Modeling Maritime Radar Scattering

WPI Major Qualifying Project

Matthew Allen – ECE

Allen Blaylock – ECE

Benjamin Davidson – ECE

Group 105 9/1/2015

MIT LL Advisor: Dennis Blejer WPI Advisor: Edward Clancy

This work is sponsored under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

- Introduction
- Ocean Scattering Simulation
 - 1-D Model
 - 2-D Model
- Phased Array Radar Simulation
- Parallelization
- Graphical User Interface
- Future Work

Introduction

- Small boats and semisubmersible boats are being used by drug-runners, smugglers, and pirates
- Small boats loaded with explosives present a threat to the security of our naval forces
- The first step to counter these threats is detection
- Currently, lack of data and understanding inhibits detection

Semi-Submersible Sub

USS Cole

- Introduction
- Ocean Scattering Simulation
 - 1-D Model
 - 2-D Model
- Phased Array Radar Simulation
- Parallelization
- Graphical User Interface
- Future Work

- Single fixed antenna
 Time Delay→ Range
- Determine range and velocity

 Frequency Shift→ Velocity information of boats and ocean surface

http://www.radartutorial.eu/01.basics/rb05.en.html

- Waves created by wind blowing over the ocean surface
- Modeled ocean surface height
 - Spectral composition based on wind speed (Pierson-Moskowitz spectra)
 - Significant wave height based on wind speed (Beaufort scale)

Ocean Radar Return:

Wind Speed = 13 knots, VV polarization

Range Doppler Map

UNCLASSIFIED

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

- Introduction
- Ocean Scattering Simulation
 - 1-D Model
 - 2-D Model
- Phased Array Radar Simulation
- Parallelization
- Graphical User Interface
- Future Work

Quasi-Two-Dimensional Ocean

- Boat modeled as a simple point target on the ocean
- Wake modeled as Kelvin wake
 - Cusp wave crests
 - Gives strongest radar returns
 - Amplitude decay

http://www.goshen.edu/physix/204/gco/2slit.php

Range-Doppler of Boat and Cusp Waves

Allen, Blaylock, and Davidson - 12 9/1/2015

UNCLASSIFIED

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

2-D Ocean Scattering Simulation

RTI and RDP for a Boat With Wake on the Ocean

- Introduction
- Ocean Scattering Simulation
 - 1-D Model
 - 2-D Model
- Phased Array Radar Simulation
- Parallelization
- Graphical User Interface
- Future Work

Background: Phased Array Radar

- RF signals sent at <u>given scan</u> <u>angles</u> and return with time delay and Doppler shift
- Determine range, velocity, <u>and</u> <u>angle</u> information of boats and ocean waves

http://sitelife.aviationweek.com/ver1.0/Content/images/store/13/7/7d634054-f899-41a1-b7ca-552c8df19915.Full.jpg

Allen, Blaylock, and Davidson - 16 9/1/2015

UNCLASSIFIED

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Phased Array Range Intensity Profile

Actual distance from phased array, t=0s

Allen, Blaylock, and Davidson - 17 9/1/2015

- Introduction
- Ocean Scattering Simulation
 - 1-D Model
 - 2-D Model
- Phased Array Radar Simulation
- Parallelization
- Graphical User Interface
- Future Work

Processing and Computation

Radar model contains trillions of computations for each second of data

Solution:

- Algorithmic Efficiency
 - Simplifying equations (assumptions)
 - Use of more efficient functions or processes
- Parallelization
 - pMATLAB
 - Multiple cores
 - LLGrid

Saving Ocean... Ocean Saved. Total Time: 99.45 Ocean Done. Elapsed time is 99.607038 seconds. Starting Range Time Intensity Processing... 03-Oct-2012 15:51:46 Loading Ocean Data Complete... Node job size: 673 Saving Data... Data Saved. RTIP Done. Elapsed time is 8980.005715 seconds. Loading RTI Data... RTI Data Loaded.

Parallelization

- Algorithm highly parallelizable, Speedups of up to 60x
- Scales to compute clusters e.g. LLGrid

- Introduction
- Ocean Scattering Simulation
 - 1-D Model
 - 2-D Model
- Phased Array Radar Simulation
- Parallelization
- Graphical User Interface
- Future Work

Graphical User Interface

- User selected model
 - 1-D ocean
 - Quasi-2-D ocean
 - Single antenna radar
 - Target generation
- Input parameters
 - Radar
 - Ocean
 - Target & wake
- Input parameter validation

mergedModel2D Ocean Parameters Select Windspeeds Ocean Propagation Direction 13 Knots upsea 13 Knots Variance and Smoothing 18.5 Knots None Y Smoothing Intervals 1000 X Smoothing Intervals 0cean Length (m) 10 Variance as Fraction of SWH 1000 (x , y)	Radar Parameters Center Frequency (MHz) Select PRF or AFMV 10e3 PRF Bandwidth (MHz) Polarization 100 Vertical Grazing Angle (degrees) 2 5 Range Processing Window Plot RTI
Ocean Propagation Direction upsea Select Windspeeds Variance and Smoothing 13 Knots 24 Knots Variance and Smoothing 18.5 Knots 5 Radar Offset (m) Y Smoothing Intervals 5 1000 X Smoothing Intervals 10 Ocean Length (m) Variance as Fraction of SWH 100 1000 x 1000 (x , y) 0.333 Spatial Ocean Sampling (m) 1 x 10 (x , y) 1 x 10 (x , y) 100 Select Plot None Immorphic Normal (No) CPUs Available Locally: 8 Local Memory Available: 11.7 GB Number of CPUs 8 Immorphic St.46 GB	Center Frequency (MHz) Select PRF or AFMV 10e3 PRF 1000 Bandwidth (MHz) Polarization 100 Vertical Image: Constraint of the second

Graphical User Interface

MergedModel2D	
 Use Ocean Parameters Ocean Propagation Direction Upsea I 3 Knots I 4 Knots I 8.5 Knots I 8.5 Knots Y Smoothing Intervals S Smoothing Intervals Smoothing Intervals Smoothing Intervals Ocean Length (m) Variance as Fraction of SWH Ocean Length (m) Variance as Fraction of SWH Ocean Length (m) Inopi Inopi T Compute Options Compute Options Compute Method CPUs Available Locally: 8 Local Memory Tota: 16 GB Local Memory Needed: 54.6 GB Number of CPUs Number of CPUs	Radar Parameters Center Frequency (MHz) Select PRF or AFMV 10e3 PRF 1000 Bandwidth (MHz) Polarization 100 Vertical Image: Constraint of the second seco

- Introduction
- Ocean Scattering Simulation
 - 1-D Model
 - 2-D Model
- Phased Array Radar Simulation
- Parallelization
- Graphical User Interface
- Future Work

- Improve Doppler estimation
- Implement phased array model
- Fluctuating target cross section (Swerling model)
- True 2-D ocean model
- Graphics core parallel processing

- Thank you to everyone that has helped our team progress with this project.
 - Dennis Blejer, Lincoln Laboratory Advisor
 - Edward Clancy, WPI Project Advisor
 - Emily Anesta & Seth Hunter, LL-WPI Coordinators
 - Jennifer Watson, Lincoln Laboratory Assistant Group Leader
 - Loretta Wesley, LL Secretary
 - Byun Chansup, LL Grid Support
 - Scott Ehrlich, Computer Hardware and IT Support

- Introduction
- 1-D Ocean Scattering Simulation
 - Radar Processing
 - 1-D Ocean Model
 - Radar scattering
- 2-D Ocean Scattering Simulation
 - Quasi-2-D Ocean Model
 - Boat Wake Model
 - Radar scattering
- Phased Array Radar Simulation
- Parallelization
- Graphical User Interface
- Future Work