solve these problems and bridge

the reality gap. The basic philosophy of domain randomization is that in order to
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Figure 12: Figure depicting our progressive domain randomization scheme. The
concentric circles represent a progressively larger subregion of a Hilbert Space,
each including the smaller circles. The smallest circle represents all exponential,
sigmoidal, and sinusoidal function families individually while the middle circle
represents a single family consisting of all exponential, sigmoidal, and sinusoidal
functions. The outermost circle represents the most general class of functions, Tay-
lor Polynomials.

avoid overfitting a particular set of parameters in a deep learning model, one should ran-

domize those parameters during training. If there is enough variability in the sim-

ulated model, the real world is just one among the many variations learned in

simulation. Thus, the goal is to achieve a high enough degree of variability in sim-

ulation such that the real world being modeled is present among the variations.

Of course, the range of parameter randomization will be bounded and informed

by domain knowledge. The hope is that by randomizing training parameters, the

learned model will be robust enough to perform well on test cases whose parame-

ters fall within the range of the randomized training parameters. Put another way,

domain randomization deals with the question of how to cover a particular pa-

rameter space by randomizing a parameter over its entire domain. Since the data

is simulated, access to the ground truth for training is not problematic.
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As an example, consider a neural network which learns a function f(x;θ) : x 7→

y, where x is the input feature vector, y the target, and θ a parameter vector to be

learned that correctly maps x to y. If we assume x ∈ RM , θ ∈ RN , and y ∈ RP ,

domain randomization consists of training the neural network on simulated data

by randomly sampling a simulated input x̂ ∈ RM , with known target ŷ ∈ RP , each

training epoch. The network is then trained to learn θ such that a cost function,

such as

‖ŷ − f(x̂;θ)‖2
F (82)

is minimized. If the randomization of x̂ during training covers RM such that (82)

is below a threshold ε > 0, a model that has learned to successfully map x̂ 7→ ŷ

during training, should generalize for a new input x̂ + δx̂ and new target ŷ + δŷ

such that

‖(ŷ + δŷ)− f(x̂ + δx̂;θ)‖2
F ≈ ‖ŷ − f(x̂;θ)‖2

F (83)

for δx̂ sufficiently close to x̂ and δŷ sufficiently close to ŷ.

In the context of this dissertation, our use of domain randomization can be

thought of as training a neural network to perform state estimation for increasingly

more general families of functions in Hilbert Space. That is, each of the concentric

circles in Figure 12 represent a larger region of a Hilbert Space, each of which

includes the contained smaller circles. The inner most circle represents exponen-

tial, sigmoidal, and sinusoidal function families separately. Moving to the next

larger circle, a single family consisting of exponential, sigmoidal, and sinusoidal

functions is depicted. Lastly, the outermost circle represents the family of Taylor

Polynomials, which includes exponential, sigmoidal, and sinusoidal functions as

a subset. Thinking of Hilbert Spaces in this way is useful for conceptualizing our

use of domain randomization.
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4 Applications and Analysis

In this section we discuss applications of the Kalman Filter, LSTM, AEKF, AEIMMKF,

and Hilbert Space Filter to various state estimation problems along with a mathe-

matical analysis of the AEKF. Section 4.1 addresses the application of the standard

Kalman Filter to feature engineering in the context of time series classification. In

Sections 4.2, 4.3, and 4.4 we address the question of robust filtering by applying

the AEKF to time series filtering with a variety of curve families and noise types,

within the context of domain randomization. Building on the success in Sections

4.2-4.4, in Section 4.5 we derive a theorem concerning the AEKF in the context of

mitigating the effects of outlier measurements. In Section 4.6 we present an appli-

cation of the AEIMMKF to target tracking in a simulated environment. Lastly, in

Section 4.7 we present preliminary state estimation results based upon explicitly

leveraging the functional representation properties of Hilbert Spaces.

The overarching narrative of our applications is depicted in Figure 13. Figure

13(a) is a ASR-9 air traffic control (ATC) radar and represents the traditional appli-

cation of the Kalman Filter to tracking problems. In our work, we make a novel

contribution to the chemical sensor community by applying the Kalman Filter out-

side this traditional setting. Specifically, the Kalman Filter is applied to the feature

engineering of chemical sensor response time series data for downstream machine

learning. Here we leverage the state estimation capabilities of the Kalman Filter

to improve early detection and discrimination of chemical agents. This is repre-

sented by the chemical sensor array in Figure 13(b). Based upon the success here,

and noting the limitations of the Kalman Filter discussed above, we combine the

Kalman Filter with deep learning and domain randomization for the purpose of

creating a generalized time series state estimation framework in Sections 4.2-4.4.
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Figure 13: Traditionally the Kalman Filter is used for target tracking applications
represented by the ASR-9 ATC radar in (a). In Section 4.1 we apply the Kalman
Filter to feature engineering of chemical sensor array time series data for early de-
tection of chemical agents, represented by the chemical sensor array in (b). Based
on the success of the Kalman Filter in this context, we leverage deep learning,
the Kalman Filter, and domain randomization to train the AEKF and AEIMMKF
to filter families of functions of increasing generality, with various added noise
types as depicted in (c). Finally, we come full circle by applying the AEKF and
AEIMMKF to ATC tracking problems with simulated data. Source: Figure (a)
https://commons.wikimedia.org/wiki/File:ASR-9 Radar Antenna.jpg

This is depicted in Figure 13(c), which shows a variety of the function families

and noise types we train the AEKF and AEIMMKF on. Lastly, returning to Figure

13(a), we train an AEKF and AEIMMKF on simulated flight paths demonstrating

these algorithms are applicable in the context of ATC tracking problems. Thus,

the applications in this dissertation begin with applying the Kalman Filter in a

non-traditional setting, demonstrate the power of merging the Kalman Filter with
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deep learning and domain randomization, and end with a simulated real-world

application of the techniques developed herein.

4.1 Kalman Filter For Early Detection

The detection of chemical agents is an ever-present issue in a variety of application

domains. Yet many of the existing chemical agent detection technologies are lim-

ited by size, power, and weight. In this context, low-powered miniaturized sensors

with discrimination capabilities for numerous diverse chemicals are highly desir-

able [62]. In addition, if a sensor is only able to characterize known targets after

a set exposure time, then the usefulness of the sensor is diminished in real-world

scenarios.

To alleviate the difficulties of designing sensors under such constraints, ad-

vanced signal processing techniques may be used. Here optimizations in software

allow strict constraints to be met in hardware. Thus, from a sensor design perspec-

tive, the Kalman Filter’s low computational footprint makes it an ideal candidate

for use in miniaturized, low resource sensors.

Furthermore, sensors which meet the above-mentioned design constraints are

only maximally effective if they can alarm early, with low false alarm rates. Yet

many of the standard features used for chemical classification with sensor time

series data require data to be processed batch-wise with pre-determined exposure

times. That is, all or a large portion of a time series must be considered, making

early detection problematic. In this context, the sensor is only characterized for

a scenario where the analyte exposure time is fixed and known. For example, in

the case where maximum sensor response is used for classification, up to thirty

seconds of the sensor time series data post-analyte exposure must be considered
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[42, 43]. In other cases the entire time series is required such as when exponential

curve fitting is applied to response and recovery regions, area of response and

recovery regions are used as features [42, 43], and when feature engineering via

dimensionality reduction with PCA is performed on the entire time series [62].

The work in this section proposes a solution to the design constraint and early

detection problem by demonstrating early and accurate chemical analyte detection

is possible when chemical sensor time series data is preprocessed by a Kalman

Filter. As will be shown, the use of filtered first derivatives estimated with the

Kalman Filter are the key to this procedure. The decision to use filtered first deriva-

tives, along with the filtered first-order data, is based on the assumption when an-

alytes are first introduced to a sensor the rate at which the sensor reacts is more

relevant to classification.

We emphasize that the ideas proposed in this section make a unique contribu-

tion to the chemical sensor community in two ways.

• We apply the Kalman Filter to the preprocessing of chemical sensor time se-

ries data for the purpose of feature engineering for downstream machine

learning, where the Kalman Filter is used to estimate the first derivatives

of chemical sensor time series. As a result, classification error rates less than

10% are achieved within two seconds of sensor exposure to an analyte. Un-

der the same conditions non-Kalman Filtered and moving average filtered

datasets take more than twice as long to achieve the same result.

• We introduce the Kalman Filter as an additional tool for use in the prepro-

cessing of chemical sensor time series data, not limited to machine learning.

In this context, the Kalman Filter has an advantage over more traditional

preprocessing methods, such as standardization and moving average. This

68



advantage stems from the fact the Kalman Filter allows greater control over

the balance between smoothing and reaction time of chemical sensor time

series data.

4.1.1 Dataset

The dataset used for our analysis and validation was comprised of data collected

from real sensors in a laboratory setting and is the same as used in [62]. Data collec-

tion consisted of exposing a twelve-sensor array of polymer-graphene nanoplatelet

coated sensors to the following eight interferents and five organophosphates: ace-

tone, antifreeze, diesel, ethanol, hexane, Round Up, toluene, water, dimethyl ethylphos-

phonate (DEMP), diisopropyl methylphosphonate (DIMP), dimethyl methylphos-

phonate (DMMP), triethyl phosphate (TEP), and trimethyl phosphate (TMP). For

each analyte 100 trials were performed with each trial consisting of three regions:

baseline, response, and recovery. The baseline region lasted sixty seconds where

no analyte was present. The response region was initiated by the introduction of

the analyte and lasted for thirty seconds. The recovery region then ran for 180

seconds during which time the analyte was purged from the sensor apparatus.

The twelve polymer-graphene nanoplatelet coatings consisted of the following

polymers: polycaprolactone (PCL), poly(4-vinylphenol-co-methyl methacrylate)

(PVPH-MMA), polyvinyl alcohol (PVA), polyisobutylene (PIB), poly(1-vinylpyrrolidone)-

graft-(1-triacontene) (PVPyd-gT), nafion, polyepichlorohydrin (PECH), poly(vinylphosphonic

acid) (PVPA), polyacenaphthylene (PACN), polytetrafluoroethylene (PTFE), poly(ethylene-

co-vinyl acetate) (PEVA) and poly(4-vinylphenol) (PVPH). In Figure 13(b) an ac-

tual twenty-four-sensor array is shown, where twelve of the twenty four sensors

are coated with the above twelve polymers. Although each of the uncoated sensors
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in the array are the same, once each are coated with a polymer they effectively be-

come unique sensors. That is, given exposure to the same chemical, sensors coated

with different polymers will produce different responses. The details on where

these analytes and polymer coatings were acquired can be found in [62].

The sampling frequency for the sensor time series was 15 Hz, resulting in ap-

proximately 4040-4050 samples per 270 second time series. For consistency, 4000

samples were used for each trial during classification. In terms of classification

accuracy this has no substantial effect as the majority of classification occurs at the

beginning of the response region. The final dataset was a 1300 × 4000 × 12 tensor

where 1300 is the total number of trials, 4000 the number of samples per trial, and

12 the number of sensors in the sensor array.

4.1.2 Data Preprocessing

In machine learning applications one of the most important steps is data prepro-

cessing. The importance rests on the fact that the ultimate measure of a machine

learning model is performance on, or generalization to, a yet unseen future dataset.

To this end, successful generalization depends on the correct “definition” of dis-

tance. Since only one dataset was available it was essential to determine a well-

principled data preprocessing scheme to maximize the possibility the techniques

presented here would generalize on future datasets. Furthermore, this method is

not limited to chemical sensors but applicable to any time series data.

Various techniques for preprocessing chemical sensor data exist in the chemi-

cal sensing literature. These include global scaling methods such as z-scoring (or

autoscaling) and mean centering along with local scaling methods such as vec-

tor normalization[22]. Additionally, techniques for baseline drift correction such
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as differential, relative, and fractional techniques are common [22]. In this sec-

tion preprocessing consisted of the following three steps: vector normalization,

z-scoring, and Kalman Filtering.

With twelve sensors, each of the 4000 samples in a trial can be thought of a

point in twelve-dimensional space. As a result, each trial is a dataset with dimen-

sions R4000×12, where 4000 represents the number of samples and 12 the number

of sensors. Representing the data set by x ∈ R4000×12, xij represents the entry in

the ith row and jth columns. Vector normalizing the trials normalizes each 12-

dimensional sample (row) to a unit vector by dividing each of the twelve sensor

responses by the `2, or Euclidean, norm of the sample according to

x̂ij =
xij√∑12
j=1 x

2
ij

(84)

where x̂ij is the vector normalized component, xij the original or untransformed

component, and
√∑12

j=1 x
2
ij the `2-norm of the ith row. In geometrical terms, this

is a non-linear projection that maps a sample in R12 onto the surface of a unit

hypersphere in R12. Projecting the data in this way reduces the effects of analyte

concentration and is suggested for classification problems, under the assumption

all sensors have the same concentration dependence [22]. For this to be a well

principled approach, we make a second assumption that varying the concentration

by a factor of α should only scale the 12-dimensional sample vector by a factor of

α and not rotate the vector.

Following vector normalization, each feature was z-scored according to the for-

mula:

x̃ij =
xij − µj
σj

(85)
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where x̃ij is the z-scored component, xij the original or untransformed compo-

nent, and µj and σj the mean and standard deviation of the jth sensor (column)

respectively.

Although it is a common practice to z-score such that each column has zero

mean and unit standard deviation, our method was to use a subset of each sensor

time series to determine the mean and standard deviation used in z-scoring. This

subset was the ten seconds (150 samples) immediately before analyte introduction.

The reasons for this are twofold.

First, using the entire time series to compute the sensor mean and standard

deviation would cause each of the twelve sensors in a given trial to be shifted by

the mean of the entire response and not just the mean of the baseline region. As a

result, the sensor readings in the baseline region would be shifted by a value dif-

ferent from the baseline drift and baseline drift would not be corrected. Secondly,

calculating the sensor mean and standard deviation using the entire time series

takes the sensor response to the analyte into account. In our context, z-scoring is a

global transformation which attempts to correct for noise inherent in the sensors,

unrelated to their particular analyte response. Thus, the most principled approach

was to z-score only during the very end of the baseline period, approximating the

sensor’s true baseline mean and standard deviation as closely as possible. Addi-

tionally, the last ten seconds before analyte introduction were used to extend the

recovery region in the event the previous analyte had not completely desorbed

from the sensor. Note that all references to z-scored data below refer to data that

has been first vector normalized and then z-scored.

Lastly, the Kalman Filter was applied to the z-scored data, generating Kalman
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Figure 14: Comparison of smoothing vs. reaction time for Kalman Filtered data for
the first five seconds after analyte introduction, across six process noise covariance
matrices Qk (with measurement noise covariance matrix Rk fixed as the identity
matrix I). The q values in the legend indicate the diagonal elements of Qk, which
can be expressed as Qk = qI. The blue response represents the z-scored data and
the orange response, corresponding to the largest q value, follows the z-scored re-
sponse closest and reacts the quickest. This is due to the fact the largest q value
gives the least weight to the dynamical model and hence more weight to the mea-
surements than the other filtered responses with smaller q values. At the other
extreme, the responses with the two smallest q values are the smoothest but react
slowest since they give the most weight to the dynamical model. Although only
one q value greater than 1e-08 is shown, for q ≥ 1e-08 the Kalman Filtered signals
overlap and show no improvement in filtering.
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Filtered and Kalman Filtered first derivative datasets. The first derivatives follow

from the fact we are using the NCV model in the Kalman Filter. Referring back to

(27), if we ignore the second derivative term, the Kalman Filter’s state estimate for

the NCV model is given by x̂k|k

ˆ̇xk|k

 (86)

where we see that both the state and state’s first derivative are estimated.

The decision to Kalman Filter after z-scoring is based on the fact it is compu-

tationally more efficient to apply the Kalman Filter to data having the same units.

The reason for this is the optimal values of both Qk and Rk may depend on the

units of the data processed by the Kalman Filter. If different sensors used different

units, it would have been necessary to determine the optimal Qk and Rk indi-

vidually for each sensor. As the Kalman Filter is a recursive algorithm it is more

computationally expensive than the z-scoring in (85). Therefore, the most princi-

pled approach was to Kalman Filter the z-scored dimensionless data, which would

allow using one value of Qk and one value of Rk for all trials and sensors. Further-

more, vector normalizing after z-scoring would result in the sensor response signal

not having zero mean and unit standard deviation in the ten second region imme-

diately before analyte introduction used to calculate each µj and σj . As a result,

baseline drift would not be corrected.

As mentioned above, an important feature of the Kalman Filter is the ability

to control the inverse relationship between sensor response filtering and reaction

time. This relationship is controlled by the values of the process noise covariance

matrix Qk and measurement noise covariance matrix Rk mentioned previously.

Here Qk and Rk are diagonal matrices, with their respective diagonal values rep-
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resented by q and r. Thus, we can represent the matrices as Qk = qI and Rk = rI

where I is the identity matrix. Here it is the ratio of q and r which determines

the balance between smoothing and reaction time. Figure 14 demonstrates this

inverse relationship, all in relation to the z-scored response. Here the q value in

the legend indicates the value used for the diagonal elements in Qk. For all trials,

r = 1.0. Smaller diagonal entries of Qk, relative to r, indicate greater confidence

in the Kalman Filter’s dynamical model than the measured value. This naturally

leads to a smoother curve since the Kalman Filter is not as influenced by the mea-

surements as it is by the dynamical model. As a result, the filtered signal will not

react as quickly, as it needs to see more measurements before it is pulled away

from the linear model assumed by the Kalman Filter. Based on cross-validation

comparison of classification accuracy, the value of q = 1e-08 was used during clas-

sification.

It should be emphasized the reason the Kalman Filtered signal does not fol-

low the z-scored signal after analyte introduction in Figure 14 is a consequence of

choosing the parameters q and r to maximize classification accuracy and is not a

defect of the Kalman Filter. It is important to keep in mind the Kalman Filter was

used as a tool for feature engineering a filtered dataset and filtered first derivatives

dataset for early and accurate analyte detection, specifically the filtered first deriva-

tives, as these produced the most accurate early analyte classification as discussed

below. The fact the chosen values of q = 1e-08 and r = 1.0 maximize classification

accuracy is an indication that applying the Kalman Filter with these parameters re-

tains the features in the data necessary for accurate classification, while removing

noise that would otherwise contribute to misclassification. In other contexts, Qk

and Rk would be chosen differently as discussed in this section’s summary.
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Figure 15 shows the time series response of a sensor coated with PCL exposed

to the organophosphate TEP for both the z-scored and Kalman Filtered data. The

larger plot shows both signals ten seconds before and after analyte introduction

whereas the inlay plot shows the entire time series. The ten seconds after analyte

introduction are significant as all machine learning was performed on data within

this window.

4.1.3 Machine Learning

The machine learning pipeline we used consisted of five steps: creating bins of

the full time series, reshaping the dataset, generating folds for cross validation,

dimensionality reduction with PCA, and classification.

In order to perform early detection, bins, or subsets, of the full sensor time series

were created. These bins consisted of data from the first N-seconds after analyte

introduction for all twelve sensors. In total, ten bins were generated, with the first

bin containing one second of data after analyte introduction and each subsequent

bin increasing by one second. That is, the second bin was two seconds of data after

analyte exposure, the third was three seconds after analyte introduction, and so on.

As an example, in the case of a 2-second bin, the mapping from the original dataset

to the bin was R4000×12 → R30×12; where the thirty samples in the bin resulted from

the fact that the sampling frequency during data acquisition was 15 Hz (15 samples

per second × 2 seconds = 30 samples).

To reduce variance, or the possibility of overfitting, 5-fold stratified cross vali-

dation was performed, resulting in five 80/20 training/testing splits. The advan-

tage of this method is that each data point in the dataset is included in fitting and

evaluating the machine learning model.
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Figure 15: Example of Kalman Filter applied to organophosphate TEP on a sensor
coated with PCL. The noisy blue signal is the z-scored sensor data whereas the or-
ange signal is the same data after application of the Kalman Filter. The larger plot
displays both responses ten seconds before and after analyte introduction whereas
the inlay plot depicts the entire time series. The Kalman Filtered signal not fol-
lowing the z-scored signal closely after analyte introduction is a consequence of
selecting the Kalman Filter parameters Qk = 1e-8I and Rk = I to maximize clas-
sification accuracy. Note the values along the y-axis are dimensionless since both
responses were z-scored.
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PCA was used to reduce the dimensionality of the dataset and find the lin-

ear combinations of features which capture the most variance in the dataset. To

avoid data from the training set influencing the testing set, the PCA model was fit

using only the training data after which both the training and testing data were

projected onto the principal components. In all machine learning models, the first

twenty principal components of the respective data sets were used. The number of

principal components was chosen using cross validation and a support vector clas-

sifier (SVC) [6, 8] with 20 principal components achieved the lowest classification

error on the z-scored data set among all combinations of classifiers and principal

components. To make a fair comparison, the z-scored data was used to ensure we

did not select the number of principal components to maximize the accuracy of

Kalman Filtered data, while possibly decreasing accuracy of the z-scored data.

The final step was to evaluate the classification accuracy of each dataset by

machine learning. Three machine learning models were selected for classifica-

tion: k-nearest neighbors (KNN) [12, 14], SVC and linear discriminant analysis

(LDA) [13], and implemented in Scikit Learn [47], a Python machine learning li-

brary. These three were chosen because they are (a) standard machine learning

models and (b) make different assumptions about the dataset used for classifica-

tion. KNN makes no assumption about the statistical distribution of the data, but

it does assume that the distance between points in the dataset is a predictor for

classification. SVC is a linear classifier and will perform better on linearly sepa-

rable data, whereas LDA, also a linear classifier, adds the additional assumption

the dataset was drawn from a Gaussian distribution. For a modern treatment of

the above classification algorithms see The Elements of Statistical Learning [20] with

references therein. All programming was done in Python, drawing heavily on the
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Numpy [60], Scikit Learn, and Matplotlib [26] libraries.

For KNN, the 5 nearest neighbors were used with uniform weighting on the

distances. For SVC, the penalty parameter C was set to 1.0 which is the default

value used in Scikit Learn. For each of the five cross-validation folds, all three

machine learning models were fit with the training set, and model evaluation was

computed on the testing set using accuracy as a metric. For each of the ten bins

the test error, given by the equation error = 1.0-accuracy, for the z-scored dataset,

moving average dataset, Kalman Filtered dataset, and Kalman Filtered first deriva-

tives dataset were compared across all three machine learning models. For the

moving average, the average was calculated using the five preceding data points.

In the context of early detection, this was the most principled approach as using an

equal number of points before and after the central value would require waiting

for the data after the central value.

As our algorithm involves Kalman Filtered data being passed to machine learn-

ing algorithms, it is important to consider error propagation between the Kalman

Filter and machine learning algorithms. Since the Kalman Filter is smoothing the

data, presumably the filtered data has less error than the unfiltered data. The best

measure of how the Kalman Filter’s error propagates is determined by comparison

of classification accuracy on the filtered and unfiltered datasets discussed below.

4.1.4 Results

In terms of early detection, both Kalman Filtered datasets achieved lower classification er-

ror than the z-scored and moving average datasets for the first five bins, with lowest error

achieved on the Kalman Filtered first derivatives dataset. Among the three classifiers,

SVC achieved the best results, with the Kalman Filtered first derivative dataset
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Bin Classification Error (%)
Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

KNN
ZS 74 +/- 3 56 +/- 3 46 +/- 3 23 +/- 2 10 +/- 1

MA 76 +/- 2 56 +/- 2 47 +/- 3 25 +/- 2 11 +/- 1
KF 40 +/- 3 33 +/- 4 25 +/- 2 25 +/- 3 21 +/- 4

KF1D 28 +/- 3 20 +/- 2 14 +/- 1 12 +/- 1 10 +/- 1

LDA
ZS 62 +/- 4 48 +/- 2 40 +/- 4 23 +/- 2 14 +/- 2

MA 62 +/- 3 48 +/- 2 42 +/- 2 24 +/- 2 14 +/- 1
KF 25 +/- 3 20 +/- 4 18 +/- 3 18 +/- 1 14 +/- 1

KF1D 13 +/- 2 9 +/- 2 9 +/- 1 9 +/- 1 8 +/- 1

SVC
ZS 60 +/- 3 43 +/- 3 29 +/- 2 13 +/- 1 7 +/- 1

MA 62 +/- 3 43 +/- 3 32 +/- 2 17 +/- 1 7 +/- 2
KF 25 +/- 4 19 +/- 3 14 +/- 3 12 +/- 2 10 +/- 2

KF1D 14 +/- 2 9 +/- 2 6 +/- 1 5 +/- 1 5 +/- 1

Table 2: KNN, LDA and SVC classification error for z-scored (ZS), moving average
(MA), Kalman Filtered (KF) and Kalman Filtered first derivative (KF1D) datasets
for each of the five bins.

passing below the 10% classification error threshold two seconds after analyte ex-

posure and achieving non-overlapping standard deviations with the z-scored and

moving average datasets for the first four bins. The results from SVC are shown in

Figure 16. For full comparison, results from all three classifiers are shown in Table

2.

In order to better understand these results, and the trade-off between signal

smoothing and reaction time, it is necessary to focus on the processes noise and

measurement noise covariances Qk and Rk. Figures 17(a) and 17(b) show the time

series response of three sensors for a single trial of TEP five seconds before and

after analyte introduction for both z-scored and Kalman Filtered data. From the

perspective of machine learning, the Kalman Filtered data in Figure 17(b) produces

better classification results since it is less noisy. Whereas not all sensors react at the

same time, the unique response of just one sensor to a given analyte is enough

for accurate classification. Of the three sensors, the two coatings that stand out
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as reacting quickly to TEP are PCL and PVPH. Noting the black horizontal line at

sixty seconds indicates the analyte introduction point, both of these sensors show

a sharp change in their response within a second after analyte exposure. However,

this comes at a cost. Whereas both the z-scored and Kalman Filtered signals react

within the first second, noting the different y-axis scales in Figures 17(a) and 17(b),

we see the z-scored signal grows much more quickly. Referring back to Figure

15 shows this clearly, as both z-scored and Kalman Filtered signals appear on the

same figure. An explanation for this difference in y-axis scales is given below.

Relatedly, some justification for using an NCV dynamical model in the Kalman

Filter is necessary. Given the sensor time series is non-linear in time, how can the

NCV model accurately perform state estimation and capture the important fea-

tures of the sensor response? The answer is based upon two factors: (1) locally

the time series can be approximated as linear and (2) the Kalman Filter works by

finding a balance between the actual data being filtered and the dynamical model.

Related to the first point, the validity of applying a linear model to a non-linear

signal depends on the sampling rate from which the signal was generated. Al-

though mathematically a limit can be taken to an arbitrarily small size, in the case

of chemical sensors this size is restricted by the time between samples since the

dataset is discrete. If the sample rate is small enough, approximating the time se-

ries as piecewise linear between samples is an accurate model. In our case, the

sampling frequency was 15 Hz which was small enough to justify modeling the

time series as linear between samples. Additionally, visual inspection of the sen-

sor response curves indicate higher order derivatives are very small. This gave

further confidence that the linearization provided a principled estimate of the true

signal. The decision not to use an Unscented Kalman Filter [28] was based on the
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Figure 16: Support vector classifier test error for z-scored, moving average, Kalman
Filtered, and Kalman Filtered first derivative datasets for each of the first five bins.
The error bars represent the test error standard deviation across the five cross val-
idation folds. Lower test error is achieved for both Kalman Filtered datasets for
each of the first four bins, with the Kalman Filtered first derivatives dataset achiev-
ing an error of less than 10% by the second bin.
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fact the present model worked well, as indicated by the results. However, the ap-

plication of the methods presented here to more complex data may require the use

of an Unscented Kalman Filter. Secondly, since the Kalman Filter finds a balance

between the data and dynamical model, if a more flexible non-linear dynamical

model was used the Kalman Filter would follow the data too closely, resulting in

the Kalman Filter fitting to noise, as well as the underlying signal.

This smoothing-reaction trade-off is one of the main points of our research and

deserves further discussion. Consider the z-scored and Kalman Filtered signals

in Figures 17(a) and 17(b). Up until the sixty second mark, when the analyte is

introduced, the Kalman Filtered signal is flat while the z-scored signal oscillates

about the baseline. After analyte introduction, when the z-scored signal begins to

change, the Kalman Filtered signal does not react immediately as it has not seen

enough data to indicate the change is not a result of noise. Only after seeing several

z-scored data points indicating an upward trend does the Kalman Filtered signal

turn upwards. This adaptability is one of the Kalman Filter’s most important fea-

tures. Although the dynamical model is linear, the Kalman Filter is flexible enough

to adapt to changes presented by the data without being influenced too quickly by

noise in the data. Conversely, a more flexible non-linear dynamical model in the

Kalman Filter increases the chances of overfitting the data by fitting too closely to

the noise. It is this balance between a linear dynamical model and adaptability to

empirical data that makes the Kalman Filter such a powerful tool.

4.1.5 Summary

In this section we demonstrated the Kalman Filter is a valuable machine learning

preprocessing tool in the context of accurate and early analyte classification with

83



Figure 17: (a) displays the z-scored time series for PCL, PVPH-MMA and PVPH
coated sensors five seconds before and after exposure to TEP, with the vertical line
at 60 seconds indicating when the analyte was introduced. (b) displays the same
scenario after applying the Kalman Filter to the same dataset. From the perspective
of machine learning, the less noisy data will produce better classification results.
Whereas the PCL and PVPH sensors react within one second, the PVPH-MMA
sensor is much slower to react. Note, the y-axes are scaled differently.
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chemical sensor time series data. As a recursive filter, the Kalman Filter is able to

process data online and construct classification features in real-time. This would

not be possible if a predetermined feature engineering scheme, such as maximum

resistance change, area of time series curve, or a known sensor exposure time was

required for classification. As a result, the Kalman Filter is an excellent candidate

for an advanced signal processing technique which allows strict power require-

ments and concept of operations to be met in hardware. This is particularly true in

remote or low resource sensing environments.

Furthermore, classification with the Kalman Filtered datasets outperformed

datasets constructed with more traditional preprocessing and filtering methods

such as z-scoring and moving average filter. In particular, for the first five bins,

Kalman Filtered first derivatives datasets were shown to outperform the z-scored

and moving average datasets using KNN, LDA, and SVC classification algorithms.

Amongst the two Kalman Filtered datasets, SVC classification of the Kalman Fil-

tered first derivatives dataset demonstrated the lowest classification error, passing

below 10% classification error after only two seconds of data post analyte expo-

sure. After five seconds post analyte exposure, all datasets showed no significant

differences in analyte classification error. Although the particular focus of our re-

search is on an array of semi-selective chemiresistive vapor sensors, we expect the

results herein are applicable to a wide variety of chemical sensor types.

In this section, the Kalman Filter was used as a preprocessing tool for down-

stream machine learning. As such, the values of the process noise and measure-

ment noise covariances were chosen to minimize classification error. For other

non-machine learning applications, the balance between process noise and mea-

surement noise covariances may be motivated by different metrics. For example,
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in the determination of binding kinetics, Kalman Filtered data will provide less sig-

nal noise and subsequently more accurate fit of kinetic models. Hence, the values

of Qk and Rk would be determined using a different criterion than classification

accuracy.

4.2 Autoencoder-Kalman Filter with Sequence Length

In addition to its application to chemical sensors in Section 4.1, the Kalman Filter is

one of the most widely used algorithms in signal processing and has seen numer-

ous applications in fields such as target tracking [46] and financial data processing

[36]. However, as alluded to above, one of the greatest difficulties in implementing

the Kalman Filter is the tuning, or estimation, of the measurement noise covariance

matrix Rk [38, 40].

Traditionally, the optimal value for Rk is tuned using cross-validation. In these

contexts, the determination of a good result is often based on experience and the do-

main knowledge of engineers [38]. In Section 4.1, Rk was tuned by cross-validation

with classification accuracy as the metric. The approach in this section is to train

the AEKF with domain randomization, leveraging deep learning to learn the val-

ues of both {zk}Nk=1 and {Rk}Nk=1, where a measurement noise covariance matrix is

learned for each measurement, as opposed to a single Rk for the entire sequence

{zk}Nk=1. Furthermore, since the AEKF combines deep learning and the Kalman

Filter, the AEKF is compared with both an LSTM and standard Kalman Filter.

4.2.1 Simulation Environment

One possible application of the AEKF is to chemical sensor time series data, in

much the same way a standard Kalman Filter was applied in Section 4.1. In this
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section, we simulate sensor responses using the sigmoidal family of functions.

Thus, the simulated dataset consists of sigmoidal curves, constituting the ground

truth, φg, with added noise, φn, to create the simulated measurement data φ =

φg + φn. The curves representing φg were given by

φg(x;α, β, γ) =
α

1 + e−β(x−γ)
(87)

with x ∈ [0, 100]. The randomization occurred over the parameter α, with fixed

values of β = 0.15 and γ = 60.0. With fixed β and γ, α was sampled uniformly

such thatφg(x;α, β, γ) was in [0, 100]. An additional ten samples were added to the

beginning of each curve to simulate a zero-mean baseline preceding the simulated

sensor response.

4.2.2 Noise

The simulated noise added to the training curves consisted of Gaussian noise, bi-

modal noise and noise from actual sensors. Gaussian noise was chosen based on

the Kalman Filter optimality conditions which are met when Gaussian noise is

present. In order to test the AEKF using non-Gaussian noise, bimodal noise was

selected. Lastly, to include real-world noise in our evaluation, sensor noise was

included.

Gaussian Noise The Gaussian noise was sampled from a standard Gaussian dis-

tribution N (0, 1).

Bimodal Noise In general, a multimodal or mixture distribution is a continuous

probability distribution with two or more modes. The general equation for the
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PDF of a mixture model is

f(x) =
N∑
i=1

wifi(x) (88)

where
N∑
i=1

wi = 1 and fi(x) is the PDF of the ith distribution in the mixture model

for i = {1, 2, . . . , N}. In our case, to generate non-Gaussian noise, we used a bi-

modal mixture model comprised of two equally weighted Gaussian distributions,

resulting in the bimodal mixture model PDF

f(x) =
1

2
f1(x) +

1

2
f2(x) (89)

Sampling from this bimodal distribution proceeds by randomly drawing each

sample from either f1(x) or f2(x), with 1
2

probability of drawing from either dis-

tribution. Although f1(x) or f2(x) are both Gaussian, the resulting sample drawn

from the bimodal distribution is not Gaussian. Thus, adding this sampling to the

ground truth results in a simulated signal with non-Gaussian noise. The two Gaus-

sian distributions used to generate the bimodal noise had means -3.0 and 3.0 and

a common covariance of 1.0

Sensor Noise In the case of actual sensor noise, 1,000,000 sensor baseline noise

measurements were generated using chemiresistive vapor sensors. These sensors

consisted of commercial interdigitated electrode arrays with 10 micron wide gold

electrodes spaced 10 microns apart on a glass substrate. The electrodes were coated

with a graphene nanoplatelet-polymer film by airbrushing the dissolved mixture

on a hotplate with the pattern defined by a shadow mask. For each randomly

generated training curve, the added sensor noise was randomly sampled from the

1,000,000 sensor baseline noise measurements in a non-contiguous manner.
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4.2.3 Model Parameters

Kalman Filter Recall from 2.1 the Kalman Filter has four matrices of primary

importance: Fk,Qk,Hk, and Rk. In terms of Fk, our tests utilized the NCV (24)

and NCA (25) models. Recall Fk in (4) represents how the model projects the a

posteriori estimate at time k-1, forward one step to time k. The NCV model assumes

this projection is linear in time and the NCA assumes it is quadratic in time. In both

NCV and NCA models dt = 1.0, as this is the reciprocal of the sampling frequency

of 1 Hz for the simulated curves which consisted of 110 samples (100 response

samples and 10 zero-mean baseline samples). Note that the dimensions of Hk and

Qk are dependent on the chosen model although, in our case, the values were not.

For Hk we assumed the mapping was identity and for Qk we assumed a diagonal

matrix. Note that Rk is learned by the AEKF. However, it is important to note that

in the AEKF’s Kalman Filter layer, both zk and Rk are in R1 for all k = {1, 2, . . . , N}.

This restriction is due to the difficulty of learning a non-singular Rk as Sk must be

invertible in (8). This difficulty was eventually overcome and forms the basis of

Section 4.3.

Autoencoder-Kalman Filter The AEKF consisted of input and output layers, three

hidden layers in both the encoder and decoder, the affine transformations before

and after the Kalman Filter, and the Kalman Filter layer itself, corresponding to

(59)-(70). During AEKF training, each epoch consisted of passing a single simu-

lated sensor response, φ = φg + φn, to the AEKF with weights updated after each

epoch. As the input has a feature space of 1, each Rk in {Rk}Nk=1 learned by the

AEKF was a scalar. It should be emphasized, because domain randomization was

used, that each epoch a new simulated ground truth curve and a new random draw from
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the given distribution were generated. Thus, it is highly unlikely the AEKF ever saw

the same training curve or noise sample more than once.

To include a feature analogous to sequence length in an LSTM (discussed be-

low), we introduce the notion of sequence length for an autoencoder. Consider-

ing a standard autoencoder with an input φ ∈ RN×1, an affine transformation of

each of the N inputs composed with a non-linear transformation is mapped to

each of the dimensions in the subsequent layer. Here the dimension of the in-

put feature space is 1. However, in the case of time series data, where the past

has some relation with the future, the autoencoder’s reconstruction of the kth el-

ement of the time series, φk, may be improved if some entries preceding φk are

included in the row corresponding to φk. More formally, introducing the notion of

sequence length into an autoencoder reshapes the original input matrix φ ∈ RN×1

to φ̃ ∈ R(N−s+1)×s, where each row now consists of s entries: the entry to be recon-

structed and the s-1 preceding entries. This is shown for an input of size 10 and

sequence length of 3 in Figure 18.

In the AEKF the reshaping of the input to facilitate a sequence length occurs

before φk is passed to the first encoder layer. As the Kalman Filter in these exper-

iments has measurements z ∈ R1, the encoder maps φ̃ ∈ R(N−s+1)×s to R(N−s+1)×1.

From this point, the AEKF behaves the same as if there was no sequence length,

passing the Kalman Filter output through the decoder and comparing φ̂with φtrue

as in (74).

Long Short-Term Memory Recurrent Network The LSTM used for testing con-

sisted of an input layer, two hidden layers, and an output affine layer mapping

back to the input dimensions. As with the AEKF, each epoch consisted of passing

a single simulated sensor response to the LSTM, with weights updated each epoch.
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Figure 18: Example of an autoencoder sequence length transformation for a se-
quence length of 3. Here the preceding two time series samples are included in
the row representing the element φk of the input vector. This ostensibly allows for
more information about past history to be utilized when ‘reconstructing’ the input
φk.

Furthermore, the training curve and noise sampling were randomized in the same

manner as during AEKF training. Corresponding to the notation above, the input

to the LSTM is a 3-dimensional tensor of the form RN×s×1, where s corresponds to

the LSTM sequence length and is analogous to the AEKF sequence length. That is,

when using an LSTM for time series prediction, the LSTM sequence length is the

number of samples prior to time t taken as input in the prediction of the sample at

time t. The reason sequence length is a parameter is that the LSTM performance

was very poor with a sequence length of 1. In order to be more principled in our

comparison we tested the LSTM with sequence lengths greater than 1, which im-

proved LSTM performance significantly.

4.2.4 Training and Testing Protocols

In our evaluation five models were compared: AEKF NCA, AEKF NCV, Kalman

Filter NCA, Kalman Filter NCV, and LSTM. The NCV and NCA following the
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model names indicate the dynamical model used in the corresponding AEKF or

Kalman Filter. We describe the training protocol for the AEKF and LSTM models

and the testing protocol for all five models below.

In the case of the Kalman Filter there is no training. However, for the AEKF and

LSTM models a training protocol was required. It is important to emphasize that

all AEKF and LSTM models were trained with domain randomization. As men-

tioned above, the randomization occurred over the parameter α in (87). Taking

training with Gaussian noise as an example, each epoch an α was selected uni-

formly such that the ground truth curve was within [0, 100] and consisted of 100

points. Next, 100 points were sampled from a Gaussian distribution and added to

the curve. This noisy curve was then passed to the AEKF or LSTM. Another im-

portant point is that because we are using domain randomization, the ground truth

is known. Thus, it can be utilized in the AEKF and LSTM objective function. When

training with domain randomization, the AEKF’s and LSTM’s learned parameters

are updated by comparing the model’s prediction, φ̂, against the ground truth of

the original input, φtrue, and not the noisy input, φ, itself as shown in (74).

As mentioned in Section 3.2, since training with domain randomization in-

volves the use of simulated curves with added noise, the ground truth curve is

known during training. The idea here is to train the AEKF and LSTM to fit the

ground truth on simulated data, with the view that this learning will generalize to

fitting the ground truth on curves in a testing set. However, the crucial point is that

while the ground truth is used to train the AEKF, it does not affect model predictions on

the testing set during evaluation.

Domain randomization avoids overfitting specifically because it randomizes

the training over the entire problem domain. Since it is extremely unlikely that the
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same curve with the exact same noise was seen twice during training, there is no

risk of overfitting with domain randomization. In terms of data snooping, domain

randomization is similar to giving students several practice tests and then showing

them the solutions so they can make adjustments and learn. Yet for the final exam,

the students are given a completely different set of test questions which they have

never seen before, and are asked to provide the “truth.” As with overfitting, since

the curves in the test set were never seen during training, data snooping is avoided.

The process described above was repeated for the AEKF NCV, AEKF NCA, and

LSTM models, on Gaussian, bimodal, and real sensor noise, for sequence lengths

1-10.

From one point of view, domain randomization obscures the distinction be-

tween training and testing sets. However, in order to compare all five models

on the same data, twenty fixed curves were generated via domain randomization

with the same parameter ranges used during training. These twenty curves were

then used to test the trained AEKF and LSTM models and the Kalman Filter (dis-

cussed below). Taking the AEKF NCV model trained with Gaussian noise and a

sequence length of 5 as an example, this model was given each of the twenty test

curves and, for each test curve, the filtered output was compared with the known

ground truth and test MSE computed. The average test MSE for the twenty curves

was then used to assign a single numerical value to this model.

In the case of both Kalman Filter models, the values of Qk and Rk (both diag-

onal matrices with constant values) were the parameters to be “optimized.” This

was done using cross validation, by selecting the best MSE from 1,000 (q, r) pairs

on each of the twenty test set curves, where q and r are the diagonal values of Qk

and Rk. It should be noted the methods used to select these values were chosen
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to allow the Kalman Filter to perform as best as possible. The selection of q and r

were based upon the lowest MSE when comparing the Kalman Filter’s estimate to

the ground truth for each of the test curves. However, in practice, the ground truth

would not be known as this is the reason for implementing the Kalman Filter. This

selection process was done to find the best performing Kalman Filter, however

unprincipled in practice, and to demonstrate the AEKF outperformed the Kalman

Filter even when the Kalman Filter “cheated.”

One crucial aspect of training with domain randomization is to ensure the

ground truth training curves and noise samples are truly random. To ensure this,

both the Numpy [60] and Tensorflow [2] random seeds were left unset.

4.2.5 Numerical Results

In this section, test MSE vs. sequence length plots, along with the corresponding

data in table form, are shown for all five models, three noise types, and ten se-

quence lengths. Figures 19 through 21 present the results for Gaussian, bimodal

and sensor noise respectively. Tables 3 through 5 contain the corresponding test

MSE results with standard deviation. In most cases, the AEKF models outper-

formed the two Kalman Filter models and LSTM. What is of interest is to note that

with Gaussian noise, the standard Kalman Filter models outperformed the AEKF

models for low sequence lengths, but with increasing sequence length the AEKF

performed better. The fact the Kalman Filter performed better for low sequence

lengths is not surprising given the Kalman Filter optimality conditions mentioned

previously. However, with bimodal noise, the LSTM surpasses the Kalman Fil-

ter models at larger sequence lengths and the AEKF models have lower MSE for

all sequence lengths. This result is indicative of the superior performance of the
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Figure 19: Test MSE vs. Sequence Length for Gaussian Noise. Here we see both
AEKF models and the LSTM show a trend of decreasing MSE with sequence
length, with the AEKF models outperforming the LSTM. Also, while initially the
Kalman Filter outperforms the AEKF models, from a sequence length of three on-
wards the AEKF models achieve lower test set MSE than the Kalman Filter models.
The “blip” for the AEKF NCV at sequence length 9 presents a problem we never
completely resolved. However, once we were able to learn a positive definite mea-
surement noise covariance matrix Rk for arbitrary dimensions we followed this
track. Note, the same Kalman Filter results are shown for each sequence length for
consistency as the Kalman Filter does not have a sequence length.

AEKF over the Kalman Filter and LSTM. However, looking at Figures 19 and 21

we see several “blips.” This, we believe, is related to the fact the AEKF has a larger

standard deviation than the LSTM. The “blips” are even more pronounced with

the real sensor results, where for the AEKF NCV model it is not just a single spike.

Despite these results, we are confident the issue is a technical matter and not a fun-

damental flaw of the AEKF. This is supported by the successful bimodal results.

However, we never successfully resolved this issue as we discuss below although
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Figure 20: Test MSE vs. Sequence Length for Bimodal Noise. Here we see a similar
trend as in Figure 19 except the AEKF outperforms the Kalman Filter models even
with a sequence length of one. This is not surprising as the Kalman Filter is known
to be suboptimal in the case of non-Gaussian noise processes. We also notice with
bimodal noise there were no “blips.” However, this could not consistently be re-
produced.

given the results in this section it may be a direction of future research.

4.2.6 Summary

In this section we demonstrated the AEKF, with both NCV and NCA models,

achieves better state estimation in most cases, in terms of MSE, compared to the
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Table 3: Test MSE vs. Sequence Length for Gaussian Noise Results

Sequence
Length

AEKF
NCA

AEKF
NCV

KF
NCA

KF
NCA LSTM

1 0.48 ± 0.14 0.48± 0.18 0.44± 0.12 0.42± 0.11 1.11± 0.19

2 0.41 ± 0.11 0.42± 0.11 0.44± 0.12 0.42± 0.11 0.94± 0.16

3 0.36 ± 0.11 0.38± 0.11 0.44± 0.12 0.42± 0.11 0.77± 0.17

4 0.31 ± 0.09 0.32± 0.11 0.44± 0.12 0.42± 0.11 0.64± 0.17

5 0.31 ± 0.09 0.34± 0.12 0.44± 0.12 0.42± 0.11 0.53± 0.13

6 0.3 ± 0.1 0.3 ± 0.09 0.44± 0.12 0.42± 0.11 0.44± 0.11

7 0.28 ± 0.08 0.31 ± 0.1 0.44± 0.12 0.42± 0.11 0.41± 0.11

8 0.28 ± 0.09 0.28± 0.08 0.44± 0.12 0.42± 0.11 0.38 ± 0.1

9 0.27 ± 0.08 0.6 ± 0.27 0.44± 0.12 0.42± 0.11 0.38 ± 0.1

10 0.27 ± 0.1 0.28± 0.08 0.44± 0.12 0.42± 0.11 0.38 ± 0.1

Table 4: Test MSE vs. Sequence Length for Bimodal Noise Results

Sequence
Length

AEKF
NCA

AEKF
NCV

KF
NCA

KF
NCA LSTM

1 2.37 ± 1.87 2.69± 1.25 3.43± 1.14 3.02± 1.01 5.83± 1.93

2 1.48 ± 1.13 0.99± 0.97 3.43± 1.14 3.02± 1.01 3.71± 1.87

3 1.2 ± 1.57 0.98± 1.22 3.43± 1.14 3.02± 1.01 3.34± 1.35

4 1.24 ± 1.15 0.86± 1.11 3.43± 1.14 3.02± 1.01 2.55± 1.77

5 0.9 ± 1.15 0.99± 1.68 3.43± 1.14 3.02± 1.01 2.44± 1.83

6 0.8 ± 1.02 0.75± 0.82 3.43± 1.14 3.02± 1.01 2.11 ± 1.4

7 0.75 ± 0.76 0.72± 0.61 3.43± 1.14 3.02± 1.01 1.79± 1.64

8 0.8 ± 0.84 0.8 ± 0.66 3.43± 1.14 3.02± 1.01 1.86± 0.95

9 0.84 ± 0.79 0.66± 0.58 3.43± 1.14 3.02± 1.01 1.41± 0.96

10 0.79 ± 0.67 0.82± 0.83 3.43± 1.14 3.02± 1.01 1.35± 1.04
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Figure 21: Test MSE vs. Sequence Length for Sensor Noise. The trends here are
very similar to Figure 19, although the issue with the “blips” is more pronounced
here. The fact the Kalman Filter initially outperforms the AEKF models may indi-
cate the sensor noise was close to Gaussian.

Kalman Filter with NCV and NCA models and the LSTM, with simulated Gaus-

sian, bimodal and, actual sensor noise. This result addresses the two common dif-

ficulties of the Kalman Filter: (a) tuning, or estimation, of the measurement noise

covariance Rk and (b) improving the Kalman Filter even when optimality condi-

tions are not met. Although the issue with the “blips” was never fully resolved,

a new direction of research greatly improved AEKF performance. Once we were

able to learn a sequence of non-singular measurement noise covariance matrices,

{Rk}Nk=1, this no longer limited the dimensions of the AEKF’s Kalman Filter space

to R1 and greatly improved the AEKF state estimation capabilities. The conse-

quences of this are explored in the next section.
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Table 5: Test MSE vs. Sequence Length for Sensor Noise Results

Sequence
Length

AEKF
NCA

AEKF
NCV

KF
NCA

KF
NCA LSTM

1 0.45 ± 0.19 0.45± 0.17 0.44± 0.15 0.42± 0.15 1.11± 0.23

2 0.4 ± 0.15 0.36± 0.13 0.44± 0.15 0.42± 0.15 0.88± 0.27

3 0.3 ± 0.12 0.32± 0.12 0.44± 0.15 0.42± 0.15 0.63± 0.22

4 0.28 ± 0.1 0.27± 0.11 0.44± 0.15 0.42± 0.15 0.52± 0.18

5 0.25 ± 0.09 0.32± 0.14 0.44± 0.15 0.42± 0.15 0.45± 0.16

6 0.46 ± 0.36 0.72± 0.63 0.44± 0.15 0.42± 0.15 0.4 ± 0.13

7 0.24 ± 0.09 0.36± 0.22 0.44± 0.15 0.42± 0.15 0.35± 0.12

8 0.23 ± 0.08 0.24 ± 0.1 0.44± 0.15 0.42± 0.15 0.33± 0.11

9 0.23 ± 0.09 0.23± 0.09 0.44± 0.15 0.42± 0.15 0.3 ± 0.1

10 0.24 ± 0.09 0.25 ± 0.1 0.44± 0.15 0.42± 0.15 0.29± 0.12

4.3 Deep Learning with Domain Randomization for Robust State

Estimation

Building on the results in Section 4.2, in this section we no longer restrict the func-

tions the AEKF is trained on to sigmoidal functions, but include exponential and

sinusoidal functions as well. In this context we train the AEKF in two different

ways. First, similar to Section 4.2 but expanding the function families, we train

three separate AEKF models on exponential, sigmoidal, and sinusoidal curve fam-

ilies respectively, which we refer to as single family models. Secondly, we also train

a single AEKF model on all three of these curve families, which we refer to as mul-

tiple family models. That is, during training this AEKF model saw training samples

from all three curve families. The results from both these tests prove to be a signif-

icant step towards a generalized state estimation system. In this section, we also
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introduce AEKF models trained on Cauchy noise as this tests the AEKF’s ability to

perform state estimation in the presence of significant outliers. Perhaps most im-

portantly though, we no longer limit the AEKF’s Kalman Filter measurement and

measurement noise covariance dimensions to R1. As mentioned in Section 4.2,

and indicated by (8), the AEKF must learn a positive definite measurement noise

covariance matrix Rk for each element of {Rk}Nk=1. However, when the research

in Section 4.2 was conducted, we had not solved the technical issue of learning a

positive definite matrix. While the addition of a sequence length to the AEKF did

improve AEKF state estimation, it came at the cost of the “blips” discussed in Sec-

tion 4.2. As mentioned above, we were never able to fully solve this problem but

once we were able to learn positive definite measurement noise covariance matri-

ces, we put the sequence length idea aside. As will be seen in this section, even

without the use of sequence length, when the AEKF’s Kalman Filter’s measure-

ment space is extended to RN the AEKF still outperforms the standard Kalman

Filter and LSTM.

4.3.1 Simulation Environment

All models were trained with domain randomization in the same manner as in Sec-

tion 4.2. In addition to the sigmoidal curves in (87), the exponential and sinusoidal

curve families were generated, respectively, by

φg(x;α) = eαx − 1 (90)

φg(x;α, β) = α sin βx (91)

where x ∈ [0, 100]. For (90) and (91), the range of α was such that φg ∈ [0, 100]. In

the case of (91), an additional parameter (also sampled uniformly), β, was added
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to allow variation in the frequency. The sigmoidal function parameters were the

same as those in Section 4.2.

4.3.2 Noise

The simulated noise added to the training curves was the same as in Section 4.2,

except the sensor noise was replaced by Cauchy noise. However, the parameters of

the Gaussian and bimodal noises were changed. This was done to test the AEKF

state estimation capabilities in more challenging noise scenarios. The Gaussian

noise was sampled from a Gaussian distribution N (0, 5) and two Gaussian distri-

butions used to generate the bimodal noise (89) had means -15.0 and 15.0 and a

common covariance of 5.0.

Cauchy Noise Cauchy noise was drawn from a standard Cauchy distribution

with PDF

f(x) =
1

π(1 + x2)
(92)

4.3.3 Model Parameters

Kalman Filter The Kalman Filter parameters were the same as in Section 4.2.

Autoencoder-Kalman Filter Apart from the dimensions of the AEKF’s Kalman

Filter, the network architecture here is the same as in Section 4.2. In all experiments

zk ∈ R16 and Rk ∈ R16×16 for all k = {1, 2, . . . , N}. However, each Rk was not

learned directly as alluded to in Section 2.5. In order to construct {Rk}Nk=1 from

{Lk}Nk=1, each Lk ∈ R16×16 was an upper triangular matrix with positive diagonal

entries. However, the input to the function T in (63) was a vector in R136, which is

the minimum number of parameters necessary to learn an upper triangular matrix
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in R16×16. Learning Lk in this way guarantees Rk = L
T

kLk is symmetric positive

definite, which, in turn, guarantees (7) is nonsingular [3]. This is proven in Section

4.5.1.

Long Short-Term Memory Recurrent Network The dimensions, parameters, and

testing procedure for the LSTM is the same as in Section 4.2, with the exception we

now consider five sequence lengths: 1, 10, 15, 20, 25.

4.3.4 Test Protocol

The training and hyperparameter selection protocols here are the same as in Sec-

tion 4.2. To evaluate how the optimal AEKF, LSTM, and KF models compared

with one another, each of the five optimal models were tested on the same 100 test

curves. These test curves were generated in the same manner as in Section 4.2.

4.3.5 Numerical Results

Single Family Model Results Tables 6, 7, and 8 show test set MSE and associated

ratio for each model and all three noise types. The values in the ratio column

are calculated by dividing all elements of each column by the AEKF NCV MSE

value in that column. This provides a standard basis of comparison. For a given

row, each MSE/ratio pair corresponds to the test set evaluation for models trained

on the corresponding curves. For example, the cell corresponding to row AEKF

NCV and column Exp. MSE is the test set MSE for the AEKF NCV model trained

on exponential curves. For the LSTM models the number in the model column

corresponds to the sequence length. For each column, the smallest MSE value is in

bold.

102



Apart from one sinusoidal test in Table 7, either the AEKF NCV or AEKF NCA

model achieves the lowest MSE in all tests. While in all cases either the AEKF and

LSTM outperform the KF, the difference between the Kalman Filter MSE values

for Gaussian and bimodal noise is significant, while this difference for the AEKF

is not as significant. The increased MSE for bimodal noise is consistent with the

Kalman Filter optimality conditions discussed in Section 2.1. Recall, one of the

primary motivations for developing the AEKF was to apply the Kalman Filter to

contexts involving non-Gaussian noise. Furthermore, while in general the LSTM

MSE decreases with sequence length, the AEKF was able to perform well without

the notion of sequence length in Section 4.2. Noting the LSTM MSE decreases with

sequence length, the reader may wonder why we stopped at a sequence length of

25. First, as our curves only had 110 samples, going beyond a sequence length of

25 would place strict limits on the number of points being estimated. Secondly,

although not studied formally, the training time for the LSTM grew with sequence

length and the higher performing models took longer to run than the AEKF. One

future direction of this work is to study the time complexity of the AEKF and LSTM

models.

The most interesting result is related to the tests with Cauchy noise, where the

AEKF clearly outperforms the other models. Unsurprisingly, the Kalman Filter

does poorly since Cauchy noise is likely to have large deviations from the mean.

These deviations, or “spikes”, in the measurements draw the Kalman Filter’s state

estimate far from the mean and result in a large MSE. Interestingly, with Cauchy

noise, the LSTM MSE increases with sequence length after a sequence length of

10. This may indicate the LSTM is taking an average of the N preceding sequence

length points (along with correcting for the curve) in its state estimation. The rea-
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son for this is the “spikes” are sparsely spaced and only a large sequence length

is likely to encounter multiple spikes, significantly increasing the MSE. This is a

possible explanation for why the LSTM MSE increases with sequence length with

Cauchy noise, whereas it decreased with Gaussian and bimodal noise. Here we

wish to make explicit that we observed the LSTM MSE on Cauchy data varies

greatly over different test sets. Recall that the MSE values in Tables 6, 7, and 8

are the average MSE values of each model evaluated on the 100 curves in the test-

ing datasets. As a result, given a different testing dataset, the LSTM will likely

achieve a different MSE than the results in Table 8. This high sensitivity to differ-

ent testing datasets is most likely due to the fact a small fraction of Cauchy data

testing datasets will include very large outliers, which the Cauchy distribution is

prone to have. However, it should also be noted all models were evaluated on the

same testing datasets and the AEKF did not show the same sensitivity to outliers

as the LSTM. Additionally, this result demonstrates the LSTM does not general-

ize well on data with large outliers. In summary, the tests with Cauchy noise (a)

demonstrate the AEKF’s ability to handle non-Gaussian noise and (b) significantly

outperform the other methods considered here. Fig. 22 shows an example of AEKF

performance on a test set sine curve with Cauchy noise. This ability of the AEKF

to mitigate outliers is one of its most important features and is given mathematical

justification in Section 4.5.

Multiple Family Model Results Table 9 shows results for the models trained

on all three curve families and added Gaussian noise with a slightly different

MSE/ratio format. Here, the ratio column is the ratio between the multiple family

model MSE and the single family model MSE. Table 10 presents the same results

for the case of bimodal noise.
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Figure 22: AEKF filtering of a test set sine function with Cauchy noise. Note the
state estimate, represented by the solid green line, stays close to the ground truth
even in the presence of outliers. This behavior is difficult to achieve with a stan-
dard Kalman Filter, which is more easily misled by outlier data.

The MSE columns in Tables 9 and 10 are the test set MSE for each multiple

family model evaluated on a separate test set for exponential, sigmoidal, and si-

nusoidal curves. In both tables the best performing models are similar to those in

the single family tests. However, the overall MSE is larger in the multiple fam-

ily model case. This is not surprising though, as both the single family model

and multiple family model AEKFs were trained for 100,000 epochs each. Since the

multiple family model AEKFs are learning to filter three families of functions, it is

possible more training epochs would improve these results. Furthermore, all ratio

values in Tables 9 and 10 never exceed three, the number of curve families being

learned, further indicating increasing the number of training epochs may improve

performance.
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Table 6: MSE and ratio results for single curve family models with Gaussian noise.
Here the AEKF consistently achieves the lowest test set MSE. The values in the
ratio column are calculated by dividing all elements of each column by the AEKF
NCV MSE value in that column. Bold values indicate the smallest MSE in each
column. Note, NCV and NCA refer to specific Kalman Filter models in the AEKF
and standard Kalman Filter and the number following each LSTM model is the
sequence length used for that model.

Model Exp. MSE Exp. Ratio Sig. MSE Sig. Ratio Sine MSE Sine Ratio

AEKF NCV 1.52 1.00 1.90 1.00 5.70 1.00
AEKF NCA 1.57 1.04 1.85 0.98 5.17 0.91

LSTM 1 16.03 10.57 16.06 8.45 32.03 5.62
LSTM 10 3.05 2.01 5.12 2.70 13.05 2.29
LSTM 15 2.67 1.76 4.48 2.36 9.73 1.71
LSTM 20 2.52 1.66 4.29 2.26 7.89 1.38
LSTM 25 2.54 1.67 4.27 2.25 7.66 1.34
KF NCV 4.04 2.67 4.96 2.61 8.94 1.57
KF NCA 4.51 2.97 5.83 3.07 9.01 1.58

Table 7: MSE and ratio results for single curve family models with bimodal noise.
This was the first test which evaluated the AEKF, LSTM, and Kalman Filter on non-
Gaussian noise. Apart from models trained and tested on sinusoidal curves, the
AEKF outperforms both the LSTM and Kalman Filter. Even in the sinusoidal case,
the lower MSE achieved by the LSTM is a small improvement compared to the
AEKF’s lower MSE in the exponential and sigmoidal cases. Unlike the AEKF and
LSTM, the Kalman Filter’s bimodal MSE increases by a much larger factor over its
Gaussian MSE. Bold values indicate the smallest MSE in each column. Note, NCV
and NCA refer to specific Kalman Filter models in the AEKF and standard Kalman
Filter and the number following each LSTM model is the sequence length used for
that model.

Model Exp. MSE Exp. Ratio Sig. MSE Sig. Ratio Sine MSE Sine Ratio

AEKF NCV 2.37 1.00 2.96 1.00 13.07 1.00
AEKF NCA 2.35 0.99 3.14 1.06 12.59 0.96

LSTM 1 79.36 33.52 107.45 36.32 199.00 15.22
LSTM 10 5.10 2.15 7.94 2.68 21.90 1.67
LSTM 15 4.77 2.02 6.96 2.35 15.11 1.16
LSTM 20 4.71 1.99 6.64 2.25 11.86 0.91
LSTM 25 4.66 1.97 6.24 2.11 11.50 0.88
KF NCV 23.77 10.04 30.15 10.19 57.15 4.37
KF NCA 36.86 15.57 45.02 15.22 65.14 4.98
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Table 8: MSE and ratio results for single curve family models with Cauchy noise.
This is the most significant result of this section. It demonstrates the AEKF
achieves a significantly lower MSE for all three curve families on a noise distri-
bution that is very challenging for the traditional Kalman Filter. A possible ex-
planation for the increasing LSTM MSE with sequence length is that the LSTM
may be utilizing the average value of the samples in its sequence length. As the
Cauchy distribution is subject to “spikes” these would skew the average, espe-
cially for long sequence lengths. In contrast, the AEKF is not averaging preceding
samples, but is learning which samples to ignore and which to keep, regardless of
their deviation from the ground truth. Bold values indicate the smallest MSE in
each column. Note, NCV and NCA refer to specific Kalman Filter models in the
AEKF and standard Kalman Filter and the number following each LSTM model is
the sequence length used for that model.

Model Exp. MSE Exp. Ratio Sig. MSE Sig. Ratio Sine MSE Sine Ratio

AEKF NCV 0.39 1.00 1.16 1.00 3.56 1.00
AEKF NCA 0.43 1.08 0.89 0.77 2.96 0.83

LSTM 1 35.90 90.99 45.45 39.16 82.12 23.06
LSTM 10 1.35 3.42 5.72 4.93 21.18 5.95
LSTM 15 5.15 13.04 45.43 39.14 109.56 30.77
LSTM 20 10.66 27.01 183.51 158.11 644.53 180.99
LSTM 25 63.08 159.89 509.68 439.12 835.96 234.74
KF NCV 99.26 251.58 953.21 821.25 2979.70 836.72
KF NCA 212.33 538.18 3541.22 3051.00 13427.75 3770.61
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Table 9: MSE and ratio results for multiple curve family models with Gaussian
noise. Here, the ratio column is the ratio of the multiple family model MSE and the
corresponding single family model MSE. These results are consistent with those in
Table 6 in that the models with the lowest MSE are either the AEKF NCV or AEKF
NCA. While the absolute MSE is higher for each model compared with Table 6, this
is not surprising as the models presented here were trained for 100,000 epochs as
well, yet had to learn three different curve families instead of a single family. Fur-
thermore, all ratio values never exceed three, the number of curve families being
learned, indicating increasing the number of training epochs may improve perfor-
mance. The number after the LSTM models indicates the sequence length and the
Kalman Filter results from Table 6 are included for comparison.

Model Exp. MSE Exp. Ratio Sig. MSE Sig. Ratio Sine MSE Sine Ratio

AEKF NCV 2.71 1.79 3.85 2.02 8.10 1.42
AEKF NCA 2.82 1.79 3.44 1.85 7.47 1.44

LSTM 1 16.93 1.06 16.78 1.04 33.23 1.04
LSTM 10 5.00 1.64 6.28 1.23 14.91 1.14
LSTM 15 3.92 1.47 5.55 1.24 11.68 1.20
LSTM 20 3.65 1.45 5.47 1.27 9.25 1.17
LSTM 25 3.17 1.25 5.74 1.34 8.71 1.14
KF NCV 4.04 1.00 4.96 1.00 8.94 1.00
KF NCA 4.51 1.00 5.83 1.00 9.01 1.00

4.3.6 Summary

The results in this section build upon the success of Section 4.2. By using more

challenging noise distribution parameters for Gaussian and bimodal noises, the

addition of Cauchy noise, and training a single AEKF on multiple curve families,

we moved one step closer to generalizing the state estimation capabilities of the

AEKF.

In this section both single and multiple family models were limited to a finite

number of well-known function families. Building on the results here, in the next

section we expand the class of functions more generally by exploring training and

testing on random truncated Taylor polynomials, up to some fixed degree p, with

108



Table 10: MSE and ratio results for multiple curve family models with bimodal
noise. Here, the ratio column is the ratio of the multiple family model MSE and the
corresponding single family model MSE. These results are consistent with those in
Table 7 in that the models with the lowest MSE are either the AEKF NCV, AEKF
NCA, and LSTM with large sequence length. While the absolute MSE is higher
for each model compared with Table 7, this is not surprising as the models pre-
sented here were trained for 100,000 epochs as well, yet had to learn three different
curve families instead of a single family. Furthermore, all ratio values never ex-
ceed three, the number of curve families being learned, indicating increasing the
number of training epochs may improve performance. The number after the LSTM
models indicates the sequence length and the Kalman Filter results from Table 7
are included for comparison.

Model Exp. MSE Exp. Ratio Sig. MSE Sig. Ratio Sine MSE Sine Ratio

AEKF NCV 5.36 2.26 8.15 2.76 17.74 1.36
AEKF NCA 5.38 2.29 7.04 2.24 17.08 1.36

LSTM 1 84.00 1.06 111.18 1.03 209.60 1.05
LSTM 10 8.90 1.75 11.45 1.44 25.21 1.15
LSTM 15 6.98 1.46 8.82 1.27 17.98 1.19
LSTM 20 6.56 1.39 9.43 1.42 13.69 1.15
LSTM 25 6.63 1.42 9.19 1.47 14.55 1.27
KF NCV 23.77 1.00 30.15 1.00 57.15 1.00
KF NCA 36.86 1.00 45.02 1.00 65.14 1.00

arbitrary coefficients. That is, for

f(x) = a0 + a1x+ a2x
2 + · · ·+ apx

p (93)

we randomly select a polynomial degree of p ≤ P with random coefficients {a0, a1, · · · , ap}

(within a predetermined range), with noise drawn from a variety of distributions,

each training epoch.
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4.4 Generalizing Robust State Estimation with Domain Random-

ization

In Section 4.3 it was shown that an AEKF with NCV and NCA models outperforms

both a standard Kalman Filter with NCV and NVA models and an LSTM recurrent

neural network on simulated exponential, sigmoidal, and sinusoidal curves with

Gaussian, bimodal, and Cauchy noise.

In this section we build on the results in Section 4.3 as a next step in the direc-

tion of developing a general time series state estimation system where we apply

domain randomization to a more general family of functions. Instead of limiting

the family of functions to three specific families, we propose to train an AEKF on

the family of functions defined by a pth degree truncated Taylor Polynomial with

random coefficients

f(x) = a0 + a1x+ a2x
2 + · · ·+ apx

p (94)

That is, training will consist of generating training curves with p + 1 random co-

efficients within a predetermined range. While it is unlikely the exact pth order

truncated Taylor Polynomial for well-known functions will be randomly selected

during training (e.g. exponential and sinusoidal curves), the motivation is that

by covering the function space with a large variety of random truncated Taylor

Polynomials, those functions learned by the AEKF will provide a covering of the

parameter space. As a result, well known functions will be well approximated.

Generating the simulated data begins by first generating a ground truth curve
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Figure 23: Example of a simulated training curve with bimodal noise. The smooth
line is the ground truth truncated Taylor Polynomial φtrue with the points repre-
senting the ground truth with added noise φnoise. At each training epoch a new
simulated curve was generated and passed to the AEKF. As a result, the AEKF
effectively never saw the same curve twice during training.

according to the following

φtrue =

p∑
l=0

alx
l (95)

p ∼ U{3, 4, 5, 6, 7} (96)

al ∼ U [−1, 1) (97)

where (95) is a random truncated Taylor Polynomial of order p, and p and al are

sampled uniformly according to (96) and (97) respectively. Next, synthetic noise,

φnoise, is added toφtrue by sampling from a given probability distribution, resulting

in the simulated training dataφ = φtrue+φnoise. In our experiments we considered

Gaussian, bimodal, and Cauchy added noise. Figure 23 shows an example of a

simulated baseline curve with added bimodal noise.
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4.4.1 Experimental Setup

Apart from training on random truncated Taylor Polynomials and the synthetic

noise distribution parameters used, the experimental procedures used in this sec-

tion are identical to Section 4.3 and are briefly summarized here.

In our experiments, an AEKF, LSTM, and standard Kalman Filter, each with

three noise types, Gaussian, bimodal, and Cauchy, were compared. In both the

AEKF and standard Kalman Filter, an NCV dynamical model was used. The Gaus-

sian noise was drawn from N (0, 0.2), bimodal noise consisted of two Gaussian

distributions N (0.5, 0.2) and N (−0.5, 0.2), and the Cauchy noise was drawn from

a standard Cauchy distribution.

The AEKF and LSTM were both trained using domain randomization in the

same way as in Section 4.2. The test set was randomly generated in the same man-

ner as the training and hyperparameter selection sets and consisted of 1,000 sim-

ulated noisy curves. The final MSE for each model was determined by averaging

the mean squared error for each of the 1,000 curves in the test set.

As in Section 4.2, the Kalman Filter parameters Qk and Rk were chosen based

on optimal performance on the test set.

4.4.2 Experimental Results

For each model, three separate experiments were performed with Gaussian, bi-

modal, and Cauchy noise. The test set MSE results are presented in Table 11, with

the lowest MSE in bold for each noise type. The number in parentheses follow-

ing the MSE is the MSE ratio between the given model and the AEKF. In the case

of Gaussian noise, the Kalman Filter achieved the lowest MSE of the three mod-

els. However, the primary motivation for the AEKF is to demonstrate the Kalman
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Table 11: Test Set MSE Results for each of the three models and noise types. While
the Kalman Filter performs the best with Gaussian noise, for Bimodal noise both
the AEKF and LSTM achieve lower test set MSE than the Kalman Filter, with the
LSTM performing slightly better. Here the AEKF shows significantly better fil-
tering capabilities is in the presence of Cauchy noise. The fact that Cauchy noise
has large outliers explains why the Kalman Filter performs poorly. While both the
AEKF and LSTM do significantly better than the Kalman Filter, the mechanism
by which this occurs is well understood in the Kalman Filter, while not so for the
LSTM. This is due to the fact the Kalman Filter has a well established mathematical
foundation, something we leverage in Section 4.5 to prove a theorem regarding the
AEKF’s ability to mitigate outliers.

Gaussian Bimodal Cauchy
AEKF 0.011 (1.00) 0.020 (1.00) 0.174 (1.00)
LSTM 0.027 (2.46) 0.019 (0.93) 0.217 (1.25)
KF 0.010 (0.88) 0.042 (2.07) 409.8 (2,361)

Filter can be successfully applied to state estimation in cases where the noise is

non-Gaussian. For bimodal noise the AEKF and LSTM are effectively equal in per-

formance while the Kalman Filter’s MSE is twice as large. This indicates, even

when the Kalman Filter is allowed to data snoop, the AEKF and LSTM models

show better performance. Lastly, the main result of this section is the performance

on Cauchy noise. Here the AEKF outperforms both the LSTM and the Kalman

Filter, with the Kalman Filter’s MSE significantly larger. Thus, despite some spe-

cific differences, these results are consistent with the general trend in 4.3 and in-

dicate that the AEKF’s state estimation capabilities generalize from exponential,

sigmoidal, and sinusoidal families of curves to the more general truncated Taylor

Polynomials used here. A sample figure showing the AEKF state estimate of a

random truncated Taylor Polynomial, along with the ground truth and noise, is

shown in Figure 24.
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Figure 24: Sample AEKF state estimate of a random truncated Taylor Polynomial
ground truth curve with added Gaussian noise.

4.4.3 Summary

In this section we extended the state estimation capabilities of the AEKF, demon-

strated in Section 4.3, to a larger class of functions, namely truncated Taylor Poly-

nomials. A next step is to investigate the mathematics behind how the AEKF is

able to perform well on Cauchy data, that is data with large outliers, while the

standard Kalman Filter, and to a lesser extent the LSTM, are unable to do so. This

will be the subject of the next section.

4.5 Measurement Noise Covariance Analysis for the Autoencoder-

Kalman Filter

The results in Section 4.4 indicate the LSTM, like the AEKF, is able to effectively

mitigate the influence of outliers in Cauchy noise. However the exact mechanism
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how this occurs in the LSTM is not as transparent as in the AEKF case. This is due

to the fact the AEKF is relying on the well-established theoretical understanding of

the Kalman Filter. Specifically, the Kalman Gain Kk in (9) weights the contribution

of the innovation z̃k to the a posteriori estimate x̂k|k. Intuitively, if the eigenvalues

of Kk are very small the Kalman Filter will effectively ignore the innovation and

vice versa. More precisely, it is the largest eigenvalue of S−1
k in (8) that provides an

upper bound on the norm of the innovation sequence by ‖z̃k‖2. Since Sk depends

upon Rk, it is natural to investigate the relation between the outlier mitigation

properties of the AEKF and the fact that it is learning {Rk}Nk=1.

In order to gain some insight into the outlier mitigation properties of the AEKF,

analyzing the Kalman Filter mathematically, in this section we derive a theorem

which suggests an empirically testable criteria indicating how the AEKF should

behave. If the AEKF does in fact behave as the theorem suggests, this would

demonstrate the AEKF behavior can be explained theoretically. We then provide

experimental results confirming that the above predicted behavior does in fact oc-

cur. Thus, although the question of “how” the AEKF performs its function may

still be uncertain, we have moved one step towards understanding by showing

“what” it does is consistent with a mathematical analysis of the Kalman Filter.

4.5.1 Mathematical Introduction

Throughout this section we apply standard matrix analysis techniques to the Kalman

Filter to aid our understanding of the AEKF. Thus, while the mathematics herein

are well-known, their application towards the understanding of deep learning is

novel.

In the sections below, Mm,n(R) represents the set of all m× n matrices over the
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real numbers andMn,n(R) the set of all n×n square matrices over the real numbers.

While most of the proofs apply to both vectors in Rn and Cn, we restrict ourselves

to vectors and matrices in Rn and Mm,n(R) respectively. That is, the scalar entries

in all vectors and matrices are restricted to real numbers. The primary reference

used herein is [24].

Before beginning our mathematical analysis we briefly review the motivation

for having the AEKF learn {Rk}Nk=1. In a standard Kalman Filter, the input is a

sequence of noisy measurements {zk}Nk=1, modeled as a sequence of random vari-

ables, and a single matrix R, which represents the covariance of {zk}Nk=1. Ideally,

{zk}Nk=1 is a zero-mean Gaussian sequence with R representing the known covari-

ance. In this case, the statistics are complete as the mean and covariance are fully

known. However, this is not always the case, as the noisy measurements may not

be well-modeled by a Gaussian random variable. Here, estimation techniques are

often used to determine the best R [40, 44, 51]. Even if R can be well approxi-

mated, a single matrix is assumed to capture the covariance for all measurements

in {zk}Nk=1, which can be problematic. For example, if the distribution of {zk}Nk=1 is

modeled as an α-stable distribution, the covariance is only defined for the Gaus-

sian case, α = 2. In the case of a Cauchy distribution, α = 1, both the mean

and covariance are undefined. However, the sample covariance can always be

estimated, even when the population covariance does not exist. But even this ap-

proach has problems when dealing with distributions with large tails such as the

Cauchy distribution. Thus, the problem of estimating R for a variety of distribu-

tions is non-trivial.

In order to address these issues, the AEKF learns a point-wise sequence of measurement

noise covariance matrices, {Rk}Nk=1, instead of a single measurement noise covariance ma-
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trix. This avoids the problem of both unknown and non-existent covariances, as

well as poorly estimated sample covariances, as it learns a (potentially) unique

covariance matrix for each measurement, providing the Kalman Filter with more

flexibility.

4.5.2 Learning R

In the AEKF, learning {Rk}Nk=1 is not simply a matter of learning matrices of the

correct dimensions, but it is constrained by properties of the Kalman Filter. In this

section we address the requirements for learning {Rk}Nk=1 based on these proper-

ties.

From (8) we see (7) must be non-singular, which is guaranteed if Sk is positive

definite. In [3, p. 39] it was claimed Sk is positive definite if Rk in (7) is positive

definite without proof. Here we fill in the details of this claim.

HkPk|k-1H
T

k is Positive Semi-Definite If Pk|k-1 ∈Mn,n(R) is positive semi-definite,

HkPk|k-1H
T

k is positive semi-definite, where Hk ∈Mm,n(R) and is non-zero.

Proof. Pk|k-1 is positive semi-definite since it is a covariance matrix. Given a non-

zero v ∈ Rm, define u = H
T

kv ∈ Rn . Since Pk|k-1 is positive semi-definite u
T
Pk|k-1u ≥

0 and we write

u
T

Pk|k-1u = (v
T

Hk)Pk|k-1(H
T

kv) (98)

= v
T

(HkPk|k-1H
T

k)v ≥ 0 (99)

which shows HkPk|k-1H
T

k is positive semi-definite.
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Sk is Positive Definite Given positive semi-definite HkPk|k-1H
T

k ∈ Mm,m(R) and

positive definite Rk ∈Mm,m(R), Sk = HkPk|k-1H
T

k + Rk is positive definite.

Proof. Define a non-zero vector v ∈ Rm. Writing

v
T

Skv = v
T

(HkPk|k-1H
T

k + Rk)v (100)

= v
T

(HkPk|k-1H
T

k)v + v
T

Rkv (101)

≥ v
T

Rkv > 0 (102)

which follows from the fact Rk is positive definite.

From this we conclude Sk is non-singular if Rk is positive definite.

Learning Positive Definite Rk The procedure for learning a positive definite Rk

was discussed in Sections 2.5 and 4.3.3 without presenting its mathematical jus-

tification. The justification is a statement of Cholesky decomposition [24, p. 441]

and included here for completeness: Given that Rk ∈ Mm,m(R) is symmetric, Rk

is positive definite if and only if there is an upper triangular matrix Lk ∈Mm,m(R)

with positive diagonal entries where Rk = L
T

kLk. Furthermore, Lk is unique and

real. Thus, in the AEKF, Rk is learned by first learning an upper triangular matrix

Lk ∈Mm,m(R) with positive diagonal entries and then computing Rk = L
T

kLk.

4.5.3 Scaling the Innovation Sequence

The purpose of Rk in the Kalman Filter is to provide information on which mea-

surements are reliable and which are unreliable, or which are not outliers and

which are. More formally, in (9), the innovation z̃k is scaled by the Kalman gain
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x̂k|k-1

Kkz̃k

x̂k|k

Figure 25: Geometric interpretation of the Kalman Filter’s a posteriori estimate (9).
This figure facilitates a geometric intuition into how the AEKF weights the inno-
vation. We consider a measurement an outlier, or unreliable, if its corresponding
innovation has a large norm ‖z̃k‖2 and vice-versa for a reliable measurement. In
this scenario, if the matrix Kk does not scale z̃k, such that ‖Kkz̃k‖2 � ‖z̃k‖2, the a
posteriori estimate x̂k|k will be dominated by the outlier measurement zk. Similarly,
if a reliable measurement is scaled such that ‖Kkz̃k‖2 � ‖z̃k‖2 the measurement’s
contribution will be disproportionately reduced. In this case, finding a single Rk,
for all measurements presents itself as problematic, especially in cases when the
measurement processes distribution is not known, does not exist, or there are sig-
nificant outliers in the measurements. Since Kk is a function of Rk in the AEKF,
the intuition is the AEKF learns an Rk in order that Kk scales z̃k appropriately.

Kk, which itself is a function of Rk. In this section we take a closer look at this

scaling.

Taking the `2-norm of (9) and applying the triangle inequality gives

∥∥x̂k|k∥∥2
≤
∥∥x̂k|k-1

∥∥
2

+ ‖Kkz̃k‖2 (103)

This allows us to think about the scaling of z̃k geometrically as shown in Figure

25. If the Kalman Filter is going to ignore a measurement, ‖Kkz̃k‖2 should be very

small and vice-versa if a measurement’s contribution is significant. Accordingly,

we focus on the Kalman gain, Kk, and its effect on ‖Kkz̃k‖2.

The Kalman Gain The Kalman gain, (8), is comprised of three covariance matri-

ces: Pk|k-1, HkPk|k-1H
T

k , and Rk. These represent the uncertainty in x̂k|k-1, Hkx̂k|k-1,

and zk respectively. For example, a large entry in Rk indicates a large uncertainty

in the corresponding entry of zk and vice-versa for a small entry. Since the inno-
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vation, z̃k, is the difference between zk and Hkx̂k|k-1, z̃k should be weighted by the

uncertainty in both zk and Hkx̂k|k-1. The term S−1
k = (HkPk|k-1H

T

k+Rk)
−1 in (8) does

exactly this, where z̃k is weighted inversely by the covariance of zk and Hkx̂k|k-1.

Thus, if there is a high level of uncertainty in either zk, Hkx̂k|k-1, or both, the ef-

fect of z̃k on x̂k|k in (9) will be reduced accordingly. For high levels of confidence

in Hkx̂k|k-1 and zk, a similar analysis follows with the opposite scaling. Similarly,

Pk|k-1 in (8) weights the contribution of z̃k based on the reliability of the a priori

estimate x̂k|k-1.

4.5.4 Spectral Analysis of the Kalman Gain

This section presents the derivation of our theorem concerning the spectral analy-

sis of the Kalman Gain. After a general introduction to the matrix norm, we begin

with some preliminary definitions and lemmas after which we derive the theorem.

The definitions and lemmas are principally drawn from [24] and shown here for

completeness with some minor additions.

Matrix Norms Just as a vector norm, such as the `2-norm above, represents the

length of a vector, in some scenarios the matrix norm can be thought of as repre-

senting the “length” of a matrix. Alternatively, when viewed as a linear operator

the matrix norm can be thought of as the largest amount by which a matrix can

scale or stretch a vector [59, p. 19]. Corresponding to these two ways of conceptu-

alizing the matrix norm there are element-wise matrix norms and operator matrix

norms. Element-wise matrix norms view Mm,n(R) as an m× n dimensional vector

space and then apply a well-known vector norm, such as the `p-norms. For p = 2,
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the `2, or Frobenius, element-wise norm is defined for A ∈Mm,n(R) as [24, p. 341]

‖A‖2 = |tr(AA
T

)|
1
2 =

( m∑
i=1

n∑
j=1

(aij)
2
) 1

2
(104)

In this section we focus on the operator matrix norm. The operator matrix norm,

instead of considering the element-wise “size” of a matrix, views a matrix A as a

linear operator acting on a vector x and is defined in terms of the upper bound

on the ratio of the norms ‖Ax‖ and ‖x‖. Note, herein we drop the word “matrix”

when referring to the element-wise matrix norm and operator matrix norm.

Definition 1. A matrix norm is defined as a function |||·||| : Mm,n(R) 7→ R+ which, for all

matrices A,B ∈Mm,n(R), satisfies the following axioms

|||A||| ≥ 0 (105)

|||A||| = 0 ⇐⇒ A = 0 (106)

|||aA||| = |a||||A|||, ∀a ∈ R (107)

|||A + B||| ≤ |||A|||+ |||B||| (108)

Additionally, for A,B ∈Mn,n(R) some matrix norms satisfy [24, p. 341]

|||AB||| ≤ |||A||||||B||| (109)

Apart from (109), referred to as the submultiplicativity property, the axioms of the

matrix norm are identical to the vector norm case.

Definition 2. For x ∈ Rn, A ∈Mm,n(R), and a vector norm ‖·‖ on Rn the operator norm
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on Mm,n(R) is matrix norm defined as

|||A||| = sup{‖Ax‖ : x ∈ Rn with ‖x‖ = 1} (110)

= max
‖x‖=0

‖Ax‖
‖x‖

(111)

= max
‖x‖=1

‖Ax‖ (112)

Definition 3. A ∈ Mn,n(R) is orthogonally diagonalizable if it can be written as A =

UΛU
T , where U ∈ Mn,n(R) is an orthogonal matrix and Λ ∈ Mn,n(R) is a diagonal

matrix with the eigenvalues of A along the diagonal.

Lemma 1. For A ∈ Mm,n(R) and y ∈ Rn with a vector norm ‖·‖ on Rn and operator

norm |||·||| on Mm,n(R) ‖Ay‖ ≤ |||A||| ‖y‖

Proof. Given y ∈ Rn and applying definition 2 gives

|||A||| = max
‖x‖=1

‖Ax‖ (113)

≥
∥∥∥∥A y

‖y‖

∥∥∥∥ (114)

=
1

‖y‖
‖Ay‖ (115)

which gives ‖Ay‖ ≤ |||A||| ‖y‖.

Lemma 2. For A ∈Mm,n(R) and if the vector norm in (112) is the `2-norm, the resulting

operator norm is |||A|||2 = σ1(A) where σ1(A) is the largest singular value of A and |||A|||2

is referred to as the spectral norm.

Proof. For A with singular value decomposition A = UΣV
T , where U and V are
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orthogonal, Σ is a diagonal matrix diag(σ1, σ2, . . . , σn) containing the singular val-

ues of A, and σ1 ≥ σ2 ≥ . . . σn.

|||A|||2 = max
‖x‖2=1

‖Ax‖2 (116)

= max
‖x‖2=1

∥∥∥UΣV
T

x
∥∥∥

2
(117)

= max
‖x‖2=1

∥∥∥ΣV
T

x
∥∥∥

2
(118)

= max
‖Vy‖2=1

‖Σy‖2 (119)

= max
‖y‖2=1

‖Σy‖2 (120)

≤ max
‖y‖2=1

‖σ1(A)y‖2 (121)

= σ1(A) max
‖y‖2=1

‖y‖2 (122)

= σ1(A) (123)

where we use the fact for orthogonal U ∈ Mn,n(R) and x ∈ Rn that ‖Ux‖2 = ‖x‖2

and that U−1 = U
T . However the unit vector which maximizes (120) is e1, the

canonical unit vector corresponding to σ1(A). Therefore,

max
‖y‖2=1

‖Σy‖2 = max
‖e1‖2=1

‖Σe1‖2 (124)

= max
‖e1‖2=1

‖σ1(A)‖2 (125)

= σ1(A) (126)

from which it follows |||A|||2 = σ1(A).

Note, although both the spectral norm in Lemma 2 and the Frobenius norm (104)

have the subscript 2, they are different matrix norms as indicated by the number of
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vertical bars. Specifically, the Frobenius norm is an element-wise norm while the

spectral norm is an operator norm.

Lemma 3. If A ∈ Mn,n(R) is symmetric and positive semi-definite then |||A|||2 = ρ(A)

where ρ(A) is the largest eigenvalue of A referred to as the spectral radius of A.

Proof. Given A ∈ Mn,n(R) its singular value decomposition is A = UΣV
T with

U,Σ,V ∈Mn,n(R) and

AA
T

= UΣ2U
T

(127)

However, since A is symmetric it is orthogonally diagonalizable [24, p. 133]. Choos-

ing orthonormal U from (127) for the diagonalization

A = UΛU
T

(128)

from which we get

AA = UΛ2U
T

(129)

Since A is symmetric AA
T

= AA and

UΣ2U
T

= UΛ2U
T

(130)

By definition the entries of Σ are greater than zero. Using the fact A is positive

semi-definite, λi ≥ 0 for each eigenvalue in Λ = diag(λ1, λ2, . . . , λn). From this it

follows

σi = λi (131)
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for i = {1, 2, . . . , n}. As a result σ1(A) = ρ(A) and we get

|||A|||2 = ρ(A) (132)

Theorem 1. For vector norm ‖·‖2 and operator norm |||·|||2, given Kk ∈ Mn,m(R), z̃k ∈

Rm, Pk|k-1 ∈Mn,n(R), Hk ∈Mm,n(R), and S−1
k ∈Mm,m(R) from Section 2.1

‖Kkz̃k‖2 ≤ ρ(Pk|k-1)σ1(H
T

k)ρ(S−1
k ) ‖z̃k‖2 (133)

Proof. Using Lemma 1 and Kk = Pk|k-1H
T

kS
−1
k we write

‖Kkz̃k‖2 ≤ |||Kk|||2 ‖z̃k‖2 (134)

=
∣∣∣∣∣∣∣∣∣Pk|k-1H

T

kS
−1
k

∣∣∣∣∣∣∣∣∣
2
‖z̃k‖2 (135)

Applying the submultiplicativity property of the matrix norm (109) and Lemma 2

gives

‖Kkz̃k‖2 ≤
∣∣∣∣∣∣Pk|k-1

∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣HT

k

∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣S−1
k

∣∣∣∣∣∣
2
‖z̃k‖2 (136)

= σ1(Pk|k-1)σ1(H
T

k)σ1(S−1
k ) ‖z̃k‖2 (137)

Lastly, since Pk|k-1 and S−1
k are symmetric positive semi-definite matrices applying

Lemma 3 we get

‖Kkz̃k‖2 ≤ ρ(Pk|k-1)σ1(H
T

k)ρ(S−1
k ) ‖z̃k‖2 (138)
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Theorem 1 gives us an upper bound on ‖Kkz̃k‖2 completely in terms of the

spectral radii of Pk|k-1 and S−1
k , the largest singular value of H

T

k , and the `2-norm of

z̃k. Furthermore, at time k the only term on the right hand side of (138) which is a

function of the learned measurement noise covariance matrix Rk is S−1
k . Thus, if the

AEKF is learning Rk correctly, the scaling of z̃k by Kk is such that the a priori estimate

at time k + 1 will not be unduly influenced by outlier measurements, while giving proper

weighting to reliable measurements.

4.5.5 Testable Criteria

In order to investigate the relation between ρ(S−1
k ) and ‖z̃k‖2 we rewrite (138) as

ρ(S−1
k ) ≥ ‖Kkz̃k‖2

‖z̃k‖2

(
ρ(Pk|k-1)σ1(H

T

k)
)−1 (139)

which, for fixed z̃k, Pk|k-1 and H
T

k , indicates two things. First, the scaling of z̃k by

Kk is upper bounded by ρ(S−1
k ). Secondly, from this we see there is an inverse rela-

tionship between the upper bound ρ(S−1
k ) and ‖z̃k‖2. Based on this we hypothesize

that the equality relationship between ρ(S−1
k ) and z̃k is of the form

ρ(S−1
k ) = αk ‖z̃k‖βk2 (140)

Equation (140) presented here is an experimentally testable criteria based upon the above

mathematical analysis. As the validity of (140) will be determined by data, in order

to estimate a single α and β, for all k = 1, . . . , N , we perform linear regression on

the log-log transformation of (140) [27]. The first step is to write

ρ(S−1
k ) = (εk)α ‖z̃k‖β2 (141)
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where the error incurred by estimating each αk and βk with the same α and β is

accounted for by the random term εk. Taking the log of both sides of (141) gives

log ρ(S−1
k ) = β log ‖z̃k‖2 + log(α) + log(εk) (142)

and then taking the expectation of both sides of (142) results in

E
[

log ρ(S−1
k )
]

= β log ‖z̃k‖2 + log(α) (143)

where it is assumed E
[

log(εk)
]

= 0. We are now in a position to estimate α and

β using linear regression. In particular, we are interested in β as we want to test

whether the AEKF, by learning {Rk}Nk=1, scales outliers via ρ(S−1
k ) in inverse pro-

portion to ‖z̃k‖2. Looking at (141), the value of β indicates what kind of relation

there is between ρ(S−1
k ) and ‖z̃k‖2. Specifically,

• β = 0 =⇒ no relationship

• β < 0 =⇒ inversely proportional relationship

• β > 0 =⇒ directly proportional relationship

Thus, we hypothesize that for the AEKF β < 0 and for the Kalman Filter β ≈ 0. Thus,

the upper bound on ‖Kkz̃k‖2 decays inversely with respect to ‖z̃k‖2 in the AEKF,

while it is fixed for the Kalman Filter.

4.5.6 Experimental Setup

Datasets All experiments were performed on simulated data with domain ran-

domization as in previous sections. However, here the simulated dataset was gen-

erated using two-dimensional ground truth curves. Of course, the number of di-
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mensions is not limited to two but this was selected to ensure Rk in the standard

Kalman Filter was not a scalar.

Our ground truth curves consisted of random truncated Taylor polynomials as

in Section 4.4. In this section, only Cauchy noise was used as one of the standing

questions from Section 4.4 was to explain why the AEKF performed much better

than a standard Kalman Filter in terms of mitigating outliers.

Model Parameters and Test Procedures Training the AEKF consisted of training

a variety of models with varying layer sizes and learning rates. Optimization was

done using the Adam optimizer [32] with ReLU [49] as the activation function. The

testing set consisted of 1,000 random curves, generated as in previous sections, that

were saved to disk. This is to ensure final evaluation of all AEKF models was done

on the same dataset.

In terms of the AEKF’s internal Kalman Filter, the measurement vectors were

in R2, R4, and R8, the process noise covariance matrix was a diagonal matrix Qk =

1e-2I, and an NCV dynamical model was used. Recall, as the AEKF first processes

the actual measurements via the encoder portion, the dimensions of the Kalman

Filter in the AEKF’s latent layer do not have to match the measurement dataset

dimension. That is, given a sequence of measurements {φk}Nk=1, with each φk ∈

Rm, the encoder portion of the AEKF transforms this via

E : {φk}Nk=1 7→
[
{zk}Nk=1, {Rk}Nk=1

]
(144)

where each zk ∈ Rn and Rk ∈ Mn,n(R) and where m does not necessarily equal n.

It is then the role of the decoder portion of the AEKF to ensure the output of the

Kalman Filter portion is mapped back to the original measurement dimensions.
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Table 12: Estimates of α and β in (141) along with correlation coefficients between
log ‖z̃k‖2 and log ρ(S−1

k ) and p-values (given a null hypothesis that the slope is
zero). α and β are estimated, via linear regression, from the log transformed data
based upon (143), while the correlation coefficient indicates the strength of the
linear relationship between log ‖z̃k‖2 and log ρ(S−1

k ). The number in the model col-
umn indicates the dimensions of the Kalman Filter measurement space and the
MSE column indicates the average MSE over each of the 1,000 test set samples.
The MSE is computed using the actual data and the fitted curve defined by the
appropriate α and β.

MODEL MSE α β Corr. Coeff. p-value

AEKF 2 2.75e-01 2.96e-03 -4.80e-01 -7.61e-01 1.26e-12
AEKF 4 2.44e-01 3.68e-03 -6.12e-01 -8.85e-01 1.03e-15
AEKF 8 2.25e-01 7.06e-02 -1.05e+00 -9.08e-01 3.04e-16

KF 2 5.72e+01 2.14e-02 5.06e-04 1.53e-02 2.71e-01

The standard Kalman Filter’s process noise covariance matrix, Qk, and dynam-

ical model were the same as the AEKF’s. The measurement noise covariance, Rk,

was estimated from the data by

Rk =
(z− zµ)

T
(z− zµ)

N − 1
(145)

where z ∈ RN×2 is the measurement vector and zµ ∈ R2 is the mean of z. Al-

though it is impossible to write down a single R, as this does not exist for the

Cauchy distribution, for a finite dataset drawn from a Cauchy distribution a sam-

ple covariance can be estimated as in (145). However, the presence of outliers still

makes using a single R problematic. In this light, the fact the AEKF learns a point-wise

covariance matrix sequence {Rk}Nk=1 is one of its most appealing features.
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Table 13: Estimates of α and β in (141) along with correlation coefficients between
log ‖z̃k‖2 and log ρ(Pk|k-1) and p-values. See the caption in table 12 for details.

MODEL MSE α β Corr. Coeff. p-value

AEKF 2 2.75e-01 7.85e+01 2.29e-02 5.41e-02 4.16e-01
AEKF 4 2.44e-01 1.21e+02 -6.93e-03 -1.81e-02 5.07e-01
AEKF 8 2.25e-01 1.60e+02 -3.27e-02 -5.04e-02 5.13e-01

KF 2 5.72e+01 7.68e+01 9.39e-02 1.40e-01 2.52e-01

4.5.7 Experimental Results

Recall our hypothesis is that for the AEKF β < 0 and for the Kalman Filter β ≈ 0,

which both follow from the discussion above. That is, since the AEKF should

learn small ρ(S−1
k ) for unreliable data and vice-versa for reliable data, we predict

an inverse relationship between ‖z̃k‖2 and ρ(S−1
k ). This would be supported by

β < 0. For the Kalman Filter, since ρ(S−1
k ) is independent of z̃k, we predict the

slope in the log-log space to be approximately zero. This would indicate ‖z̃k‖2

does not vary significantly with ρ(S−1
k ).

Figures 26(a) and 26(b) plot ρ(S−1
k ) vs. ‖z̃k‖2 for a sample test set trial for the

Kalman Filter and AEKF respectively. Similarly, Figures 26(c) and 26(d) show the

associated log-log plots, corresponding to (143), for both the Kalman Filter and

AEKF. Notice in Figures 26(a) and 26(b), for the AEKF there is a clear inverse rela-

tionship, while for the Kalman Filter there is a near-zero slope relationship. Cor-

responding to this, in Figures 26(c) and 26(d) we see for the AEKF there is a clear

linear relationship, while for the Kalman Filter the only pattern that emerges is

effectively a flat line. This trend was observed across all trials in the data set, the

statistics of which are shown in Table 12. Here the reported values of MSE, α, β,

the correlation coefficient, and p-value are the average of each parameter over the
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Figure 26: Single test set trial sample plot of ρ(S−1
k ) vs. ‖z̃k‖2 for (a) Kalman Filter

and (b) AEKF, along with the corresponding log-log plots for (c) the Kalman Filter
and (d) AEKF. The related estimated parameters appear in the legends. The cor-
respondence between AEKF plots (b) and (d) is consistent with our hypothesis in
that an inverse relation in the ρ(S−1

k ) vs. ‖z̃k‖2 space should correspond to a linear
relationship in the log-log space. This is not observed for the Kalman Filter as both
(a) and (c) indicate no relationship as the slope is effectively zero.

1,000 trails in the test set. The MSE is computed using the actual data and the fitted

curve defined by the appropriate α and β. In addition to β, the correlation coef-
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ficient is included as β was estimated on the assumption of a linear relationship

between log ρ(S−1
k ) and log ‖z̃k‖2, and the correlation coefficient characterizes the

strength of this linear relationship. The p-value tests the null hypothesis that the

slope is zero.

The results in Table 12 are consistent with our hypothesis that for the AEKF

β < 0 and for the Kalman Filter β ≈ 0. Furthermore, these results are not surpris-

ing given that we know, for a standard Kalman Filter, ρ(S−1
k ) is independent of zk.

However, ρ(S−1
k ) is somewhat affected by Hk and x̂k|k−1, which may account for β

not being equal to zero. Still, the size of the β values for the Kalman Filter models

provide empirical evidence that a standard Kalman Filter is not adjusting its scal-

ing of z̃k based upon zk. In the AEKF case, we see a clear inverse relation between

‖z̃k‖2 and ρ(S−1
k ). The correlation coefficients also support our hypothesis in that

all AEKF values are between -0.76 and -0.91 while all Kalman Filter values show

little correlation between ‖z̃k‖2 and ρ(S−1
k ). Also note the AEKF and Kalman Filter

MSE values are two orders of magnitude apart. This difference in performance can

be explained by the fact that in the AEKF, the scaling of ‖z̃k‖2 by Kk is bound from

above by the learned ρ(S−1
k ).

Given that Hk is fixed in the AEKF and Kalman Filter models, (138) indicates

there is the possibility the scaling of ‖z̃k‖2 also results from ρ(Pk|k-1). To demon-

strate this alone is not responsible for the scaling of reliable and unreliable mea-

surements, we show in Table 13 that ρ(Pk|k-1) does not follow the same inverse

relationship with ‖z̃k‖2 as ρ(S−1
k ). In Table 13 the β values for the AEKF are at least

an order of magnitude less than those for ρ(S−1
k ). The Kalman Filter results are as

expected as ρ(Pk|k-1), similar to ρ(S−1
k ), does not depend on zk.

From these results we conclude there is significant empirical evidence to support our
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claim the AEKF learns {Rk}Nk=1 such that

ρ(S−1
k ) ∝ ‖z̃k‖β2 , β < 0 (146)

while this behavior is, unsurprisingly, not observed for a standard Kalman Filter.

Comparing ‖Kkz̃k‖2 in the Kalman Filter and AEKF It is an interesting property

of the Kalman Filter that Pk|k-1 and Sk, and hence Kk, can be completely deter-

mined independent of the measurements zk. With this in mind we substitute (138)

into (103)

∥∥x̂k|k∥∥2
≤
∥∥x̂k|k-1

∥∥
2

+ ‖Kkz̃k‖2 (147)

≤
∥∥x̂k|k-1

∥∥
2

+ ρ(Pk|k-1)ρ(S−1
k )σ1(H

T

k) ‖z̃k‖2 (148)

For fixed Hk, in a standard Kalman Filter, since Pk|k-1 and Sk are independent of

zk, the scaling of ‖z̃k‖2 in (148) is also independent of zk. This helps explain why a

standard Kalman Filter, with fixed Rk, is unable to mitigate large outliers, such as

those seen in the Cauchy noise draws in Sections 4.3 and 4.4. As the coefficient that

could possibly reduce the effect of outliers is determined independent of the mea-

surements, the upper bound on the a posteriori estimate is unaffected by the actual

measurements {zk}Nk=1. However, in the AEKF, since both {zk}Nk=1 and {Rk}Nk=1 are

learned, the scaling of ‖z̃k‖2 in (148) is a function of zk. This allows for the possibility

the AEKF will scale reliable and unreliable values of ‖z̃k‖2 accordingly.

Here it should be pointed out the innovation, z̃k = zk − Hkx̂k|k-1, in (148) is

not the same for the standard Kalman Filter and AEKF. Following the notation in

Section 2.5.2, if we label the actual measurements as φ, then for the Kalman Filter,
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z , φ. In the AEKF, based upon (59)-(62), z is not equivalent to φ but is given by

(62). That is

z = Az ◦ ES ◦ ES−1 ◦ · · · ◦ E1(φ) (149)

where Az is the affine transformation in (62). Based on this analysis, in the AEKF,

any dependence of the scaling of z̃k by Kk on the actual measurements φk is medi-

ated through Rk.

4.5.8 Summary

In this section we hypothesized an experimentally testable criteria to help explain

the AEKF’s outlier mitigation abilities, based upon a theorem derived from a ma-

trix analysis of the Kalman Filter. Experiments demonstrated the AEKF does in

fact behave as indicated by the theorem, leading to some theoretical insight into

“what” the deep learning portions of the AEKF are doing. Specifically, the AEKF

learns an inverse relationship between the spectral radius of S−1
k , ρ(S−1

k ), and the

norm of the innovation ‖z̃k‖2.

4.6 Maneuvering Target Tracking Using the Autoencoder-Interacting

Multiple Model Kalman Filter

(Co-written with Kirty P. Vedula and Professor Donald R. Brown of Worcester

Polytechnic Institute)

In this section we apply the AEIMMKF from Section 2.6 to simulated scenar-

ios where target dynamics are known to be represented by multiple dynamical

models. Building on the success of the AEKF, the AEIMMKF is seen as an aug-

mentation in the same sense that the standard IMMKF is an augmentation of the
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standard Kalman Filter. In particular, while the AEKF addresses the issue of es-

timating the measurement noise covariance, the AEIMMKF addresses both the

measurement noise covariance estimation and choosing the appropriate system

dynamics as discussed in Section 2.2

In this section, we apply the AEIMMKF to a simulated flight data tracking

problem where the IMMKF consists of two NCA dynamical models. We com-

pare the AEIMMKF against a standard Kalman Filter, IMMKF, LSTM, and AEKF

algorithms. The improvements that we obtain using AEIMMKF in tracking ma-

neuvering targets are particularly useful in some tracking applications such as air

traffic control as discussed in [4].

4.6.1 Test Protocol

We train the above models using domain randomization on simulated flight paths

consisting of constant velocity segments interspersed with coordinated turns. All

simulated flight paths begin with constant velocity motion in the horizontal direc-

tion. At each turn, the corresponding turn radius is chosen randomly (within a

predefined range), along with the turn direction (clockwise or counter clockwise).

Either Gaussian or Cauchy noise is then added to these smooth ground truth flight

paths, which results in our simulated flight path for domain randomization. Each

of the four models’ state estimation is then compared with the actual ground truth

and the corresponding MSE is reported for each model. Note that in this phase,

the ground truth is used only for model evaluation as in previous sections and does not

affect each model’s state estimate in any way. As the state estimate and ground

truth are two dimensional, the MSE is calculated by taking the square root of the

Frobenius norm between the state estimate and ground truth.
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The simulated flight paths are based on physical models according to the kine-

matics equations for constant linear motion and coordinated turns. The (discrete)

time evolution position and velocity vectors for the linear model are defined as

r(t+ dt) =
(
x(t) + vxdt

)̂
i+
(
y(t) + vydt

)
ĵ (150)

v(t+ dt) = vxî+ vy ĵ (151)

where r(t) = (x(t), y(t)) is the position vector at time t, v0 = (vx, vy) is the initial

velocity at the beginning of the segment, and î and ĵ represent the unit vectors in

the horizontal and vertical directions respectively. The coordinated turn model is

similarly defined by

r(t+ dt) = R cos
(‖v0‖2 (kdt)

R

)
î+R sin

(‖v0‖2 (kdt)

R

)
ĵ (152)

v(t+ dt) = −‖v0‖2 sin
(‖v0‖2 (kdt)

R

)
î+ ‖v0‖2 sin

(‖v0‖2 (kdt)

R

)
ĵ (153)

where R is the radius of the turn, ‖v0‖2 is initial speed at the beginning of the turn,

and k indexes the increment of the full turn. That is, for a turn with an angle θ,

dividing the turn into N equal increments gives θ = Nδθ. Since θ =
‖v0‖2t
R

we

can express the total angle turned through at the kth increment as kδθ =
‖v0‖2
R
kδt

with k = 0, 2, ..., N − 1. Note that (152) and (153) assume rotation about the origin

starting from θ = 0. Thus, appropriate translation and rotations were applied to

the results of (152) and (153) to ensure the turns occurred at the correct location

and were continuous, up to the first derivative, with their incoming and outgoing

linear segments. A sample flight path with Gaussian noise is shown in Figure 27.

While we use simulated flight paths to demonstrate the efficacy of the AEIMMKF,

it should be noted the AEIMMKF is designed in a general manner to make it ap-
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Figure 27: Sample Simulated Flight Path with Gaussian Noise. Each leg of the path
are indicated by the different colors.

plicable to any application or scenario where an IMMKF is appropriate.

4.6.2 Single Turn Results

Here we present results for single turn flight paths with an initial velocity in the

horizontal direction of 100 m/s, a turn radius uniformly selected between 200 and

300 meters and added Gaussian or Cauchy noise. The Gaussian noise was drawn

from N (0, 20) while the Cauchy noise was drawn from a standard Cauchy distri-

bution which was then scaled by a factor of 5. Each of the three flight segments

lasts 10 (simulated) seconds with a sampling frequency of 10 Hz. The transition

probabilities, defined in (30), for the AEIMMKF and IMMKF are 0.9 and 0.1. That

is, the probability the IMMKF is in one NCA mode at time k + 1 given it was in

the same NCA mode at time k is 0.9, while the probability the IMMKF switches
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Figure 28: Turn segment from a Gaussian noise test set sample trial. Here the (a)
Kalman Filter, (b) IMMKF, and (c) LSTM estimates have large MSE values and,
generally, are less smooth than the (d) AEKF and (e) AEIMMKF estimates. Fur-
thermore, the Kalman Filter, IMMKF, and LSTM have more difficulty estimating
the ground truth on the turn than the AEKF and AEIMMKF. The number in paren-
thesis following the MSE is the ratio of the given model’s MSE to the Kalman Fil-
ter’s MSE.

between NCA modes is 0.1. The process noise covariance matrices for both the

AEIMMKF and IMMKF were 0.5I and 0.05I. The Kalman Filter and AEKF models

consisted of single NCA models with process noise covariance matrix 0.5I.

For the models trained on Gaussian noise, the test set consisted of 1000 sim-

ulated single turn flight paths. For each model, the reported MSE is computed

by averaging the MSE on each of the 1000 test paths computed using the ground

truth and state estimates. Results for the Gaussian noise tests are shown in Table
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Table 14: Single turn test set MSE results with Gaussian noise. The top two per-
forming models are the AEKF and AEIMMKF while Kalman Filter, IMMKF, and
LSTM performances are all comparable. The MSE ratio is the ratio of each models
MSE to the Kalman Filters MSE.

Model MSE Ratio
KF 118.74 1.00
IMMKF 113.97 0.96
LSTM 124.33 1.05
AEKF 90.09 0.76
AEIMMKF 67.06 0.56

14, where the MSE ratio is the ratio of each model’s MSE to the Kalman Filter’s

MSE. Here the models, from highest to lowest MSE, are the LSTM, Kalman Fil-

ter, IMMKF, AEKF, and AEIMMKF. The fact that the IMMKF shows better perfor-

mance than the Kalman Filter is not surprising. The LSTM performance was very

close to both the Kalman Filter and IMM. However, all these models are improved

upon by the AEKF and AEIMMKF. For visualization, a turn segment of one trial

from the Gaussian noise test set with the ground truth, noisy simulated measure-

ments, and state estimate is shown in Figure 28.

We also trained and tested the same five models with Cauchy noise and no-

ticed some differences in the results. Apart from the presence of Cauchy noise,

the test set used here was generated in the same manner as the Gaussian test set.

Unsurprising, the Kalman Filter and IMM performed very poorly. Compared with

the Gaussian noise tests, the LSTM performed much better relative to the Kalman

Filter and IMM. However, the LSTM model still has an MSE approximately three

times greater than both the AEKF and the AEIMMKF, with the AEIMMKF achiev-

ing the lowest MSE of all five models. The test set MSE results for these tests are

shown in Table 15.
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Table 15: Single turn test set MSE results with Cauchy noise. The top two per-
forming models were the AEKF and AEIMMKF, with the LSTM having an MSE
approximately three times greater than the AEKF and AEIMMKF. Unsurprisingly,
both the Kalman Filter and IMM performed poorly. The MSE ratio is the ratio of
each models MSE to the Kalman Filters MSE.

Model MSE Ratio
KF 4,202,564 1.0
IMMKF 2,177,604 0.52
LSTM 1513.95 3.6e-4
AEKF 515.16 1.23e-4
AEIMMKF 454.04 1.08e-4

4.6.3 Summary

Based on the success of the AEKF in Sections 4.2, 4.3, and 4.4, in this section we

extended the AEKF to the AEIMMKF, to solve challenging maneuvering target

tracking problems. We provided a proof-of-concept demonstration with simulated

flight tracking data and compare it against state-of-the-art methods in tracking

such as the IMMKF. These results further indicate the combination of deep learning

and traditional filtering techniques outperform traditional filtering approaches by

themselves.

4.7 Hilbert Space Filter

In the AEKF, the state estimate of φ, represented by φ̂, is a point-wise sequence

{φ̂k}Nk=1. Thus, N samples or points are needed to represent the state estimate of

a noisy sequence {φk}Nk=1. However, the ground truth that the AEKF is training

on is a smooth function. The question then arises whether we can represent this

ground truth function with a set of parameters {αi}Pi=1, where P is less thanN . One

possible answer to this question is to use Hilbert Space representations of functions

from Section 3.1.
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Given the orthonormal basis functions {ϕi}∞i=1 discussed in 3.1, if a neutral net-

work can be trained to learn αi for i = {1, 2, . . . , P} for P < ∞, then each φ̂k in

{φ̂k}Nk=1 would no longer be a point-wise representation of the ground truth, but

a global representation. That is, an approximation of the actual functional form

of the ground truth is being learned, not simply a point-by-point estimate of it.

This is the idea behind the Hilbert Space Filter, an ongoing area of research whose

preliminary results we present here.

Note that while strictly speaking each element of {ϕi}∞i=1 is a function, since in

computation we sample each at a finite number of points, we use the bold vector

notation in this section. Furthermore, since we will be representing the vector φ̂ as

a linear combination of the orthonormal vectors in {ϕi}∞i=1, the bold vector notation

lends further intuition.

Since the sum in (77) contains a countably infinite number of terms, although

all the coefficients αi can not be computed in practice, the truncated version of (77)

can be shown to well-approximate f(x) by

∥∥∥∥∥f(x)−
P∑
i=1

αiϕi(x)

∥∥∥∥∥
2

2

< ε (154)

where ‖·‖2
2 = 〈·, ·〉 is the L2-norm in (80) and ε > 0. It is this truncated Hilbert Space

representation of a function we use in the Hilbert Space Filter. Although the state

estimation of the function families in Sections 4.2 through 4.4 can be conceptual-

ized as living in different regions of Hilbert Space, the actual coefficients {αi}Pi=1

of the Hilbert Space representation of these functions was never explicitly learned

by a neural network. With the Hilbert Space Filter, we explicitly learn these coeffi-

cients representing the functional form of the state estimation.
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4.7.1 Test Protocol

Similarly to how the AEKF was trained with domain randomization, the Hilbert

Space Filter learns a mapping from noisy measurementsφk to φ̂k =
P∑
i=0

αkiϕi(x), us-

ing the same cost function (74) as the AEKF, where {αi}Pi=1 is the final output of the

neural network. However, in the AEKF and LSTM models each row of the input

φ represents a sample from the time series and the columns represent the number

of sensors or channels per sample. The Hilbert Space Filter is somewhat different

in that it is mapping a discrete sampling of a noisy function to a representation of

its ground truth, characterized uniquely by a small number of parameters {αi}Pi=1,

where P is much less than the discrete sampling.

In our experiments, each row of φ was a randomly generated truncated Tay-

lor Polynomial (as in Section 4.4) with added Gaussian noise also drawn from

N (0, 0.2). Each function defined by a row of φ was evaluated on 100 sampled

points in [−1, 1], thus the domain of each row in φ is defined as x ∈ R100×1. With

128 randomly generated functions per epoch, the input to the Hilbert Space Filter

was φ ∈ R128×100. The network consisted of an input layer, two hidden layers, and

an output layer, with each mapping between layers consisting of a composition of

an affine transformation and a leaky ReLU [37] activation function. It was trained

for 100,000 epochs with a learning rate of 10−3. Representing the mapping of the

entire network as φ̂, we express the function learned by the Hilbert Space Filter as

φ̂ , α ◦H2 ◦H2 ◦ φ(x) (155)

where Hi is the ith hidden layer and α the output layer that produces the coef-

ficients {αi}Pi=1 in (154) for each row in φ. For the corresponding orthonormal
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Figure 29: Sample plot of Hilbert Space Filter state estimation. Not only is the
state estimate in this figure smoother than the AEKF estimate in Figure 24, but
only five coefficients were learned to represent the entire estimate here. This is in
contrast to learning a point-wise estimate for each sample in the case of the AEKF
and AEIMMKF.

basis functions, {ϕi}Pi=1, we chose the Legendre Polynomials. Evaluating each

{ϕi}Pi=1 on x defined above we get the final Hilbert Space Filter approximation

of the ground truth

φ̂ =
P∑
i=0

αiϕi(x) (156)

where the network is trained against the ground truth via (74).

4.7.2 Results

Although this work is in the preliminary stages, in Figure 29 we present an early

result which shows the state estimate, φ̂, is a smooth function that closely matches

the actual ground truth in the presence of Gaussian noise. This is in contrast to

the AEKF’s point-wise estimation of the true state. Furthermore, only five coeffi-

cients, {αi}5
i=1, were learned by the neural network for each function in φ. These
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early results indicate that even with significant truncation of (77), accurate func-

tion representation can be achieved. However, when trained on Cauchy data, the

Hilbert Space Filter does not perform well, as it is misled by periodic outlier data

points. We claim this results from the fact that, unlike the Kalman Filter, there is no

equivalent to {Rk}Nk=1, which scales the innovation inversely to the eigenvalues of

{Rk}Nk=1, in the Hilbert Space Filter. One possible approach to this issue is a merger

of the Hilbert Space Filter and Kalman Filter. In this scenario, the Kalman Filter’s

dynamical model would be replaced, or supplemented, by the Hilbert Space Filter,

while the Kalman Filter itself would “weight” measurements based upon {Rk}Nk=1.

4.7.3 Summary

Although not fully developed, we believe working out the details of the Hilbert

Space Filter and its potential to improve state estimation is an important next step

in extending the research presented in this dissertation.
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5 Future Work

5.1 Algorithms

5.1.1 Sequence Length for Autoencoder-Kalman Filter

Although the “blips” in Section 4.2 were never fully resolved, the fact the AEKF

outperformed both the Kalman Filter and LSTM indicate AEKF sequence length is

a worthwhile direction of future research.

5.1.2 Learning the Kalman Filter’s Dynamical Model

In the AEKF, only parameters related to the measurement process, {zk}Nk=1 and

{Rk}Nk=1, were learned. The reason for restricting ourselves to only these two pa-

rameters was based upon the assumption the encoder and decoder portions of the

AEKF would learn a mapping of the input measurements {φk}Nk=1 that was suit-

able for the Kalman Filter’s given dynamical model. However, the success of the

AEIMMKF demonstrates the use of multiple dynamical models improves state es-

timation. Thus, an extension of this research is to also learn the sequences {Fk}Nk=1,

{Qk}Nk=1, and {Hk}Nk=1 in the AEKF and AEIMMKF. In the case of the AEIMMKF,

each of the M Kalman Filters would learn a unique {Fk}Nk=1 and {Qk}Nk=1, and pos-

sibly {Hk}Nk=1.

5.1.3 Deep Interacting Multiple Model Kalman Filter

Building on the above, we identify three possible areas where deep learning can

potentially be leveraged in the IMMKF, resulting in a deep IMMKF. These three

potential avenues for further research are:
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1. The four probabilities in (30), (31), (35), and (46) could be replaced by a com-

position of affine and sigmoid functions as in (51).

2. The linear combinations in (36), (37), (47), and (48) could similarly be re-

placed by a composition of affine transformations and non-linear activation

functions.

3. The Gaussian PDF in (39) could be replaced by a function learned by a neural

network, constrained to have the properties of a PDF.

5.1.4 Domain Randomization and Covering

Given the success of domain randomization with the AEKF, further exploration

of this technique is an important direction of future research. First, our work on

domain randomization sampled parameters uniformly in their parameter range.

However, Active Domain Randomization [41] learns a parameter sampling strat-

egy and shows improvement over simply sampling uniformly over a parameter

range. To this end, research into alternatives to uniform sampling with domain

randomization is an area of future investigation.

A second question is to ask how well either a random sampling or a fixed dis-

cretization of a parameter space is sufficient for generalization. For example, in our

experiments herein we trained the AEKF for a fixed number of epochs, finding a

balance between generalization error and runtime, where too few epochs leads to

poor model generalization and too many leads to long training times. To perform

a systematic analysis of the number of training epochs needed for a given prob-

lem, test set generalization would need to be compared against a range of training

epoch sizes. Furthermore, the approach we used was to uniformly sample param-

eters within a predefined range. For example, if using domain randomization to
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learn parameters {αk}Nk=1

f(x) =
N∑
k=1

αkx
k (157)

where each αi is assumed to be in [a, b], at each training epoch a value for each

entry in the sequence {αk}Nk=1 was uniformly sampled between [a, b]. When the

number of epochs or equivalently random parameter samples is large enough, it is

presumed the space of functions represented by (157) is well covered by the trained

model. Ultimately, this is determined based upon test set generalization. Another

approach would be to discretize the domain being trained over and each epoch

randomly select one point from this discretization. That is, for each αk in {αk}Nk=1,

partition [a, b] into M equally spaced intervals, where each interval has length

ε =
b− a
M

(158)

resulting in M + 1 points defined at the interval boundaries and given by

pk =
(
a, a+ ε, a+ 2ε, . . . , a+ (M -1)ε, b

)
(159)

where each entry in pk is a possible value of αk for k = {1, 2, . . . , N}. The Cartesian

product formed by

p1 × p2 × · · · × pN (160)

then forms a discretization grid of the space RN , where each element randomly

sampled from this space is a unique {αk}Nk=1 ∈ RN used to fit the function in (157).

In terms of generalization, the question then becomes how large must M be to

achieve a given generalization error.
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5.1.5 Comparing Function Families with Domain Randomization

Investigation into how well models trained on one class of functions (e.g. trun-

cated Legendre Polynomials) generalize when evaluated on a different class of

functions (e.g. truncated Taylor Polynomials) is a future direction of research.

5.1.6 Extending the Theoretical Understanding of the AEKF

Building on the theoretical and experimental results in Section 4.5, which demon-

strate “what” the AEKF is learning, a next step would be to understand “how” the

encoder is accomplishing this. Specifically, it is important to understand the in-

verse relationship between ρ(S−1
k ) and ‖z̃k‖2. This addresses a more general ques-

tion related to the theoretical foundations of deep learning. An initial approach

would be to understand how an AEKF with linear transformations between layers

learns this inverse relationship. If successful, it may be possible to extend the in-

vestigation to affine transformations and non-linear activation functions. Further-

more, given the above discussion on Hilbert Space representations of functions,

it may prove useful to ask if neural networks can be modeled as linear operators

in Hilbert Space. Given the well-established theory of linear operators on Hilbert

Spaces, insight may be gained from this approach.

5.1.7 Hilbert Space Filter

Given the preliminary results in Section 4.7 further investigation into the state es-

timation capabilities of the Hilbert Space Filter is a promising direction of future

research. As mentioned in Section 4.7, a combination of the Hilbert Space Filter and

something analogous to the measurement noise covariance matrix in the Kalman

Filter may allow the Hilbert Space Filter to perform well in the presence of outliers.
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5.2 Applications

5.2.1 Outlier Detection

The results in 4.5 indicate the AEKF learns a sequence {Rk}Nk=1 such that the largest

eigenvalues of each Rk has an inverse relationship to the `2 norm of the innovation

(6) given by ρ(S−1
k ) ∝ ‖z̃k‖β2 where β < 0. Given this, the AEKF is an excellent

candidate to identify outliers in {zk}Nk=1 by the eigenvalues of the corresponding

covariance matrix {Rk}Nk=1. For a dataset with labeled outliers, after training the

AEKF with domain randomization, the optimal threshold, based on the eigenval-

ues of {Rk}Nk=1, for considering a point an outlier can be learned from a training

set and then evaluated on a testing set.

5.2.2 State Estimation and Association with Air Traffic Control Radar Data

Given the performance of the AEIMMKF on simulated flight data with constant

turns, a next step would be to train an AEIMMKF in simulation and test on actual

ATC flight data. While this experiment was considered in the above experiments,

ultimately the difficulty of finding radar datasets with “ground truth” proved dif-

ficult. With real-world datasets, what constitutes “ground truth” is the fact one

measurement is more reliable than another as there is no analytical ground truth

as with domain randomization. For example, we considered the MANV dataset

[56], a marine radar dataset from the German Aerospace Centre. For our purposes,

what constituted the ground truth in the MANV dataset deviated significantly

enough from radar measurements that using it for an estimate of the true state

was problematic. Furthermore, the radar measurements for the multiple targets in

the MANV dataset were not associated [9]. That is, the radar measurements for tar-

get 1 and target 2 were not labeled as such. This leads to another future extension
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of the AEKF/AEIMMKF, where deep learning is leveraged to assist with solving

the association problem. One possible source of real-world data is The Open Sky

Network [1], which is a Swiss non-profit organization that provides open access,

real-world air traffic data.
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6 Conclusion

The primary algorithmic contribution of this dissertation is a novel deep learning-

Kalman Filter hybrid algorithm, the Autoencoder-Kalman Filter (AEKF). Leverag-

ing the well-known mathematical foundation of the Kalman Filter and the com-

putational power of an autoencoder, we demonstrated that the AEKF outperforms

a standard Kalman Filter and Long Short-Term Memory (LSTM) recurrent neural

network on a variety of state estimation tasks. In the larger picture, the AEKF is

envisioned as an integral part of a generalized state estimation system, which is

robust to a variety of function and noise types. A major component of this gen-

eralized state estimation system was the use of domain randomization informed

by the function representation properties of Hilbert Spaces. Paralleling the tradi-

tional use of domain randomization as modeling physical parameters, via domain

randomization we trained the AEKF to perform state estimation on a variety of

function families, which can be conceptualized as living in different subspaces of

a Hilbert Space.

The most important design choice with the AEKF was to have the autoencoder

portion of the AEKF learn a sequence of measurement noise covariance matrices

{Rk}Nk=1. In addition to allowing the AEKF to achieve better state estimation than

with a single fixed R for k = {1, 2, . . . , N}, this design decision allowed for the

derivation a theorem that provided an upper bound on the AEKF’s scaling of out-

lier measurements in terms of matrix eigenvalues learned by the AEKF. Thus, in

addition to providing insight into how the AEKF is learning to mitigate the influ-

ence of outliers, the results of this theorem provide a metric by which to measure

whether the AEKF is performing properly or not. This, in turn, informs the design

of the AEKF’s neural network components.
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In terms of applications, we first applied a standard Kalman Filter to the fea-

ture engineering of chemical sensor time series response data. Most importantly,

in the context of early detection of chemical agents, we demonstrated that classi-

fication on datasets preprocessed by the Kalman Filter achieved better chemical

discrimination than unfiltered datasets. Building on this success, the AEKF was

applied to a variety of function families in noise regimes where the Kalman Filter

was known to be suboptimal. First, three AEKF models were trained to filter ex-

ponential, sigmoidal, and sinusoidal curves with added Gaussian, bimodal, and

Cauchy noise. Moving towards a higher level of generalization, we next trained a

single AEKF to filter all three of these function families on the same noise types.

Lastly, at the highest level of generalization, we trained a single AEKF to filter

truncated Taylor Polynomials with the same added noise types. Our final applica-

tion was an extension of the AEKF, the Autoencoder-Interacting Multiple Model

Kalman Filter (AEIMMKF), applied to simulated target tracking problems. In all

the above tests, the AEKF and AEIMMKF outperformed both a standard Kalman

Filter and an LSTM in the majority of our experiments. In particular, the AEKF

and AEIMMKF consistently demonstrated superior outlier mitigation capabilities

in state estimation problems with Cauchy noise.

Future work related to algorithm development consists of allowing the AEKF

to learn other Kalman Filter parameters, such as the first derivative of the trans-

formed measurements ẑk and the Kalman Filter’s dynamical model Fk. Building

on the design philosophy of the AEKF, utilizing the power of deep learning to learn

parameters of the Interacting Multiple Model Kalman Filter is a viable direction of

research. Other promising areas of research include exploring the limits of and

formalizing the understanding of domain randomization, furthering the theoreti-
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cal understanding of the Kalman Filter, and building upon the preliminary results

of the Hilbert Space Filter in Section 4.7. In terms of applications, given its superior

outlier mitigation performance, the AEKF is an excellent candidate for application

to anomaly detection problems. Based upon the success of the AEIMMKF in simu-

lated tracking problems, the application of the AEIMMKF to real-world air traffic

control datasets holds significant promise.
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A Appendices

A.1 Derivation of Kalman Filter as the BLMVE

This derivation follows that presented in [3] while filling in some of the mathemat-

ical details.

We begin by showing the general conditions of an affine minimum variance

estimator with quadratic loss. This result, combined with the model contained in

(2) and (3), is then shown to result in the Kalman Filter. Recall from section 2.1.1

that all we need to assume is x and z vary for the same underlying reasons, i.e. they

are functions of events in the same sample space. Assuming there is some non-zero

covariance between them, the goal of the Kalman Filter is to use the observations

z to estimate the unknown state x.

Given random vectors x and z with means x̄ and z̄ and covariances

Cov
(
x,x

)
= Σxx

Cov
(
x, z
)

= Σxz

Cov
(
z,x
)

= Σzx

Cov
(
z, z
)

= Σzz

the best linear minimum variance estimator of x given z is

x̂ = x̄ + (Σxz(Σzz)−1)(z− z̄) (161)

Proof. The terms best linear minimum variance estimator tell us that the estimator, x̂,

is going to be an linear (technically affine as mentioned in Section 2.1.2) function of

the observations z and be quantified by minimizing the variance. More specifically,
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given an estimator

x̂ = Az + b (162)

where A is a matrix and b is a vector, the goal is then to solve

arg min
A,b

E
[
‖x−Az− b‖2 ] (163)

where all vector norms ‖·‖ in this section are the `2-norm. We begin by defining

the term inside the norm in (163) as S = x−Az− b and proceed to determine the

mean and variance of S. The mean is

Sµ = x̄−Az̄− b (164)

Computing the variance we get

Sσ = E
[
(x−Az− b− x̄ + Az̄ + b)(x−Az− b− x̄ + Az̄ + b)

T]
(165)

= E
[(

(x− x̄)−A(z− z̄)
)(

(x− x̄)−A(z− z̄)
)T]

(166)

= Σxx −ΣxzA
T −AΣzx + AΣzzA

T

(167)

where (167) results from expanding (166) and applying the linearity of the expec-

tation operator. Next we show a simple result that follows from the linearity of the

trace and expectation operators and the definition of covariance. Given vectors α

and β, the covariance of α and β is defined as

Cov
(
α,β

)
= E

[
αβ

T]− E
[
α
]
E
[
β

T]
(168)

Applying the trace operator to both sides of (168) and using the linearity of the
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trance and expectation operators

tr(Cov
(
α,β

)
) = tr(E

[
αβ

T]
)− tr(E

[
α
]
E
[
β

T]
) (169)

= E
[
|〈α,β〉|

]
− tr(E

[
α
]
E
[
β

T]
) (170)

If α = β, rearranging terms we get

E
[
‖α‖2 ] = tr(Var

[
α
]
) + tr(E

[
α
]
E
[
α

T]
) (171)

We are now in a position to determine A and b. Applying (171) to the expectation

in (163) and writing S = x−Ax− b

E
[
‖S‖2 ] = tr(Var

[
S
]
) + tr(E

[
S
]
E
[
S

T]
) (172)

= tr(Sσ) + tr(SµS
T

µ) (173)

= tr(Σxx −ΣxzA
T −AΣzx + AΣzzA

T

) + ‖x̄−Az̄− b‖2 (174)

At this point we apply a “trick” by adding and subtracting Σxz(Σzz)−1Σzx to the

trace term in (174).

E
[
‖S‖2 ] = tr(Σxx −ΣxzA

T −AΣzx + AΣzzA
T

+ Σxz(Σzz)−1Σzx −Σxz(Σzz)−1Σzx)+

‖x̄−Az̄− b‖2 (175)

= tr(Σxx −Σxz(Σzz)−1Σzx)+

tr(AΣzzA
T −ΣxzA

T −AΣzx + Σxz(Σzz)−1Σzx) + ‖x̄−Az̄− b‖2

(176)

= tr(Σxx −Σxz(Σzz)−1Σzx)+

tr((A−Σxz(Σzz)−1)Σzz(A
T − (Σzz)−1Σzx)) + ‖x̄−Az̄− b‖2 (177)
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where we assume (Σzz)−1 exists. Additionally, we use the fact Σxz = (Σzx)
T . The

reason for the above “trick” was to isolate terms involving A and b. From this we

see (177) is minimized when

A = Σxz(Σzz)−1 (178)

b = x̄−Az̄ (179)

Thus S is given by

S = x− (Σxz(Σzz)−1)z− x̄−Az̄ (180)

= x−
[
(Σxz(Σzz)−1)(z− z̄) + x̄

]
(181)

and the linear minimum variance estimator of x is

x̂ = x̄ + (Σxz(Σzz)−1)(z− z̄) (182)

Up to this point nothing specific to the Kalman Filter has been used. Now we

consider the form (182) takes when the linear model in (2) and (3) is assumed.

Additionally we assume x0 has mean and covariance x̄0 and P0 respectively and

{wk}Nk=1 and {vk}Nk=1 are zero-mean white processes with covariance {Qk}Nk=1 and

{Rk}Nk=1 respectively, for all k ≥ 0. Further, we assume x0 is independent of both

{wk}Nk=1 and {vk}Nk=1.

Next we compute the covariances in (182), where we introduce the superscript

k to account for the index and the variables xk are now the values taken by the
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estimator x at time k.

Σxx
k = E

[
(xk − x̄k)(xk − x̄k)

T]
(183)

= E
[
(Fkxk-1 + wk − Fkx̄k-1)(Fkxk-1 + wk − Fkx̄k-1)

T]
(184)

= E
[(

Fk(xk-1 − x̄k-1) + wk

)(
Fk(xk-1 − x̄k-1) + wk

)T]
(185)

= E
[
Fk(xk-1 − x̄k-1)(xk-1 − x̄k-1)

T

F
T

k

]
+ E

[
Fk(xk-1 − x̄k-1)w

T

k

]
+

E
[
wk(xk-1 − x̄k-1)

T

F
T

k

]
+ E

[
wkw

T

k

]
(186)

= FkE
[
(xk-1 − x̄k-1)(xk-1 − x̄k-1)

T]
F

T

k + Qk (187)

= FkΣ
xx
k-1F

T

k + Qk (188)

where the cross terms in (186) are zero due to the independence assumptions men-

tioned above. Applying the definition of covariance from (168) to the cross terms

E
[
Fk(xk-1 − x̄k-1)w

T

k

]
= FkE

[
xk-1w

T

k

]
− FkE

[
x̄k-1w

T

k

]
(189)

= FkE
[
xk-1w

T

k

]
− Fkx̄k-1E

[
w

T

k

]
(190)

= FkE
[
xk-1w

T

k

]
(191)

where all terms involving E
[
w

T

k

]
are zero. (191) is zero as follows. From (2) we

have the following

xk = Fkxk-1 + wk (192)

xk-1 = Fk-1xk-2 + wk-1 (193)
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Substituting (193) into (192)

xk = Fk(Fk-1xk-2 + wk-1) + wk (194)

= FkFk-1xk-2 + Fkwk-1 + wk (195)

If we define

Γk,n = FkFk−1 · · ·Fn+1 (196)

where n ≤ k and Γl,l = I we can express (195) as

xk = Γk,k-2xk-2 + Γk,k-1wk-1 + Γk,kwk (197)

= Γk,k-2xk-2 +
k∑

l=k-1

Γk,lwl (198)

Continuing the recursion to x0 corresponds to n = 0 in (196) and we get

xk = Γk,0x0 +
k∑
l=1

Γk,lwl (199)

Writing xk-1 in terms of (199) and substituting this into (191)

E
[
Fk(xk-1 − x̄k-1)w

T

k

]
= FkE

[
xk-1w

T

k

]
(200)

= FkE
[(

Γk-1,0x0 +
k-1∑
l=1

Γk-1,lwl

)
w

T

k

]
(201)

= FkΓk-1,0E
[
x0w

T

k

]
+ Fk

k-1∑
l=1

Γk-1,lE
[
wlw

T

k

]
(202)

Since x0 and {wk}Nk=1 are assumed independent, from the definition of covari-

ance and the zero-mean assumption on {wk}Nk=1, the first term in (202) is zero.
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Additionally, since we also assume {wk}Nk=1 is a zero-mean white process and

Cov
(
wl,wk

)
= 0 for l 6= k, using the definition of covariance and noting the sum-

mation index is l < k, each expectation in the right hand sum is zero. Furthermore,

in (186) we get Var
[
wk

]
= E

[
wkw

T

k

]
= Qk from the definition of covariance and

the fact {wk}Nk=1 is zero-mean and white. From this we see that

Σxx
k = FkΣ

xx
k-1F

T

k + Qk (203)

which gives us an iterative technique which allows for the recursive calculation of

Σxx
k for k > 0 given Σxx

0 . Applying the same procedure to Σzz
k

Σzz
k = E

[
(zk − z̄k)(zk − z̄k)

T]
(204)

= E
[
(Hkxk + vk −Hkx̄k)(Hkxk + vk −Hkx̄k)

T]
(205)

= E
[(

Hk(xk − x̄k) + vk
)(

Hk(xk − x̄k) + vk
)T]

(206)

= E
[
Hk(xk − x̄k)(xk − x̄k)

T

H
T

k

]
+ E

[
Hk(xk − x̄k)v

T

k

]
+

E
[
vk(xk − x̄k)

T

H
T

k

]
+ E

[
vkv

T

k

]
(207)

= HkE
[
(xk − x̄k)(xk − x̄k)

T]
H

T

k + Rk (208)

= HkΣ
xx
k H

T

k + Rk (209)

where the cross terms are derived in the same manner as in the case of Σxx
k , with

Hk replacing Fk and vk replacing wk. Since {vk}Nk=1 shares the same independence

and whiteness assumptions as {wk}Nk=1 the result follows. Similarly, Var
[
vk
]

=

E
[
vkv

T

k

]
= Rk Thus,

Σzz
k = HkΣ

xx
k H

T

k + Rk (210)
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Lastly we determine Σxz
k

Σxz
k = E

[
(xk − x̄k)(zk − z̄k)

T]
(211)

= E
[
(xk − x̄k)(Hkxk −Hkx̄k)

T]
(212)

= E
[
(xk − x̄k)(xk − x̄k)

T]
H

T

k (213)

recognizing the expectation in (213) as Σxx
k gives

Σxz
k = Σxx

k H
T

k (214)

Writing (161) with an added subscript k

x̂k = x̄k + (Σxz
k (Σzz

k )−1)(zk − z̄k) (215)

we can get expressions for x̄k and z̄k from (2) and (3)

x̄k = Fkx̄k-1 (216)

z̄k = Hkx̄k (217)

from (203), (210), and (214) we have expressions for the covariance matrices. If we

identify (203) with the a priori estimate covariance Pk|k-1, (210) with the innovation

covariance Sk, and substitute (216) and (217) we can write (215) as

x̂k = Fkx̄k-1 + (Pk|k-1H
T

kS
−1
k )(zk −Hkx̄k) (218)

Lastly, if we identity x̄k and x̄k-1 in (216) with the a priori estimate at time k and the
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a posteriori estimate at time k-1 respectively we can rewrite (218) as

x̂k|k = x̂k|k-1 + (Pk|k-1H
T

kS
−1
k )(zk −Hkx̂k|k-1) (219)

which we see is the Kalman Filter’s a posteriori state estimate in (9). Given an

initial state estimate x0 and initial covariance P0, where we define x̂1|0 = F1x0 and

P1|0 = F1P0F
T

1 +Q1, substituting these into (219) and iterating for k > 0 we get the

Kalman Filter’s recursive a posteriori state estimation.

A similar process for calculating the covariances above is used to determine the

a posteriori covariance.

Pk|k = E
[
(xk − x̂k|k)(xk − x̂k|k)

T]
(220)

= E
[
(xk − x̂k|k-1 −Kkz̃k)(xk − x̂k|k-1 −Kkz̃k)

T]
(221)

= E
[
(xk − x̂k|k-1)(xk − x̂k|k-1)

T]− E
[
Kkz̃k(xk − x̂k|k-1)

T]−
E
[
(xk − x̂k|k-1)z̃

T

kK
T

k

]
+ E

[
Kkz̃kz̃

T

kK
T

k

]
(222)

= Pk|k-1 −KkHkP
T

k|k-1 −Pk|k-1H
T

kK
T

k + KkSkK
T

k (223)

= (I−KkHk)P
T

k|k-1 −Pk|k-1H
T

kKk + Pk|k-1H
T

kS
−1
k SkK

T

k (224)

= (I−KkHk)P
T

k|k-1 −Pk|k-1H
T

kKk + Pk|k-1H
T

kK
T

k (225)

= (I−KkHk)Pk|k-1 (226)

where we used the fact Pk|k-1 = P
T

k|k-1 and Kk = Pk|k-1H
T

kS
−1
k
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