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ABSTRACT 

The testing of any physiological diagnostic system in-vivo depends critically on the stability 

of the anesthetized animal used. That is, if the systemic physiological parameters are not 

tightly controlled, it is exceedingly difficult to assess the precision and accuracy of the 

system or interpret the consequence of disease.  In order to ensure that all measurements 

taken using the experimental system are not affected by fluctuations in physiological state, 

the animal must be maintained in a tightly controlled physiologic range.  The main goal of 

this project was to develop a robust monitoring and control system capable of maintaining the 

physiological parameters of the anesthetized animal in a predetermined range, using the 

instrumentation already present in the laboratory, and based on the LabVIEWR software 

interface.  A single user interface was developed that allowed for monitoring and control of 

key physiological parameters including body temperature (BT), mean arterial blood pressure 

(MAP) and end tidal CO2 (ETCO2).  Embedded within this interface was a fuzzy logic based 

control system designed to mimic the decision making of an anesthetist.  The system was 

tested by manipulating the blood pressure of a group of anesthetized animal subjects using 

bolus injections of epinephrine and continuous infusions of phenylephrine (a vasoconstrictor) 

and sodium nitroprusside (a vasodilator).  This testing showed that the system was able to 

significantly reduce the deviation from the set pressure (as measured by the root mean square 

value) while under control in the hypotension condition (p < 0.10). Though both the short-

term and hypertension testing showed no significant improvement, the control system did 

successfully manipulate the anesthetic percentage in response to changes in MAP.   Though 

currently limited by the control variables being used, this system is an important first step 

towards a fully automated monitoring and control system and can be used as the basis for 

further research.   
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1.  INTRODUCTION 

 The presence of low O2 levels in the vasculature and tissues of the retina, termed 

retinal hypoxia, has been linked to the development of many eye diseases including 

diabetic retinopathy and glaucoma.  It is recognized that imaging technologies to identify 

and monitor oxygen levels in the retina would substantially advance our understanding 

and treatment of these devastating diseases and the laboratory is currently developing a 

non-invasive diagnostic imaging technique, based on phosphorescence lifetime imaging 

(PLI), to produce two-dimensional maps of pO2 in the rodent retina.  This technique is 

undergoing in-vivo testing, using rats and mice, and has shown promising results. 

 The testing of this technology in-vivo depends critically on the stability of the 

anesthetized animal. That is, if the systemic physiological parameters are not tightly 

controlled, it is exceedingly difficult to assess the precision and accuracy of the PLI 

system or interpret the consequence of disease. Any variation in physiological parameters 

such as Blood Pressure (BP), Body Temperature (BT) and Pulmonary Function (pO2 and 

pCO2 levels) can be a potential source of variation in the data being gathered using PLI.  

In order to ensure that all measurements taken using PLI are not affected by fluctuations 

in the systemic physiological state, each animal must be maintained within a tightly 

controlled physiologic range.  The main goal of this project was to develop a robust 

monitoring and control system capable of maintaining the physiological parameters of an 

anesthetized animal in a predetermined range, using the instrumentation already present                            

in the laboratory, and based on the LabVIEWTM software interface.  The specific aims 

were to: 
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� Develop a computer-controlled monitoring system (based on LabVIEWTM) 

capable of “real time” data acquisition and display of BT, end tidal CO2 (ETCO2), 

ventilator pressure and BP. 

� Develop a communications capability allowing for the control of laboratory 

instrumentation, such as the ventilator, heating bath and gas flow meters. 

� Develop a computer-based control system (using LabVIEWTM) for maintaining 

BT, ETCO2, and BP. Fuzzy logic control theory was employed to mimic the 

complex decision processes that a trained anesthesiologist might make.  

� Design a user interface that incorporates the above subsystems and an event 

marker and file transfer system. 

By developing a system that can maintain the physiologic state of the animal within 

narrow limits, better characterization of the PLI system in the laboratory is possible.  At 

the same time, the system can free the experimentalist to concentrate on the acquisition of 

retinal oxygen data using the PLI system. 

 In order to achieve the above goals a design had to be developed that allowed for 

the most elegant solution possible.  A fuzzy logic control strategy was developed to 

mimic the decision making of an anesthetist allowing for the automated maintenance of 

ETCO2 and BP.  The monitoring, control and file transfer systems were developed in 

LabVIEWTM and combined to create a single user interface.  This interface was tested on 

a total of ten rats in both short and log-term perturbation experiments using bolus and 

maintained drug infusions to mimic various systemic physiological conditions.  This 

testing revealed that the system had limited abilities to control short-term perturbations 
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but was able to significantly reduce the deviation of the mean arterial blood pressure 

(MAP) from the control set point in simulated hypotension experiments.  
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2. BACKGROUND 

Before developing a monitoring/control system, it is important to first understand 

anesthesia and its control.  The following sections provide some background in 

anesthesia, physiological monitoring and physiological control systems that have been 

used to date. 

2.1. Anesthetic Agents 

General anesthetics can be separated into two major categories, injectable anesthetics 

and inhalant anesthetics.  Injectable anesthetics can be further divided into sub-categories 

based on the route of administration, including Intra-peritoneal (IP), Intra-Muscular (IM), 

Sub-Cutaneous (SC), Intra-Cardiac (IC) and Intra-Venous (IV).  In past experiments in 

the laboratory, an injectable anesthetic, Avertin, was administered IP to achieve the 

desired anesthetic depth.  Though safe for the test subject and easy for the researcher to 

administer, bolus injection made it impossible to control the physiology of the animal 

through anesthetic manipulation during the procedure. Since the control of the animal’s 

physiology is one of the main goals of this project, a new anesthetic agent had to be 

chosen for future experimentation.  IV anesthetics, such as Propofol, afford the researcher 

the ability to control the depth of anesthesia throughout the procedure by manipulating 

the rate of infusion, but this approach requires the use of syringe pumps, which are not 

always available in the laboratory. Other injectable agents can also be used once the 

animal is under anesthesia to manipulate its physiological parameters.  Some examples of 

these chemical agents are vasodilators, such as sodium nitroprusside, which cause a 

drastic drop in systemic BPand vasoconstrictors, such as phenylephrine, which cause a 

drastic rise in systemic BP.   
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Inhalant anesthetics, on the other hand,  allow for a controlled depth of anesthesia 

due to the fairly rapid physiological response time to changes in concentration.  Some 

common inhalant anesthetics include Halothane, Isoflurane, and Enflurane.  For this 

project, Halothane was chosen as the anesthetic based on its rapid uptake, pleasant 

induction and availability (Short 1987).   In order to deliver a precise concentration of 

anesthetic, a copper kettle vaporizer constructed by a previous undergraduate project 

group was used  (figure 2.1-1).  The copper kettle vaporizer produces O2 saturated with 

the anesthetic agent, which is then mixed with humidified N2 and O2 and delivered to the 

test animal (Boutillette et al 2000).  The overall inhalant anesthesia and gas flow system 

is shown in figure 2.1-1. 

Copper Kettle 
Vaporizer 

 

 

Gas Flow 
meters 

Figure 2.1-1:  Anesthesia vaporizer and flow control hardware (Boutillette et al 2000). 
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2.2. Physiological Monitoring 

 While under anesthesia, it is important to closely monitor the animal subject to 

ensure anesthetic depth is maintained at a point that ensures that it will not experience 

any discomfort throughout the procedure.  The parameters that are traditionally 

monitored and analyzed to assess current physiological state and anesthetic depth include 

BT, BP, Electro-cardiogram (ECG), pulmonary function (CO2 and O2) and blood gas 

values.  Due to the small size of the animals being used for this research (rats and mice) 

special considerations of the animal’s parameters to be accurately collected and analyzed 

is required (Short 1987).   

 One of the parameters that requires special considerations due to the small size of 

the animals is the ETCO2.  The instrument used to sample CO2 concentration is called a 

capnometer.  Traditional capnometers require a sample size that is quite large in 

comparison to the dead space of the animal’s lungs.  This produces a situation in which 

serious damage or death can occur due to suffocation during sampling.  To ensure that 

there is no danger to the animal, a micro-capnometer must be used.  The micro-

capnometer chosen for this research was the Columbus Instruments Micro-Capnometer, 

which is able to take wet samples of either 20 cc or 5 cc.  These smaller sample volumes 

allow for the sampling of CO2 without risk of injury to the animal.  

 Blood pressure is another parameter that is important to monitor throughout the 

procedure.  The BP of the animal is an important indicator of anesthetic depth and can be 

an indicator of distress.  To measure BP for this study, an arterial catheter is placed in a 

femoral artery and pressure readings are taken using the Biopac RX104A pressure 

transducer connected to the National Instruments SCXI module.  The National 
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Instruments SCXI module allows for the measurement of voltage and, using a two-point 

calibration factor, allows for the direct measurement of BP.  Heart rate is another 

important parameter to measure, which can be extracted from the BP waveform data.   

 Though ECGs are often an important parameter to monitor, the small size of the 

animal can make it difficult to obtain a useful waveform.   In addition, the intervals of the 

ECG can be difficult to measure consistently in small animals due to the high heart rate 

and variation from animal to animal. 

 Blood gas measurements are very indicative of the physiological state of the 

animal, providing such information as pO2, pH and pCO2.  The issue with the 

measurement of blood gases is that the sampling of blood can quickly reduce the test 

subject’s blood volume and there is currently no way to automate the sampling process 

and data transfer with the equipment currently available in the laboratory. Instead, 

manual samples can be taken and entered into the user interface, allowing these valuable 

parameters to be taken into consideration, during anesthetic control. 

 

2.3. Physiologic Control 

The automated control of anesthesia has received quite a bit of attention in the last 

few years. The two major areas of control theory that have received this attention are 

traditional, mathematical model based, controls (Hang et al 1999, Dalkara et al 1995, 

Prie et al 1997, Rao et al 2000) and fuzzy logic control theory (Apshari et al 1994, 

Becker et al 1997, Dojat 1997, Graaf et al 1997, Held et al 2000, Linkens 1999, Lowe et 

al 1999, Meier et al 1992Shing et al 1999).  The model based control theory uses 

mathematical models of the test subject’s physiology and the theoretical reaction of 
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stimulus, such as anesthetic concentration, to produce estimates of the physiologic 

reactions.  Based on these estimates, control algorithms are developed and used in a 

feedback (most often negative) system.  The traditional control system is able to rake 

inputs from the entire system and produce multiple outputs for control.  A block diagram 

representing such a control system that takes advantage of feedback to increase stability 

is seen in figure 2.3-1 (Rao et al 2000).   

                   

Figure 2.3-1:  Block diagram of a traditional control scheme (Rao et al 2000). 

 

The past work done in the area of anesthetic control using traditional control 

theory is somewhat limited due to the complexity of the models.  A majority of the past 

research relies on the use of electroencephalogram (EEG) or electrocardiogram (ECG) 

waveforms as the primary parameter for the detection of anesthetic depth (Seiber et al 

2000) (Morteir and Stuys 2001).  Though this is a valid and highly accurate method for 

human patients, the measurement of EEG and ECG data can be problematic in small 

animals such as mice and rats, and the equipment needed to acquire these waveforms is 

currently unavailable in the laboratory. 

In contrast, fuzzy logic control attempts to use fuzzy set theory to model the 

decisions of an anesthetist, given inputs of physiologic states.  Fuzzy set theory allows for 
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the computation of partial membership, or partial truth, for a set of membership functions 

and provides a crisp output based on a corresponding rule set.  The rule sets used in fuzzy 

logic controls are based on the previous knowledge of a specialist, or a number of 

specialists, and can take single or multiple inputs into account to make the decision.  The 

process of producing a crisp output using fuzzy logic consists of three major steps: 

fuzzification, inference and defuzzification.  Fuzzification consists of the calculation of 

membership, based on the membership functions, for the input values.  Inference takes 

the results of the fuzzification process and produces a fuzzy output based on the rule set.  

Defuzzification produces a crisp output based on the inference process results (Qingyang 

Hu and Petr 2000).   

 In recent years an increasing number of studies have focused on the use of fuzzy 

logic controls to control BP and anesthetic depth (Apshari et al 1994, Becker et al 1997, 

Dojat 1997, Graaf et al 1997, Held et al 2000, Linkens 1999, Lowe et al 1999, Meier et 

al 1992, Shing et al 1999).  The control outputs for these systems have been both inhalant 

and injectable anesthetics and have focused primarily on BP for the input parameter 

(Meier et al 1997, de Graaf et al 1997, Shieh et al 1999).  
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3. DESIGN 

The use of the LabVIEWTM interface is integral to the successful development of the 

communication and control systems that are required to successfully implement the 

objectives set forth for this project.  This section outlines the design process that was 

followed in order to develop the various components of the monitoring, instrument 

control, fuzzy logic control and data transfer systems as well as the final user interface.     

3.1. LabVIEWR Interface 

The LabVIEWTM platform was used for all components of this project, including 

monitoring, instrument control and fuzzy logic control.  LabVIEWR is a program that 

allows for the development of “Virtual Instruments” (VI) capable of sending information 

to and receiving information form devices using embedded virtual channels that can be 

setup for each input and output function, incorporating conversion factors and handling 

the transfer of data.  This platform also has substantial mathematical capabilities. The 

LabVIEWTM platform was ideal for this project because it allowed existing VIs to be 

used as sub-sets, sub-VIs, in larger more complex VIs. This allowed for the creation of 

small specialized VIs capable of monitoring a single parameter or controlling a single 

instrument and which could be used as building blocks for a highly complex single VI 

capable of monitoring, display, data acquisition, instrument control and fuzzy logic 

control.  The VIs developed for this project are described in the following sections. 
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3.2. Monitoring/Communication System 

3.2.1. Body Temperature Monitoring 

The Body Temp VI is able to obtain and display the animal’s rectal body 

temperature (figure 3.2-1).  The hardware measures the voltage drop across a thermistor 

based temperature probe excited with 0.15 mA of current.  The measured voltage is 

converted to a temperature in degrees Kelvin using constants provided by the 

manufacturer, and is ultimately converted to degrees Celsius using a standard conversion 

factor (figure 3.3-1(a)).  The resulting front panel display for the VI displays the 

measured voltage, numeric measurement of temperature and a graphical representation of 

temperature (figure 3.2-1 (b)) 

 

(a) 

 

 

Figure 3.2-1:  Body temperature VI b
boxes show different section
temperature conversion volt

  

3.2.2. Analog Wavefo

The acquisition of %CO2, air

modified waveform acquisition VI s

This VI uses “Virtual Channels” (VC
(1)
 

loc
s 

ag

rm

wa

up

s)
(3)
(2)
   (b)     

k diagram (a) and front panel display(b).  Dashed 
of the block diagram:  voltage measurement (1), 
e to oK (2), and temperature conversion oK to oC. 

 Monitoring 

y pressure and BP waveform data is done using a 

plied by LabVIEWR (figure 3.2-2 (a) box (1)).  
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parameters at a rate of 250 Hz.  Additional conditioning of the waveform signals is 

completed to obtain the min/max values and the rate of the waveforms.  To provide the 

user with more flexibility the airway pressure and %CO2 waveforms are conditioned in 

one section while the BP waveform is conditioned in another.  Each of the waveform 

conditioning sections can be turned on and off independently.  

The airway pressure conditioning section can handle waveform data from two 

different ventilators, one from Columbus Instruments (CIV-101) and the other from 

Harvard Apparatus (Inspira).  Two VCs, “Columbus” and “Inspira”, are set up to measure 

an analog output of 0-5 V from a ventilator and use a conversion factor to produce the 

manufacturer specified pressure range (-10 - 40 mmHg for Columbus Instruments, and –

50 - 50 mmHg for the Harvard Apparatus Inspira).  After the airway pressure waveform 

is acquired, the data is processed for rate and minimum and maximum values (figure 3.2-

2 (a) boxes (2) and (3,) respectively) 

The design of the %CO2 waveform conditioning section closely resembles that of 

the airway pressure section.  A VC, “Capnometer Read”, measures an analog output of 0-

5 V directly form the micro-capnometer and converts the signal to a range of 0-10 %CO2.   

The acquired waveform data is processed for min/max values and rate (figure 3.2-2 (a) 

boxes (5) and (6) respectively).  The waveform data for both the airway pressure and 

%CO2 are then clustered together and displayed on a single waveform graph (figure 3.3-2 

(a) box (5)).   

 The arterial BP waveform is processed in a different section because it requires a 

two-point calibration factor (calibration points at 40 mmHg and 200 mmHg).  A separate 

VI, Blood Pressure (figure 3.2-2 (a) and (b)), is used to scale the waveform and min/max 
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values to the correct level once the user entered the 40 mmHg and 200 mmHg calibration 

points (figure 3.2-2 (a) box (8)).  The waveform is also processed to obtain the rate of the 

signal in beats per minute (BPM) (figure 3.2-2 (a) box (9)) 
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3.3. Instrument Control System 

3.3.1. Anesthetic Control 

 The Anesthetic Concentration/Flow Control VI is able to monitor the gas flow 

valves and calculate the correct flow rates to obtain the requested anesthetic percentages 

(figure 3.3-1).  This VI takes advantage of two major sub-VIs, Anesthetic Calculator and 

Basic Gas Mixer (figure 3.3-3 (a) box (1) and (2) respectively), to perform the majority 

of the calculations and act primarily as the input point for the user. 
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(1) 

(2) 

(a) 

 (b) 

Figure 3.3-1:  Anesthetic Concentration / Flow Control VI block diagram 
(a), showing the Anesthetic Calculator (box1) and the Basic Gas 
Mixer (box 2) VI, and front panel (b).   
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 The Anesthetic Flow Rate Calculator VI (figure 3.3-2) is designed to take the user 

input values sent to it by the Anesthetic Concentration/Flow Control VI and 

environmental conditions, including barometric pressure and the internal temperature of 

the copper kettle vaporizer, to calculate the correct flow rates for the nitrogen (N2, flow 

rate 0 –500 ml/min), oxygen A (O2A, flow rate 0 –100 ml/min), oxygen B (O2B, flow 

rate 0 –100 ml/min), vaporizer (VO2, flow rate 0 –50 ml/min) and carbon dioxide (CO2, 

flow rate 0 –50 ml/min) flow meters and send them to the “Basic Gas Mixer” VI.  The VI 

is also designed to evaluate the input and environmental parameters so that new flow 

values are only sent on to the next section if a change has taken place, saving processing 

time. 

The Basic Gas Mixer VI communicates with each individual flow meter used in 

the laboratory  (figure 3.3-3 (a) and (b)).  A read VC and write VC for each of the flow 

meters (N2, O2A, O2B, VO2 and CO2) are used to allow the VI to set the desired rate 

and read the actual rate.  If the actual does not match the set values an error message is 

generated and displayed on the user interface.   
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(a) 

(b) 
Figure 3.3-2:  Anesthetic Flow rate Calculator VI block diagram (a) and 

front panel (b). (Based on work done by Dr. Ross Shonat). 
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(a)

 (b) 
Figure 3.3-3:  Basic Gas Flowmeter VI block diagram (a) and 

front panel (b). (Based on work done by Dr. Ross 
Shonat). 
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3.3.2. Ventilator Control 

 The Ventilator Control VI (Figure 3.3-4), designed primarily by a previous 

researcher Amanda Kight, had slight changes made to the input/output structure to allow 

for the integration of the VI with the new interface.  This VI provides the user with 

control of such ventilator parameters as respiratory rate, tidal volume and I/E ratio as well 

as starting and stopping the ventilator.   

(a) 

                     (b) 

Figure 3.3-4:  The Ventilator Control VI block diagram 
(a) and front panel display (b). (Based on work 
done by Amanda Kight). 
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(a) 

  (b ) 
Figure 3.3-5:  Inspira Control VI Block diagram (a) 

and front panel (b). 
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 The Inspira Control VI is able to control the Harvard Apparatus Inspira ventilator 

(figure 3.3-5).  A list of ASCII commands are provided by the manufacturer and used as 

the basis of the control VI. The VI is designed to identify a change in the user settings 

and in response send the corresponding ASCII code to the ventilator via an RS/232 

connection.  

 

3.3.3. Body Temperature Control 

In an attempt to develop a more elegant solution to the control of body 

temperature, within a +/- 0.5 oC range from the set point, a duty cycle based simple 

control system is used.  The existing laboratory setup for the control of the animal’s core 

body temperature consists of a circulating warm water bath/blanket with a computer-

controlled solenoid valve controlling the flow, either allowing water to flow through the 

blanket or bypass the blanket entirely.  The VI shown in figure 3.3-6 assesses the 

difference between the current body temperature and the set point temperature and, 

depending on what range the difference in temperature falls in, assigns a duty cycle value 

(0 to 100 %).  The system is designed to bring the animal’s temperature rapidly to the set 

point with minimal overshoot.  A summary of the ranges and their corresponding duty 

cycles is shown in table 3.3-1. 

 Temperature Difference  
(Set Point – Measured)(oC) Duty Cycle 

< 0 0% 
0 – 0.25 25% 

0.26 – 1.0  50% 
1.0 – 3.0 66% 

> 3.0 100% 

Table 3.3-1:  Summary of temperature difference ranges and the corresponding 
duty cycles 
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(a) 

(b) 
Figure 3.3-6: The water bath control VI block diagram 

(a) and front panel display (b). 

 

The Duty Cycle VI provides the entire system with a series of Boolean controls 

that control the activity and acts as a time interval control (figure 3.3-7).  The VI takes 

advantage of the iteration count in combination with a set delay function to create a 

repeatable time interval count.  A user input is incorporated into the VI to allow for 

adjustment of the time intervals for greater flexibility and increased functionality. 
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 (a)   (b) 
Figure 3.3-7: Duty cycle VI block diagram (a) and front panel (b) 

 

  

3.4. Fuzzy Logic Control Systems 

As discussed in the background section, both traditional and fuzzy logic controls 

have advantages and disadvantages that must be considered carefully.  The advantage of 

the traditional control approach is that it is a time tested and proven method of producing 

an accurate and stable control system that is robust to outside stimuli.    The major 

disadvantage of traditional control systems is their dependence on the accuracy and 

stability of the mathematical model they are based upon.  For the control of anesthesia, 

the test subject’s physiological response to the anesthetic or ventilation settings is 

modeled to predict the affects of changes to these parameters.  To achieve a more 

accurate and robust control system, a multitude of parameters must be taken into account.  

The need for multiple inputs to improve accuracy makes the system susceptible to being 

adversely affected if one of the input parameters is lost or is not being monitored.  This 

reduces user flexibility. 
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Fuzzy logic, on the other hand, models the decision making of an expert.   For the 

control of anesthesia the modeling of the anesthetist rather than the test subject’s 

physiology has many advantages.  Some of the noted advantages to modeling the 

decisions of the anesthetist rather than the test subject’s physiology are: 

• “Human physiology is complex, and more difficult to model than the decision 

making process of the anesthetist, 

• The variation between and within patients is much larger than the variation in 

decisions between and within anesthetists, 

• A patient model cannot directly tell us what information is relevant to the 

anesthetist, whereas an anesthetist model can.” (De Graaf et al 1997) 

Another advantage of fuzzy logic control is the ability to subdivide the control 

systems to produce a system in which the individual parameters are independent of each 

other.  This subsystem approach allows for the development of a complex control system 

that is made up of fairly simple parts and has the ability to continue to function if there is 

an error in one of the parameter control systems.  The most notable disadvantage to the 

use of fuzzy logic controls is that the system is only as accurate as the knowledge base it 

is developed from.  Table 3.4-1 provides an overview of the pros and cons for both 

control approaches. 

To achieve a more flexible, accurate and easily implemented control system, the 

fuzzy logic approach was used for the BP and CO2 control sub-systems in this 

application.  The use of fuzzy logic control, rather than traditional control, was based on 

the pros and cons of the two approaches outlined in table 3.4-1 and the success of the 

work done previously using this strategy (Apshari et al 1994, Becker et al 1997, Dojat 
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1997, Graaf et al 1997, Held et al 2000, Linkens 1999, Lowe et al 1999, Meier et al 

1992, Shing et al 1999).   

 
 TRADITIONAL CONTROL FUZZY LOGIC CONTROL 

PROS 

• Time tested and proven 
• Accurate/Stable 
• Can compensate for 

outside stimuli 

• Models Anesthetist decision 
making 

• Gives direct output 
• Easily implemented 
• Shown to be affective for 

anesthesia control in past 
research (animals/humans) 

• Can be subdivided into 
independent parameter 
control 

CONS 

• Accuracy and stability is 
dependent on model 
accuracy 

• Reduced user flexibility 
to monitor parameters 
independently 

• Model of physiology is 
highly complex 

• Implementation can be 
difficult 

• Fairly new approach 
• Only as accurate as the 

knowledge base used 

Table 3.4-1:  Pros and Cons of the traditional and fuzzy logic approach to anesthesia 
control. 

 

3.4.1. Blood Pressure 

As discussed previously, there are three major sections to a fuzzy logic BP control 

system, the fuzzification, inference and defuzzification sections.  The fuzzification 

process is achieved primarily by developing a set of membership functions. The 

fuzzification membership functions developed for this project are based primarily on a 

fuzzy logic system developed in earlier work for the control of human anesthetic depth 

(Meier 1992).  The equation that defines the membership functions used in this research 

was as follows:  
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 N = exp (-K (Z – L))    

N = Membership value 

K = Width of the bell 

Z = Input value 

L =Shifting with reference to zero 

 Due to the differences in the anesthetic being used here, halothane instead of 

isofluorane, and the physiological differences between humans and rodents, the 

membership functions and rule base were altered during preliminary testing to ensure 

accurate output values, resulting in the rule base shown in table 3.4-2 (Meier et al 1992).   

These alterations consisted of an increase in the offset from zero for the NB, NS, PS and 

PB rules for preliminary testing and the addition of a correction in the output rule base to 

allow for user specified reaction intensity (i.e. a lower correction value translates to a less 

intense reaction).  These changes made to the variables are based on observations made 

in the laboratory. 

Error Integral Membership Functions
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Figure 3.4-1:  Preliminary membership functions for blood pressure 

control system. 
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 Two input values are used for the BP control system, error (E), defined as the 

difference between the actual mean arterial blood pressure (MAP) value and set MAP 

value, and the integral of the error (IE), defined as the integral of the error value over 10 

time intervals.  The IE value is present in the system to compensate for any transients in 

the E value, ultimately producing a more stable robust system. The two input values are 

fit to two separate sets of membership functions based on the above equation (figure 3.4 -

1) and the location of the input value on each of the membership curves is noted to assign 

a membership value for each input rule.    

 

INPUT OUTPUT 

Rule E 
(Measured - Set) 

IE 
(Integral Error) Rule Output 

NB -40 -400 Z Set – (2 * correction 
Value) 

NS -20 -200 BS Set – correction Value 

Z 0 0 S Set 

PS 20 200 AS Set + Correction Value 

PB 40 400 VS Set + (2 * Correction 
Value) 

Table 3.4-2:  Pressure controller rule base definition summary. 

 

Once values are assigned to the two sets of input rules, for E and IE inputs, the 

inference process is used to obtain a single set of output rule values.  This is achieved 

using a standard set of fuzzy logic inference operations, shown below, where Z, BS, S, 

AS and VS are the output rules (see table 3.4-2).  
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Z= MAX (NBE, NBIE) 

 BS = MAX [NSE, MIN (ZE, NSIE)] 

 S = MIN (ZE, ZIE) 

 AS = MAX [PSE, MIN (ZE, PSIE)] 

 VS = MAX (PBE, PBIE) 

Where E and IE denote which input value the rule pertains to. 

After the inference process is completed and values are assigned to each of the 

output rules, a crisp value for the anesthetic level using the defuzzification process is 

produced.  A standard defuzzification operation is shown below, 

Crisp Output Value =  [(Z*(A-2C)) + (BS*(A-C)) + (Z*A) + (AS*(A+C)) + (VS*(A+2C))] 
     Z + BS + S + AS + VS 

where A = anesthetic set point, and C = user defined correction value which must be 

determined by an experienced anesthetist.  

 The Blood Pressure Control VI shown in figure 3.4-2 is based on the above 

calculations.  The fuzzification process is achieved using a formula node that represents 

the membership functions and outputs a membership value for each of the input rules 

(figure 3.4-2 box (1)).  The inference process is achieved using a series of Min/Max VI 

sequenced to duplicate the fuzzy logic inference operation stated previously. (figure 3.4-

2  box (2)).  The defuzzification process is completed using another formula node which 

takes in the output rule values obtained from the inference process and outputs a single 

crisp value (figure 3.4-2 box (3)).  Safety limits are present in the VI to ensure that the 

system does not adjust the anesthetic level outside the limits that are defined by the user 

(figure 3.4-2  box (4)). The correction values, pressure set point, anesthetic set point 

upper and lower limit values are left as input values to provide flexibility to the user.  The 
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actual MAP value is calculated using the Mean Arterial Pressure VI, which is designed to 

use the maximum (systolic) pressure and minimum (diastolic) pressure values obtained 

from the waveform processing section (figure 3.4-3). 
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3.4.2. End Tidal CO2 Control 

 As with the pressure control system, the CO2 control system is comprised 

primarily of the three major processing steps of fuzzification, inference, and 

defuzzification.  But, unlike the pressure control system, the CO2 control system 

presented a unique challenge because of a lack of previous work done on controlling CO2 

levels in anesthetized rodents.  Because of this, the membership function sets required for 

the fuzzification process were based primarily on observations performed in the 

laboratory.  These observations and available physiological data for both humans and 

animals indicated that the relationship between the change in respiratory rate/tidal 

volume and change in ETCO2 was linear (figure 3.4.4).  Therefore, the mathematical 

relationship that produces the desired linear membership functions (figure 3.4-5) is 

shown below:  

  

N = MAX (0,(1-ABS(Z – L))    

 

N = Membership value 

Z = Input value 

L =Shifting with reference to zero 

 

Five membership functions were used per input based on optimization studies done 

during previous research (Meier et al 1992). 
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Figure 3.4-4:  Plots of (A) increased ventilation with 
increased pCO2 levels, due to (B) increased RR and 
(C) increased TV (Letsky 1992) . 

 

The two input parameters for this system are E and IE, where E is defined as the 

difference between the actual %CO2 measured by the micro-capnometer and the set 

%CO2 value, and IE is defined as the integral of the E value over 10 time intervals.    

There were two major output parameters identified for the control of CO2, Respiration 

rate (RR), the rate at which the animal’s lungs are inflated and deflated, and tidal volume 

(TV), the volume of gas that is forced into the lungs with each breathe.    
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ETCO2 Control Membership Functions
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Figure 3.4-5:  Fuzzification membership functions for the E input rule base. 

 

The linear relationship between O2 concentrations and the RR and TV are used as 

the basis for the control system output rule base (table3.4-3), resulting in a more drastic 

increase in TV/RR for more drastic changes in ETCO2.  In order to simplify the action of 

the control system, a scaling factor approach was adopted for the output rule set.  The 

scaling factor allows for the development of a single output rule set and single crisp 

output value used to scale the set point values of RR and TV.  Once the output rule set is 

established, it is possible to develop a set of inference operations (shown below) to 

convert the values assigned to the input rule sets into values for the output rule set (see 

table 3.4-3).   

Z= MAX (NBE, NBIE) 

 BS = MAX [NSE, MIN (ZE, NSIE)] 

 S = MIN (ZE, ZIE) 

 AS = MAX [PSE, MIN (ZE, PSIE)] 

 VS = MAX (PBE, PBIE) 

Where E and IE denote which input value the rule pertains to. 
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INPUT OUTPUT 

Rule E 
(Measured - Set) 

IE 
(Integral Error) Rule Output 

NB -2 -20 Z Set – (0.5* correction 
Value) 

NS -1 -10 BS Set – (0.25*correction 
Value) 

Z 0 0 S Set 

PS 1 10 AS Set + Correction Value 

PB 2 20 VS Set + (2 * Correction 
Value) 

Table 3.4-3:  ETCO2 controller rule base definition summary. 

 
After the inference process is completed and values are assigned to the each of the 

output rules it is possible to obtain a crisp value for the scaling factor using the 

defuzzification process.  Using a standard fuzzy logic defuzzification operation and  the 

following was obtained (C = Correction Value). 

 

Output =  ((Z*(1-(0.5*C)))+(BS*(1-(0.25*C)))+(S*1)+(AS*(1+(C)))+(VS*(1+(2*C)))) 
      Z + BS + S + AS + VS 

 

An additional processing step was added to the system after noting an effect of the 

animal’s pO2 value on the ventilation (TV and RR) values (figure 3.4-4).  The additional 

processing step allows the user to enter the animal’s pO2 obtained from a manual blood 

gas measurement.  The value of the pO2 entered by the user is used to scale the correction 

factor, resulting in a variable adjustment of RR and TV depending on the pO2 value 

entered. A summary of the pO2 ranges and the scaling associated with them is shown in 

table 3.4-4.  A default value of 100mmHg is automatically entered into the pO2 field if no 

measured pO2 is entered by the user.  
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Figure 3.4-6:  Graph showing the change in ventilation 

due to changes in oxygen concentration (Letsky 
1992) 

 
 

PO2 Range 
(mmHg) 

Scaling 

49 and lower 2* Correction Value 
50 - 74 1.5*Correction Value 
75 - 99 1.25* Correction Value 

100 and higher 1* Correction Value 
Table 3.4-4:  Correction value scaling factors for various pO2 ranges. 

 

 
The ETCO2 Control VI shown in figure 3.4-6 is based on the above calculations.  

The fuzzification process is achieved using a formula structure that represents the 

membership functions and outputs a membership value for each of the input rules (figure 

3.4-5 box (1)).  The inference process is achieved using a series of Min/Max VIs 

sequenced to duplicate the fuzzy logic inference operations stated previously (figure 3.4-

6  box (2)).  The defuzzification process is achieved using another formula structure 

which takes in the output rule values obtained from the inference process and outputs a 

single crisp value (figure 3.4-6 box (3)). Scaling of the correction value was achieved 

using a case structure with the pO2 range as the criteria for which case to use (figure 3.4-
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6 box (4)).  The correction value, CO2 set point, pO2, RR set point and TV set point 

values are left as input values to provide flexibility to the user. 
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the data and a text description describing the marked event.  The event marker capability 

makes the analysis of the data and the recreation of the events during the procedure more 

convenient and accurate.  An example of data collected using this VI, and its event 

marking capability, is shown in figure 3.5-2. 

 

 



 37

 (a) 

(b) 

Figure 3.5-1:  the Write to File VI block diagram (a) 
and front panel display (b). 
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Figure 3.5-2:  An example of the data collected using the write to file VI and 

analyzed using Excel, note the vertical lines indicating a marked 
event (in this case images being taken). 

 

 

3.6. User Interface 

 The User Interface VI is used to provide the user with an easy to use single screen 

for anesthesia monitoring and control and is created by combining all of the VIs 

discussed in the previous sections (figure 3.5-1).  The front panel of this VI is designed to 

incorporate all of the user-defined inputs and display all of the acquired data and 

waveforms.  In order to ensure that the gathering of essential data and manipulation of 

key parameters is expedited, the interface is separated into subsets defined by function.  

These sub-sets include Ventilator Control, Anesthetic Control, Temperature Control, File 

Transfer, Airway Pressure, ETCO2 and BP.  In addition to these sub-sets, two large 

waveform displays are incorporated to display airway pressure %CO2 and BP (figure 3.5-

2).   

  

 



 

  

Mean Arterial 

Pressure 

Pressure 

Control
Rate/Tidal Volume ETCO2

Anesthetic Concentration / 

Flow Control
Water Bath Control 

Duty 

Cycle 

Figure 3.6-1:  User interface VI block is made up of the previously discussed VIs   
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Write to File 
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Figure 3.6-2:  Interfacev2 VI block diagram (a) and front panel interface (b)
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3.6.1. Interface Hierarchy 

The following is a block diagram representation of the hierarchy of the VIs used to 

create the user interface: 

 
Figure 3.6-3:  Block diagram showing the hierarchy of the sub-VIs used to make the 

interface VI. 
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4. METHODS 

The system that was developed to achieve the goals set forth at the start of this project 

had to be tested for safety, efficacy and stability.  This was achieved using both in-vitro 

and in-vivo experiments.  The in-vivo testing was completed using a total of 10 rats, 

which underwent both short and long–term perturbation experiments to assess the 

capabilities of the system.  The following sections describe the methods used to complete 

these experiments.   

4.1. In-Vitro Testing 

In order to test the performance, safety and efficacy of the body temperature 

control system before it was tested on any animals, a rat phantom was designed and built.  

It was created using a plastic conicle vial filled with distilled water into which the rectal 

thermometer was placed.  The phantom was placed on the heated stage and covered with 

the heating blanket.   

 In-Vitro testing of the blood pressure and ETCO2 control systems was not 

possible due to a lack of an acceptable rat phantom for these parameters.  Though there 

are mathematical models (rat) that exist that can model the physiological reaction to both 

anesthetic changes and changes in RR and TV, the interfacing of such models with the 

existing system was not feasible since the model would have to produce a waveform 

(analog) output that could be sampled by the system, which is currently not available. 

 

4.2. In-Vivo Experiments 

 The true capabilities of the control systems were tested using live animals that 

were under continuous monitoring by an anesthetist.  The testing consisted of two major 
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portions; the short-term perturbation tests and the long-term perturbation tests.  The 

testing was separated in this manner to better evaluate the system’s stability and ability to 

regulate in two different time response situations, one which models such events as rapid 

un-sustained pressure changes due to surgical activity and the other which models long 

lasting pressure changes due to loss of blood or fluid infusion.  During both sets of 

experiments, the ETCO2 control system was evaluated, when available.  All in-vivo 

experiments were conducted in accordance with the protocols approved by the institutes 

Institutional Animal Care and Use Committee (IACUC) at the Worcester Polytechnic 

Institute.   

Each rat was anesthetized at the start of experiments using an induction chamber 

(figure 4.2-1 (a)), which was filled with a mixture of N2, O2, and halothane saturated O2.  

The interface was used to control the concentrations of the gases and monitor the actual 

flow rates.  Once the rat lost consciousness, an anesthesia mask was affixed over it’s 

snout allowing for sustained anesthesia while the tracheotomy procedure was completed 

(figure 4.2-1 (b)).  While the mask was in place, the halothane concentration was reduced 

to ~2.5% to reduce the chances of over anesthetization while maintaining depth.  The 

tracheotomy procedure consisted of exposing the trachea via surgical dissection and 

inserting a Teflon cannula into the trachea.   After the tracheal cannula was placed (figure 

4.2-1 (c)) it was connected to the gas mixture and the animal was allowed to breathe 

freely until labored breathing was detected by the surgeon or the anesthetist, at which 

time the ventilator was started with an appropriate respiratory rate and tidal volume 

chosen based primarily on the animal’s body weight.   
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The placement of the tracheal cannula allowed for the monitoring of %CO2 by the 

micro-capnometer.  Prior to the beginning of each experiment the micro-capnometer was 

calibrated using pure N2 and 5% CO2 calibration gas.  At this point the temperature probe 

was placed into the rectum of the rat and body temperature control was started (set point 

of 38 oC).  In addition, the Write to File function was activated at this point of the 

procedure to gather available data at a typical rate of 1 data set / (10 sec), though the 

sampling rate did vary from experiment to experiment due to changes in the processor 

and memory load on the computer.  

The left femoral vein and artery were exposed via surgical dissection.  Once 

exposed, the left femoral artery was catheterized with Intramedic brand PE50 

polyethylene tubing.  The catheter was pre-filled with heparinized saline (10 units/ml) to 

reduce the risk of coagulation during the procedure.  The arterial catheter was connected 

to the pressure transducer, which was calibrated with a sphygmomanometer prior to the 

start of each experiment (40 mmHg and 200 mmHg calibration points), allowing for BP 

monitoring.  The femoral artery catheter was also used as the withdrawal point for blood 

gas samples (~0.25 ml blood/sample).  The left femoral vein was also catheterized with 

PE50 polyethylene tubing and used for the administration of fluids and vasoactive drugs.   
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  (a)  (b)  

 (c) 

Ventilator 
Inhalation Tube 

Tracheal Cannula 

Ventilator Exhalation 
Tube (with CO2 
Sampling line) 

Figure 4.2-1:  Digital images of a rat (a) in an induction chamber (b) with the 
anesthesia mask over its snout and (c) with the tracheal cannula 
inserted and connected to the ventilator inhalation and exhalation 
tubing. 

 

4.2.1.  Short-term Perturbation 

 The short-term perturbation tests were performed initially to test the ability of the 

control system to return the BPto the set level following a short drastic change in BP.    In 

this set of experiments, the BP of the rat was monitored in situations where no control 
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was present and where automated control was activated.    CO2 was not controlled during 

this set of experiments due to complications with the ventilator being used at the time. 

 During this set of experiments, 4 rats (R1 – R4) were tested once they had reached 

a stable state after being instrumented as previously described.  Once a stable state was 

achieved, a 1 µg injection of epinephrine (0.1 ml of 10 µg/ml epinephrine diluted in 

sterile saline solution) was administered IA.  The order of the controlled or no-control 

conditions was randomized.  After injection, the BP was allowed to reach a stable level 

before moving on to the next test (time between injections varied greatly between 

animals).   

 

4.2.2.  Long-term Perturbation 

 Long-term perturbation tests were performed to determine the systems ability to 

control BP and ETCO2 during a situation of prolonged pressure fluctuation.  These 

experiments were designed to induce conditions of either hypertension or hypotension to 

fully access the system.  In these experiments, the animal’s BP was manipulated using 

vasoactive drugs.  As with the short term perturbation testing, these tests were 

randomized and performed under both controlled and no-controlled situations.   During 

the long term perturbation experiments, the CO2 controller was activated in conjunction 

with the BP controller and deactivated during the no control situation.   

 During this set of experiments, 6 rats LTP1 – LTP6, were tested once they 

reached a stable state after being instrumented as previously described.   Once a stable 

physiological state was achieved, the animal was forced into a hypertensive state using a 

5 µg/(kg*min) dose of neo-synephrine, a vasoconstriction drug, maintained for a 10-
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minute period.  The infusion was administered IV in the left femoral artery and a Cole 

Parmer syringe pump was used to ensure a constant infusion rate.   For these experiments 

the neo-synephrine was diluted to a concentration of 15 µg/ml in Lactated Ringers 

Solution (LRS).  Controlled and no-control situations were tested. 

 A hypotensive state was achieved using sodium nitroprusside, a drug that causes 

vasodilatation, at a dose of 1 µg/(kg*min) and maintained for a 10-minute period.  The 

infusion was administered IV in the left femoral artery and a Cole Parmer syringe pump 

was used to ensure a constant infusion rate.   For these experiments, the neo-synephrine 

was diluted to a concentration of 3 µg/ml in Lactated Ringers Solution (LRS).   Again,  

controlled and no-control situations were tested.  
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5. RESULTS 

5.1. Body Temperature Results 

The temperature of the rat phantom was monitored and the results of one of these 

experiments is shown in figure 5.1-1.  After testing the control system on the rat phantom 

to ensure safety and stability, the system was tested on an actual rat.  The results of one 

such experiment are shown in figure 5.1-2.  The control system was able to maintain the 

temperature of the water within the +/- 0.5 oC range throughout several trial runs, and 

was able to achieve this while ramping to the set point temperature in an acceptable 

period of time.  The control system, once at set temperature (37 oC), stayed within the 0 

and 25 % duty cycle regions for the majority of the test runs, meaning that the wear on 

the solenoid was reduced.  The oscillations seen in the temperature over time were 

estimated to be a result of the heating and cooling of the metal stage and were not further 

investigated, since the temperature remained within the acceptable range. 
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Figure 5.1-1:  Test data for control of water temperature in a rat substitute 

(With a set point of 37 degrees Celsius). 
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Body Temp vs. Time
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Figure 5.1-2:A sample of the data collected during a preliminary 

animal procedure (set      point Temperature of 38 degrees 
Celsius). 

 

5.2. Short term Perturbation Results 

 During the short-term perturbation testing the user interface was set to save data 

every twenty seconds.  The acquired data were saved to a text file and later converted to 

ExcelR format for further analysis.  An example of a resulting data set is shown in table 

5.2-1.  The data pertaining to the epinephrine injections were isolated and the time course 

was adjusted to reflect the time relative to injection.  The adjustment of the time course to 

relative time allowed for the direct comparison of the physiological reaction before, 

during and after injection under control and no-control conditions.      

  The important variables for the evaluation of the control system were identified 

as the deviation of the measured MAP from the set point (baseline) MAP and the control 

variable % anesthetic.  Due to the natural variation in animals, the MAP deviation value 

was expressed as a percent deviation from the MAP set point to allow for the direct 
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comparison of the different animals’ data sets. The % MAP deviation was calculated as 

follows: 

 

  % MAP deviation =  (Measured MAP – Set point MAP) *100 
      Set point MAP 
 
Once the % MAP deviation was calculated, a plot of the % anesthetic and % MAP 

deviation vs. time for both the control and no-control conditions was produced for each 

animal.  A representative plot from animal R-1 is shown in figure 5.2-1& 5.2-2 and the 

plots for all data yielding animals are included in Appendix A.   The % anesthetic for the 

no-control condition was excluded from these plots because it did not change. Of the four 

animals tested, three animals yielded data for both the control and no-control conditions, 

while one only yielded data for the no-control condition and was removed from further 

analysis.   

For a statistical analysis of these results, the root mean square (RMS) value of the 

% MAP deviation for both the control and no control conditions was calculated (for a 

~250 seconds interval)  A paired t-test analysis was used to determine if there was a 

significant decrease in the % MAP deviation (as expressed by the RMS values) while 

under automated control.  A summary of the calculated values of RMS and the results of 

the paired t-test are shown in table 5.2-2 
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Figure 5.2-1: Animal R-1 epinephrine test data showing MAP under control (closed 
circles) and no- control (open circles) conditions and % anesthetic (closed 
triangles) vs. time. 
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Figure 5.2-2 Animal R-1 epinephrine test data showing % MAP deviation under control 
(closed circles) and no- control (open circles) conditions and % anesthetic (closed 
triangles) vs. time. 
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Animal:  R-1   Strain:  Sprague Dawley     Test: Epinephrine (No Control)       Date: 
03/19/03   

Time 
(post 
Inj.) 

Temp 
Set 
(oC) 

Actual 
Temp. 
(oC) 

An. % 
(Halothane) O2% 

CO2 
% 

MAX

CO2 % 
MIN 

Vent 
Press. 
MAX

Vent. 
Press. 
MIN 

Tidal 
Volume 

(cc) 

Resp. 
Rate 

(BPM)

MAP 
(mmHg)

Event 
Marker Event 

Set 
Pressure 
(mmHg) 

Dev. From 
MAP 

% Dev. 
From 
MAP 

-180 38 38.10 2.00 32 4.87 1.77 3.51 -1.2 2.7 93 105.06 0 No event 105 0.06 0.06 

-170 38 38.10 2.00 32 5.04 1.67 6.64 -1.2 2.7 93 105.06 0 No event 105 0.06 0.06 

-160 38 38.10 2.00 32 5.30 1.55 2.05 -1.2 2.7 93 104.96 0 No event 105 -0.04 -0.04 

-150 38 38.10 2.00 32 5.34 1.73 5.31 -1.2 2.7 93 105.17 0 No event 105 0.17 0.16 

-140 38 38.10 2.00 32 5.36 1.71 5.82 -1.2 2.7 93 105.68 0 No event 105 0.68 0.64 

-130 38 38.10 2.00 32 5.56 1.91 5.37 -1.1 2.7 93 104.76 0 No event 105 -0.24 -0.23 

-120 38 38.10 2.00 32 5.83 1.78 4.69 -1.1 2.7 93 104.45 0 No event 105 -0.55 -0.53 

-110 38 38.10 2.00 32 5.67 2.61 5.65 -1.2 2.7 93 104.96 0 No event 105 -0.04 -0.04 

-100 38 38.10 2.00 32 5.83 1.91 5.71 -1.1 2.7 93 104.35 0 No event 105 -0.66 -0.63 

-90 38 38.10 2.00 32 5.89 1.75 6.35 -1.2 2.7 93 104.86 0 No event 105 -0.14 -0.14 

-80 38 37.98 2.00 32 5.95 1.67 6.22 -1.2 2.7 93 105.06 0 No event 105 0.06 0.06 

-70 38 37.98 2.00 32 5.91 1.69 1.12 -1.2 2.7 93 105.78 0 No event 105 0.78 0.74 

-60 38 37.98 2.00 32 5.48 1.60 4.06 -1.2 2.7 93 105.68 0 No event 105 0.68 0.64 

-50 38 38.10 2.00 32 6.12 1.78 5.32 -1.2 2.7 93 105.58 0 No event 105 0.58 0.55 

-40 38 37.98 2.00 32 6.02 2.20 3.65 -1.1 2.7 93 105.68 0 No event 105 0.68 0.64 

-30 38 37.98 2.00 32 5.98 1.83 4.25 -1.1 2.7 93 105.47 0 No event 105 0.47 0.45 

-20 38 37.98 2.00 32 6.00 2.59 4.91 -1.2 2.7 93 104.76 0 No event 105 -0.24 -0.23 

-10 38 37.86 2.00 32 6.11 1.95 5.47 -1.2 2.7 93 105.27 0 No event 105 0.27 0.25 

0 38 37.86 2.00 32 5.95 1.95 5.39 -1.2 2.7 93 105.27 100 
1 ug epi 
(no 
control) 

105 0.27 0.25 

10 38 37.86 2.00 32 6.08 1.75 4.62 -1.1 2.7 93 105.17 0 No event 105 0.17 0.16 

20 38 37.86 2.00 32 5.31 1.63 4.06 -1.2 2.7 93 119.23 0 No event 105 14.23 11.93 

30 38 37.86 2.00 32 5.31 1.72 2.54 -1.2 2.7 93 103.93 0 No event 105 -1.07 -1.03 

40 38 37.86 2.00 32 4.69 2.19 5.63 -1.1 2.7 93 86.80 0 No event 105 -18.21 -20.97 

50 38 37.86 2.00 32 4.98 1.53 4.58 -1.1 2.7 93 78.89 0 No event 105 -26.11 -33.09 

60 38 37.86 2.00 32 5.67 1.73 6.88 -1.0 2.7 93 79.82 0 No event 105 -25.18 -31.55 

70 38 37.98 2.00 32 3.77 1.63 5.91 -0.9 2.7 93 83.82 0 No event 105 -21.18 -25.27 

80 38 37.98 2.00 32 4.31 1.67 5.28 -1.2 2.7 93 89.46 0 No event 105 -15.54 -17.37 

90 38 37.86 2.00 32 4.16 1.89 5.83 -1.1 2.7 93 95.11 0 No event 105 -9.89 -10.40 

100 38 37.98 2.00 32 4.75 1.72 6.50 -1.0 2.7 93 101.68 0 No event 105 -3.32 -3.27 

110 38 37.98 2.00 32 5.28 1.82 6.63 -1.1 2.7 93 104.24 0 No event 105 -0.76 -0.73 

120 38 37.86 2.00 32 5.53 1.90 6.15 -1.1 2.7 93 106.29 0 No event 105 1.29 1.22 

130 38 37.86 2.00 32 5.79 2.30 7.10 -1.2 2.7 93 106.40 0 No event 105 1.40 1.31 

140 38 37.86 2.00 32 5.56 2.17 5.60 -1.2 2.7 93 107.83 0 No event 105 2.83 2.63 

150 38 37.86 2.00 32 5.91 1.79 7.20 -1.0 2.7 93 108.66 0 No event 105 3.65 3.36 

160 38 37.86 2.00 32 5.82 2.35 5.70 -1.2 2.7 93 108.86 0 No event 105 3.86 3.55 

Table 5.2-1 Representative data set for animal R-1 showing formatted data for an 
epinephrine injection test under no- control conditions. 
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Animal # R-1 R-1 R-1 

RMS % MAP 

Deviation No Control
12.53 11.959 9.428 

RMS % MAP 

Deviation Control 
9.242 10.806 8.570 

        

D 3.291 1.153 0.859 

D 1.767 s 1.327 

T 2.306  p < 0.20  

Table 5.2-2:  Summary of calculated RMS values and 
Paired t-test results 

 

5.3.  Long-term Perturbation results 

For all long-term perturbation testing, the interface was set to save data to a text 

file approximately every four seconds.  Once saved to the text file, as with the 

short-term perturbations, the data was transferred to an ExcelR spreadsheet for 

further analysis.  A representative data set is shown in table 5.3-1.  Since there 

were two types of long-term perturbations, Neo-Synephrine (hypertension) and 

sodium nitroprusside (hypotension) the data was separated by type of infusion 

and control or no-control conditions.  As with the short-term perturbation results, 

the % MAP deviation was identified as the key evaluation parameter for these 

tests while the % anesthetic was the major control variable. As with the previous 

experiments, the time scale for these experiments was adjusted to represent 
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relative time post infusion start to allow the data from the control and no-control 

tests to be directly compared.   

Of the six animals tested, only four yielded data for the neo-synephrine 

testing (LTP-2, LTP-3, LTP-4, LTP-6).  A representative plot of % MAP 

deviation and % anesthetic vs. time for the Neo-Synephrine injection testing is 

shown in figure 5.3-1& 5.3-2 and the plots for all data yielding animals are 

included in Appendix B.   
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Animal:  LTP-3   Strain: Brown 
Norway Test: Sodium Nitroprusside (Control)   Sex: Female     Date: 03/12/03

Time 
(post 
Inj.) 

Temp 
Set (oC) 

Actual 
Temp. 
(oC) 

An. % 
(Halot
hane) 

O2% 
CO2 

% 
MAX 

CO2 % 
MIN 

Vent 
Press. 
MAX

Vent. 
Press. 
MIN 

Tidal 
Volume 

(cc) 

Resp. 
Rate 

(BPM)

MAP 
(mmHg)

HR 
(BPM) 

Event 
Marker Event 

Set 
Pressure 
(mmHg)

Dev. 
From 
MAP

% Dev. 
From 
MAP

-344 38 37.86 1.80 30 5.26 0.11 2.78 -1.03 1.5 77 95.83 315 100 

Pressure 
control 
started 
95 

95 0.83 0.87 

-334 38 37.86 2.50 30 4.86 0.10 2.78 -1.03 1.5 77 94.60 315 0 No event 95 -0.41 -0.43 

-324 38 37.98 2.50 30 5.24 0.12 2.81 -1.03 1.5 77 94.60 316 0 No event 95 -0.41 -0.43 

-320 38 37.98 2.50 30 5.26 0.11 2.78 -1.03 1.5 77 94.80 315 0 No event 95 -0.20 -0.21 

-316 38 37.98 2.50 30 5.25 0.12 2.73 -1.03 1.5 77 95.93 315 0 No event 95 0.93 0.98 

-312 38 37.98 2.15 30 5.21 0.10 2.81 -1.03 1.5 77 94.49 313 0 No event 95 -0.51 -0.53 

-308 38 37.98 1.80 30 5.05 0.11 2.76 -1.03 1.5 77 94.60 313 0 No event 95 -0.41 -0.43 

-304 38 37.86 1.80 30 5.08 0.10 2.81 -1.03 1.5 77 90.49 313 0 No event 95 -4.51 -4.75 

-300 38 37.98 1.80 30 5.33 0.12 2.73 -1.03 1.5 77 93.16 314 0 No event 95 -1.84 -1.94 

-296 38 37.98 1.80 30 5.34 0.16 2.81 -1.05 1.5 77 92.65 312 0 No event 95 -2.36 -2.48 

-292 38 37.98 1.80 30 5.46 0.17 2.76 -1.03 1.5 77 92.03 312 0 No event 95 -2.97 -3.13 

-288 38 37.98 1.80 30 5.58 0.21 2.76 -1.03 1.5 77 92.24 313 0 No event 95 -2.77 -2.91 

-284 38 37.98 1.80 30 5.68 0.21 2.76 -1.03 1.5 77 92.75 313 0 No event 95 -2.25 -2.37 

-280 38 37.98 1.80 30 5.65 0.22 2.73 -1.03 1.5 77 93.47 313 0 No event 95 -1.53 -1.61 

-276 38 37.86 1.80 30 5.65 0.22 2.73 -1.03 1.5 77 92.75 313 0 No event 95 -2.25 -2.37 

-272 38 37.98 1.80 30 5.50 0.19 2.78 -1.03 1.5 78 93.36 314 0 No event 95 -1.64 -1.72 

-268 38 37.98 1.80 30 5.70 0.23 3.03 -1.03 1.5 77 93.36 315 0 No event 95 -1.64 -1.72 

-264 38 37.98 1.80 30 5.67 0.21 3.00 -1.05 1.5 77 94.29 313 0 No event 95 -0.71 -0.75 

-260 38 37.98 1.80 30 5.53 0.21 2.98 -1.03 1.5 78 93.98 314 0 No event 95 -1.02 -1.07 

-256 38 37.98 1.80 30 5.49 0.22 2.98 -1.03 1.5 77 94.80 314 0 No event 95 -0.20 -0.21 

-252 38 37.98 1.80 30 5.59 0.21 2.93 -1.03 1.4 75 94.60 313 0 No event 95 -0.41 -0.43 

-248 38 37.98 1.80 30 5.53 0.19 2.76 -1.03 1.4 76 96.65 313 0 No event 95 1.65 1.73 

-244 38 37.98 1.80 30 5.53 0.18 2.78 -1.03 1.4 76 96.96 315 0 No event 95 1.96 2.06 

-240 38 37.98 1.80 30 5.71 0.19 2.73 -1.05 1.4 76 97.57 315 0 No event 95 2.57 2.71 

-236 38 37.98 1.80 30 5.74 0.19 2.78 -1.05 1.4 77 99.21 317 0 No event 95 4.21 4.43 

-232 38 37.98 1.80 30 5.68 0.21 2.76 -1.05 1.4 76 98.39 317 0 No event 95 3.39 3.57 

-228 38 37.98 1.80 30 5.64 0.18 2.71 -1.03 1.4 76 99.52 317 0 No event 95 4.52 4.76 

-224 38 37.98 1.81 30 5.60 0.19 2.66 -1.03 1.4 76 100.24 318 0 No event 95 5.24 5.52 

-220 38 37.98 1.81 30 5.74 0.18 2.78 -1.05 1.4 76 100.03 320 0 No event 95 5.03 5.30 

-216 38 37.86 1.81 30 5.73 0.19 2.78 -1.03 1.4 77 100.34 318 0 No event 95 5.34 5.62 

-212 38 37.98 1.80 30 5.65 0.18 2.71 -1.05 1.4 76 98.80 318 0 No event 95 3.80 4.00 

-208 38 37.98 1.81 30 5.62 0.14 2.76 -1.03 1.4 76 98.39 318 0 No event 95 3.39 3.57 

-204 38 37.98 1.81 30 5.40 0.11 2.56 -1.03 1.4 76 98.08 318 0 No event 95 3.08 3.25 

-200 38 37.86 1.80 30 5.50 0.08 2.71 -1.05 1.4 76 97.57 318 0 No event 95 2.57 2.71 

-196 38 37.98 1.80 30 5.43 0.10 2.78 -1.05 1.4 75 95.21 317 1 No event 95 0.21 0.22 

-164 38 37.86 1.77 30 5.27 0.09 2.73 -1.03 1.4 75 87.82 313 0 No event 95 -7.18 -7.56 

-160 38 37.98 1.80 30 5.46 0.09 2.71 -1.03 1.4 74 91.00 312 0 No event 95 -4.00 -4.21 

-156 38 37.98 1.79 30 5.32 0.09 2.73 -1.05 1.4 75 89.57 313 0 No event 95 -5.43 -5.72 

 

Table 5.3-1: Representative data set for animal LTP-3 showing formatted data for 
an Sodium Nitroprusside infusion test under control conditions. 
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LTP-6 Neo-Synephrine Test Data:
% MAP & % Anesthetic vs. Time
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Figure 5.3-1: Animal LTP-6 Neo-Synephrine infusion test data 
showing MAP under control (closed circles) and no- 
control (open circles) conditions and % anesthetic 
(closed triangles) vs. time. 

LTP-6 Neo-Synephrine Test Data:
% MAP Deviation & % Anesthetic vs. Time
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Figure 5.3-2: Animal LTP-6 Neo-Synephrine infusion test data 
showing % MAP deviation under control (closed 
circles) and no- control (open circles) conditions and % 
anesthetic (closed triangles) vs. time. 
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  Of the six animals tested only four animals yielded data for the sodium 

nitroprusside infusion tests (LTP-2, LTP-3, LTP-5, LTP-6).  A representative plot of % 

MAP deviation and % anesthetic vs. time for the sodium nitroprusside infusion testing is 

shown in figure 5.3-3 & 5.3-4.and the plots for all data yielding animals are included in 

Appendix C.  

 As with the short-term perturbation a quantitative evaluation of the data from the 

long-term perturbations was achieved by performing a paired t-test analysis on the 

calculated RMS values from each test.  The results of the RMS and t-test calculations for 

Neo-Synephrine and sodium nitroprusside infusion tests are shown in table 5.3-2 and 

table 5.3-3 respectively. 

LTP-6 Sodium Nitroprusside Test 2 Data:
% MAP & % Anesthetic vs. Time
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Figure 5.3-3: Animal LTP-6 sodium nitroprusside infusion test data showing 

MAP under control (closed circles) and no- control (open circles) 
conditions and % anesthetic (closed triangles) vs. time. 
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LTP-6 Sodium Nitroprusside Test 2 Data:
% MAP Deviation & % Anesthetic vs. Time
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Figure 5.3-4: Animal LTP-6 sodium nitroprusside infusion test data 

showing % MAP deviation under control (closed circles) 
and no- control (open circles) conditions and % anesthetic 
(closed triangles) vs. time. 

 

Neo-Synephrine infusion Data Analysis Results 

Animal # LTP2 LTP3 LTP4A LTP4B LTP6

RMS % MAP 

Deviation No-Control 
17.34 25.93 17.93 17.93 30.70

RMS % MAP 

Deviation Control 
12.12 30.95 27.38 15.06 22.38

            

d 5.21 -5.02 -9.45 2.87 8.31 

D 0.39 s 7.39     

t 0.117 P   < 0.50  

Table 5.3-2: Summary of calculated RMS values and Paired 
t-test results for the Neo-Synephrine infusion 
experiments. 
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Sodium Nitroprusside infusion Data Analysis Results 

Animal # LTP2 LTP3 LTP5A LTP5B LTP6A LTP6B 

RMS % MAP 

Deviation No-Control 
15.71 8.37 35.74 10.49 18.83 14.59 

RMS % MAP 

Deviation Control 
11.04 6.60 18.42 9.47 14.04 8.02 

       

d 4.68 1.77 17.32 1.02 4.78 6.57 

D 6.02 S 5.90    

t 2.499 p < 0.10 

Table 5.3-3: Summary of calculated RMS values and Paired t-test 
 results for sodium nitroprusside infusion experiments. 

 

The overall stability and consistency of the system was analyzed by comparing 

the MAP values for each animal at the same time relative to infusion start for each of the 

long-term experiments.  Mean and standard deviation values for each time point (relative 

to infusion start) during both the control and no-control conditions were calculated for the 

Neo-Synephrine and sodium nitroprusside infusion experiments.  The resulting plots of 

mean and standard deviation values against time (post infusion start) are shown in figures 

5.3-4 and 5.3-5, respectively. 
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Figure 5.3-5:  Neo-synephrine testing mean and standard deviation vs. tome for control 
(closed circles, negative error bars) and no-control (open circles, positive error 
bars). 
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Figure 5.3-6: Sodium nitroprusside testing mean and standard deviation vs. tome for 
control (closed circles, negative error bars) and no-control (open circles, positive 
error bars). 
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5.4. CO2 controller Results 

 Attempts were made to use the CO2 control system during the short-term 

perturbation tests but were unsuccessful due to limitations of the Columbus Instruments 

ventilator being used at the time.  Prior to the start of the long-term perturbation testing, a 

beta version of the Harvard Apparatus Inspira was used.  The Inspira was able to handle 

the demands of the control system and allowed for the use of the CO2 controller during 

the long term testing.  Though no specific perturbations were performed, it was possible 

to collect data for each animal and observe the reactions of the control system to changes 

in ETCO2. The key parameter for evaluation of the CO2 control system was identified as 

the MAX % CO2 and the major control variables were identified as tidal volume and 

respiratory rate.   Due to calibration issues with the micro-capnometer, all % CO2 values 

are one half that of the actual value.  Representative plots of ETCO2, tidal volume and 

respiration rate vs. time are shown in figures 5.4-1 and 5.4-2 and plots for all of the LTP 

animals can be found in Appendix D. 
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Figure 5.4-1: Representative plot of % CO2 (closed circle) tidal volume 
(closed triangle) and respiratory rate (Closed square) vs. time for 
animal LTP-3. 
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Figure 5.4-2:  Representative plot of % CO2 deviation (closed circle) change in TV 
set point  (closed triangle) and change in RR set point (Closed square) vs. 
time for animal LTP-3. 

 

5.5. Steady state observations 

During the long-term perturbation testing, animal LTP-5 was allowed to stabilize 

and then placed on pressure and CO2 control with no perturbations for a period of ~45 

min.  This was done to assess the normal variation of an animal’s physiology when no 

active procedures are taking place and the system’s ability to maintain the set points in 

this situation.  Though no quantitative data can be obtained since the n is equal to 1, 

qualitative information can be gleaned by examining the resulting plots (figures 5.5-1 - 

5.5-4).  
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Figure 5.5-1: Animal LTP-5 steady state test data showing MAP 
under control (closed circles) and % anesthetic (closed 
triangles) vs. time. 
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Figure 5.5-2:  Animal LTP-5 steady state test data showing % 

MAP deviation under control (closed circles) and % 
anesthetic (closed triangles) vs. time. 
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Figure 5.5-3: Animal LTP-5 steady state data showing % CO2 
(closed circle) tidal volume (closed triangle) and 
respiratory rate (Closed square) vs. time. 
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Figure 5.5-4: Animal LTP-5 steady state data showing % CO2 
deviation (closed circle)% change in tidal volume (closed 
triangle) and % change in respiratory rate (Closed square) 
vs. time. 
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6. DISCUSSION 

6.1. Significance of results 
 

The major aim of this project was the maintenance of an anesthetized rodent’s 

physiological state using an automated control system.  The data collected for the various 

perturbation tests indicate that the system in all cases is reacting to the perturbations in a 

predicted, safe and stable manner, but that a number of limitations exist.  The pressure 

and anesthetic percent data from the short-term (epinephrine) perturbation tests showed 

that the control system was able to identify a change from the set pressure and adjust the 

anesthetic percentage in an attempt to correct the deviation (Appendix A).  However, 

results of the paired t-test analysis revealed that no statistical differences were found (p < 

0.20) between the control and no-control conditions, suggesting that while the system 

was able to respond to changes in BP, anesthetic changes have a much longer time 

response and can not effectively blunt a dramatic short-term change in BP. 

The Neo-Synephrine perturbation pressure and anesthetic percent data (Appendix 

B) indicated that, as with the epinephrine testing, the system was able to appropriately 

adjust the anesthetic percentage in response to a change in the MAP, but that the change 

in anesthetic concentration was not able to counteract the pressure increase caused by the 

vasoconstrictive drug.   The lack of a drop in MAP even in the presence of the upper 

safety limit anesthetic concentration indicates that there is an unknown mechanism that is 

limiting the anesthetic agent’s ability to depress MAP or limiting the delivery of the 

anesthetic agent in general.  Results from the paired t-test analysis showed that there was 

no statistical difference between the RMS deviation values for control and no-control (p 

< 0.50).     
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 The sodium nitroprusside perturbation pressure and anesthetic percent data 

collected from the four animals showed that the system was able to adjust the anesthetic 

concentration and reduce the % MAP deviation in the control situation compared to the 

no-control (Appendix C).  Paired t-test analysis was performed on the calculated RMS 

values for % MAP deviation, giving a t value of 2.499, proving that the control condition 

was a significant improvement (p < 0.10) over the no-control condition to a confidence 

level between 90% and 95 %  (to = 2.015 and to = 2.579, respectively).   

The %CO2, TV and RR data obtained throughout the long-term perturbation tests 

(Appendix D) shows that the system was able to maintain the ETCO2 under near steady 

state conditions (the perturbations used had little effect on ETCO2).    Though this is not a 

perturbation experiment it is an important indicator of the systems stability and efficacy 

under normal conditions. 

 

6.2. Future Work 

The presence of a significant improvement in the hypotension perturbation testing 

with no prior optimization of the control system indicates that further work should be 

completed that analyzes and optimizes the activity of the pressure controller.  A number 

of variables exist in the system that could directly affect the ability of the system to 

effectively and safely maintain the desired set point.  Additional hypotension testing 

should be completed in conjunction with this optimization to increase the number of data 

points available for statistical analysis.   

As stated previously, the inability of the system to reduce MAP during the Neo-

Synephrine (hypertension) experiments even in the presence of increased anesthetic 
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concentration suggests that an unknown mechanism exists which limits the anesthetic’s 

ability to reduce the elevated MAP.  Additional hypertension testing should be completed 

using a different drug or a method that minimizes the fluctuation of systemic parameters 

other the blood pressure to fully evaluate the situation and identify the limitation.   

 Additional short and long term perturbation experiments should be completed 

using alternative inhalant anesthetics.  The use of an alternative anesthetic may provide a 

more rapid response or a different MAP depressing mechanism that could allow for 

increased effectiveness for short-term fluctuations and situation modeled in the Neo-

Synephrine infusion test.  The interface developed for this project already contains 

functionality that allows for the selection of alternative anesthetics.    

Because all of the perturbations performed during this project considered only the 

control or no-control conditions, additional testing should be completed which considers 

a positive control.  In order to achieve this, an anesthetist should attempt to control the set 

points of the animal during perturbations and these results should be compared to the 

results obtained during automated control.  This testing can identify any limitations in 

halothane’s ability to control BP and allow for the validation of the system’s decision 

making. 

Though all of the testing that was completed in this project was done on rats, mice 

are another important animal model in the lab.  In order to complete this testing for the 

pressure control system a reliable means for acquiring the BP of a mouse must be 

developed.  Arterial cannulation in the mouse is extraordinarily difficult and not 

employed in this project.   
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 Perturbation testing of the ETCO2 control system should be completed to assess 

that system’s ability to maintain the set point  %CO2 in non-steady state conditions.  

Possible perturbations include the addition of CO2 gas to the inhaled gas mixture or 

injection of bicarbonate.   

 

 

6.3. Conclusions 

The four specific goals for this project were to 1) Develop a computer-controlled 

monitoring system (based on LabVIEWR) capable of “real time” data acquisition and 

display of body temperature, end tidal CO2 (ETCO2), ventilator pressure and blood 

pressure, 2) Develop a communications capability allowing for the control of laboratory 

instrumentation, such as the ventilator, heating bath and gas flow meters, 3) Develop a 

computer-based control system (using LabVIEWR) for maintaining body temperature, 

ETCO2, and blood pressure., 4) Design a user interface that incorporates the above 

subsystems and an event marker and file transfer system. 

The project was successful in producing a single user interface capable of “real-time” 

acquisition, display, transfer and evaluation of physiological data from an anesthetized 

animal and, based on this evaluation, manipulation of the available control variables in an 

attempt to maintain a predetermined set point.  The in-vivo testing completed in this 

project proved that the system was able to significantly improve the deviation from the 

set pressure while under control in the hypotension condition.  

Though both the short-term and hypertension testing showed no significant 

improvement, the system successfully manipulated the anesthetic percentage in a safe and 
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stable manner in response to changes in MAP.  The results for the hypertension testing 

suggest that unknown mechanisms exist that limit the anesthetic agent’s ability to depress 

MAP or limit the delivery of the anesthetic agent in general.   

Though no quantitative analysis was done, the qualitative data for the CO2 control 

system obtained during the long-term perturbation testing showed that the system can 

safely and effectively adjust the TV and RR values to maintain a ETCO2 level close to 

the set point.   

Though currently limited, this system is an important first step towards a fully 

automated monitoring and control system and can be used as the basis for further 

research investigating alternate anesthetic agents and optimization of the control 

algorithms. 
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Appendix A:  Epinephrine Injection Data Plots 

The following plots are summary plots of the calculated % NAP deviation for both 

the control and no-control condition and % anesthetic in the control condition vs. relative 

time post injection. 

Animal R-1 Epinephrine Test Data:
% MAP & % Anesthetic vs. Time
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Animal R-1 Epinephrine Test Data:
% MAP Deviation & % Anesthetic vs. Time
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RMS Value 
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Control 9.24 110 2.0 

No-Control 12.53 105 NA 
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Animal R-2 Epinephrine Test Data:
% MAP & % Anesthetic vs. Time
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Animal R-2 Epinephrine Test Data:
% MAP Deviation & % Anesthetic vs. Time
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Control Condition 

RMS Value 
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Anesthetic Set- 

point (%) 

Control 10.8 112 1.9 

No-Control 11.96 105 NA 
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Animal R-3 Epinephrine Injection Test Data:
% MAP & % Anesthetic vs. Time
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Animal R-3 Epinephrine Injection Test Data:
% MAP Deviation & % Anesthetic vs. Time
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Appendix B:  Neo-Synephrine Infusion Data plots 

The following are plots of MAP and % MAP deviation for both the control and no-

control conditions as well as % anesthetic for the control condition vs. relative time post 

infusion start for all of the animals which yielded data for the neo-synephrine infusion 

tests.   

Animal LTP-2 Neo-Synephrine Test Data:
MAP & % Anesthetic  vs. Time
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Animal LTP-2 Neo-Synephrine Test Data:
MAP Deviation & % Anesthetic  vs. Time
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Animal LTP-3 Neo-Synephrine Test Data:
MAP & % Anesthetic  vs. Time
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Animal LTP-3 Neo-Synephrine Test Data:
MAP Deviation & % Anesthetic  vs. Time

 

Control Condition 

RMS Value 
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Pressure Set- 

point (mmHg) 

Anesthetic Set- 

point (%) 

Control 30.95 80 1.8 

No-Control 25.93 75 NA 
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Animal LTP-4 Neo-Synephrine Test Data:
MAP & % Anesthetic  vs. Time
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Animal LTP-4 Neo-Synephrine Test Data:
MAP Deviation & % Anesthetic  vs. Time

Time (sec. post infusion start)
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Control Condition 

RMS Value 

(%) 

Pressure Set- 

point (mmHg) 

Anesthetic Set- 

point (%) 

Control 27.38 85 1.9 

No-Control 17.93 125 NA 
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LTP-6 Neo-Synephrine Test Data:
% MAP & % Anesthetic vs. Time
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LTP-6 Neo-Synephrine Test Data:
% MAP Deviation & % Anesthetic vs. Time
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Control Condition 

RMS Value 
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Pressure Set- 

point (mmHg) 

Anesthetic Set- 

point (%) 

Control 22.38 105 2.1 

No-Control 30.70 85 NA 
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Appendix C:  Sodium Nitroprusside Infusion Data Plots 

The following are plots of MAP and % MAP deviation for both the control and no-

control conditions as well as % anesthetic for the control condition vs. relative time post 

infusion start for all of the animals which yielded data for the sodium nitroprusside 

infusion tests.  
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Animal LTP-2 Sodium Nitroprusside Test Data:
MAP Deviation & % Anesthetic  vs. Time
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Control Condition 

RMS Value 

(%) 

Pressure Set- 

point (mmHg) 

Anesthetic Set- 

point (%) 

Control 11.04 105 1.9 

No-Control 15.71 100 NA 
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Animal LTP-3 Sodium Nitroprusside Test Data:
MAP & % Anesthetic  vs. Time
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Animal LTP-3 Sodium Nitroprusside Test Data:
MAP Deviation & % Anesthetic  vs. Time

Time (sec. post infusion start)

0 200 400 600 800 1000

D
ev

ia
tio

n 
fro

m
 M

AP
 S

et
po

in
t (

%
)

-60

-40

-20

0

20

40

60

%
 A

ne
st

he
tic

 (H
al

ot
ha

ne
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Pump Started Pump Stopped

% MAP Deviation (Control) 
% MAP Deviation (No Control)
% Anesthetic (Control)
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RMS Value 
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point (%) 
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No-Control 8.37 105 NA 
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LTP-5 Sodium Nitroprusside Test 1 Data:
% MAP & % Anesthetic vs. Time

Time (sec. post infusion start)
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LTP-5 Sodium Nitroprusside Test 1 Data:
% MAP Deviation & % Anesthetic vs. Time
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Control Condition 

RMS Value 

(%) 

Pressure Set- 

point (mmHg) 

Anesthetic Set- 

point (%) 

Control 18.42 120 1.8 

No-Control 35.74 80 NA 
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LTP-5 Sodium Nitroprusside Test 2 Data:
% MAP  & % Anesthetic vs. Time

Time (sec. post infusion start)
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LTP-5 Sodium Nitroprusside Test 2 Data:
% MAP Deviation & % Anesthetic vs. Time

Time (sec. post infusion start)
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RMS Value 
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Control 18.42 120 1.8 

No-Control 35.74 80 NA 
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LTP-6 Sodium Nitroprusside Test 1 Data:
% MAP & % Anesthetic vs. Time
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LTP-6 Sodium Nitroprusside Test 1 Data:
% MAP Deviation & % Anesthetic vs. Time
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Control Condition 

RMS Value 
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Pressure Set- 

point (mmHg) 

Anesthetic Set- 

point (%) 

Control 14.04 125 2.1 

No-Control 18.83 100 NA 

 



 87

LTP-6 Sodium Nitroprusside Test 2 Data:
% MAP & % Anesthetic vs. Time

Time (sec. post infusion start)
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LTP-6 Sodium Nitroprusside Test 2 Data:
% MAP Deviation & % Anesthetic vs. Time

Time (sec. post infusion start)

0 200 400 600

D
ev

ia
tio

n 
fro

m
 M

AP
 S

et
po

in
t (

%
)

-60

-40

-20

0

20

40

60

%
 A

ne
st

he
tic

 (H
al

ot
ha

ne
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Pump Started Pump Stopped

% MAP Deviation (Control)
% MAP Deviation (No Control)
% Anesthetic (Control)

 

Control Condition 

RMS Value 

(%) 

Pressure Set- 

point (mmHg) 

Anesthetic Set- 

point (%) 

Control 8.02 105 2.1 

No-Control 14.59 120 NA 
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Appendix D:  ETCO2 Data Plots 

The following are plots of % CO2, tidal volume and respiratory rate vs. time and 

%change in ETCO2, %change in TV and % change in RR vs. time for the animals that 

yielded data for the ETCO2 control system. 
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Animal LTP-2 Neo-Synephrine  Test Data:
% ETCO2  Deviation/% Change in RR/ % Change in TV vs. Time 

Time (sec. post infusion start)
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Parameter Set-point Units 

ETCO2 % 3.4 % 

Tidal Volume 1.3 cc 

Respiratory Rate 95 BPM 
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Animal LTP-3 Sodium Nitroprusside Test Data:
% ETCO2 /Tidal Volume/Respiratory Rate vs. Time

Time (sec. post infusion start)
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Animal LTP-3 Sodium Nitroprusside Test Data:
% ETCO2 Deviation/% Change in TV/% Change in RR vs. Time

Time (sec. post infusion start)
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Parameter Set-point Units 

ETCO2 % 2.5 % 

Tidal Volume 1.4 cc 

Respiratory Rate 74 BPM 
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Animal LTP-3 Neo-Synephrine Test Data:
% ETCO2 /Tidal Volume/Respiratory Rate vs. Time

Time (sec. post infusion start)
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Animal LTP-3 Neo-Synephrine Test Data:
% ETCO2 Deviation/% Change in TV/% Change in RR vs. Time

Time (sec. post infusion start)
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Parameter Set-point Units 

ETCO2 % 2.2 % 

Tidal Volume 1.4 cc 

Respiratory Rate 77 BPM 
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Animal LTP-4 Neo-Synephrine Test Data:
% ETCO2 /Tidal Volume/Respiratory Rate vs. Time

Time (sec. post infusion start)
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Animal LTP-4 Neo-Synephrine Test Data:
% ETCO2 Deviation/% Change in TV/% Change in RR vs. Time

Time (sec. post infusion start)
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Parameter Set-point Units 

ETCO2 % 1.5 % 

Tidal Volume 1.5 cc 

Respiratory Rate 77 BPM 
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Animal LTP-5 Sodium NitroprussideTest 1 Data:
% ETCO2 /Tidal Volume/Respiratory Rate vs. Time

Time (sec. post infusion start)
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Animal LTP-5 Sodium NitroprussideTest 1 Data:
% ETCO2 Deviation/% Change in TV/% Change in RR vs. Time

Time (sec. post infusion start)
0 200 400 600

D
ev

ia
tio

n 
fro

m
 E

TC
O

2 S
et

po
in

t (
%

)

-20

-10

0

10

20
Pump Started Pump Stopped

C
ha

ng
e 

fro
m

 T
V 

se
tp

oi
nt

 (%
)

-10

-5

0

5

10

C
ha

ng
e 

fro
m

 R
R

 s
et

po
in

t (
%

)

-10

-5

0

5

10

% ETCO2 Deviation
% Change in TV
% Change in RR

 

Parameter Set-point Units 

ETCO2 % 2.3 % 

Tidal Volume 1.4 cc 

Respiratory Rate 74 BPM 
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Animal LTP-5 Sodium Nitroprusside Test 2 Data:
% ETCO2 /Tidal Volume/Respiratory Rate vs. Time

Time (sec. post infusion start)
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Animal LTP-5 Sodium Nitroprusside Test 2 Data:
% ETCO2 Deviation/% Change in TV/% Change in RR vs. Time

Time (sec. post infusion start)
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Parameter Set-point Units 

ETCO2 % 2.5 % 

Tidal Volume 1.4 cc 

Respiratory Rate 75 BPM 
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Animal LTP-6 Steady Stae Test Data:
% ETCO2 /Tidal Volume/Respiratory Rate vs. Time

Time (sec.)
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Animal LTP-6 Steady Stae Test Data:
% ETCO2 Deviation/% Change in TV/% Change in RR vs. Time

Time (sec.)
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Parameter Set-point Units 

ETCO2 % 2.7 % 

Tidal Volume 1.4 cc 

Respiratory Rate 78 BPM 
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