
 

 

Adversarial Strategic Games 

and Robotic Design 

A 
Major Qualifying Project 

submitted to the faculty of 

Worcester Polytechnic Institute 
in partial fulfillment of the requirements 

for the Degree of Bachelor of Science 

Submitted By: 

Griffin Tabor: Robotics Engineering 

Jonathan Berry: Robotics Engineering 

Evan Gilgenbach: Robotics Engineering and Computer Science 

Advised By: 

Kenneth Stafford: Robotics Engineering and Mechanical Engineering 

Carlo Pinciroli: Robotics Engineering and Computer Science 

 



 

Table of Contents 

1. Introduction 3 

2. Background 4 
2.1 - Literature Review / RoboCup 4 
2.2 - ROS (Robot Operating System) 5 
2.3 - LIDAR Sensors 6 
2.4 - Fisheye Camera 6 
2.5 - Q-Learning 7 
2.6 - Tensorflow 8 
2.7 - SLAM & Google Cartographer 10 
2.8 - Vex U Robotics Competition & WPI Robotics Club 11 
2.9 - Previous WPI Projects 12 

3. Project Goals 14 
3.1 - Statement of Work 14 

3.1.1 - Navigation 15 
3.1.2 - Localization 15 
3.1.3 - Object Detection 15 
3.1.4 - Strategic Planning 16 

3. Design & Results 17 
3.1 - Localization 17 
3.2 - Navigation 18 
3.3 - Object Detection 19 
3.4 - Strategic Planning 20 

4. Future Work 22 
4.1 - Full System Integration 22 
4.2 - Temporal world-state estimation 22 
4.3 - Visual odometry 22 
4.4 - Monte-Carlo tree search 22 

References 24 

Appendix 25 
A. Budget 25 
B. Code Listing 26 

2 



 

1. Introduction 

Great strides have been made in improving the decision making capabilities of robots in                           

unpredictable situations, but relatively little attention has been paid to the ability of robots                           

to reason about—and compete with—human and non-human opponents. Such systems                   

must collect and process data on the changing environment, anticipate actions of                       

opponents, and navigate in often cluttered environments. One example of adversarial                     

strategy in robotic design is found in competition robotics, which frequently feature the                         

complexities of multiple actors and difficult maneuvering requirements. However, many of                     

these competitions allow for human operation of robots for portions of matches, in an                           

attempt to limit the effects of challenges in robotic localization and strategic planning.                         

There is currently a great deal of potential for robot-only solutions to these challenges. 

In this report, we present prototypes and approaches for four different high-level tasks                         

applicable to small, fully autonomous robotics platforms competing in a college-level                     

extracurricular robotics competition. The goals of the project are real-time motion planning                       

and maneuvering, long-term localization, object detection and tracking in a cluttered                     

environment, and adversarial strategic planning. The MQP team worked in collaboration                     

with the WPI Vex team, with the aim to make the software capable of running on a range of                                     

possible robotic components, encouraging similar methods to be used on future robots. 
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2. Background 

2.1 - Literature Review / RoboCup 

The closest existing project to ours in scope is the RoboCup competition. This annual                           

competition attempts to improve the state of AI and robotics research through fully                         

autonomous soccer playing robots. Competing robots play a nearly standard game of                       

soccer in an adversarial environment, collaborating with other robots programmed by the                       

same team. Our specific challenge is most similar to the Medium Size league, which allows                             

customized robots, and does not have humanoid competitors. The robots entered in the                         

RoboCup competition are required to do the same object detection, path planning, and                         

adversarial strategic planning as the autonomous Vex project.  

 

Figure 1: A typical Medium Size division RoboCup competition. (RoboCup 2017) 
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2.2 - ROS (Robot Operating System) 

ROS is a collection of tools to create modular robotic control systems. It is a language                               

independent architecture which handles communication between nodes that each handle                   

a specific task, making code reuse simpler. ROS nodes also provide low-level device                         

abstraction, with nodes handling hardware interfacing collecting and sending relevant data                     

to processing nodes. ROS features a large number of existing packages intended for object                           

detection and robot navigation, such as the teb (time elastic band) navigation planner,                         

OpenCV, and Stereo Visual Odometry (SVO 2.0). Here the ROS Navigation stack, an example                           

of a collection of nodes communicating to perform a specific task. This modular design                           

means any robot design can run all the same navigation code and low level abstraction is                               

left to robot specific implementations. 

 

 

Figure 2: A diagram showing ROS nodes in the Navigation Stack. (ROS 2017) 
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2.3 - LIDAR Sensors 

LIDARs are a type of sensors that project light and measure the return light that bounces                               1

back off of a surface to determine an object's distance away. Various LIDARs use different                             

techniques such as time of flight measurements and intensity of returned signals to                         

calculate distance to object. Most traditional LIDARs spin so a single emitter/ receiver can                           

be used for measuring multiple directions. The angle of the emitter and the distance to the                               

object is combined to produce a point relative to the sensor. This simple class of LIDAR is                                 

known as 2D lidar as it only measures points in a plane orthogonal to the axis of rotation.                                   

Many applications however require a 3D point cloud of the environment so there are two                             

main techniques: the first is to mount multiple spinning emitters/receivers as to measure                         

multiple planes, the second is to take the 2D lidar and mount it on another axis of rotation                                   

so it always measures a different plane. The multiple emitters technique is extremely                         

expensive because of the duplicated components. The other technique of course sacrifices                       

its update rate because the sensor has to alternate which plane it is scanning. 

 

2.4 - Fisheye Camera 

A fisheye lense is a type of lense that bends light from a full 360 degree view into a                                     

standard camera view. Traditionally these cameras have 360 degree by 180 degree by 180                           

degree field of view and can see a full hemisphere. Many robotics systems use fisheye                             

cameras to get a large field of view with a lower number of cameras. A sample image from                                   

a 1080p fisheye camera pointing down can be seen on the next page. 

 

1LIDAR as an acronym is not well defined. We have found references to it in the literature for 

standing for ‘Light Imaging Detection And Ranging’, ‘LIght Detection and Ranging’, ‘Light Illuminated 

Detection And Ranging’, ‘Laser Illuminated Detection And Ranging’, and ‘Light RADAR’ where DAR was 

used as part of a word, rather as an acronym. 
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Figure 3: A view of the project’s environment using a fisheye camera. 

 

2.5 - Q-Learning 

Q-Learning is an approach to autonomous decision making that records the expected value 

of each state possible in a discrete state graph. While the Vex game is not a discrete state 

graph, we believe it can be modeled as such for the purposes of strategic decision, as is 

common in AI application. Q-Learning is an approach which takes a large dataset of game 

playthroughs and builds up a mapping from a (state, action) tuple to the expected value 

(the probability of winning the game if you take the given action in the state). 
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Figure 4: An illustration of the random walk (light grey), guided 

by the reflex agent (white) 

To generate a large dataset of game playthroughs, a common method is to create a reflex                               

agent, and used an epsilon random-walk method to take a “random” action with some                           

small probability. So, for example, at each state the computer would simulate the reflex                           

agent with probability 0.8, but simulate a random action instead with probability 0.2. This                           

allows you to build up a dataset covering a large part of the useful state space without                                 

spending an inordinate amount of time covering the entire state space. 

 

2.6 - Tensorflow 

Tensorflow is a neural network training framework optimized for deploying onto a GPU.                         

Neural networks work similarly to how a human brain functions. Tiny computation units                         

called neurons sum up a set of input neurons values multiplied by their weights. Stacks of                               

these neurons can be tuned to model more complex equations. Convolutional Neural                       

networks have consistently shown promise dealing with images. Networks take in images                       
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or pieces of images and a label of what is in the image and learns to label new images. The                                       

hard part of neural networks is designing the structure of neurons to train. A structure of                               

1000 layers of 1 neuron will certainly perform worse than a structure of 10 layers of 10                                 

neurons each even though it only has 100 neurons. TensorFlow released a set of structures                             

that they found to be ideal for object detection. The structures were trained on millions of                               

labeled images and can be used to initialize a network for any other image recognition                             

problem. Below is an example of the TensorFlow object detection API running on an image                             

at the beach after being trained on the COCO dataset. 

 

Figure 5: An example of Tensorflow-created labels superimposed on the processed 
image. (Huang et al. 2017) 
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2.7 - SLAM & Google Cartographer 

In robotics systems mapping and localization interact in a unique fashion. Given a perfect                           

understanding of what the world looks like and a way of perceiving the world, state of the                                 

art systems can determine every possible robot position that would get the same sensor                           

data. Given a perfect position in the world and a way of perceiving the world, state of the                                   

art systems can build a map of the world as it moves around. The idea of SLAM,                                 

simultaneous localization and mapping, is that a partial map and a guess of current                           

position can be used together to build a more accurate estimate of both. These systems log                               

the positions of various things as the robot moves around and use the estimated robot                             

position to plot the map in the world. The map it builds is then used with the the position                                     

guess to refine the position. Newer techniques even attempt to readjust all old generated                           

maps with corrected positions of the robot after it finds a location it has already seen.                               

Google recently released Cartographer a general use SLAM framework that focuses on                       

combining wheel odometry and 2D lidar scanners. It also has a few unique features, like                             

the ability to lock the map into a set configuration and only localize within it and the ability                                   

to load an old map from memory. Image below is an example of Google Cartographer                             

mapping a museum running off 2 lidars mounted on someone’s backpack as they walk                           

around. 
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Figure 6: A model of a building produced using LIDAR data and Google Cartographer. 

(Google Cartographer 2017) 

 

2.8 - Vex U Robotics Competition & WPI Robotics Club 

Vex Robotics is a educational robotics equipment company, which sells kits of equipment                         

intended for classroom use in middle and high schools. Vex Robotics also organizes the                           

annual Vex Robotics Competition, which has divisions for middle school, high school, and                         

collegiate participants. For the collegiate division, Vex U, games are played on a 12’x12’                           

field, with two opposing teams competing over the same set of scoring objects. Each match                             

features a 45 second autonomous period, followed by a 75 second teleoperation period,                         

for a total match length of two minutes. The 2017-2018 Vex U competition is named “In the                                 

Zone”, and features eighty 7 inch tall yellow plastic cones, which competitors must place on                             

their team’s goals. The goals are 10 inches tall, and are shaped to allow the cones to nest                                   

on top. The amount of resource contention, combined with the large number of objects on                             

the field at any given time, make path planning, object detection and real-time strategy a                             

significant challenge for an autonomous competitor. 
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2.9 - Previous WPI Projects 

For the 2016 Vex U competition the WPI Robotics Club, in an effort to bring real autonomy                                 

to a Vex competition, developed the first ever fully autonomous competition Vex robot. The                           

proof of concept was able to play the entire match for 2 minutes, which had been the goal                                   

of the project. One of our MQP members lead the team developing the robot. The Vex                               

game that year had a wall across the middle of the field, between the competing robots.                               

This completely negated direct interaction between robots, and vastly reduced the benefit                       

of adversarial planning. To simplify planning, the robot disregarded all data collected for                         

objects on the opponent's side of the wall. The strategy planned only a single object in the                                 

future, and was very greedy in its objectives, grabbing and scoring the closest to the robot                               

instead of going to a slightly farther grouping which could potentially be more strategic. All                             

localization was done using an Extended Kalman Filter merging together wheel encoders                       

and an IMU. Though this method offered decent accuracy for that application, the                         

localization was still entirely done using dead reckoning, by simply summing the past                         

motions to estimate position, and didn’t use the field surroundings at all. The robot was                             

subject to substantial drift if it ever ran into anything or moved in an unmeasurable way. All                                 

navigation and path planning was done on the small embedded board and limited to                           

simplistic paths produced using trigonometric distance calculations. Pathing around                 

obstacles was completely hardcoded and so conservative almost ⅔ of our side of the field                             

was considered to be unsafe to enter without a complex maneuver. For object detection,                           

the robot assumed every consistent grouping of lidar points was a scoring object, which                           

heavily relied on the rules of the 2016 competition keeping the opponent on the other side                               

of the wall. The detection system did try to distinguish between small objects and large                             

objects, but used exclusively the radius of the cluster of lidar points, and had no way of                                 

differentiating several small objects from a single large one. Through all of these                         

shortcomings the robot was successfully able to play the game for the length of a match,                               

but significant work was needed to improve the system to perform as well as even an                               

inexperienced human. 
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Figure 7: The WPI fully autonomous robot for the 2016 Vex Competition. 
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3. Project Goals 

3.1 - Statement of Work 

Project Goal  Quantity  Quantified Deliverable 

Navigate a cluttered 
environment 

Speed 
Within 20% of the time-optimal         
path as calculated by the TEB           
local planner. 

Accuracy 

The robot’s steady state error will           
be no more than half the           
allowable base front tip error         
(defined below) 

Long-Term Localization  Accuracy over time 

After 15 minutes, a maximum         
displacement of 3 inches radius         
measured from the front center         
edge of the robot. 

 Object Detection   Speed & Accuracy 

After driving the full length of the             
field, the system should have         
measured at least two data points           
for 80% of field objects and no             
false positives for objects with at           
least two false data points 

Strategic Planning 

Adaptability 

While executing a plan, the robot           
should be able to change its plan             
and adapt to a missing scoring           
object in under 3 seconds 

Throughput 
The robot should be able to           
recalculate the entire strategy       
within 15 seconds 
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3.1.1 - Navigation 

We expect our steady state error to be less than 3” due to the physical design of the robot                                     

and the design of the goal objects. Each cone is 6” in diameter, and the robot manipulator                                 

can be modeled as being at the center of the front edge of the robot. Therefore, if the                                   

robot is more than 3” in radius from the cone, it will be impossible for a manipulator to                                   

even make approximate contact. The manipulator compliance is expected to be lenient                       

enough to pick up the cone if it enters within this radius of the front edge center. This also                                     

specifies the allowed rotation: since the pose of the robot is defined as a rotation about the                                 

center, the maximum allowable rotation (assuming no lateral error) can be derived to be 14                             

degrees in either direction. 

3.1.2 - Localization 

Our localization goals are founded on the same principles as the navigation steady state                           

error goals. Given that the object manipulator must be accurate enough to pick up the                             

smallest goal object, we can never be allowed to drift farther than a three inch loci from the                                   

expected front edge center position. This is measured as drift over time rather than just                             

maximum allowable error to better model the possible inaccuracies in the system, and                         

ensure that in the 2 minutes of competition we will always be localized. 

3.1.3 - Object Detection 

The project goals for object detection come directly from the perception requirements of                         

the system. To be able to construct a strategic plan and pick up cones, we first need to                                   

create a map of the entire field including scoring objects. This requires precise sensing over                             

time. Predicating the measurement on traversing the entire field is due to the nature of                             

obstructed objects and the necessity of fusing multiple data points over time into a                           

coherent world-state. That is, requiring at least two data points for each object ensures the                             

possibility of associating multiple data points into one “object”. The requirement for a lack                           

of multiple objects for false positives is also a combined goal of the perception system (the                               
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specificity of the initial data-point detection) and the processing system (the specificity of its                           

ability to discard multiple “false” data points). 

3.1.4 - Strategic Planning 

The goal for speed of adaptability is to react to small changes in the plan while a step is                                     

being executed. Within 3 seconds of an opponent picking up a cone we are planning to get                                 

in the future we should have found the cheapest replacement cone to pick up instead. In a                                 

match we estimate it takes 3 seconds for a robot to drive and pick up a cone so we expect                                       

in the worst case cones disappear around our robot once every 3 seconds. 

The throughput goal for the robot is derived from the need to responsibility to high-level                             

strategic decision made by the opposing team. Over the course of the match, teams are                             

expected to score all 4 movable goals, and many of the scoring objects. Since the number                               

of goals is very limited, each goal scoring can be thought of as a major milestone in the                                   

strategic development of the game. Given that there are 4 goals in a 2 minute match, each                                 

goal should take on average 30 seconds to score. That means we should be able to re-plan                                 

twice during each “goal scoring period”—once for the initial plan and once to react to any                               

changes before you finish scoring the goal. This leads us to the expectation of 15 seconds                               

for a full creation of a strategic plan.   
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3. Design & Results 

3.1 - Localization 

Our final system design for the localization subsystem fused wheel encoder odometry with                         

LIDAR scan data. This was done by using the “scan matches” from Google Cartographer to                             

update the odometry base offset. The odometry estimated pose was then fed back into                           

Google Cartographer to use as a prediction for the laser scan matching. The configuration                           

for accomplishing this can be found in our project repo, with the majority residing in the                               

file turtlebot_urg_lidar_2d_localization.lua. 

 

Figure 8: The prototype localization system mapping a dorm room, before odometry 

The performance of this localization system was extremely successful for us—over                     

extended, 15 and 20 minute sessions we did not see any appreciable buildup of error over                               

time. This is attributable to the design of the SLAM system, which converges to zero over                               

time as confidence increases.  

One problem we encountered was that our use of wheel odometry as a “fast update”                             

system was somewhat ill-suited to the cluttered Vex field. While navigating, the robot would                           

often incidentally run over the corner of an obstacle or bump into a static wall, which would                                 
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cause localization errors for 3-5 seconds while Cartographer brought the offset back into                         

alignment. While our original design had incorporated the Semi-direct Visual Odometry                     

library (Forster et al. 2017), bugs in the implementation as provided prevented us from                           

using it in our final system. We believe that the successful integration of visual odometry                             

would provide a much more reliable source of short-term, “fast update” position estimation                         

then wheel encoders for future designs. 

3.2 - Navigation 

Our final navigation system uses the teb_local_planner software package (TEB, 2017),                     

combined with the stock ROS global_planner package. We implemented a custom node                       

in python (the executor), that translated high-level goals (“pick up goal 1”, “score goal”)                           

into concrete poses that were passed to the navigation stack. For populating the navigation                           

system we used another node that simultaneously passed polygonal obstacles to TEB and                         

costmap obstructions to the global planner. These obstacles were static, because the                       

navigation system was developed and tested independently of the object detection system. 

 

Figure 9: TEB-planned robot poses with overlaid obstacles 

One thing that we discovered during our implementation were the limitations of TEB as                           

local plan optimizer. Because it works in a fashion similar to hill-climbing, without a global                             
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planner it can occasionally get “stuck” in local cost minima, and be unable to find larger                               

optimizations. This is not a common behavior but it does happen when larger paths (8-12                             

feet) are combined with large obstacles. We mitigated this issue by improving the global                           

path planner and adding obstacles to the global costmap. 

The performance of the navigation system with respect to the fixed-plan navigation test                         

was accurate enough for our purposes—we consistently picked up and scored goals                       

without steady state error. The transient error of the navigation system (when navigating                         

from setpoint to setpoint) was accurate enough to navigate between the crowded field                         

corridors, but occasionally caused our wheels to run over cones, which would itself cause                           

odometry errors. While this affected our consistency slightly, it didn’t manifestly damage                       

our design goals, and we felt it was a desirable tradeoff for the speed required. Future                               

mechanical design could do a better job at shielding the wheels from game objects, like                             

many Vex robot designs do. 

While we did not manage to solve the full extent of the field-traversal problem mentioned                             

for larger paths (even with the global planner), we’re confident enough in the accuracy of                             

the other parts of our navigation that we think this is a viable approach. See the included                                 

video. 

3.3 - Object Detection 

Our final object detection system uses a customized version of the tensorflow                       

object_detection package, which provides base code for implementing a routine to                     

train object detectors. For collecting the data, we used the Vatic software project (Vondrick                           

2012) to provide a robust video-tagging solution that allowed the entire team to work on                             

the labeling problem simultaneously. We ended up with 4,848 labeled images and around                         

70,000 labels. Of the four-thousand labeled images, we were unfortunately only able to use                           

around 1,000 for our final detection system due to time constraints.  
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Figure 10: Examples of the trained object detection system 

Using cross validation on our training set, we achieved a mean average precision (mAP) of                             

0.9, which while satisfactory, does not adequately speak to the real-world performance of                         

the object detection system when running in real time on a mobile robot on novel data.                               

While we believe the object detection system presented here to be useful and realistic, we                             

ran into performance problems we did not have time to debug when implementing it on                             

the robot during the duration of the MQP. We believe these to be issues of configuration                               

mainly, but have not successfully proved that by the submission of this report. 

3.4 - Strategic Planning 

The design of our strategic planning system is based around a Q-Learning approach that                           

records the average win probabilities in a random walk of the state space, guided by a                               

reflex agent, as described in the background. We first built a discrete state simulator of the                               

Vex robotics game, which clustered the cones into discrete field tiles, and represented the                           

robots as agents occupying a full square and capable of moving 1 square in either                             

direction.  
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Figure 11: The simulated Vex game 

After creating the simulation, we simulated 100 million games using the random epsilon                         

method. However, we realized quickly that standard “greedy” Q-Learning, where you                     

choose the highest expected value of all your possible actions, often chose high-value but                           

uncertain actions, which made the efficacy of the system unpredictable and evaluations                       

very noisy. 

To compensate for this, we used a technique we                 

call “Confidence-interval Q-learning”. We       

compute a confidence interval for each Q value,               

and then use the lower bound of the confidence                 

interval when picking actions. In Figure 12, right,               

you can see the how the results of evaluating the                   

trained agent against the naive reflex agent             

change with respect to the amount of training.               

Confidence-interval Q policy (blue) converges towards an 80% win rate, while standard                       

Q-learning approaches a 75% win rate and then decreases. 
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4. Future Work 

4.1 - Full System Integration 

While we present prototypes and designs for what we believe to be the four major                             

components of an autonomous robotic competitor, we did not unfortunately have the                       

scope or time to completely integrate and test the entire robot as a whole. Although we                               

hope our evaluations match reality, it is well known that theory and reality rarely line up.                               

Accordingly, we expect that the scope of a project aiming to integrate these components                           

and compete in an actual Vex match would be another full MQP to address the challenges                               

and difficulties that arise during implementation. 

4.2 - Temporal world-state estimation 

One of our originals design ideas for the project was to have a world-state estimator, as 

proposed by Elfring et al. and implemented in the ros wire package. While we weren’t able 

to include it in this project, we believe that putting it after the object detection system will 

give much better reliability, and resiliency to errors. 

4.3 - Visual odometry 

As mentioned in Section 3.1, our original design incorporated Semi-direct Visual Odometry 

specialized to run on a co-processor attached to the robot. While unexpected bugs in the 

software  prevented us from using it for this MQP, we believe it would be of great use to 2

future MQPs looking for any type of odometry system, and especially future MQPs in this 

area. 

4.4 - Monte-Carlo tree search 

While Q-Learning was sufficient for the requirements of our project, with more time we 

would have liked to use it as a foundation for a more nuanced system using Monte-Carlo 

tree search, where you unroll randomly selected states until termination and then use it to 

2 https://github.com/uzh-rpg/rpg_svo_example/issues/27  
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train a policy evaluation function. While such a system would be more computationally 

expensive, we believe that it would be much more useful for predicting the long-term 

strategy of a match, and adapt much more easily to different opponent strategies. There 

are also intermediate improvements to be made, if MCTS turns out to be infeasible for 

computation on a mobile robot. Using Deep Q-Learning, where a neural network is trained 

to match the results of the Q value matrix, can often be shown to have benefits in 

generality (for appropriately chosen architectures and state representations). 
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Appendix 
 

A. Budget 

 Per each Quantity Total   

Student Contribution $250.00 3 $750.00   

Department Contribution $250.00 3 $750.00   

NVidia Jetson -$300.00 1 -$300.00   

Camera -$45.00 2 -$90.00   

Hyoku Lidar -$1,000.00 0 $0.00 (on loan)  

Harddrive -$50.00 1 -$50.00   

VEX Hardware -$1,500.00 0 $0.00 (robotics club hardware) 

Odriod XU4 -$65.00 1 -$65.00   

   $490.00  Total Cost of Project 
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B. Code Listing 

All code used in the completion of this project, including configuration files, can be found at 

the website https://github.com/asgard-mqp/ or (in a static snapshot) as part of the archival 

eCDR submission that accompanies this report. A brief overview of the most important 

repositories: 

● https://github.com/asgard-mqp/robot_driver 

Contains the communication code used to control the Vex hardware from the Jetson 

side, as well as configuration files for the teb local planner 

● https://github.com/asgard-mqp/brain_driver 

Not included in the eCDR submission due to a pending NDA, but contains the final 

code used to receive messages from the Jetson on the Vex side. 

● https://github.com/asgard-mqp/launches 

contains the code and configuration, including launch files, used to run the required 

nodes on both the odroid and jetson 

● https://github.com/asgard-mqp/AI-Final 

https://github.com/asgard-mqp/gym  

Contains the final code used for the strategic planning and simulation 

reinforcement learning. 

● https://github.com/asgard-mqp/executor 

Contains the nodes for the high-level navigation (executor.py) and obstacle 

publishing used to execute the global strategic plan and transform it into concrete 

poses 
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